
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Dynamical systems via domains
Toward a unified foundation of symbolic and non-symbolic computation
Hornischer, L.A.

Publication date
2021
Document Version
Final published version

Link to publication

Citation for published version (APA):
Hornischer, L. A. (2021). Dynamical systems via domains: Toward a unified foundation of
symbolic and non-symbolic computation. [Thesis, fully internal, Universiteit van Amsterdam].
Institute for Logic, Language and Computation.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/dynamical-systems-via-domains(3ed85773-991f-43c5-8b83-96c13e56b275).html

Levin Hornischer

Toward a Unified Foundation of
Symbolic and Non-symbolic

Computation

Dynamical Systems
via Domains

Dynamical Systems via Domains

Toward a Unified Foundation of
Symbolic and Non-symbolic

Computation

ILLC Dissertation Series DS-2021-10

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 107
1098 XG Amsterdam

phone: +31-20-525 6051
e-mail: illc@uva.nl

homepage: http://www.illc.uva.nl/

Copyright © 2021 by Levin Hornischer

Cover woodcut and photo by Monika Schaber
Printed and bound by GVO drukkers & vormgevers B.V.

ISBN: 978-94-6332-789-3

Dynamical Systems via Domains

Toward a Unified Foundation of
Symbolic and Non-symbolic

Computation

Academisch Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. ir. K.I.J. Maex
ten overstaan van een door het College voor Promoties ingestelde

commissie, in het openbaar te verdedigen in de Agnietenkapel
op woensdag 13 oktober 2021, te 10.00 uur

door

Levin Adrian Hornischer

geboren te Filderstadt

Promotiecommissie

Promotores: prof. dr. M. van Lambalgen Universiteit van Amsterdam
prof. dr. F. Berto Universiteit van Amsterdam

Overige leden: prof. dr. J.F.A.K. van Benthem Universiteit van Amsterdam
prof. dr. S.J.L. Smets Universiteit van Amsterdam
prof. dr. A. Betti Universiteit van Amsterdam
prof. dr. S. Abramsky University of Oxford
prof. dr. H. Leitgeb Ludwig-Maximilians-Universität

München
dr. L. Incurvati Universiteit van Amsterdam

Faculteit der Geesteswetenschappen

The research for this doctoral thesis received financial assistance from the
Netherlands Organisation for Scientific Research (NWO) as part of the research

programme PhDs in the Humanities, project number 322-20-017.

Für Moni, Winni und Jele

Contents

Acknowledgments xix

1 Introduction 1
1.1 Motivation . 2
1.2 Outline . 8

Part One: Symbolic computation

2 Trajectory domains 1: Construction 15
2.1 Introduction . 15
2.2 Background . 18

2.2.1 Labeled transition systems 18
2.2.2 Domain and order theory 19

2.3 Two guiding examples . 20
2.3.1 Observing a black box system 20
2.3.2 Concurrent computation 28
2.3.3 Summary and outlook . 32

2.4 Pre-behavioral transition systems 33
2.4.1 Definition . 33
2.4.2 Comments . 34
2.4.3 Example constructions . 36

2.5 Information containment of behaviors 38
2.5.1 Three definitions of information containment 38
2.5.2 . . . and how they are united 40

2.6 The characterization theorem . 42
2.6.1 Statement . 42
2.6.2 Proof . 45

2.7 Behavioral transition systems . 49

ix

2.7.1 Definition . 50
2.7.2 Simplifying assumptions 50
2.7.3 Examples . 53

2.8 Trajectory domains . 56
2.9 Generalizations of information systems 57

2.9.1 Scott information systems 57
2.9.2 . . . and their generalizations as BTSs 59

2.10 Conclusion . 62

3 Trajectory domains 2: Category 67
3.1 Introduction . 67
3.2 Background . 71

3.2.1 Category of labeled transition systems 71
3.2.2 Domain theory . 74
3.2.3 Category theory . 76
3.2.4 Recap from the previous chapter 76

3.3 Category of behavioral transition systems 78
3.3.1 Definition . 78
3.3.2 Basic properties . 80
3.3.3 Embedding labeled transition systems 82
3.3.4 Removing non-approximable behavior 83

3.4 Trajectory domain functor . 85
3.5 Adjunction between systems and domains 87

3.5.1 Extensionalizing . 87
3.5.2 Unlabeling and reflexing 91
3.5.3 Adjunction to domains . 93

3.6 Toward incorporating labels on domains 97
3.6.1 Marked domains . 98
3.6.2 An interpretation of relevance logic 100

3.7 Conclusion . 103

Part Two: Non-symbolic computation

4 Systems and domains 1: Model 109
4.1 Introduction . 109
4.2 Background . 119

4.2.1 Domain theory . 119
4.2.2 Dynamical and topological systems 123

4.3 Observing dynamical systems . 127
4.3.1 Basis or ‘set of possible observations’ 127
4.3.2 The index set or ‘set of observation parameters’ 128
4.3.3 Observed system . 129

x

4.3.4 Refining observations . 131

4.3.5 Observation probabilities 132

4.3.6 Summary . 135

4.4 Dynamical domains . 140

4.4.1 Dynamical dcpo’s . 140

4.4.2 Dynamical expanding systems 144

4.4.3 The limit theorem . 147

4.4.4 Definition of dynamical domains 160

4.5 The system modeled by a dynamical domain 160

4.6 Dynamical domain models for systems 162

4.6.1 For dynamical systems . 162

4.6.2 For topological systems . 167

4.7 Conclusion . 170

5 Systems and domains 2: Category 173

5.1 Introduction . 173

5.2 The categories . 180

5.2.1 Background . 181

5.2.2 Categories of dynamical systems 182

5.2.3 Categories of measured topological systems 186

5.2.4 Categories of dynamical domains 188

5.2.5 Recap from chapter 4 . 193

5.2.6 Categories of based measured topological systems 196

5.2.7 Categories of max-reflective dynamical domains 198

5.3 The bottom layer of the main diagram 201

5.3.1 Dynamical systems as category of fractions 201

5.3.2 Compactification of a system: informally 202

5.3.3 Compactification of a system: formally 205

5.4 The system and domain functors 214

5.4.1 The system functor . 215

5.4.2 The domain functor . 216

5.4.3 Computational and logical compactification coincide 223

5.5 The systems-domains adjunction 227

5.5.1 The counit and unit . 228

5.5.2 Triangle identities . 232

5.6 Analyzing the systems-domains adjunction 234

5.6.1 Restricting to equivalence 234

5.6.2 Max-reflecting a dynamical domain 237

5.7 Conclusion . 239

xi

6 Systems and domains 3: Application 243
6.1 Introduction . 243
6.2 Background . 243

6.2.1 Recap dynamical systems and dynamical domains 244
6.2.2 Metric entropy . 245
6.2.3 Topological entropy . 246

6.3 Domain-entropy . 247
6.3.1 Definition of domain-entropy 247
6.3.2 Main theorem on domain-entropy 249
6.3.3 Normal form for domain-entropy 252

6.4 Max-entropy . 258
6.4.1 Definition of max-entropy 258
6.4.2 Main theorem on max-entropy 259

6.5 Conclusion . 262

Part Three: Stability

7 Interlude: symbolic vs. non-symbolic 267
7.1 Non-symbolic computation as limit of symbolic computation . . . 267
7.2 Non-symbolic realization of symbolic computation 269

7.2.1 Symbolic approximation 270
7.2.2 Ergodicity . 272
7.2.3 Randomness . 277
7.2.4 Stability . 281

8 Stability: Fitch’s paradox and AI-safety 283
8.1 Introduction . 283
8.2 Examples of stability . 287

8.2.1 Verifiability and falsifiability (observation) 287
8.2.2 Safety (epistemology) . 289
8.2.3 Safety (artificial intelligence) 290
8.2.4 Stability of belief (probabilistic reasoning) 292
8.2.5 Significance (mathematical modeling) 293
8.2.6 Further examples . 295

8.3 Four principles of stability . 296
8.3.1 A logic to reason about stability 296
8.3.2 Formalization and motivation of the principles 301
8.3.3 The duality between falsification and verification 305
8.3.4 Constructing sets of questions 306

8.4 Impossibility via a novel interpretation of Fitch’s paradox 307
8.4.1 Reinterpretation of Fitch’s paradox 307
8.4.2 Impossibility . 308

xii

8.5 Impossibility via semantics . 310
8.5.1 Kripke semantics . 310
8.5.2 Topological semantics . 312

8.6 Applications . 315
8.6.1 An extension of Fitch’s paradox 315
8.6.2 A limitation for AI-safety 319

8.7 Conclusion . 322

9 Conclusion 327

A Systems as a category of fractions 331
A.1 Statement of the theorem . 331
A.2 Topological realizations of systems 335
A.3 The key lemma . 338
A.4 Calculus of fractions . 343
A.5 Equivalence . 344

B Dynamical domain example 349
B.1 A dynamical domain of binary sequences 349
B.2 More facts about the dynamical domain 355
B.3 Words on the components . 356
B.4 Computing max-entropy . 360

Bibliography 363

Index 385

List of symbols 389

Samenvatting 393

Summary 395

xiii

List of Figures

1.1 An operational semantics for the bubble sort algorithm 3
1.2 Computation as dynamical systems 6

2.1 The North-South map . 22
2.2 The trajectory domain of the North-South map 28
2.3 The independence diamond . 29

3.1 Summary of the results . 104

5.1 The main diagram . 174
5.2 (Non-) examples of max-reflective finite Scott domains 199
5.3 The compactification functor . 210
5.4 Notational conventions of this subsection 216
5.5 Proof of naturality . 226
5.6 Overview of the results . 239

7.1 Non-symbolic computation as limit of symbolic computation . . . 268
7.2 The predator-prey dynamics . 271
7.3 A converging system . 276

8.1 The four principles and their duals 302

A.1 Calculus of fractions . 332
A.2 Equivalence of spans . 333
A.3 Composition of spans . 333
A.4 Inverses of morphisms in the localization 334
A.5 Visualization of lemma A.3.1 . 339

B.1 Example of word realization . 357

xv

Publications

All chapters of the thesis are single-authored and have not been published previ-
ously (at the time of submission). Papers that aren’t part of this thesis but have
been published within this PhD project are the following:

• L. Hornischer (2019). “Toward a Logic for Neural Networks”. In: The
Logica Yearbook 2018. Ed. by I. Sedlár and M. Blicha. London: College
Publications, pp. 133–148

This is an early exploration of the guiding idea of the thesis: using domain
theory to develop a semantics also for non-symbolic computation including
neural networks. Some of the ideas eventually lead to chapter 2 (though the
chapter itself is quite different) and to the last paper below.

• L. Hornischer (2020). “Logics of Synonymy”. In: Journal of Philosophical
Logic 49, pp. 767–805

This investigates the notion of synonymy (or content identity or strong
equivalence). It axiomatizes various notions of synonymy and characterizes
them as good benchmarks. This paper is cited in chapter 2 when asking
whether the generalization of Scott information systems presented there can
be seen as moving to a stronger underlying notion of equivalence.

• L. Hornischer (2021). “The Logic of Information in State Spaces”. In: The
Review of Symbolic Logic 14.1, pp. 155–186

This uses domain theory to describe the information contained in state
spaces (dynamical systems, possible worlds, etc.). This provides a semantics
to the logic hype and is applied to study information fusion. This paper is
cited in chapter 8 as a potential tool to further study the notion of ‘state
space stability’ discussed in that chapter.

xvii

Acknowledgments

First of all, I would like to thank my supervisors Michiel van Lambalgen and
Franz Berto: Michiel, thank you for sharing some of your seemingly unbounded
amount of knowledge (even if it can be intimidating when you start quoting page
numbers from books you read 30 years ago); for teaching me how to look at a
problem from many perspectives and to check with the (cognitive) data; for never
going easy on me with critical questions while still being encouraging; for treating
me like a peer in the many courses that we taught together; for trusting me with
a lot of freedom in my research and making plenty of time for me; and for sharing
a passion for music and mountains. Franz, thank you for your refreshing approach
to philosophy (your motto of not taking oneself too seriously stuck with me); for
your enthusiasm and the encouragement that comes with it; for magically being
available 24/7; for being—and I cannot stress this enough—incredibly supportive;
and for your humor that cannot fail to entertain even in impossible worlds. I am
indebted to you two for your support, guidance, and encouragement making this
PhD project possible!

Next, I would like to thank my committee: Samson Abramsky, Johan van
Benthem, Arianna Betti, Luca Incurvati, Hannes Leitgeb, and Sonja Smets. I feel
very lucky and honored that you have agreed to this task. Your work is a great
inspiration to me, and I am deeply grateful for all the time that you have devoted
to this thesis—especially given its long and often abstract nature. Thank you!

I have been very fortunate to have spent my PhD at ILLC with its inspiring,
collegial, and interdisciplinary atmosphere. This is made by its people: First, I
would like to thank Arnold, Dean, Ivar, Kaibo, Nadine, and Thomas, for making—
at various time periods over the past four years—the austere sounding ‘Science
Park Room F1.11’ a wonderful and welcoming office. Special thanks to Dean for
the many enlightening philosophy comments. Over the years, I had the pleasure
to meet many inspiring, intimidatingly smart, but unbelievably kind people at
ILLC. Thank you for the lunches, coffees, chats, discussions, and much more: in
particular, Ana Lucia, Anna, Anthi, Arnold, Arthur, Aybüke, Bas, Bastiaan, Dean,

xix

Dieuwke, Ece, Frederik, Gianluca, Giorgio, Giovanni, Ilaria, Iris, Ivar, Julian,
Kaibo, Karolina, Lëıla, Malvin, Mario G., Milica, Nadine, Peter H., Riccardo,
Robert P., Ronald, Sam, Samira, Simon, Sirin, Thom, Thomas, Tom, Yvette, and
Zoi, as well as you fellow MoLers. A big part of the special atmosphere at ILLC is
also due to its extraordinary staff members: Thank you for keeping a—proverbial
and literal—open door. In particular, for the inspiring encounters over the years,
thank you, Arianna, Bahareh, Benedikt, Benno, Dick, Floris, Jakub, Jelle, Johan,
Luca, Maria, Nick, Robert v.R., and Sonja. And for making everything work and
for always being there, a big thank you to Caitlin, Debbie, Jenny, Karine, Patty,
Peter, and Tanja.

During my PhD, I also had the privilege to do two research visits: At the end
of 2018, I was at the Department of Computer Science at the University of Oxford
visiting Samson Abramsky and his group. Thank you for your great hospitality,
the opportunity to present my work, and the introduction to contextuality. In
this thesis, I’ve tried to live up to Samson’s wise words about using category
theory to systematize. Special thanks to Sivert and Rui for welcoming me in their
office, and to Karen Barnes for a perfect organization. In winter 2019–20, I was at
the Munich Center of Mathematical Philosophy at LMU Munich visiting Hannes
Leitgeb. Thank you, Hannes, for making this possible, for the insightful meetings,
for making me feel at home, and for encouraging me to present my papers. A
heartfelt thank you to all the MCMPers that made this such a wonderful stay: in
particular, Alessandra, Conrad, Ivano, Lorenzo, Martin, Matteo, Norbert, Sander,
Sena, Timo, and Ursula. On the topic of visits, I would also like to thank Richard
Evans for the truly inspiring conversations during his visit in Amsterdam. In the
same vein, thank you, Laurenz Hudetz, for the stimulating chats during your time
at ILLC. Finally, Franz, you have set up a perfect visit for me to St Andrews,
which we then unfortunately had to cancel last minute due to the pandemic. But
I sincerely hope we can make up for this soon!

Further, I am thankful to the audiences of the events where I could present
some (earlier versions) of the material in this thesis. This includes, among others,
the LoC Seminar in Amsterdam, TULIPS in Utrecht, the Algebra|Coalgebra
Seminar in Amsterdam, OASIS in Oxford, the Logic Colloquium in Munich, and
Logica 2018 in Hejnice. Many thanks to Aybüke Özgün for comments on what
is now chapter 8, to Bastiaan van der Weij for comments on chapter 1, and to
Benno van den Berg for comments on chapter 5. Thank you, James Grayot, for
the philosophy discussions and answering my language questions. Thank you,
Bastiaan and Michiel, for the excellent Dutch translation of the summary. And
also thank you, Bastiaan, for all the other invaluable thesis advice. That said, of
course no one but me is responsible for any mistakes. Finally, a big thank you to
my mum, Monika Schaber, for the beautiful cover!

A shout-out to my Amsterdam-related friends: in particular, Ana, Bastiaan,
Dean, Felix, Iris, Jakob, James, Janine, Joannes, Jur, Karin, Moriz, Petra, Ronald,
and Zoi. (And, Zoi, this also extends to your family: you have shown me Greek

xx

hospitality that no words can describe.) Thank you for filling my life with joy,
warmth, and home, with brunches, cakes, and dinners, and with biking, Frisbees,
and bouldering. For being fantastic flatmates during these PhD years, thank you
Bastian (even pandemic-proven!), Ana and Zoi, and Esteban and Max.

I also would like to thank my friends far away from Amsterdam—especially
Conner, Dennis, Leo, Magge, Max, Samu, and Tobi. Thank you for staying close,
for the memorable bike rides and hiking trips, for the now-way-too-long-ago jam
sessions, for keeping digital company during the pandemic, and for all the fun we
had and will have.

Moreover, I am deeply thankful for my loving family: the Hornischers and the
Schabers, including the Abbrechts and the Würzs. I would like to mention you
all here, but to keep it short: thank you, Irme, for your constant interest in my
life and work; thank you, grandma and grandpa Hornischer, for your continuous
support and for being proud of me; and thank you, grandma Schaber, for your
wise and calming words!

In particular, I would like to thank my parents, Moni and Winni, and my
sister, Jele. There are so many things that I could say why I’m fortunate, grateful,
proud—and simply happy—to call you family. Knowing that you are always there
for me—from far and close—is invaluable. Even though it has been ‘far’ much
too long during the pandemic, our family calls were a great source of energy for
me. This thesis is dedicated to you. You mean the world to me!

Amsterdam Levin Hornischer
August, 2021.

xxi

Chapter 1

Introduction

Computation can be distinguished into symbolic and non-symbolic. Symbolic
computation is what computers do: A computer program is a more or less human-
readable description of how to manipulate, step by step, a ‘symbolic’ input (like
the list of numbers 5, 2, 7) to obtain a certain output (say, the ordered list 2, 5, 7
or the sum 14). This is what we typically think of as ‘computation’. But there
also is a broader sense: non-symbolic computation cannot (only) be viewed as a
rule-based manipulation of symbols.1

The paradigm examples are neural networks: Given the signals from sensory
neurons, your nervous system computes whether that flying something is a danger-
ous wasp or just a harmless fly. But nowhere in that process do ‘symbols’ occur:
There are only neurons, synapses, electrical signals, etc. Symbols like ‘black and
yellow’ or ‘poisonous’ at best emerge as high-level descriptions of the process.
This is not only true for biological neural networks like our nervous system, but
also for artificial neural networks. They are behind the recent boom of artificial
intelligence (AI). For instance, if you use your phone to translate a sentence,
chances are there is a neural network involved. But it doesn’t compute this
translation ‘symbolically’ using grammatical rules and dictionaries. Rather it uses
non-symbolic representations of words as vectors (i.e., long lists of real numbers).
Similar things can be said for other applications of artificial neural networks like
speech recognition or image classification. But there also are more mundane
examples: An old-school mechanical thermostat computes how much hot water
should flow into the radiator to maintain a desired room temperature—without

1Cf., e.g., Bauer (2000), Blum et al. (1998), Bournez and Campagnolo (2008), Edalat (1997),
Hoyrup and Rojas (2009), Pour-El and Richards (1989), Siegelmann and Fishman (1998), and
Weihrauch (2000). This includes analog computation (overviewed by MacLennan 2009). Some
might rather speak of ‘dynamical systems’ than of ‘(non-symbolic) computation’ (Van Gelder
1998). The thesis can also be read as simply being about dynamical systems without the
computational motivation described in this introduction (we come back to this in the ‘reading
guide’ below).

1

2 Chapter 1. Introduction

any digital (i.e., ‘symbolic’) representation of the temperature.2

Traditionally, symbolic computation and non-symbolic computation are taken
to be diametrically opposed:3 While symbolic computation is human-readable but
cannot generalize beyond clearly defined boundaries, non-symbolic computation is
not interpretable but can learn well from noisy real-world data. While symbolic
computation allows safety verification but needs domain knowledge, non-symbolic
computation doesn’t come with complete certainty but only needs big data. (In
actuality, things are, of course, more nuanced.) Only fairly recently, the focus
shifted to combining the two approaches to obtain ‘the best of both worlds’.
Especially due to the recent proliferation of neural networks, it is becoming
increasingly important to understand their behavior—ideally by relating it to well-
understood symbolic computation. This is what explainable artificial intelligence
(XAI) is all about.4

In this thesis, we work toward a unified foundation of symbolic and non-
symbolic computation. This introduction first explains what that means and
sketches an idea to achieve it (section 1.1). Then we outline how the thesis
develops this idea, including a reading guide (section 1.2). In addition to the
informal main text, there are many footnotes and endnotes with further references
and more technical topics.5

1.1 Motivation

A good starting point is to ask why we have a good understanding of symbolic
computation.

The starting idea Symbolic computation is usually described by computer
programs in some programming language (or more abstractly as, e.g., Turing
machines). Such a program could, for example, implement a sorting algorithm
like bubble sort which, given as input a list of numbers, transforms this input into

2A classical, but more involved example is the Watt governor which computes the appropriate
setting of a steam engine to generate the desired speed of a flywheel (Van Gelder 1995).
Carmantini (2017, p. 2) discusses a digital thermostat as an example of (symbolic, open-ended,
reactive) computation.

3A testament to this is the at times fierce debate in cognitive science and AI between
the symbolic camp (‘classicists’ or ‘Good Old-Fashioned AI’) and the non-symbolic camp
(‘connectionists’ or ‘subsymbolic AI’). Appeasing voices are, e.g., Marr (1982/2010) or Smolensky
(1988) taking the symbolic to be at a higher level of description than the non-symbolic.

4In as little as the duration of this PhD project, XAI has risen from a rather niche topic
to a main field of AI. To mention but some recent surveys: Adadi and Berrada (2018), Besold
et al. (2017), Doran, Schulz, and Besold (2017), Goebel et al. (2018), Murdoch et al. (2019), and
Samek et al. (2019). Earlier work is done, e.g., by D’Avila Garcez, Lamb, and Gabbay (2009).

5Endnotes are indicated by Roman numerals and are collected at the end of this chapter.
Compared to the footnotes, they contain some longer, less immediate comments. In the electronic
version, they are clickable (both to get there and to get back).

1.1. Motivation 3

Receive input
Go through the pairs of

adjacent numbers and swap
if the first is > the second

Sorted

State 1 State 2 State 3

No swaps

Swaps occurred

Figure 1.1: An operational semantics for the bubble sort algorithm.

an ordered list of numbers. However, given such a piece of program code, we don’t
yet understand what exactly it does: this is all too common when looking at some
code in an unfamiliar language. We need a semantics which assigns meaning to
code: i.e., a description of the behavior of the program. There are two standard
ways of doing this: operational semantics and denotational semantics.

Operational semantics describes the program by the changes in the states of a
machine running the program (Plotkin 1981/2004). For bubble sort, this could
look like in figure 1.1: For the list 〈5, 2, 7〉, the machine would start in state 1 with
reading this input. Then it moves to state 2 and goes through the two adjacent
pairs (5, 2) and (2, 7). Since 5 > 2, it only swaps the first, ending up with 〈2, 5, 7〉.
Since a swap occurred, it goes again to state 2. Now both adjacent pairs are
ordered correctly, so no swap occurs. Thus, it goes to state 3 where it terminates
with the correct list 〈2, 5, 7〉. Such an operational description can be done at
various levels of detail. We could have split up state 2 into several states further
describing the subprocess of comparing adjacent pairs. We could even go all the
way down to the ‘machine level’ where a state describes the memory-entries and
the processor-state of the computer.

Denotational semantics, on the other hand, describes the program by the
function that it computes (Scott 1970). In the sorting example, this is a function
f : D → D where D is the set (or data type) of finite lists of integers: f maps a
finite list to the ordered version of that list. To still provide some information on
how this function can be computed, denotational semantics also describes how
the function can be approximated by finite partial functions.

Operational semantics is dynamic and closer to the implementation (or execu-
tion) of the program in terms of machine states. The advantage of the denotational
semantics is that it is static and fairly independent of the implementation (e.g.,
which sorting algorithm exactly is used). Thus, denotational semantics is particu-
larly suited for a structural mathematical theory and analysis (Ong 1995). After
all, there the ‘meaning’ of the program is ‘directly given’ (and doesn’t need to be

‘dynamically constructed’) and it is not restrained by implementational details.I

Domain theory was developed as a ‘mathematical theory of computation’
providing a denotational semantics for programming languages (Scott 1970).

4 Chapter 1. Introduction

Thus, the starting idea of this thesis is: can this method be generalized also to
non-symbolic computation like neural networks? In other words, can we extend
domain-theoretic semantics beyond computational processes described by a precise
programming language to also include more general computational processes?

On understanding Before embarking on this question, let’s discuss how this
helps in the aim of understanding neural networks and non-symbolic computation
more generally. There are two senses of ‘understanding’: specific or structural.

In the specific sense, we (aim to) understand some specific neural network very
well: Why exactly did it classify this image as a stop sign—was it its shape, color,
or location? How did it learn this concept—was it easy or hard? Can we say
which of its weights store this information—making them meaningful to us? This
is analogous to understanding a specific program: not just its computed function
and operational description at various levels of detail, but also its efficiency, its
safety, its required resources, etc.

In the structural sense, we (aim to) understand a whole class of neural networks:
When should two neural networks be considered equivalent—to transfer knowledge
about one to the other? Among equivalent ones, is there a most simple one—
offering a ‘best explanation’ of the data? What are principled ways of combining
networks—to avoid retraining? What are the limits of these networks—to assess
their capabilities? The analogous questions for programs are answered by a
semantics: Two programs are equivalent if they get assigned the same ‘meaning’,
i.e., compute the same function; assessing the capabilities amounts to determining
the class of computed functions, etc.

To be sure, this is not a sharp distinction and there is no better or worse
between these two kinds of understanding: they are complementary parts of a
holistic theory. In symbolic computation, these two understandings are largely
achieved: For a specific understanding of a computer program the tools of, e.g.,
software verification can be used, while a structural understanding is provided
by, e.g., computability theory and domain theory. In non-symbolic computation,
XAI arguably is more focused on the specific understanding, while this thesis
is concerned with the structural understanding of symbolic and non-symbolic
computation.6

6For other work in this direction (mostly on neural networks), see, e.g., the computational com-
plexity theory for neural networks (overviewed by Š́ıma and Orponen 2003), category-theoretic
approaches (Fong, Spivak, and Tuyeras 2019; Jacobs and Sprunger 2019), the ‘(programming) lan-
guage of machine learning’ (Cheung et al. 2018; Porter 1994), program induction/synthesis (Evans
and Grefenstette 2018; Penkov and Ramamoorthy 2017), algebraic topology and topological
data analysis (Naitzat, Zhitnikov, and Lim 2020; Reimann et al. 2017), dynamical systems
approaches (Carmantini 2017; Milne 2019; Saxe, McClelland, and Ganguli 2014), statistical
mechanics (Bahri et al. 2020), or statistical learning theory (Vapnik 2000). The latter (on p. xii)
motivates this endeavor by the principle ‘nothing is more practical than a good theory’ (going
back to Kurt Lewin).

1.1. Motivation 5

Unified foundation So we work toward a ‘unified foundation’ of symbolic and
non-symbolic computation via a domain-theoretic semantics. More precisely, we’d
at least expect the following:

1. Framework : To talk about symbolic and non-symbolic computation in a
unified manner, we need to capture them in a single framework. So, any
computational process—be it symbolic or non-symbolic—can be described
in this framework.

We’ll argue below that dynamical systems provide this framework.

2. Behavior : To systematically understand symbolic and non-symbolic compu-
tation in a uniform manner, we need to assign to any computational process
(of the framework) a description of its behavior (semantics). This description
should abstract away as much as possible from the implementational details
of the computation and rather focus on the observable behavior or output.

We’ll use domain theory: in part 1, for symbolic computation and, in part 2,
for non-symbolic computation.

3. Relationship: To understand non-symbolic computation in terms of symbolic
computation and vice versa, we need to specify what the relationship is
between the (behavior of the) two types of computation.

We’ll discuss this in part 3: non-symbolic computation is, in a sense, the
limit of symbolic computation, and it can realize it if it has enough stability.

In the remainder of the present ‘motivation’ section, we describe computation
as dynamical systems (the first expectation). In the next ‘outline’ section, we
describe how the thesis establishes the other two expectations. Before we start,
though, we review dynamical systems. (Those in the know may skip the next
paragraph.)

Crash-course dynamical systems There are many formal notions of dynam-
ical systems, but they share the following intuition. A dynamical system consists
of two ingredients: a state space and a dynamics. The state space describes the
possible states that the system could be in, and the dynamics describes how the
system changes its states over time. A sequence of states following the dynamics
is called a trajectory (or orbit).

Here are some examples: In the case of the thermostat, a state is described
by the current room temperature and the amount of hot water that flows into
the radiator. The dynamics is such that if the system is, for example, in a state
with low room temperature and much inflowing hot water, then, at a later time,
the system is in a state with high room temperature (the hot water heated up
the room) and little inflowing water (the thermostat lowered the inflow since the
room temperature is high). Another example is given by the sorting system of

6 Chapter 1. Introduction

Computation ! Dynamical systems
—symbolic ! —time- and space-discrete, possibly non-deterministic
—non-symbolic ! —time-discrete, space-continuous, deterministic

Figure 1.2: Computation as dynamical systems.

figure 1.1: it has three states and the dynamics between them (which states are
possible after the current state) is described by the arrows. For the input 〈5, 2, 7〉,
we’ve seen the trajectory of states 1→ 2→ 2→ 3.

There are some useful conceptual distinctions. A dynamical system is state-
discrete if its state space is discrete (or ‘countable’) and otherwise state-continuous .
(In the continuous case, there is usually more structure on the state space like
a topology or a probability measure.) For example, the sorting system is state-
discrete (there are only finitely many states) and the thermostat is state-continuous
(the states are given by pairs of real numbers which form a continuum).

A dynamical system is time-discrete if its dynamics takes place in time steps:
for any state we can specify the set of its possible immediate successors under the
dynamics. The sorting system, for instance, is time-discrete. Thus, a trajectory
is a (finite or infinite) sequence x0, x1, x2, . . . of states such that each xn+1 is a
successor of xn. So the whole numbers N = {0, 1, 2, . . .} play the role of time.
The system is time-continuous if, in contrast, the dynamics describes continuous
change: a state doesn’t have a next state but rather closer and closer states
reached after smaller and smaller time intervals. The thermostat system, for
instance, is time-continuous. Thus, a (maximal) trajectory is a sequence (xt)t∈R
of states where, for t < t′, state xt′ can be reached from xt in time t′ − t. So the
real numbers R play the role of time. A common trick to study a time-continuous
system is to fix an ‘updating time interval’ and study the resulting time-discrete
system. In the thermostat example, we could take this interval to be 1 second
and declare the successor of a state to be the state reached after 1 second. For
this reason, we’ll restrict our attention to time-discrete systems.

Finally, we say a time-discrete system is deterministic if each state has a
unique successor state. Otherwise, we call the system non-deterministic.

Computation as dynamical systems Now we get to expectation (1): how
computation can be described by dynamical systems as in figure 1.2.7

Let’s start with symbolic computation. We’ve already seen that bubble sort
can be described as the time- and space-discrete dynamical system of figure 1.1.
This holds for other examples as well: the general argument is the following.
Turing machines are regarded as the model of symbolic computation. And they
can be described as time- and space-discrete dynamical systems: A state of a

7Although this idea has been around for a while (see, e.g., Giunti 1997; Siegelmann and
Fishman 1998), it arguably deserves more appreciation.

1.1. Motivation 7

Turing machine is described by: (i) what is written on its tape (i.e., its memory),
(ii) which part of the tape is currently observed (and to be altered), and (iii) the
internal state of the machine.8 So there are countably many states x = (a, b, c)
where a describes the tape, b the observed part, and c the internal state. The
program of the machine describes the possible transitions. There is a transition
from x = (a, b, c) to x′ = (a′, b′, c′) iff, roughly, the program says: when in internal
state c reading symbol a(b) at location b of the tape a, change it to a′(b) and leave
everything else unchanged (so a′ = a outside of b) and go to position b′ and into
internal state c′. If the Turing machine is non-deterministic, these dynamics are
non-deterministic, too. Thus, any symbolic computation can be seen as a time-
and space-discrete dynamical system that possibly is non-deterministic. We’ll also
allow some labeling of the system: we can label a state as the initial state and add
labels to transitions between states. So we can describe this class of dynamical
systems as the well-known (countable) labeled transition systems.

Now, let’s consider non-symbolic computation and how it can be described
as time-discrete, space-continuous, and deterministic dynamical systems. Our
paradigm examples are such systems: We’ve already seen the thermostat. And,
importantly, also artificial neural networks are such systems. A state of the
network describes the activation that each neuron has at that moment. And the
dynamics is given by how this activation propagates through the network: The
activation of any neuron at the next time step is determined by how much input it
receives from its neighboring neurons weighted by the weight on their connection.
So this system is deterministic, time-discrete, and space-continuous (activation
is usually given by real numbers). This describes the ‘run time’ dynamics of the
network. But also its learning dynamics—i.e., computing the best approximation
to some observed data—can be seen as such a system. Then a state describes the
weights on the connections between neurons. And the dynamics is given by the
learning algorithm (e.g., backpropagation): Given some observed data, the current
weight-state is updated according to the algorithm to a new weight-state in which
the network better approximates the observed data. Finally, the general answer
is that ‘real-world systems’—be it physical, chemical, biological, or engineering—
usually are described via differential equations as dynamical systems.9 This makes
them deterministic, space-continuous and, after fixing an update time interval,
also time-discrete.II

Thus, dynamical systems do indeed provide a framework to describe (presum-

8Turing (1936-7, p. 250) writes: “We know the state of the system if we know the sequence of
symbols on the tape, which of these are observed by the computer . . . , and the state of mind of
the computer”. The internal state or ‘state of mind’ or ‘m-configuration’ is not to be confused
with the system’s state.

9Obtaining such a description for the nervous system is a central topic of the field of
computational neuroscience. The dynamics of the nervous system can be observed, e.g., through
EEG and fMRI. Anderson (2015, pp. 22–25) describes what thus can be observed when the
nervous system implements symbolic computation: namely, equation solving.

8 Chapter 1. Introduction

ably) anything that can reasonably be said to be computation—both symbolic and
non-symbolic.10 They capture the essence of a program: what states the system
implementing it can be in (state space) and how they are transformed according
to the program (dynamics). The ‘symbolicity’ of the computation is reflected
in the discreteness of the state space. We deliberately leave open the converse
question: whether any such dynamical system also constitutes computation. In
other words, whether dynamical systems provide an explication of symbolic and
non-symbolic computation. This is a deeply philosophical question.11

Nonetheless, we do want to provide some evidence that dynamical systems are,
if not an explication, at least a good (qualitative) approximation to non-symbolic
computation.12 The argument sketch is this: If anything counts as non-symbolic
combination, this should include neural networks. By the universal approximation
theorems (Cybenko 1989; Hornik, Stinchcombe, and White 1989), neural networks

can approximate any dynamical system arbitrarily well.III And, plausibly, the
class of non-symbolic computational processes is closed under such approximation
(if effective).13

1.2 Outline

With this framework in place, we outline the thesis: how it develops a domain-
theoretic semantics for the dynamical systems describing symbolic computation
(part 1) and non-symbolic computation (part 2). This can then be used to relate
symbolic and non-symbolic computation (part 3).

Part 1 (symbolic computation) In chapter 2, we develop the trajectory
domain construction. It assigns to each time- and space-discrete dynamical
system (representing some symbolic computation) its trajectory domain. This is
a structure in the sense of domain theory describing the behavior of the system.

10The reason for saying ‘presumably’ is that this is a thesis, not something that can be proven.
A counterexample would need to provide a clearly computational processes that can in no way be
seen as a dynamical system. This is hard to imagine. In any case, this determines an extremely
general class of systems.

11For some discussion, see the literature on ‘physical computation’ cited in footnote 18 below.
For more general literature on this nexus of dynamical systems, computation, cognition, and
logic, see, e.g., Van Gelder (1995), Giunti (1997), Van Gelder (1998), beim Graben (2004),
Leitgeb (2005), Tabor (2009), and Dewhurst (2016).

12One may distinguish between a ‘qualitative’ and ‘quantitative’ study of computability (cf. e.g.
Abramsky and Jung 1994, sec. 1.1). In the former, one studies, e.g., the topological, algebraic, or
order-theoretic structure of computation—just as any other structure of classical mathematics.
In the latter, one adds a ‘computability’ or ‘effectiveness’ structure to determine the ‘computable’
elements of these classical structures. (Cf. Bauer (2000) and Pour-El and Richards (1989).)
Here we’re mostly concerned with a qualitative study of computation. Though, adding effective
structure in domain theory is well-understood (Edalat 1997).

13Cf. computable real numbers are closed under effective convergence (Turing 1936-7, p. 256).

1.2. Outline 9

The idea behind the construction is as follows. In the case of programming
languages, we usually still have information, for example, about what type of
input-output function the program aims to compute. This is not available anymore
for general time- and space-discrete systems, but we still have the trajectories.
Each trajectory is an instance of the behavior of the system. So the rough idea is
that the trajectory domain is the set of the finite and infinite trajectories ordered
by extension: the infinite trajectories are the infinite (‘ideal’) limit-behaviors which
are approximated by the finite (‘real’) behaviors. (This idea is refined by taking
into account that we often want to exclude some trajectories and consider others
to be instances of the same type of behavior; so, really, the trajectory domain
consists of equivalence classes of some set of trajectories.) Thus, the trajectory
domain can be said to describe the (types of) behavior of the system. Chapter 2
describes and axiomatizes this construction.

A main reason why a semantics provides structural understanding is that it not
only assigns meaning to programs (‘syntax’) but also preserves relations between
them (this is known as compositionality). In our case, the crucial relation between
systems is that of simulation: one system S can be simulated by another S ′ if
there is a function f : S → S ′ assigning states of S to states of S ′ preserving the
dynamics.14 So we would expect that the trajectory domain semantics respects
this. Indeed, in chapter 3, we show that the simulation f can be assigned to an
appropriate function from the trajectory domain of S to the trajectory domain
of S ′.15 Category-theory provides the language to describe this more precisely:
the trajectory domain construction is a functor from systems to domains that, in
many cases, even forms a so-called adjunction. This is in line with the general
idea that syntax (formal) and semantics (conceptual) should be adjoint.16

Part 2 (non-symbolic computation) When we move to state-continuous
systems, we cannot ‘access’ the states anymore: they are infinitely precise points
in a continuous state space. All we can do is measurements. For example, if the
thermostat system is in state (20.071 . . . , 0.183 . . .), we cannot precisely determine
this but only measure that, say, the room temperature is 20◦C plus or minus 1◦C
error in measurement and the incoming hot water flow is 0.2kg

s
plus or minus 0.1

error. So we can only determine the area of the state space in which the system is
in: namely, [19, 21]× [0.1, 0.3].

These areas (that correspond to measurements) act much like the states in
symbolic computation. While, in the symbolic case, repeated observation yielded a
sequence of states (i.e., a trajectory), it now yields a sequence of areas of the state
space. Thus, we’ll use these sequences to build a domain describing the behavior
of the system with respect to the available observations. We may also increase

14I.e., if x→ y is a transition in S, then f(x)→ f(y) is a transition in S′.
15The ‘appropriate functions’ of domain theory are known as Scott-continuous functions.
16This is expressed by Lawvere (1969) and explained by Smith (Unpublished).

10 Chapter 1. Introduction

the precision of our measurements and the observation time—thus refining the
available observations. This then also refines the corresponding domain. The
main result of chapter 4 is that, as we keep refining the observations, we obtain
in the limit again a domain. We call this the observation domain of the system.
It is a model of the system since, based on the observations, we can also define
a dynamics on it and, when restricted to its ‘ideal’ elements, this dynamics is
isomorphic to the original system. This model is ‘computational’ since these ideal
elements are approximated by the ‘real’ elements given by finite observations.

Thus, the observation domains provide a semantics (or behavior description)
to the dynamical systems describing non-symbolic computation. Chapter 5 again
verifies that this semantics preserves simulations between dynamical systems. In
fact, it establishes a translation (i.e., categorical equivalence) between dynamical
systems and certain purely domain-theoretic structures that we call dynamical
domains (of which observation domains are examples). This may well be regarded
as the main formal result of the thesis.

To sketch applications of this translation, chapter 6 provides a domain-theoretic
perspective on a central concept of dynamical systems theory: entropy.

Part 3 (stability) Given these semantics for symbolic and non-symbolic com-
putation, we can turn to expectation (3): What is the relationship between the
two types of computation? Chapter 7 is an interlude where we first discuss this
informally.

On the one hand, our semantics suggests the thesis that (the behavior of) non-
symbolic computation is the limit of (the behavior of) symbolic computation:17

roughly, the observation domain can be expressed as a limit of trajectory domains
describing observation sequences.IV

On the other hand, this raises the question of when non-symbolic computation
can be regarded as realizing symbolic computation. As a guiding intuition, we
suggest that the system’s behavior should be fairly stable. For example, from the
behavior of our nervous system recognizing a wasp we can extract the symbolic
rule “if it flies and is black and yellow, it is dangerous”. The reason seems to
be that in most of the ‘continuously many’ inputs where the system recognizes
something flying that is black and yellow, it will compute that it is a dangerous
wasp. So this assessment is stable under a wide range of input states. Other
examples are physical realizations of symbolic computation (like my laptop): as
physical systems these are (described as) continuous dynamical systems and a
terminating computation usually corresponds to a stable state of the system.18

The interlude chapter sketches what our results together with deep results

17In analogy with profinite groups, one might say that non-symbolic computation is pro-
symbolic computation.

18 For literature on physical computation, see Chalmers (2011), Fredkin and Toffoli (1982),
Gandy (1980), Lloyd (2000), Piccinini (2015), Piccinini (2017), Pitowsky (1990), and Sieg (2002).

1.2. Outline 11

from ergodic theory can already say about this kind of stable behavior. And it
explores how (algorithmic) randomness may help to ensure this kind of stability.

Chapter 8 then begins investigating these ideas in detail. It starts at the
foundations with a philosophical analysis of the involved concept of stability. This
is done with an eye toward AI-safety: demanding that, like the nervous system,
also artificial neural networks should be stable under small perturbations of the
input.

Reading guide This thesis has grown rather long—apologies! In an attempt to
make up for it, it allows for modular reading. Despite its monographic structure,
each chapter can be read independently. If material from previous chapters is
needed, it is summarized. Every chapter starts with a non-technical introduction
that motivates and summarizes the results. This should allow, for example,
skipping more technical parts of a chapter while still getting the gist of it. The
suggested order of reading is, non-surprisingly, in order of appearance. For a less
formal track, one might skip the category-theoretic chapters 3 and 5 and/or the
entropy-theoretic chapter 6. (The usage of category theory is largely restricted to
formulating the results concisely rather than actually using the theory.) For a less
philosophical track, one might skip chapter 8 on stability.

For clearer (and more common) terminology, we use ‘labeled transition system’
in the case of symbolic computation and simply say ‘dynamical system’ for
(typically time-discrete and space-continuous) deterministic dynamical systems.

Skeptics of the sketched view on computation can also read the thesis without
this computational interpretation. This may include classical computationalists
who like computation but think that, by definition, it cannot be non-symbolic; or
embodied cognitive scientists who like to view cognition as a dynamical system
but wouldn’t call it ‘computation’. Labeled transition systems and dynamical
systems are important mathematical structures in their own right, so our seman-
tics/representation should be useful regardless.

12 Chapter 1. Introduction

I. Semantics for programming languages is somewhat analogous to semantics for formal languages
or sufficiently regimented fragments of natural languages—as they are considered, e.g., in
the philosophy of language (Speaks 2021). Both assign meaning (or ‘semantic content’) to
expressions of the language. The classical semantic theories à la Frege, Russell, or Tarski
resemble denotational semantics: assigning to an expression a static (mathematical) object
describing its meaning. Inferentialist (or proof-theoretic) semantics loosely resemble operational
semantics: describing the meaning of an expression by its inferential interaction with other
expressions.

II. As mentioned, we’ll focus on time-discrete systems: Partly since they approximate the time-
continuous systems and partly since artificial neural networks are commonly time-discrete
only. Nonetheless, future work should investigate whether our results extend to time-continuous
systems. One might try adapting our approximation process described in part 2 below by not only
approximating space (through measurements) but also time (increasingly finer discretizations).
(Also cf. the generator theorems for flows (Eberlein 1974).) For an overview of models of
continuous time computation see Bournez and Campagnolo (2008) and Orponen (1997).

III. More precisely: Given a dynamical system (X,T) with X an uncountable standard Borel space
and T : X → X Borel-measurable (which are very minimal assumptions), we can assume, by
the Borel isomorphism theorem (see e.g. Kechris 1995, thm. 15.6), that X = R. Let ε > 0 be
the precision to which we want to approximate (X,T) with a neural network. By the universal
approximation theorem, there is a feedforward neural network N with one input neuron, one
hidden layer, and one output neuron such that N , regarded as a function N : X → X, is ε-close
to T (for an appropriate choice of metric). Let M be the recurrent neural network obtained from
N by feeding the output into the input. Now, consider the activation dynamics of M : Since the
activation-state of M is determined just by the input neuron, we identify an activation-state of
M with the activation s ∈ R = X of the input neuron. So, the state space is X. Regarding the
dynamics, if, M is in state s, then the activation N(s) of the output layer will be fed into the
input layer, so the new state is s′ = N(s). Hence the activation dynamics of M is the dynamical
system (X,N). And (X,N) approximates the original (X,T) up to precision < ε. (For more on
universal approximation, see Kratsios (2020).)

IV. In this light, one may view the result of Pour-El and Richards (1981) that computable initial
conditions of physical systems can lead to non-computable solutions. This is taken to show that
these (non-symbolic) systems cannot be simulated by (symbolic) Turing machines (Pitowsky
2002, S169).

Part One

Symbolic computation

Chapter 2

Trajectory domains 1: Construction

Abstract With the aim of providing a denotational semantics (or behavior
description) to the widely used labeled transition systems (LTS), we introduce the
notion of a behavioral transition system (BTS). These are structures M = (A, T,≡)
where A is an LTS, T a set of trajectories (or paths) in A, and ≡ an equivalence
relation on T satisfying five axioms. While any trajectory is ‘locally possible’,
T describes which are ‘globally possible’; and ≡ describes when two trajectories
are instances of the same type of behavior—so the equivalence classes represent
possible behaviors. The main result is that, for countable systems, there is,
roughly, a unique way of defining an information containment order between
behaviors and this yields an ω-algebraic domain. We call this the trajectory
domain and think of it as the denotation of M . We also show that BTSs (and
their trajectory domains) generalize both Scott information systems and various
models of concurrent computation (and their respective domain constructions).

2.1 Introduction

We’re concerned with providing denotational semantics (or behavior description)
to labeled transition systems. Let’s explain:

A labeled transition system (LTS) is a structure (S, i, L,→) where S is a set of
states, i ∈ S is the initial state, L is a set of labels (or actions), and→⊆ S×L×S
is relation, written s

α−→s′. LTSs are a general model of computing systems. They
include ‘sequential’ computing like Turing machines: intuitively, a state consists of
the values stored in the memory of the machine at a given time step, and a label is
a command that can be executed to processes some stored values leading to a new
state. But they also include ‘non-sequential’ computing as in reactive systems:
the system (a standard example is a vending machine) interacts with—i.e., reacts
to—a non-deterministic environment (users can insert coins and select items) in an
open-ended way (the system doesn’t aim to compute a specific outcome).1 Due to

1LTSs can also be regarded as time-discrete dynamical systems: they consist of a state space

15

16 Chapter 2. Trajectory domains 1: Construction

this generality, LTSs are prominently used in model checking which is a standard
technique to formally verify that a computing system behaves as intended (Baier
and Katoen 2008). This ranges from the standard examples of ensuring safety in
money transfers or space flight to examples that recently gained prominence: the
verification of neural networks as a way to address the safety concerns raised by
their intransparency.2

As computational models, LTSs describe how the computation proceeds: an
operational description that is dynamic and close to ‘machine implementation’ (i.e.,
the states of the execution of the computation). But, we may ask, what is it that
they compute: is there a denotational description of their behavior that is static and
more ‘machine-independent’ (i.e., abstracting away implementational details and
facilitating mathematical analysis)? In the case of programming languages, these
two complementary advantages are associated with operational and denotational
semantics, respectively (Ong 1995). Roughly speaking, LTSs operationally describe
programming code by how it transforms states of the computer (Plotkin 1981/2004),
and domain theory denotationally describes programming code by the function
that it computes and how it is obtained from other functions (Scott 1970). (If the
semantics coincide, one speaks of full abstraction (Cardone 2021; Ong 1995).3)

Given these advantages, we’d like to develop a denotational semantics (or
behavior description) for any LTS. However, in general—as, e.g., with reactive
systems—we neither have available a programming language (or typed meta-
language) nor an input-output description.4 What we still have, though, are the
trajectories : the (finite or infinite) sequences of the form

s0
α1−→s1

α2−→s2
α3−→s3

α4−→

This is an instance of a possible behavior of the system. However, depending
on the level of abstraction at which we analyze the behavior of the system, we
may want to identify some trajectories as instantiating the same type of behavior
(e.g., two concurrent computations). Moreover, some trajectories may only be
locally possible (from each si−1 one can move to si via label αi) but not globally
possible (e.g., some action can only be applied a certain number of times due to,
say, memory constraints).

Thus, to describe the behavior of an LTS A, we’re lead to also specify a set T
of ‘globally possible’ trajectories in A and an equivalence relation ≡ on T . So the
quotient T := T/ ≡ is the set of possible behaviors and can be regarded as the
denotation of A—or, rather, of (A, T,≡).

S together with a dynamics → describing how the system can transform from one state into
another.

2For the former, see the textbook of Baier and Katoen (2008). For the latter, to mention but
two references, see Kuper et al. (2018) and Vengertsev and Sherman (2020).

3In a somewhat more abstract setting, also see Abramsky (1991).
4Cf., e.g., Winskel and Nielsen (1995, p. 2) or Carmantini (2017, p. 2).

2.1. Introduction 17

For a satisfying treatment, however, we should expect some more structure
on these denotations (as it also is the case in domain-theoretic semantics for
programming languages). Indeed, we intuitively also would expect T to be ordered
by information containment: behavior [t] is informationally contained in behavior
[t′] if each instance t0 of [t] can be extended to an instance t1 of [t′]. This poses the
question that we investigate: When can such a notion of information containment
be appropriately defined on T and when does this then form a domain—so T can
satisfyingly be said to be the denotation of the LTS. The answer will be: We
provide some axioms for the structures (A, T,≡) to define an appropriate notion of
information containment. For countable systems, it turns out that this notion is,
in a sense, unique and turns T into a domain—indicating that we’ve found a stable
axiomatization. We call structures (A, T,≡) satisfying these axioms behavioral
transition system (BTS) and, in the countable case, we call T their trajectory
domain.

The chapter is structured as follows: In section 2.2, we provide the relevant
background on labeled transition systems and domain theory.

In section 2.3, we discuss two guiding examples: First, LTSs arising from
observing a ‘black box’ system like those in statistical mechanics or neural networks.
Second, LTSs arising as models of concurrent computation. These provide more
concrete motivation for studying the structures (A, T,≡) and their set of behaviors
T—in addition to the abstract motivation above.

In section 2.4, we introduce pre-behavioral transition system (pre-BTS) as
structures (A, T,≡) satisfying a minimal set of axiom capturing that ≡ describes
‘trajectory equivalence’. In section 2.5, we consider various natural ways of defining
information containment on T and find that they coincide once (A, T,≡) is what
we’ll call limit-respecting.

In section 2.6, we then show the main result: Roughly, for a countable pre-BTS
(A, T,≡) and a preorder � on T, the following are equivalent: (a) � satisfies
some rather weak properties that we’d expect from an information containment,
(b) the partial order induced by (T,�) is a domain (the trajectory domain), and
(c) the system is limit-respecting and � is one of the coinciding natural notions of
information containment.

This then suggests defining BTSs as pre-BTSs that are limit-respecting. In
section 2.7, we investigate this notion and discuss several examples. In section 2.8,
we describe, for countable systems, their trajectory domain and show that every
ω-algebraic domain arises as the trajectory domain of a system.

In section 2.9, we show that countable BTSs and their trajectory domains can
be regarded as a generalization of the well-known Scott information systems and
their induced Scott domains. Finally, in section 2.10, we conclude with some open
questions.

Further related work is discussed in the subsection on concurrent computation
(section 2.3.2): In short, for various models of concurrent computation, it has been
shown that the computation traces or sequences form the domain of concurrent

18 Chapter 2. Trajectory domains 1: Construction

computations under a certain partial order (see that section for references). Our
BTSs provide a general framework containing these models and generalize this
idea considerably (in fact, the main result determines just how much it can be
generalized).

2.2 Background

2.2.1 Labeled transition systems

There is a huge amount of literature on (labeled) transition systems. Here we follow
the handbook article of Winskel and Nielsen (1995) since it offers a particularly
systematic treatment: it not only describes labeled transition systems but also their
connections to other computational models in a structural way (using category
theory).

A transition system is a structure (S,→) where S is a set and → a binary
relation on S. In other words, (S,→) is a directed graph. The elements of S are
called states and s→ s′ a state transition. Often, one also singles out an initial
state i ∈ S and writes (S, i,→). Labeled transition systems are obtained—as the
name suggests—by adding labels:

2.2.1. Definition. A labeled transition system (LTS) A is a structure (S, i, L,→)
where S is a set of states with initial state i, L is a set of labels, and→⊆ S×L×S
is the transition relation. We write s

α−→s′ for (s, α, s′) ∈→. Given an LTS A, we
use SA, iA, LA, and →A to refer to its set of states, initial state, set of labels,
and transition relation, respectively. We call A countable if both S and L are
countable sets.

Sometimes, LTSs are defined to be countable. This is indeed the typical
case—especially when regarding LTSs as models of symbolic computation. But,
generally speaking, it is advisable to distinguish considerations of structure from
those of cardinality.5 So rather than generally making the countability assumption,
we develop much of our theory without it and explicitly mention the assumption
if we need it.

We use the usual notation for sequences: Formally, a finite or infinite sequence
σ over a set A is a partial function σ : ω → A whose domain is of the form
{n ∈ ω : 0 ≤ n < l} where 0 ≤ l ≤ ω is the length of the sequence, denoted |σ|.6
If l = 0, then σ is the empty sequence ε. If l = ω, then σ is infinite; otherwise
σ is finite. (So by an ‘infinite sequence’ we always mean a sequence of length ω,
i.e., we won’t consider sequences whose length is an ordinal number > ω.) We

5The countability assumption would, for example, preclude taking limits of LTSs—just based
on issues of cardinality, not due to structural constraints.

6Here ω denotes the first infinite ordinal (so ω can be thought of as the set of natural numbers
{0, 1, 2, . . .}).

2.2. Background 19

often just write σ as σ(0)σ(1) For n ∈ ω, we define the restriction σ � n as
the restriction of the partial function σ to the set {m ∈ ω : m < n}. So if |σ| ≥ n,
then |σ � n| = n, and if |σ| ≤ n, then σ � n = σ. A sequence σ′ is an extension of
another sequence σ (written σ � σ′) if, for all n ∈ ω, if σ(n) is defined, then σ′(n)
is defined and σ(n) = σ′(n). We write σ ≺ σ′ if σ � σ′ and σ 6= σ′.

2.2.2. Definition. Let A = (S, i, L,→) be an LTS. An A-trajectory is a sequence

t = (s0, α0, s
′
0), (s1, α1, s

′
1), . . . , (sn, αn, s

′
n), . . .

of elements of → such that s′i = si+1. We then write s0
α0−→s1

α1−→ If t is
nonempty, we call s0 the starting state of t and, if t also is finite, we call the s′

of the last entry the ending or last state of t, which we refer to by ‘last(t)’. We
refer to s(t) := s0, s

′
0, s
′
1, s
′
2 . . . and l(t) := α0, α1, . . . as the state sequence and

label sequence of t, respectively.

One can also consider morphisms between LTSs: that one system can simulate
the other. Thus, one can form the category of LTSs, but for our present purposes
we don’t need to do this.

2.2.2 Domain and order theory

We recall the basic concepts from order and domain theory that we’ll use. A
standard reference is Abramsky and Jung (1994).

A preorder is a structure (P,≤) where P is a set and ≤⊆ P × P a reflexive
(∀x : x ≤ x) and transitive (∀x, y, z : x ≤ y, y ≤ z ⇒ x ≤ z) relation. A subset
A ⊆ P is directed if it is nonempty and, for all x, y ∈ A, there is z ∈ A with
x, y ≤ z. A partial order is a preorder (P,≤) that is antisymmetric (∀x, y : x ≤
y, y ≤ x⇒ x = y).

If (P,≤) is a preorder, the induced partial order (P ,≤) is the quotient under
the equivalence relation x ∼ y iff x ≤ y and y ≤ x: To be precise, P is the set
of ∼-equivalence classes, which we denote [x]≤, and [x]≤≤[y]≤ iff x ≤ y (this is
independent of the representatives x and y).

Let (P,≤) be a partial order. It has a least element if there is x ∈ P such
that, for any y ∈ P , x ≤ y. If existent, such x is unique and usually denoted ⊥.
A subset A ⊆ P has a least upper bound (or supremum) if there is x ∈ P that
is an upper bound (∀a ∈ A : a ≤ x) and that is the least one (if y also is an
upper bound of A, then x ≤ y). If existent, such x is unique and denoted

∨
A. A

directed complete partial order (dcpo) is a partial order in which every directed
subset has a least upper bound.

Let (D,≤) be a dcpo. An element x ∈ D is compact if, for all directed subsets
A of D, if x ≤

∨
A, then there is a ∈ A such that x ≤ a. We write K(D) for the

set of compact elements of D. Finally, (D,≤) is algebraic if, for all x ∈ D, the set
{y ∈ K(D) : y ≤ x} is directed and its least upper bound is x. If K(D) also is

20 Chapter 2. Trajectory domains 1: Construction

countable, we call (D,≤) an ω-algebraic domain. (The more general concept is
that of a continuous domain, but we don’t need that here.)

A function f : D → E between dcpos is (Scott-) continuous if it is monotone
(∀x, y : x ≤ y ⇒ f(x) ≤ f(y)) and preserves directed suprema (for all directed
A ⊆ D, f(

∨
A) =

∨
f(A)). (Note that f(A) := {f(a) : a ∈ A} is directed by

monotonicity.) Two dcpos D and E are isomorphic iff they are order isomorphic,
i.e., there is a surjective f : D → E such that, for all x, y ∈ D, x ≤ y iff
f(x) ≤ f(y) (the latter implies injectivity, so f is bijective).7

Let (P,≤) be a preorder. A subset I ⊆ P is an ideal if it is a downset
(∀x, y : x ≤ y, y ∈ I ⇒ x ∈ I) and directed. An ideal is principal if it is of the
form ↓x := {y ∈ P : y ≤ x}. The ideal completion Idl(P,≤) of (P,≤) is the
set of ideals ordered by inclusion. If (D,≤) is an algebraic dcpo, then (D,≤) is
isomorphic to Idl(K(D),≤) (Abramsky and Jung 1994, prop. 2.2.25).

We’ll use the following simple but fundamental fact about countable directed
preorders (often without explicitly mentioning it).

2.2.3. Lemma. Let (P,≤) be a countable and directed preorder. Then P has a
cofinal chain C = {c0, c1, . . .} ⊆ P , i.e., c0 ≤ c1 ≤ . . . and, for all x ∈ P , there is
n with x ≤ cn.

Proof. Since P is countable, write P = {x0, x1, . . .}. Construct c0 ≤ c1 ≤ . . . by:
c0 := x0 (note P is nonempty), and given cn, let k be the least index such that
xk ≥ cn, xn (such upper bounds exists by directedness, whence there also is one
with least index), and define cn+1 := xk. Then, by construction, C is indeed a
chain and cofinal in P .8 2

2.3 Two guiding examples

We describe two examples to motivate the abstract structures that we subsequently
investigate. To keep to the point, the discussion will be more intuitive and not
strictly formal.

2.3.1 Observing a black box system

In this subsection, we describe our initial motivation for the present work: observing
a ‘black box’ system like a neural network.

7Equivalently, D and E are isomorphic in the category consisting of dcpos and Scott-
continuous functions (i.e., there are Scott-continuous functions f : D � E : g that compose to
the respective identity functions).

8This proof is given by Schweber (2016). Also see Abramsky and Jung (1994, prop. 2.2.13).

2.3. Two guiding examples 21

Black box system As a guiding example, we consider the following situation:
We’re given a ‘black box’ and ‘low-level’ deterministic system (X, f) and we’d
like to make sense of it at a higher level through observations. So X is a set
of (low-level) states and f : X → X is a function. We can also write this as
a (unlabeled) transition system with state space X and transitions s → s′ iff
f(s) = s′. The intuitive terms ‘black box’ and ‘high/low level’ are best illustrated
by examples.

First, statistical mechanics: A state s is, say, a list of the position and
momentum of each gas particle in a box of gas, and s → s′ iff, whenever the
system is in state s, the laws of classical mechanics determine s′ as the state in
the next time step. This is a deterministic dynamical system whose laws we fully
understand, but it is a ‘black box’ system in the sense that it is not feasible to
determine the exact state of the system at a given time. Statistical mechanics
is about relating the microscopic or ‘low-level’ description of system states to
macroscopic or ‘high-level’ states like temperature or pressure that are more
meaningful to a human observer.

Second, neural networks: A state s is a list of the value of each weight of a
neural network during a training process, and s→ s′ iff, whenever the system is in
state s, the learning algorithm (e.g., backpropagation) determines s′ as the next
state given a data point d. (Here we could take d as the label for the transition
s → s′.) This, too, is a dynamical system whose laws we fully understand (we
can even program it) and which is deterministic once the order of data points is
fixed. But it is a ‘black box’ system in the sense that it is very difficult to relate
the macroscopic or high-level properties of the system (e.g., whether the network
classifies this image as depicting a cat) to the microscopic or low-level properties
of the states (e.g., which value a certain weight has).9

Given the generality of the structure of (X, f), many more examples are
possible. For illustrative purposes, we consider the well-known North-South
map (Walters 1982, sec. 5.1, ex. 8). It is much simpler than, say, the neural
network example, but it still displays important qualitative similarities: e.g.,
stable fixed points (convergence) and non-stable fixed points (divergence).

The North-South map is the system (X, f) depicted on the left of figure 2.1:
The state space X consists of the points on the circle and the dynamics f : X → X
is defined as follows: If x = p is the ‘North Pole’, then f(x) = x. Otherwise, draw
a line from p through x and go to where it intersects the real line (the horizontal
line), then go to the midpoint from the origin q (the South Pole), and draw a line
back to the North Pole: the intersection of this line with the circle is the new state
f(x). Thus, any state x 6∈ {p, q} will move under the dynamics closer and closer
to the South Pole q. Moreover, both the North Pole p and the South Pole q are
fixed points. However, the North Pole is unstable in the sense that every close-by

9For an overview of the connections between statistical mechanics and deep neural networks,
see (Bahri et al. 2020). Also see our chapter 7.

22 Chapter 2. Trajectory domains 1: Construction

p

q

x

f(x)

1
2

N

E

S

W

N

W E

S

Figure 2.1: The North-South map (left) and the observed system under the
partitioning into the four sets N,E, S,W (right).

state x 6= p (to which the system might be perturbed to from p) will move away
from p, while the South Pole is stable in the sense that all close-by states x 6= q
will converge back to q.

Observed system Next, what does it mean to observe the system? For simplic-
ity, we’ll identify possible observations (i.e., observable properties) with subsets of
the state space: To make observation P if the system is in state s corresponds to
coming to know that s has property P , i.e., that s is in the set P of states that
have property P .

For example, the observable property that the network classifies a given picture
correctly as depicting a cat corresponds to the set P of weight-states where the
network shows this classification behavior. In the North-South map, assume we
have a way to observe whether the system is in the North, East, South or W est
arc as indicated in the figure.

When we regard the system through these possible observations, we see the
observed system: Its states are the possible observations that we can make, and
P → Q iff there is x ∈ P with f(x) ∈ Q, i.e., if we make observation P now,
then we can make observation Q next. For the North-South map, it is depicted
on the right of figure 2.1. In particular, we neither can have N → S (any orbit
starting in N has to go through W or E to get to S), nor W → W (starting in
W will take one outside W), nor W → E (once orbiting down the left side of the
circle, one cannot go to the right side anymore). Also note that unlike the original
deterministic system, the observed system need not be deterministic.

Observation topology A more general perspective on the observed system
is as follows. (This more technical paragraph can be skipped.) We’ve said that
observable properties are subsets of X, but which subsets are observable properties?
We take it to be those subsets P for which we have finite decision procedure

2.3. Two guiding examples 23

to tell whether the system, in a given state, has the property P or not. In the
‘cat picture’ example, we have such a procedure: given weight state s, input the
picture to the neural network, let it run and see whether it provides a positive
answer (i.e., it has P) or a negative answer (i.e., it doesn’t have P).

Let’s write B for the set of these ‘decisively observable properties’. We treat it
as a variable, but given this intended interpretation it makes sense to demand:

• B is a Boolean algebra: if we can decisively observe P and also Q, then we
also can decisively observe P c, P ∩Q, and P ∪Q,

• B is closed under f -preimage: if we can decisively observe P , we can decisively
observe f−1(P), because to see whether s is in f−1(P), we see whether f(s)
has P , i.e., we wait one time step and see whether the system has property
P ,

• B is countable: the decision procedures need to be accessible to us, so we at
least need to be able to enumerate them.10

Note that we’re considering decidable observable properties and not semi-decidable
observable properties which, famously, form a topology rather than a Boolean
algebra (Smyth 1983; Vickers 1989). In the North-South map, B could be the
closure under Boolean operations and f -preimages of {N,E, S,W}.

Given our collection B of decisively observable properties, we wonder what are
the possible ways things can be according to these observations. In other words,
what are the possible complete and consistent collections of properties that the
system could have at a given point in time? These are known as the ultrafilters
of B. Every state s induces such an ultrafilter (the set of properties P ∈ B that
s has). If things go well, also every ultrafilter F determines a unique state (the
state s which has all the properties P ∈ F), and if not, we may think of F as an
‘imaginary’ state that ‘logically completes’ the state space of the system. The set
of ultrafilters of B is denoted Spec(B) and we may call it the set of logical states
of our system (X, f).

This set Spec(B) of logical states has a natural topology induced by the basic
open sets of the form {F : P ∈ F} for P ∈ B. This is a Stone space: zero-
dimensional, compact, and Hausdorff. (That is the classic Stone duality: the
correspondence between Boolean algebras and Stone spaces.) Since B is countable,
Spec(B) also is second-countable and hence a compact metrizable space.

Moreover, the dynamics f : X → X naturally extends to a dynamics f :
Spec(B)→ Spec(B) on the logical states: Since B is closed under preimage, the
function h : B → B given by P 7→ f−1(P) is well-defined. It is a Boolean algebra
homomorphism and hence determines, by Stone duality, the continuous function
f : Spec(B)→ Spec(B) given by F 7→ h−1(F) = {P ∈ B : f−1(P) ∈ F}.11

10Cf. there are only countably many Turing machines.
11We’ll see this construction again in section 5.3.2 of chapter 5.

24 Chapter 2. Trajectory domains 1: Construction

For all we ever can observe, the ‘logical’ system (Spec(B), f) simply is the
system (X, f) that we’re observing: any difference between them can, in a sense,
never be observed by us. Thus, we may assume without loss of generality that
(X, f) is a zero-dimensional topological system: X is a zero-dimensional compact
metrizable space and f : X → X is continuous. And B essentially consists of
clopen subsets of X. (We also could have taken these systems as our starting
point, since the study of zero-dimensional topological systems is an important
subfield of dynamical systems theory (Downarowicz and Karpel 2016).)

Trajectories The possible sequences of observations are those trajectories in
the observed system A that result from observing the orbit of some state x of the
underlying system (X, f):

T :=
{
t : t is an A-trajectory followed by some x ∈ X

}
,

where we say x follows t iff, for k = 0, . . . , |t|, fk(x) ∈ s(t)(k), i.e., if the system
starts in x, then, after k time steps, we can make the observation s(t)(k) (the
k-th state of t).

We can expect T to have two crucial properties:

(a) If t � t′ ∈ T and t is nonempty, then t ∈ T .

In words: T is closed under nonempty prefixes.

(b) For all infinite A-trajectories t, if, for all n, t � n ∈ T , then t ∈ T .

In words: T is ‘finitary’ or ‘compact’: if t is not in A, we can realize this
after some finite amount of time.

Indeed, concerning (a), if x follows t′, then it also follows the initial segment t.
Concerning (b), in the observed system of the North-South map, we’re in the
fortunate case that all trajectories are followed by some x, so this property holds
vacuously. In the general case of the preceding paragraph, X is compact and
decisively observable properties are clopen. Define An :=

⋂n
k=0 f

−ks(t)(k), i.e.,
the set of those x ∈ X that follow t � n. Then (An)n is a decreasing sequence of
non-empty closed subsets of X, so, by compactness, there is x ∈

⋂
nAn, whence

t ∈ T .

Trajectory equivalence Each trajectory represents a possible behavior of the
system, but often we want to move to a higher level of abstraction (or explanation)
where we consider some distinct trajectories to be instances of the same behavior.
For instance, in the neural network example we might want to investigate whether
a certain initial value range for some weights is predictive of a certain classification
behavior at the end of learning (a microscopic explanation of a macroscopic
property). So we consider two observation trajectories t and t′ equivalent if,

2.3. Two guiding examples 25

intuitively, initially their values of the weights in question lie in the same range
and the network ends up with the same classification behavior on the test data
set. Thus, trajectory equivalence represents a level of abstraction where we ignore
information that we don’t deem relevant for the intended explanation of the
macroscopic properties.

There are many trajectory equivalence relations that can be defined, and this
chapter is about axiomatizing those that provide a ‘good’ level of abstraction. To
provide some concrete examples, for the North-South map, we can consider two
trajectories equivalent if they have the same length and visit the same sets of
states (which here implies having the same start and end). Intuitively, equivalence
then represents predicability of observations within a certain number of time steps.

In the general case, we may define, for t, t′ ∈ T , that t ≡ t′ iff |t| = |t′| and if
|t| > 0, there is 1 ≤ i ≤ |t| such that

(i) Same start: s(t)(0) = s(t′)(0).

(ii) Consistent observations:
⋂i
k=0 f

−k(s(t)(k)) =
⋂i
k=0 f

−k(s(t′)(k)). (So we
might make different observations along t � i and t′ � i, but we cannot
deduce a difference in microscopic states.)

(iii) Same end: last(t � i) = last(t′ � i) and, for all n ≥ 0, t(i + n) = t′(i + n)
whenever defined.12

Both in the North-South map and in the general case, we can expect ≡ to
have two crucial properties:

(c) For all t, t′ ∈ T , if t ≡ t′, then |t| = |t′| and there is i ≥ 1 such that, for all
n ≥ 0, t � i+ n ≡ t′ � i+ n.13

In words: Equivalent trajectories have the same length and, after some finite
time, become (and stay) equivalent.

(d) For all nonempty finite t, t′ ∈ T with t ≡ t′, if tt′′ ∈ T is finite, then t′t′′ ∈ T
and tt′′ ≡ t′t′′.14 (If t, t′, or t′′ are empty, this holds trivially.)

12This is indeed an equivalence relation: Reflexivity and symmetry are clear. For transitivity,
assume t ≡ t′ and t′ ≡ t′′. So |t| = |t′| = |t′′|, and if > 0, then there are 1 ≤ i, j ≤ |t| such that
the conditions (i)–(iii) are satisfied for (t, t′) and (t′, t′′), respectively. Let l := max(i, j) and
show that it satisfies (i)–(iii) for (t, t′′).

13Proof: North-South: If t ≡ t′, then, by definition, |t| = |t′|. If they are finite, choose
i := |t|+ 1. If they are infinite, they either both have a tail of N -states or of S-states, and we
choose i large enough such that t(i) = t′(i). General: If t ≡ t′, then, by definition, |t| = |t′|. If t
is empty, choose i = 1, and if t is nonempty, choose i as in the definition of t ≡ t′.

14Proof: North-South: The crucial part is to show t′t′′ ∈ T . Since t ≡ t′, they have the
same last state M . Let M ′ be the first state of t′′ (if t′′ is empty the claim is trivial). Since
tt′′ ∈ T , M → M ′ is an A-transition. So the paths t′ and t′′ can be concatenated, i.e., t′t′′ is
an A-trajectory. So t′t′′ ∈ T , since any A-trajectory is followed by some state. General: Since
|t| = |t′| > 0, let 1 ≤ i ≤ |t| be as in the definition of t ≡ t′. Write t0 := tt′′ and t1 := t′t′′.

26 Chapter 2. Trajectory domains 1: Construction

In words: Extending equivalent trajectories in the same way yields equivalent
trajectories as soon as one extension is in T .

Possible behavior So we’re looking at a structure (A, T,≡) where A is a
countable transition system, T is a set of A-trajectories, and ≡ is an equivalence
relation on T such that (a)–(d) are satisfied. An equivalence class [t] describes a
possible behavior of A at the level of abstraction represented by ≡.

To understand these behaviors, we’re lead to study the structure of the
set of possible behaviors T := T/ ≡. It is useful to start with the subset
Tfin := {t ∈ T : t finite}/ ≡. On there we have a natural order of information
containment between behaviors: For [t], [t′] ∈ Tfin, define

[t] ≤ [t′] :⇔ ∀t0 ∈ [t]∃t1 ∈ [t′] : t0 � t1.

A natural way to extend this to infinite behaviors [t], [t′] ∈ T is: [t]v[t′] iff, for all
n there is m such that [t � n] ≤ [t′ � m]. (The main result of this chapter will show
that this essentially also is the only natural way.) This definition makes sense:

2.3.1. Lemma. 1. (Tfin,≤) is a preorder.

2. For finite t, t′ ∈ T , if t � t′, then [t] ≤ [t′].

3. The definition of v is independent of the representative.

4. v and ≤ coincide on Tfin.

Proof. Concerning (1), this is immediate. Concerning (2), let t0 ∈ [t] and write
tt′′ = t′ ∈ T . So (d) implies t0 � t0t

′′ =: t1 ∈ T and t1 ≡ t′.

Concerning (3), we show: If t0 ∈ [t] and t1 ∈ [t′] and [t]v[t′], then [t0]v[t1]. So
given n, find m such that [t0 � n] ≤ [t1 � m]. Since t0 ≡ t, use (c) and let i ≥ 1 be
such that, for all k ≥ 0, t0 � i+ k ≡ t � i+ k. Choose some k ≥ i, n. So, by (2),
[t0 � n] ≤ [t0 � k] = [t � k]. Since [t]v[t′], there is j such that [t � k] ≤ [t′ � j].
Since t′ ≡ t1, use (c) as above and get m ≥ j such that t′ � m ≡ t1 � m. So, by (2),
[t′ � j] ≤ [t′ � m] = [t1 � m], as needed.

Concerning (4), let t, t′ ∈ T be finite. If [t]v[t′], let n := |t|, so there is m
with [t] = [t � n] ≤ [t′ � m] ≤ [t′], where the last step follows by (2). Con-
versely, if [t] ≤ [t′], then, for any n, let m := |t′| and we have, by (2), that
[t � n] ≤ [t] ≤ [t′] = [t′ � m]. 2

We have t1 ∈ T because
⋂|t1|
k=0 f

−kt1(k) =
⋂|t0|
k=0 f

−kt0(k) (since until i, the intersections are
identical by assumption, and after i the trajectories are identical), and the latter is nonempty.
And i also witnesses tt′′ ≡ t′t′′.

2.3. Two guiding examples 27

Trajectory domain Now, the key insight into the structure of the set of possible
behaviors T is stated in the following theorem. Its terminology was reviewed in
section 2.2.2.

2.3.2. Theorem. The partial order (T,v) induced by (T,v) is isomorphic to the
ideal completion of (Tfin,≤), and hence an ω-algebraic dcpo.

In section 2.3.2, we discuss in detail the origins of the proof and the surrounding
ideas in the different setting of concurrent computation. The short answer will be:
although different in setting and detail, the essential idea of the proof is provided
by Droste (1990, thm. 2.3) and Stark (1990, thm. 3). Since the theorem is a
consequence of our main result (theorem 2.6.3 below), we only provide a proof
sketch.
Proof sketch. We show that the mapping [[t]≡]v 7→ I(t) :=

{
[t′] ∈ Tfin :

∃m . [t′] ≤ [t � m]
}

is an order-isomorphism. It is readily seen to be well-
defined (i.e., independent of the representative and I(t) is an ideal in Tfin) and an
order-embedding (i.e., [t]v[t′] iff I(t) ⊆ I(t′)).

So the key is surjectivity. Since the system is assumed to be countable, Tfin

is countable, too. So if D is an ideal of Tfin, it is a countable directed set and
hence has a cofinal chain C = [t0] ≤ [t1] ≤ By definition of ≤, we can pick
the ti such that each ti is an extension of the previous tj ’s. Let t be the trajectory
having all ti as initial segments. By (b), it is in T . Then I(t) = D: If [t′] ∈ I(t),
then [t′] ≤ [t � m] for some m, so, since D is a downset, [t′] ∈ D. If [t′] ∈ D, then,
since the chain is cofinal, there is m such that [t � m] ≥ [t′], whence [t′] ∈ I(t). 2

As an example, let’s consider the trajectory domain of the North-South map
as shown in figure 2.2. We focus on trajectories starting with N (plus the empty
trajectory) and abbreviate trajectories thus: N → N → E → S becomes N2E1S1.
The ellipses ‘hide’ a more complicated order involving equivalence classes of the
form written inside the ellipse.

What does the trajectory domain tell us about the system’s behavior? Here
are three examples: First, the fact that it has very few noncompact elements
relates to the system being very ‘convergent’ or ‘non-chaotic’. Second, it highlights
consistent and inconsistent behavior: On the one hand, [[N1W 1]] and [[N1E1]],
for instance, are inconsistent (i.e., aren’t both informationally contained in some
behavior) which reflects that there are no transitions between W and E. On the
other hand, [[N5]] and [[N4W 1]], for instance, are informationally incomparable,
but they both are contained in [[N5W 1S1]] = [[N4W 1S2]]. Third, the fact that
the North Pole is an unstable fixed point is reflected in the fact that its infinite
fixed point behavior [[Nω]] is dominated by the infinite non-fixed point behaviors
[[NnW 1Sω]] and [[NnE1Sω]]: because any initial segment Nn can also be realized
by a sufficiently close state x 6= p which, however, will eventually evolve into an
initial segment NnW 1S1 or NnE1S1 of the infinite non-fixed point behavior.

28 Chapter 2. Trajectory domains 1: Construction

[[ε]]

[[Nn]]

[[NnW 1]] [[NnE1]]

[[NnW 1Sk]] [[NnE1Sk]]...

...
...[[Nω]]

[[NnW 1Sω]] [[NnE1Sω]]

Figure 2.2: A sketch of the trajectory domain of the North-South map.

2.3.2 Concurrent computation

Curiously, in the study of concurrent computation, we can also find the structure
(A, T,≡) of an LTS A together with a set of A-trajectories T and an equivalence
relation ≡ on T satisfying properties (a)–(d).

Concurrency Concurrency is a vast field of computer science, and it is usually
sketched along the following lines (Lamport 2015; Winskel and Nielsen 1995). In
sequential computation—as performed, e.g., by Turing machines—, the computing
system performs one task after the other as dictated by its program. In concurrent
computation—e.g., electrical circuits, the internet, or (artificial) neural networks—,
many computing units form a network mutually influencing each other and usually
performing a joint task.

As a result, several execution paths of this system of computing units may be
seen as performing the same task (or computation). To illustrate this, consider
the well-known situation of figure 2.3 (Winskel and Nielsen 1995). Assume the
system is in the ‘global’ state s which describes the state of each computing unit.
Then it could perform either the action α of, say, updating unit 1 or the action
β of updating unit 2. This respectively yields the two new states s0 and s1. In
each of these states the respective other unit can be updated, and this happens to
be such that either order of updating yields the same global state s′. Thus, we’d

consider the two distinct execution paths t = s
α−→s0

β−→s′ and t′ = s
β−→s1

α−→s′ to be
behaviorally equivalent.

2.3. Two guiding examples 29

s′

s0 s1

s

β α

α β

Figure 2.3: The independence diamond.

Models of concurrency There is a plethora of formal models to describe and
reason about the behavior of concurrent systems (Baier and Katoen 2008; Sassone,
Nielsen, and Winskel 1996; Winskel and Nielsen 1995). We’ll mention some
(roughly in increasing generality) that are particularly suited to describe the above
intuition of equivalence of execution paths.

First, Mazurkiewicz trace languages.15 These are structures of the form
(M,L, I) where L is a set of actions, I ⊆ L × L is a symmetric and irreflexive
relation, called the independence relation, and M ⊆ L<ω is a nonempty set of
strings over L that is prefix closed (for all t ∈ L<ω and α ∈ L, if tα ∈ M , then
t ∈M) and I-closed (for all t, t′ ∈ L<ω and α, β ∈ L, if tαβt′ ∈M and αIβ, then
tβαt′ ∈M). Thus, we think of M as the set of possible finite sequences of actions
(from the set L) that the system can perform, and the independence relation I
describes which actions can occur concurrently. In the independence diamond, we’d
have αIβ, so the sequences of actions αβ and βα would be considered equivalent.
More generally, one defines an equivalence relation ' on M as the smallest
equivalence relation such that tαβt′ ' tβαt′ whenever αIβ. Its equivalence classes
are called traces. A natural preorder on M is t ≤ t′ iff ∃t′′ : tt′′ ' t′ which becomes
a preorder on traces when quotienting under '. (For extensions, see, e.g., Katz
and Peled 1992 loosening the constraint on the independence relation to be fixed
for all actions.)

Second, asynchronous transition systems.16 Their idea is to specify the tran-
sition system that gives rise to the possible strings of labels (of a Mazurkiewicz
trace language). So they are structures (A, I) where A is an LTS and I ⊆ L× L
is an irreflexive and symmetric relation, called the independence relation, such
that the following axioms are satisfied: (i) Every label occurs in a transition, (ii)
preforming the action described by a label yields a unique state, and (iii) the
independence diamond is respected, i.e., the lower half of the diamond can be
completed to the upper half, and the left half of the diamond can be completed
to the right half. (See the references for a formal statement.)

15They were introduced by Mazurkiewicz (in 1977); for references and an overview, see Winskel
and Nielsen (1995, sec. 7).

16They were introduced independently by Bednarczyk (in 1988) and Shields (in 1985); for
references and an overview see Winskel and Nielsen (1995, sec. 10).

30 Chapter 2. Trajectory domains 1: Construction

Third, automata with concurrency.17 Their main idea is to generalize the
independence relation to be relative to the state of the transition system and
not fixed for all labels (cf. the extension of trace languages above). Concretely,
an automaton with concurrency relations is a structure (A, (Is)s∈SA) where A
is a countable LTS and each Is ⊆ L× L is a irreflexive and symmetric relation
such that the axioms (i) and (ii) are satisfied and if αIsβ, then the independence
diamond of figure 2.3 can be formed (for details see the references).

Fourth, labeled transition systems with independence.18 They have the same
structure (A, I) as asynchronous transition systems, but they are governed by
different axioms (see the references for details). The main difference is that they
allow defining two transitions to be occurrences of the same event if, roughly,
they participate in an appropriate independence diamond. (Other than being an
equivalence relation, the exact definition will not be important for us.)

(We haven’t mentioned two other important models of concurrency: Petri nets
and event structures. Winskel and Nielsen (1995) discuss their close connections
to the models mentioned above.)

Generalization We show that these models essentially have the structure
(A, T,≡) of an LTS A together with a set of A-trajectories T and an equivalence
relation ≡ on T :

First, given a Mazurkiewicz trace language (M,L, I) we can think of it as
consisting of the one-state LTS A = ({i}, i, L,→), where →:= {i} × L × {i} is
the trivial relation, together with the set of A-trajectories T with label sequences
that are in M :

T :=
{
t A-trajectory : ∀n . l(t � n) ∈M

}
.

The equivalence relation ≡ on T is the natural extension of ': t ≡ t′ iff ∃i∀n :
l(t � i+ n) ' l(t′ � i+ n).19

Moreover, this satisfies properties (a)–(d): Properties (a) and (b) are satisfied
by construction. Concerning (c), if t ≡ t′, then ∃i∀n : l(t � i+ n) ' l(t′ � i+ n),
so |t| = |t′| since ' implies having the same length and, for all n ≥ 0, t � i+ n ≡
t′ � i+ n. Concerning (d), this is a basic feature of ' in trace languages (see e.g.
Winskel and Nielsen 1995, prop. 7.1.3).20

17See Bracho and Droste (1994) and Droste (1990).
18See Sassone, Nielsen, and Winskel (1996) and Winskel and Nielsen (1995). Related models

are: the concurrent transition systems of Stark (1990), the geometric approaches of Fajstrup,
Raußen, and Goubault (2006), Goubault and Jensen (1992), and Pratt (1991), or the transition
systems with independence and multi-arcs of Hildebrandt and Sassone (1997).

19This is an equivalence relation: It clearly is reflexive and symmetric since ' is. For
transitivity, if i and j witness the equivalence of (t, t′) and (t′, t′′), then k := max(i, j) witnesses
the equivalence of (t, t′′): for n ≥ 0 we have l(t � k + n) = l(t � i + (k − i + n)) ' l(t′ �
i+ (k − i+ n)) = l(t′ � j + (k − j + n)) ' l(t′′ � j + (k − j + n)) = l(t′′ � k + n).

20Let t, t′ ∈ T be nonempty finite with t ≡ t′ and tt′′ ∈ T finite. Hence, l(t) ' l(t′) and

2.3. Two guiding examples 31

Second, let’s consider asynchronous transition systems and automata with
concurrency. Because of their similarity, we’ll only discuss the latter. With slightly
different terminology, we follow Bracho and Droste (1994) and Droste (1990); for
similar constructions see Stark (1989), Stark (1990), and Katz and Peled (1992).
Let (A, Is) be an automaton with concurrency relations. Let T be the set of
all A-trajectories starting in the initial state. Trajectory of equivalence of finite
t, t′ ∈ T is given by: the reflexive and transitive closure ∼ of t ∼0 t

′ iff t and t′

only differ by an independence diamond, i.e., they are of the form

t = t(0) . . . t(i− 1) (s, α, s1) (s1, β, s
′) t(i+ 2) . . . t(n)

t′ = t′(0) . . . t′(i− 1) (s, β, s2) (s2, α, s
′) t′(i+ 2) . . . t′(n)

for some αIsβ. We preorder T by t ≤ t′ iff ∀n∃m : ∃t1 ∈ T : t � n � t1 ∼ t′ � m.
Bracho and Droste (1994) now take two trajectories t and t′ to be equivalent if t ≤ t′

and t′ ≤ t. However, we define the finer relation t ≡ t′ iff ∃i∀n : t � i+n ∼ t � i+n.
Notice that ∼ for finite trajectories essentially is ' for trace languages and

that ≤ is the natural extension of the preorder of traces languages to infinite
trajectories. A difference to trace languages is that, apart from the restriction to
start with the initial state, the set of possible trajectories is not constrained any
further.

This, too, satisfies (a)–(d): Properties (a)–(b) are satisfied by construction.
Concerning (c), if t ≡ t′, then ∃i∀n : t � i + n ∼ t � i + n so |t| = |t′| (since ∼
implies having the same length) and, for all n, t � i+n ≡ t � i+n. Concerning (d),
if t, t′ ∈ T are nonempty finite with t ≡ t′ and tt′′ ∈ T finite, then t′t′′ is an
A-trajectory (since t ∼ t′ which implies last(t) = last(t′)) that starts in i (since t′

does), so t′t′′ ∈ T , and tt′′ ∼ t′t′′ whence tt′′ ≡ t′t′′.
Third, for transition systems with independence we may also consider another

notion of trajectory equivalence: t ≡ t′ iff |t| = |t′| and, for n < |t|, t(n) and t′(n)
are occurrences of the same event. We’ll show that this implies a weaker version
of property (d) that we’ll introduce as part of our more general axiomatization
(see example 2.7.6).

Connections to domain theory There are various connections between mod-
els of concurrency and domain theory.

Based on the partial order of traces, one can construct an event struc-
ture (Winskel and Nielsen 1995, sec. 8.3), and event structures, in turn, can
represent various classes of domains: Winskel and Nielsen (1995, p. 125) provide
a brief summary.

More directly, assume (A, Is) is an automaton with concurrency relations.
Then, for the set of trajectories T with the preorder ≤ defined as above, the
induced partial order (T ,≤) is a domain whose compact elements are given by

l(tt′′) = l(t)l(t′′) ∈M . By said proposition, l(t′t′′) = l(t′)l(t′′) ∈M and l(tt′′) ' l(t′t′′). Hence,
t′t′′ ∈ T (since M is prefixed closed) and tt′′ ≡ t′t′′ (choose i := |tt′′|).

32 Chapter 2. Trajectory domains 1: Construction

equivalence classes of finite trajectories in T—see Droste (1990), Bracho and
Droste (1994), and Stark (1990).

Let’s compare this to the connection to domain theory from the black box
system example. There we’ve motivated the move from trajectories to their
equivalence classes as moving from concrete instances of the system’s behavior to
the behavior at the level of abstraction of interest. Here, in the case of concurrent
computation, the motivation is well put by Stark:

“concurrency is reflected in the [domain] through the existence of
nontrivial upper bounds. Since our goal is to make concurrency explicit,
one might argue that concurrent computations [i.e., equivalence classes],
rather than computation sequences [i.e., trajectories], ought to be the
main focus of attention” (Stark 1990, p. 54).

Moreover, we’ll distinguish the concepts of trajectory equivalence ≡ and infor-
mation containment v, i.e., we don’t define equivalence as mutual information
containment. We’ll find this separation conceptually useful in searching for the
right axiomatization.

2.3.3 Summary and outlook

To summarize, we’ve discussed two examples: observing black box systems and
concurrent computation. Both have the structure (A, T,≡) of an LTS A together
with a set of A-trajectories T and an equivalence relation ≡ on T such that
properties (a)–(d) were satisfied. This allowed two things: (i) there is a natural
information containment order on the set of possible behaviors T/ ≡, and (ii) this
in fact forms an ω-algebraic domain.21

Given these examples, it is natural to ask how general they are: In the black
box system example, we ask which abstractions are good ones. Which equivalence
relations on the set of possible trajectories provide a ‘well-structured’ representation
of the types of behaviors of interest? In the concurrency example, we ask which
other notions of concurrency are plausible. Which equivalence relations on the set
of possible trajectories provide the ‘hallmark’ structure identified in the literature:
that the equivalence classes—i.e., concurrent computations—form a domain? For
example, can we circumvent the restriction that concurrent computations cannot
differ in their computation time?

Thus, we ask: What are the minimal demands on the structure (A, T,≡) such
that (i) we can define a natural information containment, and what is additionally

21In hindsight, it may not be too surprising that, despite their distinct appearance, both
examples had this structure: we could think of equivalent trajectories in the observed system as
being ‘concurrent’ computations done by the black box system (under our interpretation). In
the other direction, it is an interesting question—somewhat similar to hidden-variable theory
discussions in physics—in which cases it is possible to think of concurrent execution paths as
equivalent observation trajectories of an underlying low-level deterministic black box system.

2.4. Pre-behavioral transition systems 33

needed that (ii) this forms a domain? In other words, we don’t ask the analytic
question of building further equivalence relations, but rather the synthetic question
of what the right axioms are for these structures.

As already sketched in the introduction, the answer will be this: First, we
define a ‘pre-BTS’ as the structure (A, T,≡) with some very minimal axioms.
Then we investigate what it takes to satisfy the (i)-demand and find one more
axiom which, when added, yields a ‘BTS’. The characterization theorem then
says that satisfying the (i)-demand is essentially equivalent to the much stronger
(ii)-demand.

2.4 Pre-behavioral transition systems

We introduce pre-behavioral transition systems (pre-BTS) as structures (A, T,≡)
where A is an LTS, T a set of A-trajectories, and ≡ an equivalence relation on
T satisfying some minimal axioms. They are ‘pre’ in the sense that we’ll later
explain why we should add one more axiom, which then yields BTSs. After the
formal definition, we discuss the axioms; in particular, how they relate to the
guiding examples. And we construct basic examples of pre-BTSs.

2.4.1 Definition

Before we define pre-behavioral transition systems, we need the definition of
information containment between finite behaviors whose importance we’ve already
encountered in the examples.

2.4.1. Definition. Let (A, T,≡) be a structure where A is an LTS, T a set of
A-trajectories, and ≡ an equivalence relation on T . Write [t] for the ≡-equivalence
classes. For finite t, t′ ∈ T , define

[t] ≤ [t′] :⇔ ∀t0 ∈ [t]∃t1 ∈ [t′] : t0 � t1.

In words, every realization of behavior [t] can be extended to a realization of
behavior [t′].

Now we can state the definition of a pre-behavioral transition system.

2.4.2. Definition. A pre-behavioral transition system (pre-BTS) is a triple M =
(A, T,≡) where A is an LTS, T is a set of A-trajectories, and ≡ is an equivalence
relation on T such that:

1. For all t ∈ T , if t′ is a nonempty finite initial segment of t, then t′ ∈ T .

2. For all infinite A-trajectories t, if 0 < n0 < n1 < . . . with t � ni ∈ T and
[t � ni] ≤ [t � ni+1] (for all i ≥ 0), then t ∈ T .

34 Chapter 2. Trajectory domains 1: Construction

3. For all t, t′ ∈ T with t ≡ t′, if t is empty, then t′ is empty, and if t is finite,
then t′ is finite.

4. For all infinite t, t′ ∈ T , if t ≡ t′, then there is i, j ≥ 1 such that, for all
n ≥ 0, t � i+ n ≡ t′ � j + n.

If M is a pre-BTS, we write M = (AM , TM ,≡M) and AM = (SM , iM , LM ,→M)
and call ≡M the trajectory equivalence of M . We call M countable if AM is
countable. It will be useful to have a name for the following stronger version of
axiom (2):

(2)∗ For all infinite A-trajectories t, if t 6∈ T , then there is n ≥ 1 such that
t � n 6∈ T .

To be more precise, we should probably call such M a pre-behavioral labeled
transition systems, but the current name already is enough of a mouthful, so we
omit the term ‘labeled’.

2.4.2 Comments

Finite information containment First, technically, definition 2.4.1 of infor-
mation containment ≤ between finite behaviors would also work for infinite
trajectories. However, then any infinite [t] is maximal: If [t] ≤ [t′], then t ∈ [t]
can be extended to t1 ∈ [t′], but, since t is infinite, t = t1, whence [t] = [t′]. This
discards too much structure of T/ ≡. (In example 2.7.7 below, we discuss this in
more detail.) In section 2.5, we discuss how to extend this definition appropriately
to infinite behaviors.

Second, the formal idea behind the definition of ≤ is to ‘lift’ the extension
preorder � on T to the preorder ≤ on equivalence classes (i.e., certain subsets of)
T . Such constructions are well-known: For example, to characterize the Hoare
powerdomain of a continuous domain D with basis (B,�), one ‘lifts’ the relation
� from B to finite subsets of B by defining X �H Y iff ∀x ∈ X∃y ∈ Y : x� y.
(The Hoare powerdomain of D then is isomorphic to the ideal completion of the
set of finite subsets of B ordered by �H .) For the Plotkin powerdomain, one also
demands the ‘dual’: ∀y ∈ Y ∃x ∈ X : x � y.22 This is then an instance of the
Egli–Milner relation lifting.23 However, in our setting, adding this additional ‘dual’
demand seems to be too strong in general: for [t] to be informationally contained
in [t′] it need not be the case that every realization of [t′] is an extension of a
realization of [t].

22See e.g. Abramsky and Jung (1994) for these results about powerdomains.
23This is yet a special case of the notion of ‘relation lifting’ in coalgebra (Kurz and Velebil

2016, example 2.8).

2.4. Pre-behavioral transition systems 35

Comparison to the guiding examples In the guiding examples, we’ve iden-
tified the properties (a)–(d) as restricting the structures (A, T,≡), so let’s discuss
how the axioms (1)–(4) of a pre-BTS are generalizations thereof.

First, axiom (1) is just verbatim property (a). Note that we can equivalently
demand that any nonempty initial segment t′ of t ∈ T is in T (because if t′ is
infinite, then t′ = t ∈ T).

Second, property (b) is the stronger version (2)∗ of axiom (2). The reason
for opting for the weaker version as axiom is that (i) it is enough for the desired
results, (ii) we want the axioms to be as weak as possible, and (iii) it allows system-
atically disregarding ‘non-approximable’ behavior as we’ll see in the next chapter.
However, if the pre-BTS has the property of being bisimulative (definition 2.7.2),
the two versions are equivalent.

Third, axioms (3)–(4) are a weakening of property (c). While property (c)
required equivalent trajectories to have the same length, axiom (3) only demands
them to have the same ‘cardinality type’: one is empty (resp., finite, infinite) iff
the other is empty (resp., finite, infinite). Axiom (4) then is similar to property (c)
but now restricted to infinite trajectories and taking into account the lack of a
‘global time’ by allowing distinct offsets i and j (rather than a single i).

Fourth, property (d) has no analogue axiom, and section 2.5 will be about
finding a much weaker version of property (d) that can then serve as an axiom to
turn a pre-BTS into a BTS.

General motivation for pre-BTSs Independent of the guiding examples, the
axioms of a pre-BTS can be motivated generally as follows.

First, the notion of an LTS specifies locally which trajectories are possible.
However, not every trajectory that is locally possible is globally possible.24 Con-
sider, for example, an action α that requires a certain amount of some bounded
resource like storage space. Then there is a bound on how often α can be per-
formed which becomes relevant only at a global scale but not at a local one. Yet,
it is the globally possible trajectories that we’re interested in when we want to
know what the ‘possible behavior’ of the system is.25 So, we need to specify
the globally possible trajectories explicitly as a subset T of the set of all locally
possible trajectories.

This motivates axioms (1) and (2): Regarding (1), nonempty initial segments
of globally possible trajectories should be globally possible as well. (We discuss
the empty trajectory below.)

Regarding (2), its stronger version (2)∗ demands that if an infinite locally
possible trajectory t is not globally possible, then already some finite initial

24This general situation of local possibility/consistency and global impossibility/inconsistency
is known as contextuality (Abramsky and Brandenburger 2011; Abramsky et al. 2015).

25For example, such additional global constraints on the possible trajectories play a role when
considering liveness property of the system (Van Glabbeek and Höfner 2018; Manna and Pnueli
1991).

36 Chapter 2. Trajectory domains 1: Construction

segment of t fails to be globally possible. Thus, the property of ‘globally possible’
is refutative: if it is false, we can eventually discover that it is false—this is
necessary for it to be a constructive or “finitary” concept. In the example, if an
infinite trajectory t exceeds the storage space with its α-applications, then this
happens already after some finite amount of time. Again, as an axiom, we only
demand the weaker version (2).

Second, as already discussed, globally possible trajectories exhibit possible
behavior of the system. However, they may be instances of the same type
of behavior—as described by an equivalence relation. Two constraints seem
fundamental for this notion of trajectory equivalence: First, axiom (3) requires
that an infinite trajectory is essentially different from a finite one, and a nonempty
trajectory is essentially different from the empty one. Second, axiom (4) requires
that if two infinite trajectories are equivalent, then there is a point from which
on they are (and remain) equivalent. This again is necessary for the notion of
trajectory equivalence to be finitary: we exclude the possibility of two infinite
trajectories that are equivalent without us ever being able to observe that (i.e., we
can never find two of their finite initial segments that are and remain equivalent).26

On the empty trajectory As already seen in the guiding examples, axiom (1)
doesn’t play a major role in the proofs, but it is very plausible and it makes
things neater (if we consider an initial segment of a trajectory we don’t need
to additionally check that it is in T). However, one might wonder: Why the
restriction to nonempty initial segment? Why not count the empty trajectory as
‘vacuously’ globally possible (at least as soon as T is nonempty)? The answer is:
This is very much allowed, but for greater generality we don’t require it per axiom.
The reason is that if it is in T , then it will always be the least element in the
‘behavior order’, while, in the current phrasing, we could also consider behavior
preorders without (or ‘removed’) least element.

2.4.3 Example constructions

We’ve already seen that the structures (A, T,≡) of the guiding examples (sec-
tion 2.3) are pre-BTSs. So let’s consider some general constructions of a pre-BTS
starting from an LTS A.

First, here are some natural examples for T .

2.4.3. Example. Let A be an LTS. The set T of all (nonempty) A-trajectories
(starting in iA) satisfies axioms (1) and (2)∗, whence also (2).

Second, let’s consider possible choices for ≡. We can always choose ≡ to be the
identity relation on T . More interesting examples are obtained by starting with

26This is reminiscent of the idea of learning in the limit (Gold 1967).

2.4. Pre-behavioral transition systems 37

an equivalence on finite trajectories and extending them to infinite trajectories
guided by axiom (4) as a definition.

2.4.4. Proposition. Let A be an LTS and T a set of A-trajectories. Let ≡0 be
an equivalence relation on {t ∈ T : t nonempty finite}. For t, t′ ∈ T , define t ≡ t′

iff

(a) both t and t′ are empty, or

(b) both t and t′ are nonempty finite and t ≡0 t
′, or

(c) both t and t′ are infinite and there are i, j ≥ 1 such that, for all n ≥ 0,
t � i+ n ≡0 t

′ � j + n.

Then, if T satisfies axioms (1) and (2)∗ (which are stated without reference to ≡),
then (A, T,≡) is a pre-BTS.

Proof. We first show that ≡ is an equivalence relation on T . Reflexivity and
symmetry are immediate in each of the cases (a)–(c). For transitivity, assume
t ≡ t′ ≡ t′′, and show t ≡ t′′. If one of the trajectories is finite, the others must
be finite, too, and t ≡ t′′ follows since both ‘being empty’ and ≡0 are transitive.
So assume that all trajectories are infinite. There are i, j ≥ 1 such that, for all
n ≥ 0, t � i + n ≡0 t

′ � j + n, and there are k, l ≥ 1 such that, for all m ≥ 0,
t′ � k + m ≡0 t

′′ � l + m. Without loss of generality, j ≤ k (the case j ≥ k is
analogous). Define n0 := k − j. Set i′ := i + n0 and j′ := l. Then we have for
n′ ≥ 0 that

t � i′ + n′ = t � i+ (n0 + n′) ≡0 t
′ � j + (n0 + n′) = t′ � j + ((k − j) + n′)

= t′ � k + n′ ≡0 t
′′ � l + n′ = t′′ � j′ + n′,

whence t ≡ t′′, as needed. Now, axioms (1) and (2) hold by assumption, and
axioms (3) and (4) hold by construction. 2

The following are some concrete trajectory equivalences built in this manner.

2.4.5. Definition. Let A be an LTS and T a set of A-trajectories. Consider the
following equivalence relations on {t ∈ T : t nonempty finite}:

(a) t ≡1 t
′ iff last(t) = last(t′)

(b) t ≡2 t
′ iff |t| = |t′| and last(t) = last(t′)

(c) t ≡3 t
′ iff l(t) = l(t′) and last(t) = last(t′).

The equivalence relation induced on T (as defined in proposition 2.4.4) by (a),
(b), and (c) is called the extensional , temporal , and intensional equivalence on T ,
respectively.

38 Chapter 2. Trajectory domains 1: Construction

2.5 Information containment of behaviors

As mentioned, to understand the behavior of a pre-BTS M = (A, T,≡), we want
to understand the structure of the set of possible behaviors T/ ≡. To give it some
notation:

2.5.1. Definition. Let M = (A, T,≡) be a pre-BTS. Define T := T/ ≡= {[t] :
t ∈ T} and Tfin := {[t] : t ∈ T finite}. We call the elements of Tfin finite behaviors
and those of T \ Tfin infinite behaviors.

We’ve already seen that Tfin has the natural information containment preorder
[t] ≤ [t′]. The crucial question is how to sensibly extend this to T. This is the
topic of this section: We first provide three natural definition of such extensions
(section 2.5.1) and then we identify a condition which makes them all equivalent
(section 2.5.2).

2.5.1 Three definitions of information containment . . .

We’ll discuss three natural candidates for a definition of information containment
also on infinite behaviors. For all of them, the following notion of approximation
is crucial.

2.5.2. Definition. Let M = (A, T,≡) be a pre-BTS. For [t] ∈ T, an approxima-
tion to [t] is a pair τ = (t†, (ni)i≥0) with t† ∈ [t] and 0 < n0 < n1 < . . . an infinite
sequence such that [t† � n0] ≤ [t† � n1] ≤ We call [t] approximable iff there is
an approximation to [t].

Comments: First, this is an example where axiom (1) is handy: We have
t† ∈ [t] ⊆ T , and if t† is empty, then t† � ni = t† ∈ T , and if t† is nonempty,
each t† � ni is a nonempty initial segment of t† and hence in T , so we can indeed
consider the equivalence classes [t† � ni].

Second, also note that whether [t] is approximable doesn’t depend on the
representative t, so it makes sense to say that [t] (as opposed to t) is approximable.

Third, in general, not every [t] ∈ T is approximable, but any [t] ∈ Tfin has
an approximation τ = (t, (|t|+ 1 + i)i≥0) for which [t] = [t � n0] = [t � n1] =
Non-approximable behaviors are—in a sense—completely ‘out of reach’, and we’ll
reflect this in our definitions of information containment below by demanding
that a non-approximable behavior cannot be informationally contained in an
approximable behavior.

The first two definitions for information containment are the following.

2.5.3. Definition. Let M = (A, T,≡) be a pre-BTS. For [t] ∈ Tfin and [t′] ∈ T,
we define:

2.5. Information containment of behaviors 39

1. [t]∀[t′] iff for all approximations (t†, (ni)i≥0) to [t′], there is an i ≥ 0 such
that [t] ≤ [t† � ni].

2. [t]∃[t′] iff either [t′] is not approximable or there is an approximation
(t†, (ni)i≥0) to [t′] and i ≥ 0 with [t] ≤ [t† � ni].

Then, for [t], [t′] ∈ T, we define:

3. [t]v∀[t′] iff (a) for all [t0] ∈ Tfin, if [t0]∀[t], then [t0]∀[t′], and (b) if [t] is
not approximable, then [t′] is not approximable.

4. [t]v∃[t′] iff for all [t0] ∈ Tfin, if [t0]∃[t], then [t0]∃[t′], and (b) if [t] is not
approximable, then [t′] is not approximable.

The following two lemmas collect some facts about v∀ and v∃, respectively,
that show that they indeed are plausible generalization of ≤. We move their
straightforward but somewhat technical proofs to an appendix.

2.5.4. Lemma. Let M = (A, T,≡) be a pre-BTS. Then

1. (T,v∀) is a preorder.

2. v∀ and ≤ coincide on Tfin.

3. For [t] ∈ Tfin and [t′] ∈ T, we have [t]∀[t′] iff [t]v∀[t′].

4. For [t], [t′] ∈ T with [t] approximable, we have [t]v∀[t′] iff for all [t0] ∈ Tfin,
if [t0]v∀[t], then [t0]v∀[t′].

5. If [t] ∈ T doesn’t have an approximation, then [t] is infinite and for all
[t′] ∈ T, [t′]v∀[t].

2.5.5. Lemma. Let M = (A, T,≡) be a pre-BTS. The statements of lemma 2.5.4
remain true after replacing each subscript ∀ by ∃.

A third definition for information containment is the following.

2.5.6. Definition. Let M = (A, T,≡) be a pre-BTS. For [t], [t′] ∈ T, define
[t]vdom[t′] iff

(a) for all approximations τ = (t†, (ni)) to [t] and τ ′ = (t‡, (mj)) to [t′], τ ′

dominates τ , i.e., ∀i ≥ 0 ∃j ≥ 0 : [t† � ni] ≤ [t‡ � mj], and

(b) if [t] is not approximable, then [t′] is not approximable.

In general, however, this is not a preorder. This raises the question of how these
three candidates for information containment can be united.

40 Chapter 2. Trajectory domains 1: Construction

2.5.2 . . . and how they are united

We face a rather messy situation: We have two natural preorders v∀ and v∃ and a
natural attempt vdom which, however, doesn’t always work. The following notion
(definition 2.5.7) provides the precise condition to bring order to this mess—as
the subsequent proposition 2.5.8 shows.

2.5.7. Definition. Let M = (A, T,≡) be a pre-BTS. We say M is limit-
respecting if for all infinite t ∈ T and for all infinite sequences 0 < n0 < n1 < . . .
and 0 < m0 < m1 < . . ., if [t � n0] ≤ [t � n1] ≤ . . . and [t � m0] ≤ [t � m1] ≤ . . .,
then the latter dominates the former, i.e., for all i ≥ 0, there is j ≥ 0 such that
[t � ni] ≤ [t � mj].

This is the minimal definition, but we could also phrase it symmetrically:
A pre-BTS M = (A, T,≡) is limit-respecting iff, for all infinite t ∈ T and
0 < n0 < n1 < . . . and 0 < m0 < m1 < . . ., if [t � n0] ≤ [t � n1] ≤ . . .
and [t � m0] ≤ [t � m1] ≤ . . ., then they mutually dominate each other: i.e.,
∀i∃j : [t � ni] ≤ [t � mj] and ∀k∃l : [t � mk] ≤ [t � nl].27

2.5.8. Proposition. Let M = (A, T,≡) be a pre-BTS. The following are equiv-
alent:

1. M is limit-respecting.

2. v∀ = v∃.

3. For all [t] ∈ T and approximations (t†, (ni)) to [t], we have, for all i ≥ 0,
that [t† � ni]∀[t].

4. v∀ = vdom.

5. vdom is a preorder.

6. vdom is reflexive.

In particular, M is limit-respecting iff all the relations v∀,v∃,vdom coincide and
thus provide a single natural preorder on T.

Proof. (1)⇒(2). Assume that M is limit-respecting. To show v∀ = v∃, it
suffices, by definition, to show ∀ = ∃. So let [t] ∈ Tfin and [t′] ∈ T and show
[t]∀[t′] iff [t]∃[t′]. If [t′] doesn’t have an approximation, both sides are true, so let
τ ′′ be an approximation to [t′]. If [t]∀[t′], then all approximations to [t′] dominate
[t], so in particular, τ ′′ dominates [t], whence [t]∃[t′]. So assume [t]∃[t′] and
show [t]∀[t′].

27Proof: The right-to-left direction is immediate, and for the left-to-right direction apply the
definition of being limit-respecting first to

(
(ni), (mj)

)
and then to

(
(mk), (nl)

)
.

2.5. Information containment of behaviors 41

If [t′] is finite, then, since both ∃ and ∀ coincide, by lemmas 2.5.4 and 2.5.5,
with ≤ on finite trajectories, we have that [t]∃[t′] iff [t]∀[t′]. So let [t′] be infinite.

To show [t]∀[t′], let τ ′ = (t‡, (mj)) be an approximation to [t′], and find j ≥ 0
such that [t] ≤ [t‡ � mj]. Since [t]∃[t′] and [t′] is approximable,

(∗) there is an approximation τ = (t†, (ni)) to [t′] and i ≥ 0 with [t] ≤ [t† � ni].

Since t† ≡ t′ ≡ t‡ are infinite by axiom (3), there are, by axiom (4), k, l ≥ 1 such
that, for all n ≥ 0, [t† � k+ n] = [t‡ � l+ n]. Let i0 ≥ 0 be such that ni0 > k. And
let j0 ≥ 0 be such that mj0 > l. For j ≥ j0, define n(j) := mj − l ≥ 0. Define
(n′i)i≥0 := (ni+i0)i≥0 and (m′j)j := (k + n(j + j0))j≥0. Then 0 < n′0 < n′1 < . . . and
0 < m′0 < m′1 <28 Moreover, [t† � n′i] = [t† � ni+i0] ≤ [t† � ni+1+i0] = [t† � n′i+1].
Note that

[t† � m′j] = [t† � k + n(j + j0)] = [t‡ � l + n(j + j0)]

= [t‡ � l + (mj+j0 − l)] = [t‡ � mj+j0].

Hence, [t† � m′j] = [t‡ � mj+j0] ≤ [t‡ � mj+1+j0] = [t† � m′j+1].
Now, we apply the property that M is limit-respecting to t† and i from (∗),

and we obtain that there is j1 ≥ 0 such that [t† � n′i] ≤ [t† � m′j1]. Thus, we have

[t] ≤ [t† � ni] ≤ [t† � ni+i0] = [t† � n′i] ≤ [t† � m′j1] = [t‡ � mj1+j0].

Hence, for j := j1 + j0, we have [t] ≤ [t‡ � mj], as needed.
(2)⇒(3). If v∀ = v∃, then we have, by lemmas 2.5.4 and 2.5.5, that ∀ = ∃.

So it suffices to show (3) for ∃ instead of ∀. But this is immediate: If [t] ∈ T
has approximation (t†, (ni)), we have, for i ≥ 0, that [t† � ni] ≤ [t† � ni], so
[t† � ni]∃[t].

(3)⇒(4). Let [t], [t′] ∈ T and show [t]v∀[t′] iff [t]vdom[t′].
(⇒) To show [t]vdom[t′] we need to show properties (a) and (b). Concerning (a),

consider the approximations τ = (t†, (ni)) to [t] and τ ′ = (t‡, (mj)) to [t′]. Let i ≥ 0
and find j ≥ 0 such that [t† � ni] ≤ [t‡ � mj]. Indeed, by (3), we have [t† � ni]∀[t].
Since [t]v∀[t′], we hence have [t† � ni]∀[t′]. So, for the approximation τ ′ to [t′],
there is j ≥ 0 such that [t† � ni] ≤ [t‡ � mj], as needed. Concerning (b), this is
implied by [t]v∀[t′].

(⇐) To show [t]v∀[t′], clause (b) of v∀ is given by clause (b) of vdom, so
let [t0] ∈ Tfin with [t0]∀[t], and show [t0]∀[t′]. So let τ ′ = (t‡, (mj)) be an
approximation to [t′] and find j ≥ 0 such that [t0] ≤ [t‡ � mj]. Since [t′] is
approximable, also [t] is by clause (b) of vdom. So let τ = (t†, (ni)) be an
approximation to [t]. Since [t0]∀[t], there is i ≥ 0 such that [t0] ≤ [t† � i]. Since
[t]vdom[t′], there is j ≥ 0 such that [t† � i] ≤ [t‡ � mj]. Together this yields
[t0] ≤ [t‡ � mj], as needed.

28For the latter: m′0 = k+ n(j0) = k+ (mj0 − l) ≥ mj0 − l > 0 and, since mi < mi+1 we have
m′j = k + n(j + j0) = k +mj+j0 − l < k +mj+1+j0 − l = k + n(j + 1 + j0) = m′j+1.

42 Chapter 2. Trajectory domains 1: Construction

(4)⇒(5). This holds since v∀ = vdom is a preorder.
(5)⇒(6). This is trivial.
(6)⇒(1). Let t ∈ T be infinite, and consider the strictly increasing ni,mj > 0

with [t � n0] ≤ [t � n1] ≤ . . . and [t � m0] ≤ [t � m1] ≤ Let i ≥ 0 and find
j ≥ 0 such that [t � ni] ≤ [t � mj]. Note that τ = (t, (ni)) and τ ′ = (t, (mj))
are approximations to [t]. Since vdom is reflexive, we have, by clause (a), that τ ′

dominates τ , so there is j ≥ 0 such that [t � ni] ≤ [t � mj], as needed. 2

2.6 The characterization theorem

Now we get to the main result of this chapter: the characterization theorem.
For countable systems it roughly says that, once united, the natural information
containment preorders v from the previous section not only are the only sensible
ones, but they also form the algebraic domain (T,v). We first state and discuss
the theorem (section 2.6.1) and then prove it (section 2.6.2).

2.6.1 Statement

We first introduce two more bits of notation.

2.6.1. Definition. Let M = (A, T,≡) be a pre-BTS. For a preorder � on T,
define the induced partial order T(M,�) := (T,�). We denote the elements
[[t]≡]� or, if clear from context, simply [[t]]. For [t] ∈ T, we define I�([t]) :=
{[t0] ∈ Tfin : [t0] � [t]}.

2.6.2. Definition. Let M = (A, T,≡) be a pre-BTS. We write Idl(Tfin,≤) for
the ideal completion of (Tfin,≤). We define Idl(Tfin,≤) to be Idl(Tfin,≤) if all
[t] ∈ T are approximable, and we define it to be Idl(Tfin,≤) with an added top
element > if M has non-approximable trajectories. So Idl(Tfin,≤) is an algebraic
domain (if existent, > is a compact element). We still use ⊆ to denote the order
relation in Idl(Tfin,≤).

Now the characterization theorem reads as follows. After stating it, we discuss
how it indeed provides the answers we were looking for.

2.6.3. Theorem. Let M = (A, T,≡) be a countable pre-BTS. Let � ⊆ T× T be
a relation. The following are equivalent.

1. (a) � is a preorder that coincides with ≤ on Tfin.

(b) For [t] ∈ T not approximable and [t′] ∈ T, (i) [t′] � [t], and (ii) if
[t] � [t′], then [t′] is not approximable, as well.

2.6. The characterization theorem 43

(c) For infinite t ∈ T and 0 < n0 < n1 < . . . such that [t � n0] ≤ [t � n1] ≤
. . ., we have (i) [t] is an �-upper bound, i.e., for all i ≥ 0, [t � ni] � [t],
and (ii) for all [t0] ∈ Tfin, if [t0] � [t], then there is i ≥ 0 such that
[t0] � [t � ni].

(d) For approximable [t], [t′] ∈ T, if, for all [t0] ∈ Tfin, [t0] � [t] implies
[t0] � [t′], then [t] � [t′].

2. (a) For all approximable [t] ∈ T, I�([t]) is an ideal in (Tfin,≤).

(b) For [t] ∈ T not approximable and [t′] ∈ T, (i) [t′] � [t], and (ii) if
[t] � [t′], then [t′] is not approximable, as well.

(c) For all approximable [t], [t′] ∈ T, [t]� [t′] iff for all [t0] ∈ Tfin, if [t0]� [t],
then [t0] � [t′].

(d) For all trajectories t ∈ T and 0 < n0 < n1 < . . . such that [t � n0] ≤
[t � n1] ≤ . . ., we have for all [t0] ∈ Tfin, [t0] � [t] iff [t0] ≤ [t � ni] for
some i.

3. � is a preorder that coincides with ≤ on Tfin and the mapping

ι : T(M,�)→ Idl(Tfin,≤)

[[t]] 7→

{
I�([t]) if [t] is approximable

> otherwise

is a well-defined function and:

(a) ι is an isomorphism. In particular, T(M,�) is an ω-algebraic domain.

(b) K(T(M,�)) =
{

[[t]] : [t] ∈ Tfin

}
∪
{

[[t]] ∈ T : [t] not approximable
}

.

(c) For all [t] ∈ T and 0 < n0 < n1 < . . ., if [t � n0] ≤ [t � n1] ≤ . . .,
then [[t]] is the least upper bound in T(M,�) of the directed subset{

[[t � n0]], [[t � n1]], . . .
}

of T(M,�).

4. One of the following holds:

(a) � ∈ {v∀,v∃,vdom} and M is limit-respecting.

(b) � = v∀ = v∃.
(c) � = v∀ = vdom.

(d) � = vdom is reflexive.

5. � = v∀ = v∃ = vdom and M is limit-respecting.

Here is how the theorem answers the question of which preorders can sensibly
provide an ‘information containment’ ordering on the set of behaviors of a system.
The theorem considers any possible preorder � (or in fact just a relation) that

44 Chapter 2. Trajectory domains 1: Construction

one might have on T. The first two items of the theorem are two formulations of
rather weak demands on � that we would like to be satisfied if � is to provide
any sensible ‘information containment’ relation. The third item shows that these
minimal demands actually are enough to yield some very strong demands that we
would expect in the best case of an informational order of behaviors. The fourth
and fifth item show that there in fact is only one way of defining this information
containment ordering and that this puts an additional demand on the underlying
system: it should be limit-respecting. Let’s discuss this in a bit more detail.

Item 1 lists minimal assumptions on what it means that a preorder � is a
‘sensible extension’ of the information containment preorder ≤ of finite behaviors:
(a) is the demand that � actually is an extension of ≤. (b) captures the idea
that non-approximable behaviors are ‘completely out of reach’: they form an
�-cluster which is strictly above any other �-cluster. (c) says that if we consider
an infinite trajectory t such that its behavior can be approximated by the behaviors
realized by its initial segments, then (i) each of these initial segments [t � ni] is
informationally contained in [t], and (ii) if a finite behavior [t0] is informationally
contained in [t], then this can in principle be observed (i.e., [t0] is already contained
in some step of the approximation). (d) says that, for two approximable behaviors
[t] and [t′], if [t] is not informationally contained in [t′], then this again can in
principle be observed (i.e., there is some finite behavior that is informationally
contained in [t] but not in [t′]).

Item 2 similarly lists an equivalent set of minimal requirements for an informa-
tion containment preorder.

Item 3 states a very strong demand on an information containment �: that
the partial order that it induces actually is (a) an ω-algebraic domain where (b)
the compact (i.e., ‘real’ or finitely accessible) elements precisely are the finite
behaviors and the non-compact (i.e., the ‘ideal’) elements are the infinite behaviors,
and (c) where the limit of a chain of finite behaviors is precisely given by the
infinite behavior realized by a trajectory extending each of the finite behaviors.
In short, ‘finite behavior of the system’ precisely corresponds to ‘compact element
of the domain’ and ‘limit behavior of the system’ precisely corresponds to ‘limit
in the domain’. Thus, questions about the system’s behavior (e.g., concerning
finite observability, consistency, limit behavior) correspond precisely to domain-
theoretic notions (e.g., compactness, being upper bounded, least upper bound).
Of course, we could simply define the ‘trajectory domain’ of a system to be the
ideal completion of Tfin, but this then would precisely lack this correspondence
which is what provides meaning to the ideal completion.

Item 4 says that—focusing on the (a)-condition—that the information con-
tainment preorder � actually has to be one of natural ones v∀,v∃,vdom and the
system has to have the unifying property of being limit-respecting. Similarly for
the other conditions (b)–(d).

Item 5 states that all three natural information containment preorders actually
collapse to the information containment preorder � under consideration and the

2.6. The characterization theorem 45

system is limit-respecting.

2.6.2 Proof

To show the equivalences, we’ll show the following: (3) ⇔ (2) ⇒ (4) ⇒ (5) ⇒ (1)
⇒ (2).

(3) ⇒ (2) Ad (2)(a). This follows since ι is well-defined.
Ad (2)(b). If [t] ∈ T is not approximable and [t′] ∈ T, then ι([[t′]]) ⊆ > =

ι([[t]]), so, qua isomorphism, [[t′]]�[[t]], so [t′]� [t]. And if [t]� [t′], then [[t]]�[[t′]],
so, qua isomorphism, > = ι([[t]]) ⊆ ι([[t′]]), so, qua top element, ι([[t′]]) = >, so
[t′] must be non-approximable (if it were approximable, ι([[t′]]) = I�([t]) would be
in Idl(Tfin) and hence not the top element of Idl(Tfin)).

Ad (2)(c). By the order isomorphism condition we have, for all approximable
[t], [t′] ∈ T that

[t] � [t′]⇔ [[t]]�[[t′]]⇔ I�([t]) ⊆ I�([t′])⇔ ∀[t0] ∈ Tfin : [t0] � [t]⇒ [t0] � [t′].

Ad (2)(d). Under the assumptions, I :=
{

[t′] ∈ Tfin : ∃i : [t′] ≤ [t � ni]
}

is an ideal: It is nonempty, since [t � n0] ∈ I. It is a downset and directed
by construction. Moreover, by (3)(c), [[t]] is the least upper bound of A :={

[[t � n0]], [[t � n1]], . . .
}

in T(M,�). Since ι is an isomorphism and since [t] is
approximable by assumption,

I�([t]) = ι([[t]]) = ι(
∨

A) =
∨
a∈A

ι(a) =
⋃
i

I�([t � ni]) = I,

where for the last identity we use that � agrees with ≤ on Tfin. Hence, for all
[t0] ∈ Tfin, we have [t0] � [t] iff [t0] ∈ I�([t]) iff [t0] ∈ I iff [t0] ≤ [t � ni] for some i.

(3) ⇐ (2) First note that, by (2)(b)–(c), � is a preorder (reflexive and transi-
tive).29 And by (2)(d), � coincides with ≤ on Tfin because: Given [t], [t′] ∈ Tfin,
choose ni := |t′|+ 1 + i, then 0 < n0 < n1 < . . . and [t′ � ni] ≤ [t′ � ni+1] (because
they all equal [t′]), whence, for [t0] := [t], we have [t] � [t′] iff there is i with
[t] ≤ [t′ � ni] = [t′].

Next, we show that the mapping ι is well-defined. By (2)(a), I�([t]) is indeed
an ideal, whence in Idl(Tfin). And the mapping is unique: For [t], [t′] ∈ T, assume
[t] � [t′] and [t′] � [t] and show either both are non-approximable (and thus both

29Reflexive: Given [t] ∈ T, if [t] is not approximable, then [t] � [t] by (2)(b), and if [t] is
approximable, then [t]� [t] by (2)(c). Transitive: Given [t]� [t′]� [t′′], if [t′′] is not approximable,
then, by (2)(b), [t] � [t′′], as needed, so let [t′′] be approximable. Then, since [t′] � [t′′], (2)(b)
implies that [t′] is approximable, too, and similarly [t] � [t′] implies that [t] is approximable. So
we can apply (2)(c) to [t] � [t′] � [t′′] and get that, for all [t0] ∈ Tfin, if [t0] � [t], then [t0] � [t′′],
so, by (2)(c), [t] � [t′′].

46 Chapter 2. Trajectory domains 1: Construction

get mapped to >) or both are approximable and I�([t]) = I�([t′]). If [t] is not
approximable, then, since [t] � [t′], by (2)(b), also [t′] is not approximable. So
assume [t] is approximable. Then also [t′] is approximable (for otherwise [t′] � [t]
implies, by (2)(b), that [t] is not approximable). Then we have I�([t]) = I�([t′]),
because if [t0] ∈ I�([t]), then [t0] ∈ Tfin and [t0] � [t] � [t′], so, by transitivity,
[t0] ∈ I�([t′]), and similarly for the other direction.

Ad (3)(a) We need to show that ι is surjective and an order-isomorphism (this
implies injectivity).

Surjective. If Idl(Tfin) has an added top element >, then T has a non-
approximable element [t], and > has a preimage, namely [[t]]. So we need to show
that, given an ideal I ⊆ Tfin, there is an approximable [t] ∈ T such that I = I�([t])
(since then ι([[t]]) = I).

Since the system M is assumed to be countable, there are only countable many
finite A-trajectories, so Tfin is countable, too. So I is a directed subset of the
countable preorder (Tfin,≤), so there is a cofinal sequence C = ([ti])i≥0.

If C stagnates with [tn] (i.e., for all i ≥ n, [ti] = [tn]), then, for all [t′] ∈ I,
[t′] ≤ [tn] (by cofinality), so I ⊆ {[t′] ∈ Tfin : [t′] ≤ [tn]}. We also have ⊇
since [tn] ∈ I and I is a downset. Thus, since � and ≤ agree on Tfin, we have
I = {[t′] ∈ Tfin : [t′] ≤ [tn]} = {[t′] ∈ Tfin : [t′] � [tn]} = I�([tn]). So [tn], which is
approximable qua finite trajectory, is the required element of T.

So assume C doesn’t stagnate (i.e., for all [ti] there is j with [ti] < [tj]).
Without loss of generality, assume that [t0] 6= [ε] and [ti] < [ti+1] for all i ≥ 0
(otherwise we pick a subsequence of C with this property which then still is cofinal
in I). We construct t ∈ T and 0 < n0 < n1 < . . . as follows. Set t′0 := t0 and
n0 := |t0| > 0 (if n0 = 0, then [t0] = [ε]). Given t′i ∈ [ti] and ni = |t′i|, we can,
since [ti] < [ti+1], extend t′i to some t′i+1 ∈ [ti+1], and since [ti] 6= [ti+1] we have
ni = |t′i| < |t′i+1| =: ni+1. We define the sequence t(k) = t′i(k) for some i such
that |t′i| > k. This is well-defined since the t′i get arbitrarily long and extend each
other. Moreover, we claim that t ∈ T . First, t is infinite and an A-trajectory since
each t(k) is in →A and the ending state of t(k) is the starting state of t(k + 1).
Second, for i ≥ 0, we have t � ni = t′i ∈ T and [t � ni] = [ti] ≤ [ti+1] = [t � ni+1].
So axiom (2) implies t ∈ T .

Thus, [t] ∈ T which has the approximation τ := (t, (ni)). So it remains to show
I = I�([t]). Indeed, by 2(d) we have for all [t0] ∈ Tfin, [t0]� [t] iff [t0] ≤ [t � ni] for
some i. Thus, if [t0] ∈ I, then, by cofiniality, [t0] ≤ [ti] = [t � ni] for some i, so
[t0] � [t], whence [t0] ∈ I�([t]). And if [t0] ∈ I�([t]), then [t0] � [t], so, for some
i ≥ 0, [t0] ≤ [t � ni] = [ti] ∈ I, so, since I is an ideal, [t0] ∈ I.

Order-isomorphism. For [t], [t′] ∈ T, we need to show that [[t]]�[[t′]] iff
ι([[t]]) ⊆ ι([[t′]]).

If [t′] is not approximable, then, by 2(b), [t] � [t′], so [[t]]�[[t′]] and ι([[t]]) ⊆
> = ι([[t′]]). So assume that [t′] is approximable.

First, assume [t] is not approximable. Then we cannot have [t] � [t′] by 2(b)
and we also cannot have ι([[t]]) ⊆ ι([[t′]]) since the former is > but the latter is in

2.6. The characterization theorem 47

Idl(Tfin,≤).
So assume that both [t] and [t′] are approximable. Then we have

[[t]]�[[t′]]⇔ [t] � [t′]
2(c)⇔ ∀[t0] ∈ Tfin : [t0] � [t]⇒ [t0] � [t′]

⇔ I�([t]) ⊆ I�([t′])⇔ ι([[t]]) ⊆ ι([[t′]]),

as needed.
Ad (3)(b). The compact elements of Idl(Tfin) are the principal ideals (those

of the form ↓[t0] = {[t′] ∈ Tfin : [t′] ≤ [t0]} for [t0] ∈ Tfin) and, if existent, the top
element. Qua isomorphism, K(T(M,�)) = ι−1

(
K(Idl(Tfin))

)
. So we show

A := ι−1
(
K(Idl(Tfin))

)
=
{

[[t]] : [t] ∈ Tfin

}
∪
{

[[t]] ∈ T : [t] not approx.
}

=: B.

(⊆) If [[t]] ∈ A, then ι([[t]]) is compact. If [t] is not approximable, then
[[t]] ∈ B, so let [t] be approximable. Then ι([[t]]) = I�([t]) is an ideal (and not
the top element), so, qua compactness, ι([[t]]) = ↓[t0] for some [t0] ∈ Tfin. Since �

and ≤ agree on Tfin and [t0] is approximable, we further have

ι([[t]]) = ↓[t0] = {[t′] ∈ Tfin : [t′] ≤ [t0]} = I�([t0]) = ι([[t0]]),

so, since ι is injective, [[t]] = [[t0]] ∈ B.
(⊇) Let [[t]] ∈ B, i.e., [t] ∈ Tfin or [t] is not approximable, and show ι([[t]]) is

compact. If [t] is not approximable, then ι([[t]]) = > is compact, so [[t]] ∈ A. So
[t] ∈ Tfin. Then, since � and ≤ agree on Tfin, we have ι([[t]]) = I�([t]) = {[t′] ∈
Tfin : [t′] � [t]} = ↓[t] is compact, so [[t]] ∈ A.

Ad (3)(c). Let [t] ∈ T and 0 < n0 < n1 < . . . with [t � n0] ≤ [t � n1] ≤ In
particular, [t] is approximable. Write A :=

{
[[t � n0]], [[t � n1]], . . .

}
. Also, each

[t � ni] is, qua finite trajectory, approximable. Then, since ι is an isomorphism
and � and ≤ agree on Tfin,

ι
(∨
a∈A

a
)

=
∨
a∈A

ι(a) =
⋃
i

I�([t � ni]) =
{

[t0] ∈ Tfin : ∃i . [t0] ≤ [t � ni]
}

2(d)
=
{

[t0] ∈ Tfin : [t0] � [t]
}

= I�([t]) = ι([[t]]).

Since ι is injective, [[t]] =
∨
A, as needed.

(2) ⇒ (4) We show that (4)(a) holds by showing that (i) � = v∃ and (ii) M is
limit-respecting. We first show that

(∗) For all [t] ∈ Tfin and approximable [t′] ∈ T, we have [t]∃[t′] iff [t] � [t′].

(⇒) If [t]∃[t′], then, since [t′] is approximable, there is an approximation
(t‡, (mj)) to [t′] and j ≥ 0 such that [t] ≤ [t‡ � mj]. By (2)(d) applied to t‡ and
[t0] := [t], we have [t] � [t‡] = [t′].

48 Chapter 2. Trajectory domains 1: Construction

(⇐) Assume [t] � [t′]. Since [t′] is approximable, let (t‡, (mj)) be an approxi-
mation to [t′]. By (2)(d) applied to t‡ and [t0] := [t], we have that [t] � [t′] = [t‡]
implies that there is j such that [t] ≤ [t‡ � mj]. So [t]∃[t′].

Ad (i). Now, let [t], [t′] ∈ T and show [t] � [t′] iff [t]v∃[t′]. If [t′] is not
approximable, then, by (2)(b), [t] � [t′]. And by lemma 2.5.5, [t]v∃[t′]. So assume
that [t′] is approximable. If [t] is not approximable, then, by (2)(b), we cannot
have [t] � [t′] (otherwise [t′] is not approximable). And, by definition of v∃, we
also cannot have [t]v∃[t′] (since clause (b) is violated).

So let both [t] and [t′] be approximable. Then we have

[t] � [t′]
(2)(c)⇔ ∀[t0] ∈ Tfin : [t0] � [t]⇒ [t0] � [t′]

(∗)⇔ ∀[t0] ∈ Tfin : [t0]∃[t]⇒ [t0]∃[t
′]⇔ [t]v∃[t′],

where the last equivalence holds since the clause (b) in the definition of v∃ is
trivially satisfied if [t] is approximable.

Ad (ii). Let t ∈ T be infinite and 0 < n0 < n1 < . . . and 0 < m0 < m1 < . . .
such that [t � n0] ≤ [t � n1] ≤ . . . and [t � m0] ≤ [t � m1] ≤ Let i ≥ 0 and find
j ≥ 0 such that [t � ni] ≤ [t � mj].

Note that [t � ni]∃[t] since τ = (t, (ni)) is an approximation to [t] and
[t � ni] ≤ [t � ni]. In particular, [t] is approximable, so, by (∗), we have [t � ni]� [t].
Now, by (2)(d) applied to t and 0 < m0 < m1 < . . . and [t0] = [t � ni], the fact
that [t � ni]� [t] implies that there is j ≥ 0 such that [t � ni] ≤ [t � mj], as needed.

(4) ⇒ (5) Each of the conditions (4)(a)–(d) ensures that � is in {v∀,v∃,vdom}
and one of the conditions (1)–(6) of proposition 2.5.8 is satisfied. Thus, that
proposition implies v∀ = v∃ = vdom and M is limit-respecting, and the claim
follows.

(5) ⇒ (1) Ad 1(a). This follows from � = v∀ and lemma 2.5.4 (1) and (2).

Ad 1(b). Let [t] ∈ T be non-approximable and [t′] ∈ T. Concerning (i), [t′]� [t]
follows from � = v∀ and lemma 2.5.4 (5). Concerning (ii), if [t] � [t′], then, by
� = v∀ and the definition of v∀, also [t′] is not approximable.

Ad 1(c). Let t ∈ T be infinite and 0 < n0 < n1 < . . . such that [t � n0] ≤ [t �
n1] ≤

Concerning (i), let i ≥ 0 and show [t � ni] � [t]. Indeed, (t, (ni)) is an
approximation to [t] and [t � ni] ≤ [t � ni]. Hence [t � ni]∃[t], so, by lemma 2.5.5,
[t � ni]v∃[t], so the claim follows from � = v∃.

Concerning (ii), let [t0] ∈ Tfin with [t0]� [t]. Show that there is i ≥ 0 such that
[t0] � [t � ni]. Since � = v∀, we have, by lemma 2.5.4 (3), that [t0]∀[t]. Since
(t, (ni)) is an approximation to [t], there is i ≥ 0 such that [t0] ≤ [t � ni]. Since ≤
coincides with v∀ = � on Tfin, [t0] � [t � ni], as needed.

2.7. Behavioral transition systems 49

Ad 1(d). Let [t], [t′] ∈ T be approximable such that, for all [t0] ∈ Tfin, [t0] � [t]
implies [t0]�[t′]. Show [t]�[t′]. Indeed, since � = v∀, we have, by lemma 2.5.4 (4),
that [t]v∀[t′], i.e., [t] � [t′].

(1) ⇒ (2) We prove the items in a different order than stated. Ad (2)(b). This
is implied by—or, rather, identical to—(1)(b).

Ad (2)(d). Let t ∈ T and 0 < n0 < n1 < . . . be with [t � n0] ≤ [t � n1] ≤
Let [t0] ∈ Tfin and show [t0] � [t] iff [t0] ≤ [t � ni] for some i.

If t is finite, then, there is j such that nj > |t| and, by (1)(a), we have [t0]� [t]
iff [t0] ≤ [t] = [t � nj] iff [t0] ≤ [t � ni] for some i, where the reverse direction
holds since [t � ni] ≤ [t � nj]: if i ≤ j this holds by assumption, and if i ≥ j, then
t � ni = t � nj.

So let t be infinite. If [t0]�[t], then, by (1)(c)(ii), there is i such that [t0]�[t � ni],
whence, by (1)(a), [t0] ≤ [t � ni]. If [t0] ≤ [t � ni] for some i, then, by (1)(c)(i),
[t0] ≤ [t � ni] � [t], so, by (1)(a), [t0] � [t].

Ad (2)(c). One direction already follows from (1)(d). For the other direction,
let [t], [t′] ∈ T be approximable with [t] � [t′]. Let [t0] ∈ Tfin with [t0] � [t]. Show
[t0] � [t′].

Since [t] is approximable, let (t†, (ni)) be an approximation to [t]. Since
[t0]� [t] = [t†], there is, by (2)(d) applied to t†, some i ≥ 0 such that [t0] ≤ [t† � ni].

If t† is finite, there is j ≥ i such that nj > |t†|, so [t0] ≤ [t† � ni] ≤ [t† � nj] =
[t†] = [t] � [t′]. Thus, by (1)(a), [t0] � [t′].

If t† is infinite, then, by applying (1)(c)(i) to t† and (nj), we have [t0] ≤ [t† �
i] � [t†] = [t] � [t′]. Thus, by (1)(a), [t0] � [t′].

Ad (2)(a). Let [t] ∈ T be approximable and show that I�([t]) is an ideal in
Tfin. Let (t†, (ni)) be an approximation to [t].

It is nonempty: We have [t† � n0] ≤ [t† � n0], so, by (2)(d) applied to t†, we
have [t† � n0] � [t], whence [t† � n0] ∈ I�([t]).

It is a downset: Let [t′′] ≤ [t′] ∈ I�([t]). So [t′′] ≤ [t′] � [t], whence, by (1)(a),
[t′′] � [t], so [t′′] ∈ I�([t]).

It is directed: Let [t′], [t′′] ∈ I�([t]) and find [t0] ∈ I�([t]) such that [t′], [t′′] ≤
[t0]. So [t′] � [t] = [t†] and [t′′] � [t] = [t†]. Hence, by (2)(d) applied to t†, there is
i ≥ 0 and j ≥ 0 such that [t′] ≤ [t† � ni] and [t′′] ≤ [t† � nj]. Let k := max(i, j)
and define [t0] := [t† � k]. Then [t′], [t′′] ≤ [t0] and [t0] ≤ [t† � k], so, by (2)(d)
applied to t†, [t0] � [t†] = [t]. Hence [t0] ∈ I�([t]).

This completes the proof of theorem 2.6.3.

2.7 Behavioral transition systems

Guided by the previous sections, we define behavioral transition systems (BTSs) as
pre-BTSs that are limit-respecting, and we discuss examples and basic properties.

50 Chapter 2. Trajectory domains 1: Construction

2.7.1 Definition

The preceding two sections strongly suggest one additional axiom for the notion
of a pre-BTS M = (A, T,≡): namely, requiring it to be limit-respecting.

First, this will make the three natural candidates for information containment
coincide (and be a preorder). Thus, being limit-respecting ensures that we can
define a satisfying notion of information containment. This was the (i)-requirement
for the structures (A, T,≡) that we’ve identified in section 2.3.3.

Second, for countable pre-BTSs, being limit-respecting ensures that this natural
notion of information containment also is the only one satisfying the rather mild
constraints laid out in item 1 of the characterization theorem (theorem 2.6.3).
So the information containment of the structure (A, T,≡) is unique in a certain
sense.

Third, this also implies that the partial order induced by the information
containment preorder is an ω-algebraic domain. (We’ll call it the trajectory
domain and study it in the next section.) This was the (ii)-requirement for the
structures (A, T,≡) that we’ve identified in section 2.3.3.

In short, being limit-respecting is (a) necessary to be able to define a sensible
notion of information containment and (b) it also already is sufficient for that
notion to be in a sense unique and to yield a domain of behaviors. In other words,
there is no other possible axiom in between satisfying the weaker (i)-demand and
the stronger (ii)-demand.

This stability suggests that a good axiomatization for the structures (A, T,≡)
is to be a pre-BTS that is limit-respecting.

2.7.1. Definition. A behavioral transition system (BTS) is a pre-BTS M =
(A, T,≡) that is limit-respecting (see definition 2.5.7). We call vM := v∀ = v∃ =
vdom the information containment preorder of M (see definitions 2.5.3 and 2.5.6).
We drop the subscript ‘M ’ when clear from context. We call M countable if A is
countable.

Now that we’ve defined BTSs, it’s high time to consider examples: Both the
‘black box’ and ‘concurrency’ examples from section 2.3 and the examples of
pre-BTSs from definition 2.4.5 (extensional, temporal, and intensional equivalence)
are, in fact, BTSs. To see this, and many more examples, it will be useful to first
introduce some simplifying properties.

2.7.2 Simplifying assumptions

We introduce the following simplifying assumptions on a pre-BTS which help to
show being limit-respecting.

2.7.2. Definition. Let M = (A, T,≡) be a pre-BTS. We call M

2.7. Behavioral transition systems 51

1. bisimulative if, for all nonempty finite t, t′ ∈ T , if t ≡ t′ and tt0 ∈ T extends
t by one element, then there is a finite extension t′t1 ∈ T of t′ such that
tt0 ≡ t′t1. (Note that t′t1 need not be a one-element extension.)

2. extendable if, for all nonempty finite t, t′ ∈ T , if t ≡ t′ and tt′′ ∈ T is finite,
then t′t′′ ∈ T and tt′′ ≡ t′t′′.

3. restrictable if, for all nonempty finite t, t′, tt0, t
′t1 ∈ T , if t ≡ t′ and tt0 ≡ t′t1,

then, for any t � t2 � tt0, there is t′ � t3 � t′t1 with t2 ≡ t3.
30

4. full (resp., fullε) if T is the set of all (nonempty) A-trajectories.

5. extensional if ≡ is extensional equivalence.

We’ve encountered (2) as property (d) in section 2.3. The following proposition
states how these properties are simplifying.

2.7.3. Proposition. Let M = (A, T,≡) be a pre-BTS. Then

1. M is bisimulative iff for all finite t, t′ ∈ T , if t � t′, then [t] ≤ [t′].

2. We have the following implications:

fullε & extens. ⇒
extendable ⇒ bisimulative ⇒

full & extens. ⇒ limit-respecting
restrictable ⇒

3. If M is bisimulative, then, for all t ∈ T , [t] is approximable.

4. If M is bisimulative, the information containment v is well-defined (since
M is limit-respecting) and, for all t, t′ ∈ T ,

[t]v[t′]⇔ ∀n ≥ 0∃m ≥ 0 : [t � n] ≤ [t′ � m].

Proof. Ad (1). (⇒) If t is empty, then [t] ≤ [t′], so let t be nonempty. And if
t = t′, then [t] ≤ [t′], so let t ≺ t′. To show [t] ≤ [t′], let t0 ∈ [t] and find t1 ∈ [t′]
with t0 � t1. Consider the one-step extension tt′(n + 1) of t where n := |t| − 1.
Since t ≡ t0, there is a finite extension t0t

1 ∈ T such that tt′(n + 1) ≡ t0t
1. If

tt′(n+ 1) = t′, we choose t1 := t0t
1, and if not we continue this way: Consider the

one-step extension tt′(n+ 1)t′(n+ 2) of tt′(n+ 1). Since tt′(n+ 1) ≡ t0t
1, there is

a finite extension t0t
1t2 ∈ T such that tt′(n+ 1)t′(n+ 2) ≡ t0t

1t2. Since t′ is finite,
we will eventually obtain an extension t1 ∈ T of t0 such that t′ ≡ t1, as needed.

30Note that t2 and t3 are nonempty initial segments of trajectories in T and hence in T .

52 Chapter 2. Trajectory domains 1: Construction

(⇐) To show that M is bisimulative, let t, t′ ∈ T be finite with t ≡ t′ and
tt0 ∈ T a one-step extension. So tt0 is finite, too, and, by the assumption, [t] ≤ [tt0].
Hence, t′ ∈ [t] can be extended to some t′t1 ∈ T with t′t1 ≡ tt0.

Ad (2). (full & extensional⇒extendable) Let t, t′ ∈ T be nonempty finite with
t ≡ t′ and tt′′ ∈ T finite. By extensionality, t and t′ have the same last state.
Thus, also t′t′′ is an A-trajectory. Since M is full, t′t′′ ∈ T . Since tt′′ and t′t′′ have
the same last state and are finite, extensionality implies tt′′ ≡ t′t′′.

(fullε & extensional⇒extendable) As above: now t′t′′ is in T since it is a
nonempty A-trajectory (since t′ is nonempty).

(extendable⇒bisimulative) Let t, t′ ∈ T be nonempty finite with t ≡ t′ and
tt0 ∈ T a one-step extension. In particular, tt0 ∈ T is finite. By being extendable,
t′t0 ∈ T is a finite extension of t′ and tt0 ≡ t′t0, as needed.

(bisimulative⇒limit-respecting) Let t ∈ T be infinite, and let (ni)i and (mi)i be
strictly increasing sequences of positive integers such that ([t � ni])i and ([t � mj])j
are ≤-increasing. (In particular, t � ni, t � mj ∈ T for all i and j.) Let i ≥ 0 and
find j ≥ 0 such that [t � ni] ≤ [t � mj]. Choose j ≥ 0 such that mj ≥ ni. Then
t � ni � t � mj are finite trajectories in T . Since M is bisimulative, the equivalent
condition from (1) implies [t � ni] ≤ [t � mj], as needed.

(restrictable⇒limit-respecting) Let t ∈ T be infinite, and let (ni)i and (mi)i be
strictly increasing sequences of positive integers such that ([t � ni])i and ([t � mj])j
are ≤-increasing. Let i ≥ 0 and find j ≥ 0 such that [t � ni] ≤ [t � mj]. Choose
j ≥ 0 and k ≥ i such that ni ≤ mj ≤ nk. To show [t � ni] ≤ [t � mj], let
ta ∈ [t � ni] and find tb ∈ T with ta � tb ≡ t � mj. Since [t � ni] ≤ [t � nk], there
is tat1 ∈ T with tat1 ≡ t � nk. Write t � nk = t � nit0 ∈ T and t2 := t � mj. So
t � ni ≡ ta and t � nit0 ≡ tat1 and t � ni � t2 � t � nit0. By being restrictable,
there is ta � tb � tat1 such that t2 ≡ tb. So tb has the required properties.

Ad (3). Since, by (1), extension implies ≤, (t, (i+ 1)i≥0) is an approximation
to [t].

Ad (4). (⇒) Let n ≥ 0 and find m ≥ 0 such that [t � n] ≤ [t′ � m]. If n = 0,
choose m := 0, so let n > 0. As just seen, τ = (t, (ni)) with ni = i + 1 and
τ ′ = (t′, (mj)) with mj = j + 1 are approximations to [t] and [t′], respectively.
Since [t]v[t′] and v = vdom, τ ′ dominates τ , so, for i := n− 1 ≥ 0, there is j ≥ 0
such that [t � n] = [t � ni] ≤ [t′ � mj], and we choose m := mj ≥ 0.

(⇐) We show [t]v∃[t′]. Clause (b) of v∃ is vacuously satisfied, since any [t]
is approximable. For clause (a), let [t0] ∈ Tfin with [t0]∃[t] and show [t0]∃[t′].
Since M is a limit-respecting, the orders v∃ and v∀ agree, so, by lemmas 2.5.5
and 2.5.4, [t0]∃[t] implies [t0]∀[t]. Again, τ = (t, (i+ 1)i) and τ ′ = (t′, (j + 1)j)
are approximations to [t] and [t′], respectively. Thus, since [t0]∀[t], there is
i ≥ 0 such that [t0] ≤ [t � i + 1]. By the assumption, there is m ≥ 0 such that
[t � i + 1] ≤ [t′ � m]. Hence, for j := m, [t0] ≤ [t′ � m] ≤ [t′ � j + 1], whence
[t0]∃[t′]. 2

2.7. Behavioral transition systems 53

2.7.3 Examples

We discuss several examples (and non-examples) of BTSs. The first three are
‘positive’ in the sense of providing BTSs, while the last three are ‘negative’ in the
sense of showing that various assumptions that we’ve discussed are not vacuous.

We start with the two guiding examples of ‘black box systems’ and ‘concurrency’
and the extensional, temporal, and intensional equivalence construction: they are
all extendable BTSs.

2.7.4. Example. (1). In the guiding examples from section 2.3, we’ve considered
structures (A, T,≡) where A is an LTS, T a set of A-trajectories, and ≡ an
equivalence relation on T such that properties (a)–(d) are satisfied. Such structures
are extendable BTSs: As seen before, properties (a)–(c) ensure that they are
pre-BTSs and property (d) is that of being extendable.

(2). If A is an LTS, T the set of all (nonempty) A-trajectories (starting in iA)
as in example 2.4.3, and ≡ any of the examples from definition 2.4.5 (extensional,
temporal, or intensional equivalence), then M := (A, T,≡) is a extendable BTS:

Indeed, we know already that M is a pre-BTS, so we need to show that M
is extendable. This is done as in the ‘full & extensional’ case above: If t, t′ ∈ T
are nonempty finite with t ≡ t′ and tt′′ ∈ T finite, then, for all the above choices
of ≡, we have last(t) = last(t′). Thus, also t′t′′ is an A-trajectory. And t′t′′ is a
(nonempty if t′ is nonempty) A-trajectory (that starts in iA if t′ starts in iA), so
t′t′′ is again in T . Finally, tt′′ ≡ t′t′′ for any of the above choices for ≡: since t ≡ t′,
tt′′ and t′t′′ have the same last state, and the same length if t and t′ have the same
length, and the same label-sequence if t and t′ have the same label-sequence.

There is a natural way to generalize extensional equivalence: rather than
demanding the last states to be identical, one can demand them to be in a
bisimulation relation. (This is a generalization since the identity relation on states
is a bisimulation.) This yields bisimulative BTSs and does justice to the term
‘bisimulative’.

2.7.5. Example. Let A be an LTS and let ≈⊆ SA × SA be a bisimulation (see
e.g. Sangiorgi 2012, ch. 1): for all s ≈ s′ and α ∈ LA,

• Forth: If s
α−→s0, then there is s1 ∈ SA with s′

α−→s1 and s0 ≈ s1.

• Back: If s′
α−→s1, then there is s0 ∈ SA with s

α−→s0 and s0 ≈ s1.

Also assume that ≈ is an equivalence relation. This is the case if ≈ is identity
(as in extensional equivalence). The coarsest choice is bisimilarity: s ∼ s′ iff there
is a bisimulation ≈ such that s ≈ s′.

Let T be the set of all A-trajectories and let ≡ be generated (in the sense of
proposition 2.4.4) by: for t, t′ ∈ T nonempty finite, t ≡ t′ iff last(t) ≈ last(t′).

54 Chapter 2. Trajectory domains 1: Construction

So M = (A, T,≡) is a pre-BTS, and we see that it is bisimulative: Assume
t, t′ ∈ T are nonempty finite with t ≡ t′ and tt0 ∈ T is a one-step extension. Write
t0 = (s, α, s0). Then s = last(t) ≈ last(t′) =: s′. By the forth condition, there
is s1 ∈ SA with s′

α−→s1 and s0 ≈ s1. Let t′t1 := t′(s′, α, s1). Since T is the set of
all A-trajectories, t′t1 ∈ T , and, since last(tt0) = s0 ≈ s1 = last(t′t1), we have
tt0 ≡ t′t1.

Next, here are examples of restrictable BTSs:

2.7.6. Example. (1). In section 2.3.2, we’ve introduced transition systems A with
independence I and said that the independence relation I induces an equivalence
relation on the set T of all A-trajectories: t ≡ t′ iff |t| = |t′| and, for n < |t|, t(n)
and t′(n) are occurrences of the same event. This straightforwardly yields a pre-
BTS M = (A, T,≡), and M is restrictable: Assume t, t′, tt0, t

′t1 ∈ T are nonempty
finite with t ≡ t′ and tt0 ≡ t′t1. If t � t2 � tt0, let n be such that t2 = tt0 � n,
then, since tt0 and t′t1 are the same sequences of events, also t2 = tt0 � n and
t3 := t′t1 � n are the same sequences of events, and, since |t| = |t′|, t′ � t3 � t′t1.

(2). In model checking, one adds to an LTS A an interpretation function I
assigning each state s ∈ SA a subset I(s) of a set of atomic propositions (see
e.g. Baier and Katoen 2008). Intuitively, I(s) is the set of basic properties of s
(or observations about s). The trace of a trajectory t = s0

α0−→s1
α1−→ . . . then is

the sequence I(s0), I(s1), So we can choose T as the set of all A-trajectories
and ≡ as having the same trace (i.e., being ‘observationally equivalent’). This
straightforwardly yields a pre-BTS M = (A, T,≡), and M is restrictable similarly
as in (1) above.

Now to the ‘negative’ examples. First, we now can see more precisely why
we generally cannot appropriately define information containment for infinite
behaviors just like for finite behaviors:

2.7.7. Example. Consider the following LTS A:

i s

and let T be the set of all A-trajectories and ≡ extensional equivalence. In
particular, M = (A, T,≡) is a countable bisimulative pre-BTS.

Assume we’d define information containment for all behaviors like for finite
ones: [t] � [t′] iff ∀t0 ∈ [t]∃t1 ∈ [t1] : t0 � t1. As discussed, saying that this
is an appropriate definition of information containment means that � satisfies
one of the equivalent items (1)–(5) of theorem 2.6.3. But then � = vM and,
by proposition 2.7.3 (4), [t] � [t′] iff ∀n∃m : [t � n] ≤ [t′ � m]. So these two
characterizations of [t] � [t′] should be equivalent.

However, consider the two infinite A-trajectories t = i→ s→ i→ s→ . . . and
t′ = i→ i→ i→ Then ∀n∃m : [t � n] ≤ [t′ � m] (since there is always a path

2.7. Behavioral transition systems 55

from last(t � n) to last(t′ � m)). But we do not have ∀t0 ∈ [t]∃t1 ∈ [t1] : t0 � t1:
Otherwise t can be extended to t1 ≡ t′, whence t = t1 and t ≡ t′, so t and t′ would
have the same tail.

The following example shows that the countability assumption in theorem 2.6.3
is necessary. The assumption was used when showing that ι is surjective by
employing the fact that a countable directed set has a cofinal chain. This fact
fails for uncountable directed sets, and the usual counterexample inspires the
example (see e.g. Abramsky and Jung 1994, exercise 2.3.9 (6)).

2.7.8. Example. Consider the LTS A = (S, i, L,→) where S is the set of finite
subsets of the real numbers (so A is uncountable), i := ∅, L := {α}, and s

α→ s′

iff s ⊆ s′. Let M := (A, T,≡) where T is the set of all A-trajectories and ≡ is
extensional equivalence. So M is an uncountable BTS, and we show that (T,v)
is not an ω-algebraic domain: it even fails to be a dcpo. Indeed, A := {[[t]] : t ∈
T nonempty finite} is a directed subset of T, but A cannot have an upper bound
[[t]] ∈ T for some t ∈ T , since then

⋃
n s(t)(n) = R (using proposition 2.7.3) would

be countable.

Finally, here is a small example to illustrate how being limit-respecting can
fail in a pre-BTS.

2.7.9. Example. Consider the following unlabeled transition system A where
state s1 has the color red and the states s2 and s3 have the color green:

s1 s2 s3

i

red green

Let T be the set of all A-trajectories starting in i and ≡ is generated by: for
t, t′ ∈ T nonempty finite, t ≡ t′ iff last(t) and last(t′) have the same color.

So M := (A, T,≡) is a pre-BTS, but it is not limit-respecting: Consider
t = i → s1 → s2 → s1 → . . . ∈ T . Let (ni) be the sequence 2 < 4 < . . . of even
numbers, and let (mj) be the sequence 1 < 3 < . . . of odd numbers. So t � ni ends
in the green state s2 and t � mj ends in the red state s1. Hence t � ni ≡ t � ni+1

and, in particular, [t � ni] ≤ [t � ni+1]. Similarly, [t � mj] ≤ [t � mj+1]. However,
for i := 0 there is no j ≥ 0 such that [t � ni] ≤ [t � mj] because t0 := i→ s3 ∈ T
ends in a green state and hence is in [t � ni], but the only extensions are of the
form t0 := i→ s3 → s3 → . . . and hence never end in a red state, so cannot be in
[t � mj].

56 Chapter 2. Trajectory domains 1: Construction

2.8 Trajectory domains

As mentioned, the additional axiom of being limit-respecting is not only enough
to define a sensible information containment ordering, it also is sufficient, in the
countable case, for this ordering to yield a domain of behaviors:

2.8.1. Definition. Let M = (A, T,≡) be a countable BTS. In the notation
of theorem 2.6.3, we call the ω-algebraic dcpo T(M) := T(M,v) = (T,v) the
trajectory domain of M .

This raises the question: which ω-algebraic domains can be obtained (up to
isomorphism) as trajectory domains of countable BTS? The answer is: all of
them.31

2.8.2. Theorem. For every ω-algebraic domain D, there is a countable BTS M
such that D is isomorphic to T(M). Moreover, M can be chosen to be fullε and
extensional.

Proof. If D is the empty domain, choose A := ({i}, i, ∅, ∅) and T as the set of
all nonempty A-trajectories (i.e., T = ∅) and ≡ as extensional equivalence (i.e.,
≡= ∅). So M := (A, T,≡) is a BTS that is countable fullε and extensional and
T(M) = ∅ ∼= D.

So let D be nonempty. Define the LTS A = (S, i, L,→) by:

• S := K(D) (since D is nonempty, the set of compact elements K(D) is
nonempty),

• i is any fixed element of K(D).

• L = {α} for some object α.

• s
α→ s′ iff s ≤ s′ (in D).

Let T be the set of all nonempty A-trajectories, and let ≡ be extensional equiva-
lence. So M := (A, T,≡) is a fullε and extensional BTS and M is countable since
A is countable (because K(D) is countable).

We show that (Tfin,≤) ∼= (K(D),≤). Then, by theorem 2.6.3 and the fact
that M has no non-approximable elements,

T(M) ∼= Idl(Tfin) = Idl(Tfin) ∼= Idl(K(D)) ∼= D,

31In the context of concurrent computation (section 2.3.2), this question has been investigated
for the domain constructions used there: see Droste (1990), Bracho and Droste (1994), and Stark
(1990). Given that BTSs are a considerable generalization of the transition systems considered
there, we should expect a considerable larger class of domains—indeed, the largest possible as
the theorem shows.

2.9. Generalizations of information systems 57

where the last isomorphism is a basic fact about algebraic domains.
We define ι : Tfin → K(D) by ι([t]) = last(t). This is well-defined: If [t] ∈ Tfin

for t ∈ T , then t is finite nonempty, so last(t) is defined. And if [t] = [t′], then
last(t) = last(t′) by extensional equivalence. This is injective: If [t] 6= [t′], then
t 6= t′, so last(t) 6= last(t′). And surjective: If x ∈ K(D), then t := x

α−→x is a
nonempty finite trajectory in A, so [t] ∈ Tfin and ι([t]) = last(t) = x.

It remains to show that ι is an order-isomorphism. Let [t], [t′] ∈ Tfin, and show
[t] ≤ [t′] iff ι([t]) ≤ ι([t′]).

Assume [t] ≤ [t′]. Hence t can be extended to t1 ≡ t′. So there is a trajectory
from last(t) to last(t1) = last(t′). Since s

α→ s′ implies s ≤ s′, we have ι([t]) =
last(t) ≤ last(t′) = ι([t′]).

Assume ι([t]) ≤ ι([t′]). Then last(t) = ι([t]) ≤ ι([t′]) = last(t′). So t1 :=
t(last(t), α, last(t′)) ∈ T is an extension of t with t1 ≡ t′. Since M is bisimulative,
[t] ≤ [t1] = [t′]. 2

An important corollary is that for every BTS there is a particularly simple
one which has the same behavior:

2.8.3. Corollary. For every countable BTS M there is a countable fullε and
extensional BTS N such that M and N have the same behavior in the sense that
their trajectory domains are isomorphic.

2.9 Generalizations of information systems

We argue that we can regard the notion of a BTS and their induced trajectory
domains as a generalization of the well-known notion of a Scott information system
and their induced Scott domains.

2.9.1 Scott information systems . . .

Scott information systems were introduced by Scott (1982). They are important
both as a technical tool for ‘doing domain theory’ (by representing Scott domains
through their more manageable bases) and as a conceptual tool for motivating
domains and providing connections to other fields (event structures, logic, locale
theory, etc.). For references see Winskel (1993, sec. 12) and Abramsky and Jung
(1994, sec. 8.1.4), and for a general categorical treatment see Edalat and Smyth
(1993). Here we’ll use the definition of Winskel (1993, ch. 12).

2.9.1. Definition. An information system is a triple I = (U,Con,`) where U is
a countable set (information tokens), Con is a non-empty class of finite subsets of
U (consistent sets), and ` ⊆ (Con \ {∅})× U (entailment relation) such that

1. If X ⊆ Y ∈ Con, then X ∈ Con.

58 Chapter 2. Trajectory domains 1: Construction

2. If a ∈ U , then {a} ∈ Con.

3. If X ` a, then X ∪ {a} ∈ Con.

4. If a ∈ X ∈ Con, then X ` a.

5. If X, Y ∈ Con and X ` Y (i.e., X ` b for all b ∈ Y), then Y ` a implies
X ` a.

An element of I is a subset x ⊆ U such that

1. x 6= ∅

2. If X ⊆ x is finite, then X ∈ Con.

3. If X ⊆ x and X ` a, then a ∈ x.

The set of elements of I is denoted |I|. For X ∈ Con, define X := {a ∈ U : X ` a}.

The point of information systems is that they induce domains (see e.g. Winskel
1993, prop. 12.8): DS(I) := (|I|,⊆) is an ω-algebraic dcpo where every nonempty
subset with an upper bound has a least upper bound.32 The compact elements
are of the form X for ∅ 6= X ∈ Con.

Some useful basic facts are the following:

2.9.2. Lemma. Let I = (U,Con,`) be an information system. Then

1. Monotonicity: For Y ⊆ X ∈ Con, if Y ` a, then X ` a.

2. If X ∈ Con and X ` {a1, . . . , an} (n ≥ 1), then X ∪ {a1, . . . , an} ∈ Con.

3. If X, Y ∈ Con and X

`

`Y (i.e., X ` Y and Y ` X), then X = Y .

Proof. Ad (1). By axiom 1, Y ∈ Con. By axiom 4, X ` b for all b ∈ Y ⊆ X, so
X ` Y . Since Y ` a, axiom 5 implies X ` a.

Ad (2). First, we have X ` a1, so, by axiom 3, X ∪ {a1} ∈ Con. Now,
we proceed inductively for i = 2, . . . , n: Assume X ∪ {a1, . . . , ai−1} ∈ Con, and
show X ∪ {a1, . . . , ai} ∈ Con. We have X ` ai. By monotonicity, since X ⊆ X ∪
{a1, . . . , ai−1} ∈ Con, also X∪{a1, . . . , ai−1} ` ai. By axiom 3, X∪{a1, . . . , ai−1}∪
{ai} ∈ Con, as needed.

Ad (3). Let a ∈ U and show X ` a iff Y ` a. If X ` a, then, since Y ` X,
axiom 5 implies Y ` a. Similarly for the other direction. 2

32Such domains hence are Scott domains without, possibly, a least element, whence they also
are called Scott predomains.

2.9. Generalizations of information systems 59

2.9.2 . . . and their generalizations as BTSs

We show that we can interpret an information system I as a countable BTS MI

such that the trajectory domain T(MI) of MI is isomorphic to the domain DS(I)
induced by I. In that sense, we can regard BTSs and the trajectory domain
construction as a generalization of information systems and the ‘set of elements’
construction.

The main intuition for the BTS MI that interprets I = (U,Con,`) is to think
of the consistent sets X ∈ Con as trajectories (modulo order) through the space
of information tokens U that satisfy the global constraint of being consistent.
Formally, we do this as follows.

2.9.3. Definition. Let I = (U,Con,`) be an information system. Define MI :=
(A, T,≡) as follows:

• SA := U ∪ {i} where i is some object not in U .

• iA := i.

• LA := {α} (i.e., A essentially is ‘unlabeled’ and we omit labels in →).

• a→ b iff a, b ∈ SA (so →= SA × SA is the trivial relation).

• T := the set of all A-trajectories t with the following properties:

(a) t is nonempty (i.e., |t| > 0) and of the form i → a1 → a2 → . . . for
ai ∈ U . (Hence, if t is finite, then last(t) = a|t|.)

(b) For all n ≥ 1, if n ≤ |t|, then {a1, . . . , an} ∈ Con.

• (For t ∈ T finite, let S(t) be the set of states occurring in t and Si(t) :=
S(t) \ {i}. Note Si(t) ∈ Con by (b).)

• ≡ is the equivalence induced by: for t, t′ ∈ T finite nonempty, t ≡ t′ iff
Si(t) = Si(t′).

Thus, the ‘globally possible’ trajectories through the space S of information tokens
(together with an additional starting state i) are precisely those with consistent
initial segments. And two such finite trajectories are behaviorally equivalent if
they contain the same information, i.e., the information that can be deduced from
the information tokens that they visit is the same.

Thus, one way that BTSs generalize Scott information systems, is as follows:
In information systems, two consistent trajectories t and t′ of information tokes are
considered to be equivalent if, roughly, they are entailment equivalent: t

`

`t′. This
‘logic’ is monotonic and insensitive to count and order of premises. Thus, one could
move to non-monotonic or resource sensitive logics (like linear logic) and their

60 Chapter 2. Trajectory domains 1: Construction

respective notion of equivalence ≡, to obtain more general (BTS representations
of) information systems.33

We discuss this further in the next section, but now let’s prove the two
announced claims:

2.9.4. Proposition. If I is an information system, then MI is a countable
bisimulative BTS.

Proof. We first show that MI is a pre-BTS. We show that T satisfies axioms (1)
and (2)∗; then the claim follows by proposition 2.4.4.

Concerning axiom (1), let t′ be a nonempty finite initial segment of t ∈ T ,
and show t′ ∈ T . By definition, t is of the form i → a1 → a2 → . . . and t′ is of
the form i → a1 → a2 → . . . an for some 1 ≤ n ≤ |t|. And, since t ∈ T , we in
particular have, for all 1 ≤ m ≤ n = |t′| ≤ |t|, that {a1, . . . , am} ∈ Con. Hence
t′ ∈ T .

Concerning (2)∗, let t be an infinite A-trajectory such that t 6∈ T , and find
n ≥ 1 such that t � n 6∈ T . So t fails to have property (a) or (b). If it fails (a),
it is not of the form i → a1 → a2 → . . ., i.e., t either doesn’t start with i or it
goes back to i after having started with i. Thus, some nonempty initial segment
of t fails to be of the form i → a1 → a2 → . . ., and we can choose n ≥ 1 large
enough such that t � n includes that initial segment, whence t � n 6∈ T . So assume
t has (a) but fails (b), whence t is of the form i → a1 → a2 → . . . but there is
n ≥ 1 with n ≤ |t| and {a1, . . . , an} 6∈ Con. Then t � n fails to have property (b),
so t � n 6∈ T .

Next, note that MI is countable since A is countable (since SA is countable
because U is countable). So it remains to show that MI is bisimulative.

So let t, t′ ∈ T be finite nonempty with t ≡ t′ and tt0 ∈ T a one-step extension.
We need to find an extension t′t1 ∈ T such that tt0 ≡ t′t1. (In fact, we’ll show
that we can choose t′t1 as one-step extension, too.)

Since t, t′ ∈ T are finite, they are of the form t = i → a1 → a2 → . . . → an
and t′ = i→ a′1 → a′2 → . . .→ a′m for n,m ≥ 1 and t0 = an → b.

We claim that t′t1 := i → a′1 → a′2 → . . . → a′m → b is in T . Since → is the
trivial relation, t′t1 is an A-trajectory and it satisfies (a). So we need to show that it
satisfies (b). It suffices to show {a′1, . . . , a′m, b} ∈ Con. Since tt0 ∈ T , we know that
{a1, . . . , an, b} ∈ Con. Since t ≡ t′, we have Si(t) = Si(t′). So, for a′j ∈ Si(t′), we
have Si(t) ` a′j. Since Si(t) = {a1, . . . , an} ⊆ {a1, . . . , an, b} ∈ Con, monotonicity
implies Si(t)∪{b} ` a′j . Hence, by lemma 2.9.2 (2), Si(t)∪{b}∪{a′1, . . . , a′m} ∈ Con.
Then {a′1, . . . , a′m, b} is a subset of a set in Con and hence in Con by axiom 1.

So it remains to show tt0 ≡ t′t1. Note that Si(tt0) = Si(t) ∪ {b} and Si(t
′t1) =

Si(t
′) ∪ {b}, so it suffices to show Si(t) ∪ {b} = Si(t′) ∪ {b}. Since Si(t

′) ∪ {b}
33For some benchmark axiomatizations of logical equivalence (or synonymy) that are finer

than classical logic, see Hornischer (2020).

2.9. Generalizations of information systems 61

and Si(t) ∪ {b} are in Con this follows from lemma 2.9.2 (3) once we can show
Si(t

′) ∪ {b}

`

`Si(t) ∪ {b}.
Concerning `, let c ∈ Si(t) ∪ {b} and show Si(t

′) ∪ {b} ` c. If c = b, then
c ∈ Si(t′) ∪ {b} ∈ Con, and the claim follows by axiom 4. So let c ∈ Si(t) ∈ Con.
Then, again by axiom 4, Si(t) ` c, so c ∈ Si(t) = Si(t′), so Si(t

′) ` c. Since
Si(t

′) ⊆ Si(t
′) ∪ {b} ∈ Con, monotonicity implies Si(t

′) ∪ {b} ` c. The other
direction is shown analogously. 2

2.9.5. Proposition. If I is an information system, then T(MI) ∼= DS(I).

Proof. Write MI = (A, T,≡). We claim that ι : K(T(MI))→ K(DS(I)) defined
by [[t]] 7→ Si(t) is a well-defined isomorphism. Then the claim follows since T(MI)
and DS(I) are algebraic domains (so they are isomorphic to the ideal completion
of their compact elements). To do so, we show:

1. If t ∈ T is finite, then ∅ 6= Si(t) ∈ Con, whence Si(t) is a compact element
of DS(I).

2. For all finite t, t′ ∈ T , [t] ≤ [t′] iff Si(t) ⊆ Si(t′).

3. If x is a compact element of DS(I), then there is a finite trajectory t ∈ T
with Si(t) = x.

Then (1) shows that, for [[t]] ∈ K(T(MI)), we have that ι([[t]]) ∈ K(DS(I))
and (2) shows that the mapping is well-defined. Moreover, ι is injective by (2)
and surjective by (3). Finally, it is an order-isomorphism by (2).

Ad (1). So t is of the form i → a1 → . . . → an with n ≥ 1 and Si(t) =
{a1, . . . , an} ∈ Con is nonempty.

Ad (2). Let t, t′ ∈ T be finite. So t = i→ a1 → . . .→ an and t′ = i→ a′1 →
. . .→ a′m for n,m ≥ 1.

(⇒) If [t] ≤ [t′], then t can be extended to t1 ∈ T with t1 ≡ t′. Hence
Si(t) ⊆ Si(t1) are in Con, so, by monotonicity, Si(t) ⊆ Si(t1) = Si(t′).

(⇐) Assume Si(t) ⊆ Si(t′). Consider

t1 := t an → a′1 → . . .→ a′m.

This is an A-trajectory since t ends in an and →A is the trivial relation. We will
show that t1 ∈ T and t1 ≡ t′. Then, because MI is bisimulative, [t] ≤ [t1] = [t′],
as needed.

To do so, we’ll first show that

(∗) Si(t
′) ` Si(t1).

62 Chapter 2. Trajectory domains 1: Construction

Indeed, let a ∈ Si(t1) = Si(t) ∪ Si(t′) and show Si(t
′) ` a. If a ∈ Si(t′) ∈ Con,

then, by axiom 4, Si(t
′) ` a. So let a ∈ Si(t). Then, again by axiom 4, Si(t) ` a.

So a ∈ Si(t) ⊆ Si(t′), whence Si(t
′) ` a.

In particular, Si(t1) ∈ Con: By (∗), we have Si(t
′) ` {a1, . . . , an}, so, by

lemma 2.9.2 (2), Si(t1) = Si(t
′) ∪ {a1, . . . , an} ∈ Con.

Now we show t1 ∈ T . Indeed, the A-trajectory t1 is of the right form, whence
it satisfies (a), and, since Si(t1) ∈ Con, also subsets thereof are in Con, so t1
satisfies (b).

So it remains to show that t1 ≡ t′: We have Si(t1), Si(t
′) ∈ Con and Si(t

′) `
Si(t1) by (∗) and Si(t1) ` Si(t′) because of axiom 4 and Si(t

′) ⊆ Si(t1) ∈ Con. So
lemma 2.9.2 (3) implies Si(t1) = Si(t′), as needed.

Ad (3). If x is a compact element of DS(I), then x = X for ∅ 6= X ∈ Con. In
particular, X = {a1, . . . , an} is finite nonempty. Then t := i→ a1 → . . .→ an is
a finite A-trajectory satisfying (a) and (b), so t ∈ T . And Si(t) = X = x. 2

2.10 Conclusion

We conclude with six open questions for future work.

First, arguably the most pressing question by now is about the category of
BTSs: We’ve introduced and studied BTSs as objects, but how do they relate
to each other, i.e., what are morphisms between BTSs? Does this capture the
common idea of one system being simulated in another? Does the trajectory
domain construction respect these relations, i.e., is functorial?34 After all, a lesson
from Winskel and Nielsen (1995) is that only with this categorical structure can
we consider BTSs as a computational model that we can fruitfully relate to other
computation models. We’ll study these (and more) questions in the next chapter
and provide a positive answer.

Second, we’ve seen that BTSs generalize Scott information systems. Further
work should investigate this, for example, by considering (as indicated) various
classes of ‘generalized information systems’ that correspond to processing informa-
tion according to various finer substructural logics. We explore one direction in
the next chapter by showing that the trajectory domains provide an interpretation
to relevance logic. Another direction could be to consider the closely related linear
logic:

Third, in the game semantics for linear logic of Abramsky and Jagadeesan
(1994), the meaning of a formula is a game and a proof for the formula is a

34We may regard this as one implication of the equivalence between operational and denotations
semantics that the full abstraction problem (mentioned in the introduction) asks for: equivalence
(i.e., isomorphism) in the operational semantics implies equivalence (i.e., isomorphism) in the
denotational semantics. We discuss this further in the next chapter.

2.10. Conclusion 63

winning strategy for this game.35 Using their notation for a game, it is tempting
to try to view a game as a BTS (A, T,≡): the state space S = M × {P,O}
is the set of moves M labeled by whether it is a move of Player or Opponent
and the transition relation is the trivial one, T = π ∪ π∞ consists of the set π
of finite trajectories that are possible in the game (where Player and Opponent
are alternating) together with the set π∞ of infinite trajectories all whose initial
segments are in π, and trajectory equivalence is chosen in way to capture strategies
(maybe indistinguishability by strategies?). Can this game semantics fruitfully be
captured this way? And, to come full circle, how does this relate to the solution to
the full abstraction problem (mentioned in the introduction) which this semantics
provided (Abramsky and McCusker 1999)?

Fourth, how do these different logical perspectives relate to existing logics
for LTSs like linear temporal logic (see e.g. Baier and Katoen 2008), and could
they provide a domain theory for trajectory domains ‘in logical form’ (Abramsky
1991)?

Fifth, Bratteli–Vershik diagrams play an important role in the study of zero-
dimensional topological systems. (See Downarowicz and Karpel 2016 for a brief
introduction and references.) At least superficially, they have some ‘BTS-like’
structure: they are certain graphs, their space of infinite paths represents dynamical
systems, and also orders on the space of all finite and infinite paths are considered.
Can they be fruitfully captured as BTSs?

Sixth, an algebraic way to analyze a graph (i.e., an unlabeled transition system)
is through its Leavitt path algebra (Abrams, Ara, and Siles Molina 2017): These
algebras can be seen as algebraic analogues of C∗-algebras and are constructed
based on the idea of identifying certain paths of the underlying graph. Is there a
connection?

Appendix

Proof of lemma 2.5.4. Item (1), that (T,v∀) is a preorder, is immediate from
the definition. Before getting to the other items, we show two claims:

(C1) For all [t] ∈ Tfin, [t]∀[t].
Proof: To show [t]∀[t], let τ = (t†, (ni)) be an approximation to [t], and find

i ≥ 0 such that [t] ≤ [t† � ni]. Indeed, since [t] = [t†] and t is finite, also t† is finite.
Since (ni) is indefinitely increasing, there is i such that ni ≥ |t†|. Then we have
[t] = [t†] = [t† � ni], which implies [t] ≤ [t† � ni].

(C2) For [t], [t′] ∈ Tfin, [t]∀[t′] implies [t] ≤ [t′].

Proof: Assume [t]∀[t′]. Consider the approximation τ = (t′, (ni)) to [t′] with
ni := |t′|+ 1 + i. Then there is i ≥ 0 such that [t] ≤ [t′ � ni] = [t′], as needed.

35For more on the topic of ‘games in logic’ see Van Benthem (2014) or Hodges and Väänänen
(2019).

64 Chapter 2. Trajectory domains 1: Construction

Ad (2). Let [t], [t′] ∈ Tfin, and show [t]v∀[t′] iff [t] ≤ [t′]. Assume [t]v∀[t′]. For
[t0] := [t] we have, by (C1), [t0]∀[t]. Hence [t0] = [t]∀[t′]. By (C2), [t] ≤ [t′].

Conversely, assume [t] ≤ [t′]. To show [t]v∀[t′], first observe that condition (b)
is trivially satisfied since [t] is finite and hence approximable. For condition (a), let
[t0] ∈ Tfin with [t0]∀[t], and show [t0]∀[t′]. So let (t‡, (mj)) be an approximation
to [t′] and find j ≥ 0 such that [t0] ≤ [t‡ � mj]. Since t′ is finite, also t‡ is finite,
so there is j ≥ 0 such that mj ≥ |t‡|. By (C2), [t0]∀[t] implies [t0] ≤ [t]. Hence,
[t0] ≤ [t] ≤ [t′] = [t‡] = [t‡ � mj], as needed.

Ad (3). Let [t] ∈ Tfin and [t′] ∈ T and show [t]∀[t′] iff [t]v∀[t′]. If [t]v∀[t′],
then, by (C1), [t]∀[t], so, by condition (a), [t]∀[t′].

Conversely, assume [t]∀[t′]. To show [t]v∀[t′], condition (b) is trivially satisfied
since [t] is finite and hence approximable, and for condition (a) let [t0] ∈ Tfin

with [t0]∀[t], and show [t0]∀[t′]. So let (t‡, (mj)) be an approximation to [t′]
and find j ≥ 0 such that [t0] ≤ [t‡ � mj]. Since [t]∀[t′], there is j ≥ 0 such that
[t] ≤ [t‡ � mj]. By (C2), [t0]∀[t] implies [t0] ≤ [t]. So [t0] ≤ [t‡ � mj], as needed.

Ad (4). This follows from (3) and the definition of v∀ which, for approximable
[t], [t′] ∈ T, reduces to just condition (a).

Ad (5). If [t] ∈ T doesn’t have an approximation, then [t] is infinite (since
all finite trajectories have an approximation) and, for [t′] ∈ T, we have [t′]v∀[t]
because condition (a) holds vacuously since [t0]∀[t] holds vacuously, and condi-
tion (b) holds vacuously since [t] is not approximable. 2

Proof of 2.5.5. Item (1), that (T,v∀) is a preorder, is immediate from the
definition. Before getting to the other items, we show two claims:

(C1) If [t] ∈ Tfin, then [t]∃[t].
Proof: We have that (t, (|t|+ 1 + i)i≥0) is an approximation to [t] and [t] ≤

[t � |t|+ 1 + 0], whence [t]∃[t].
(C2) For [t], [t′] ∈ Tfin, if [t]∃[t′], then [t] ≤ [t′].
Proof: Since [t′] is finite, it is approximable, so [t]∃[t′] holds because there

is an approximation (t‡, (mj)) to [t′] and j ≥ 0 such that [t] ≤ [t‡ � mj]. Choose
k ≥ j big enough such that mk > |t‡| (t‡ is finite since it is equivalent to the finite
t′). Then [t] ≤ [t‡ � mj] ≤ [t‡ � mk] = [t‡] = [t′], as needed.

Ad (2). Let [t], [t′] ∈ Tfin. And show [t]v∃[t′] iff [t] ≤ [t′]. Assume [t]v∃[t′].
By (C1), [t]∃[t], so, by condition (a), [t]∃[t′], so, by (C2), [t] ≤ [t′].

Conversely, assume [t] ≤ [t′]. To show [t]v∃[t′], condition (b) is satisfied since
[t] is approximable, and for condition (a), let [t0] ∈ Tfin with [t0]∃[t], and show
[t0]∃[t′]. Consider the approximation (t′, (|t′|+ 1 + j)j) to [t′] and j := 0. Then
[t] ≤ [t′] = [t′ � |t′|+ 1 + j], as needed.

Ad (3). Let [t] ∈ Tfin and [t′] ∈ T, and show [t]∃[t′] iff [t]v∃[t′]. Assume
[t]v∃[t′]. For [t0] := [t] we have, by (C1), [t0]∃[t], so [t] = [t0]∃[t′].

Conversely, assume [t]∃[t′]. To show [t]v∃[t′], condition (b) is satisfied since
[t] is approximable, and for condition (a), let [t0] ∈ Tfin with [t0]∃[t], and show
[t0]∃[t′]. If [t′] is not approximable, then [t0]∃[t′], so let [t′] be approximable

2.10. Conclusion 65

and (t‡, (mj)) an approximation to [t′]. Since [t]∃[t′] (and [t′] is approximable),
there is j ≥ 0 such that [t] ≤ [t‡ � mj]. By (C2), [t0]∃[t] implies [t0] ≤ [t]. So
[t0] ≤ [t‡ � mj], as needed.

Ad (4). This follows from (3) and the definition of v∃ which, for approximable
elements, reduces to just condition (a).

Ad (5). If [t] ∈ T doesn’t have an approximation, then [t] is infinite (since
all finite trajectories have an approximation) and, for [t′] ∈ T, we have [t′]v∃[t]
because condition (a) holds vacuously since [t0]∃[t] holds vacuously, and condi-
tion (b) holds vacuously since [t] is not approximable. 2

Chapter 3

Trajectory domains 2: Category

Abstract In the previous chapter, we provided a denotational semantics
to labeled transition systems (LTS): We introduced the notion of a behavioral
transition system (BTS) which extends an LTS by some structure to specify its
behavior, and, for countable systems, we constructed their trajectory domain
which serves as their denotation (or ‘behavior description’). In this chapter, we
complete this construction category-theoretically: We introduce the category
(ω)BTS of (countable) BTSs and show that the trajectory domain construction
extends to a functor T : ωBTS→ ωALG into the category of ω-algebraic domains.
The main result is that we build an adjunction between a subcategory of ωBTS
and a version of ωALG: thus, the well-known ‘computational model’ of ω-algebraic
domains can be embedded into (i.e., can be abstracted from) the computational
model of BTSs. We also note that the trajectory domain construction naturally
leads to a new interpretation of relevance logic in terms of LTSs.

3.1 Introduction

Labeled transition systems (LTS) are a widely used computational model providing
operational semantics to systems (or processes): in the previous chapter, we’ve
mentioned as examples computer programs (or Turing machines more generally),
reactive systems interacting with a nondeterministic environment, model checking,
concurrent computation, or observing dynamical systems. So they can be seen as
a general model of symbolic computation. An LTS provides operational meaning
in the sense of describing the possible states of the system and their dynamics,
i.e., how the system can transform from one state to another.1 In the previous
chapter, we constructed a corresponding denotational semantics: a more system-
independent and static description of the possible behavior of the system that
facilitates mathematical analysis.

1The states could be fairly ‘low-level’ (e.g., describing the tape and internal state of a Turing
machine) or more ‘high-level’ (e.g., bundling together low-level states with a similar function).

67

68 Chapter 3. Trajectory domains 2: Category

To this end, we introduced the notion of a behavioral transition system (BTS).
This extends an LTS A by two more entities to specify its behavior: First, a
set T of A-trajectories that not only are ‘locally’ possible (each step being a
possible transition in the LTS), but also ‘globally’ possible (e.g., reflecting memory
constraints); and second, an equivalence relation on T to say that two trajectories
are instances of the same (type of) behavior (e.g., two concurrent versions of
the same computation). So an equivalence class describes a possible behavior of
A (relative to T and ≡), and the set of equivalence classes T/ ≡ describes the
possible behavior—and thus acts like a denotation of the LTS. We defined BTSs
as such structures M = (A, T,≡) satisfying five axioms capturing the intended
interpretation. We’ve shown that, for countable systems, there is essentially a
unique way of defining an information containment order on T/ ≡ turning it into
an ω-algebraic domain (a well-behaved partial order studied in domain theory).
We wrote T(M) for this domain and called it the trajectory domain of M .

This left open the issue of extending this to a category-theoretic treatment—
which is the purpose of this chapter. But why is this important? The short answer
is: only then do we have a complete description of BTSs as a computational model.
This is necessary to show that the trajectory domain semantics is ‘compositional’
(as we’d expect of a semantics) and to understand the relations to other com-
putational models. But it also is needed for a structural understanding of the
class of BTSs: for example, to see whether a BTS suggested as a model for the
safety verification of a reactive system is equivalent to another (simpler) one or to
analyze it into subsystems. Let’s explain.

Computational models as categories A lesson from Winskel and Nielsen
(1995) is that computational models (like LTSs) are fruitfully regarded as cate-
gories: the objects are instances of the computational model (i.e., any LTS) and
the morphisms are simulations between instances of the model (one LTS being
simulated in another).2 For example, consider the following two LTSs: A on the
left and B on the right.

s′

s0 s1 · · ·α

β

α

β
r′

r α

β γ

We can simulate A in B by mapping sn 7→ r and s′ 7→ r′ (and α 7→ α, β 7→ β):
then any transition in A is simulated by a transition in B. (For the precise
definition see section 3.2.1.) Thus, we can form the category LTS in which we
can not just talk about LTSs (objects) but also about their relationships given by
simulations (morphisms).

2Also see Sassone, Nielsen, and Winskel (1996).

3.1. Introduction 69

Somewhat more liberally, we may also think of the category of ωALG of
ω-algebraic domains with Scott-continuous functions (formally defined in sec-
tion 3.2.2) as a computational model.3 A domain D can be regarded as the
data type of the possible (interim) outputs of a (type of) computational pro-
cess.4 For example, such a process may be that of computing an increasingly
precise binary representation of a real number x in the unit interval [0, 1], say
x :=

√
2/2 = 0.7071 . . ., so the interim outputs are 1, 10, 101,5 Then D may

be taken as the set of all finite or finite binary sequences ordered by extension.
A morphism, i.e., Scott-continuous function f : D → E maps D-outputs to
E-outputs in a computational way: to obtain a finite approximation to the output
f(x) we only need a finite approximation to the input x.

Two advantages of this view of a computational model as a category are the
following (Winskel and Nielsen 1995). First, constructions within the computa-
tional model (e.g., forming products of LTSs or domains) can now be characterized
category-theoretically: i.e., purely ‘structurally’ without reference to the notational
details of the computational model. Second, one can compare computational
models even if they are stated in very different terms: If C and D are categories
representing two computational models, a functor F : C→ D turns an instance A
of C into an instance F(A) of D, and it turns a simulation f : A → B in C into
a simulation F(f) : F(A)→ F(B) in D. Most importantly, we can also formally
reconstruct the idea that model D is more abstract than (i.e., can be embedded
into) model C: we also have functor G : D→ C in the other direction such that,
roughly, if we start with B in D and build G(B) to go to C and then build F(G(B))
to go back to D, then we’re back to where we started. Formally, F and G form a
(co-) reflective adjunction (as defined in section 3.2.3).

Inspired by this, our categorical treatment of BTSs and their trajectory domains
establishes the following four results.

Result 1 We define the category BTS of BTSs where the morphisms are also
based on the notion of simulation (as for LTSs). We show that BTSs do indeed
structurally extend LTSs: We have the forgetful functor G : BTS → LTS that
assigns each BTS to its underlying LTS, and this is part of a coreflective adjunction.
So, the computational model LTS can indeed be embedded into BTS. We also
show that we can ‘systematically’ ignore the ‘pathological’ non-approximable
behavior in a BTS (i.e., infinite behavior that cannot be represented as limit of
finite behavior). In categorical terms, the inclusion from the category BTSa of

3This is not explicitly mentioned by Winskel and Nielsen (1995), but see their section 8 on
event structures (in particular, the domain of configurations).

4See, e.g., Scott (1970), Abramsky and Jung (1994) or Stoltenberg-Hansen, Lindström, and
Griffor (1994, esp. the preface).

5The output starts with 1 since x is in the upper half of [0, 1], i.e., x ∈ [12 , 1]. It continues
with 0 since x is in the lower half of [12 , 1], i.e., x ∈ [12 ,

3
4]. It then continues with 1 since x is in

the upper half of [12 ,
3
4], etc.

70 Chapter 3. Trajectory domains 2: Category

approximable BTSs (where every behavior is approximable) to the category BTS
has a right adjoint (and hence forms a reflective adjunction).

Result 2 We show that the trajectory domain construction T is functorial:
As mentioned, for a countable BTS M , the trajectory domain T(M) is an ω-
algebraic domain. Here we show that T also maps simulations between systems
to Scott-continuous functions between their trajectory domains. In categorical
terms, writing ωBTS for the full subcategory of BTS consisting of countable BTS,
T : ωBTS → ωALG is a functor. Thus, the denotational semantics provided by
the trajectory domains is ‘compositional’: it preserves the fundamental simulation
relations between BTSs. A corollary is that equivalence in the operational se-
mantics (i.e., isomorphism between LTSs) implies equivalence in the denotational
semantics (i.e., isomorphism of trajectory domains). We further discuss this point
in the open questions.

Result 3 Thus, we may ask whether the computational model ωALG is an
abstraction of the computational model ωBTS, obtained through the trajectory
domain functor.

We tackle this question for the mildly restricted subcategory ωBTSs
a of ωBTS:

First, as justified before, we restrict us to approximable BTSs (hence the a). Second,
instead of the general partial simulations where transitions may be simulated by
inaction, we restrict us to synchronous simulations where transitions are always
simulated by transitions (hence the s). We’re also led to a mild restriction on
ωALG: First, the Scott-continuous functions between trajectory domains that come
from simulations are always compactness preserving (they map finite behavior to
finite behavior). Second, the distinguishedness of the initial state of the system is,
in some cases, reflected by the distinguishedness of an element of the trajectory
domain (namely the behavior ending in the initial state). This leads us to consider
the category iALG whose objects are pairs (D, c) of an ω-algebraic domain D with
a distinguished compact element c and whose morphisms are Scott-continuous
functions preserving compactness and the distinguished element.

With these details out of the way, we show that there is indeed an adjunction

ωBTSs
a iALG

Abs

Emb

a

which we obtain as a composition of three reflective adjunctions. Thus, we
can indeed think of the computational model iALG as an abstraction of the
computational model ωBTSs

a.

Result 4 Fourth, while speculating on how this adjunction may be extended
to partial simulations, we make the surprising observation that LTSs and their

3.2. Background 71

trajectory domains provide an interpretation of relevance logic. The importance
of this is that relevance logic is often criticized for only having a formal but not a
‘concrete’ semantics.

Related work Much of the related work that we’ve already discussed in chap-
ter 2 is also done at a categorical level: For example, the work on the correspon-
dence of operational and denotational semantics for programming languages (Car-
done 2021; Ong 1995) or the connections between concurrent computation and
domain theory (Bracho and Droste 1994; Winskel and Nielsen 1995). As men-
tioned, here we consider denotational semantics for LTSs directly (without recourse
to a programming language), and BTSs may be viewed as a generalization of
various LTS-based models of concurrency. Also, our focus here is not on providing
a categorical equivalence between ‘system-based’ categories and ‘domain-based’
categories (cf. Bracho and Droste 1994). Rather, we focus on reflective adjunctions
(which, as discussed above, still have a strong computational interpretation) with
the aim of establishing connections to categories of domains that are close to the
standard ones of domain theory.

Outline The chapter is structured as follows. In section 3.2, we make sure that
this chapter is self-contained: we provide the relevant background on labeled
transition systems and domain theory, and we summarize the previous chapter.

In section 3.3, we define the category BTS of behavioral transition systems
and show the adjunctions LTS� BTS and BTS� BTSa. In section 3.4, we show
that the trajectory domain construction is a functor T : ωBTS→ ωALG.

In section 3.5, we develop the adjunction ωBTSs
a � iALG. And in section 3.6,

we speculate on possible extensions of the adjunction and sketch the interpretation
of relevance logic. In section 3.7, we conclude with some open questions. A
summary of the categories and their established connections is given in figure 3.1.

3.2 Background

We provide the relevant background on labeled transition systems (section 3.2.1),
domain theory (section 3.2.2), and category theory (section 3.2.3). Then we
summarize the relevant parts from the previous chapter (section 3.2.4).

3.2.1 Category of labeled transition systems

In the previous chapter, we’ve already recalled the notion of a labeled transition
system (LTS) following the handbook article of Winskel and Nielsen (1995). In
this chapter, we continue following this article and use the same standard notion
for sequences: if σ is a finite or infinite sequence, |σ| ≤ ω is its length, σ � n is the
restriction to its first n elements, and � denotes sequence extension.

72 Chapter 3. Trajectory domains 2: Category

3.2.1. Definition. A labeled transition system (LTS) A is a structure (S, i, L,→)
where S is a set of states with initial state i, L is a set of labels, and→⊆ S×L×S
is the transition relation. We write s

α−→s′ for (s, α, s′) ∈→. Given an LTS A, we
use SA, iA, LA, and →A to refer to its set of states, initial state, set of labels,
and transition relation, respectively. We call A countable if both S and L are
countable sets. An A-trajectory is a sequence

t = (s0, α0, s
′
0), (s1, α1, s

′
1), . . . , (sn, αn, s

′
n), . . .

of elements of → such that s′i = si+1. We then write s0
α0−→s1

α1−→ If t is
nonempty, we call s0 the starting state of t and, if t also is finite, we call the s′ of
the last entry the ending or last state of t, which we refer to by ‘last(t)’.

A natural notion of morphism between LTSs is given by the idea of a simulation:
A simulation of an LTS A in the LTS B (or an interpretation of A in B) is a
way to map the states and labels of A to states and labels of B such that an
A-transition is mimicked by a B-transition under this mapping. There at least
two ways to understand ‘mimicked’. The most general way is that of a partial
simulation: an A-transition either is mapped to a B-transition or is ignored and
hence interpreted as ‘inaction’. A more specific way is that of a synchronous
simulation: here we don’t allow the ‘inaction’ interpretation, whence every action
in A is interpreted by an action in B. Thus, the original LTS A and the host LTS
B (in which A is simulated) run ‘in sync’. Formally, this is spelled out as follows.
(For more background, see Winskel and Nielsen (1995).)

3.2.2. Definition. Let A = (SA, iA, LA,→A) and B = (SB, iB, LB,→B) be two
LTSs. An LTS-morphism f : A→ B is a pair (σ, λ) where σ : SA → SB is a total
function and λ : LA → LB is a partial function such that

1. σ(iA) = iB

2. if s
α−→As

′, then σ(s)
λ(α)−−→Bσ(s′) if λ(α) is defined, and otherwise σ(s) = σ(s′).

If f is an LTS-morphism, we write f = (σf , λf). We call f synchronous if λf is
total.

3.2.3. Definition. Labeled transition systems together with their morphisms
form the category LTS. The identity morphism idA is (idSA , idLA) (where idX
denotes the identity function on the set X). Morphism composition is pairwise
function composition: g ◦ f = (σg ◦ σf , λg ◦ λf).6

Note that an LTS-morphism f : A→ B sends A-trajectories to B-trajectories:
If t is an A-trajectory, it is of the following form

6Composition of two partial functions is defined by λg ◦ λf (α) := λg(λf (α)) if both λf (α)
and λg(λf (α)) are defined, and otherwise λg ◦ λf (α) is undefined.

3.2. Background 73

t = t(0) t(1) t(2) . . .

= s0
α0−→s′0 s1

α1−→s′1 s2
α2−→s′2 . . .

with s′i = si+1. For each t(n), we have f(t(n)) := σ(sn)
αn−→σ(s′n) if λ(αn) is defined

and otherwise f(t(n)) := (σ(sn), σ(s′n)) is a pair of two identical elements, which
we call an idle pair.7 We write f ∗(t) for the sequence f(t(0))f(t(1))f(t(2)) . . .
and we write f(t) for the B-trajectory obtained from f ∗(t) after removing all idle
pairs.

Here are some basic facts (which we often use without explicit reference).

3.2.4. Lemma. Let f : A→ B and g : B → C be LTS-morphisms, and let t and
t′ be A-trajectories. Then

1. If t � t′, then f(t) � f(t′).

2. |f(t)| ≤ |t|.

3. For n ≥ 0, we have f(t � n) � f(t) � n.

4. For all n ≥ 0, there is m ≥ 0 such that f(t) � n = f(t � m). In words: an
initial segment of f(t) is determined by an initial segment of t.

5. If f is synchronous, then, for all n ≥ 0, f(t) � n = f(t � n).

6. g(f(t)) = g ◦ f(t). In words: applying g to the B-trajectory f(t) is the same
as applying g ◦ f to the A-trajectory t.

Proof. Ad (1). If t � t′, then f ∗(t) � f ∗(t′), so f(t) � f(t′).
Ad (2). Since idle pairs are only deleted but never added, we have |f(t)| ≤

|f(t(0))f(t(1)) . . . | = |t|.
Ad (3). We have t � n � t, so, by (1), f(t � n) � f(t). Since, by (2),

|f(t � n)| ≤ |t � n| ≤ n, we have f(t � n) � f(t) � n.
Ad (4). By induction on n: If n = 0, we choose m := 0. For n+ 1, if f(t)(n)

is not defined, then f(t) � n + 1 = f(t) � n and the claim follows by induction
hypothesis. So assume f(t)(n) is defined. So f(t) � n+ 1 = (f(t) � n)f(t)(n). By
induction hypothesis, let mn be such that f(t) � n = f(t � mn). If, for all m ≥ mn,
t(m) is a transition whose label is not in the domain of λ, then none of these
transitions will contribute to f(t), whence f(t) = f(t � mn) = f(t) � n, so f(t)(n)

7 The name alludes to the concept of an idle transition (Winskel and Nielsen 1995): one fixes
a symbol ∗ (which no LTS is allowed to use as a label) which is interpreted as the ‘do nothing

action’. So every LTS can be extended by adding all transitions of the form s
∗−→s which are called

idle transitions. Then partial simulations can be rephrased as mapping (proper) transitions to
(proper) transitions if defined or to idle transitions if undefined (and the latter are essentially
the idle pairs above). Albeit elegant, we don’t use this to keep notation minimal (but we’ll
encounter this idea again in section 3.6).

74 Chapter 3. Trajectory domains 2: Category

wouldn’t be defined. So let m ≥ mn be minimal such that the label of t(m) is in the
domain of λ. Then f(t � m) = f(t � mn)f(t(m)) = (f(t) � n)f(t)(n) = f(t) � n+1,
as needed.

Ad (5). If f is synchronous, each λf(α) is defined, so no f(t(n)) is idle, so
f(t � n) = f(t) � n.

Ad (6). If f(t(n)) = (s, s) is an idle pair, define g(f(t(n)) := (σg(s), σg(s)),
and accordingly write

t = t(0) t(1) t(2) t(3) . . .
f ∗(t) = f(t(0)) f(t(1)) f(t(2)) f(t(3)) . . .

g∗(f ∗(t)) := g(f(t(0))) g(f(t(1))) g(f(t(2))) g(f(t(3))) . . .

For each n ≥ 0 with t(n) = s
α−→s′ defined, we have the following equivalences:

g(f(t(n))) is idle iff f(t(n)) is idle or it is a transition but g is not defined
on it iff λf (α) is not defined or it is defined but λg(λf (α)) is not defined iff
λg◦f (α) is not defined iff g ◦ f(t(n)) is idle.

And if g(f(t(n))) and, equivalently, g ◦ f(t(n)) are not idle (i.e., are transitions),
then

g
(
f(t(n))

)
= g
(
σf (s)

λf (α)−−−→σf (s′)
)

= σg(σf (s))
σg(λf (α))−−−−−→σg(σf (s′))

= σg◦f (s)
σg◦f (α)−−−−→σg◦f (s′) = g ◦ f(t(n)).

Hence g∗(f ∗(t)) = (g ◦ f)∗(t), whence g(f(t)) = g ◦ f(t). 2

Thus, while trajectory length—i.e., ‘computation time’—may get shorter along
a partial simulation, it remains the same along a synchronous simulation (which,
again, explains the name).

3.2.2 Domain theory

We recall some basic domain theory. A standard reference is Abramsky and Jung
(1994). A partial order (D,≤) is directed complete (in short, a dcpo) if any directed
subset A ⊆ D has a least upper bound

∨
A (also called supremum). (A is directed

if A is nonempty and any two elements of A have an upper bound in A.) An
element c of a dcpo D is compact if, for all directed subsets A ⊆ D, if

∨
A ≥ c,

there is a ∈ A with a ≥ c. The set of compact elements of D is written K(D). A
dcpo D is algebraic if, for all x ∈ D, the set {c ∈ K(D) : c ≤ x} is directed and
has supremum x. Finally, an ω-algebraic dcpo is an algebraic dcpo where K(D)
is countable.

A function f : D → E between dcpos is Scott-continuous if it is monotone and
preserves all directed suprema, i.e., if A ⊆ D is directed, then f(

∨
A) =

∨
f(A).

3.2. Background 75

We write ωALG for the category of ω-algebraic dcpos with Scott-continuous
functions.

A useful fact to establish continuity is the following.

3.2.5. Lemma. Let f : D → E be a monotone function between two ω-algebraic
domains. Assume that for every ω-chain C ⊆ K(D) we have f(

∨
C) ≤

∨
f(C).

Then f is continuous.

Proof. Let A ⊆ D be directed and show f(
∨
A) =

∨
f(A). Since f is mono-

tone, we have ≥, and for ≤ we show that, if A′ ⊆ K(D) is directed, then
f(
∨
A′) ≤

∨
f(A′): Indeed, A′ is directed and countable, so it has a cofinal chain

C = a0 ≤ a1 ≤ . . ., so
∨
A =

∨
C, whence, by assumption, f(

∨
A′) = f(

∨
C) ≤∨

f(C) ≤
∨
f(A′). Now take A′ := {x ∈ K(D) : ∃a ∈ A.x ≤ a}: by algebraicity,

A′ is still directed and
∨
A′ =

∨
A, so f(

∨
A) = f(

∨
A′) ≤

∨
f(A′) ≤

∨
f(A). 2

We’ll also use the following two facts on reconstructing Scott-continuous
functions between algebraic domains from monotone functions between their
compact elements (i.e., their bases). (For the more general theory on reducing
domains to bases see Abramsky and Jung (1994, sec. 2.2.6).)

3.2.6. Lemma. Let D and E be algebraic domains and f : K(D) → K(E) an
order-isomorphism. Then f̂ : D → E defined by

f̂(x) :=
∨{

f(c) : x ≥ c ∈ K(D)}

is a well-defined order isomorphism extending f .

Proof. Well-defined: Since D is algebraic, {c ∈ K(D) : x ≥ c} is directed, so,
since f is monotone, {f(c) : x ≥ c ∈ K(D)} is a directed subset of E and hence
has a least upper bound.

Monotone: If x ≤ y, then
{
f(c) : x ≥ c ∈ K(D)} ⊆

{
f(c) : y ≥ c ∈ K(D)},

so f̂(x) =
∨{

f(c) : x ≥ c ∈ K(D)} ≤
∨{

f(c) : y ≥ c ∈ K(D)} = f̂(x).
Surjective: If y ∈ E, then B := {d ∈ K(E) : y ≥ d} is directed with

∨
B = y.

Since f is an order-isomorphism, A := f−1(B) is directed in D. Let x :=
∨
A.

We show f̂(x) = y, i.e.,
∨{

f(c) : x ≥ c ∈ K(D)} =
∨
B. Concerning ≤, given

z = f(c) for some
∨
A = x ≥ c ∈ K(D), we have, since c is compact, c ≤ a

for some a ∈ A = f−1(B), so z = f(c) ≤ f(a) ∈ B, so z ≤
∨
B. Concerning

≥, given d ∈ B ⊆ K(E), note that c := f−1(d) is in A since f(c) = d ∈ B. So
d ∈

{
f(c) : x ≥ c ∈ K(D)}, whence d ≤

∨{
f(c) : x ≥ c ∈ K(D)}.

Order-respecting: Let x, y ∈ D with f̂(x) ≤ f̂(y) and show x ≤ y. It suffices to
show, for c ∈ K(D), that c ≤ x implies c ≤ y (then x =

∨
{c ∈ K(D) : c ≤ x} ≤∨

{c ∈ K(D) : c ≤ y} = y). If c ≤ x, then f(c) ≤
∨{

f(c) : x ≥ c ∈ K(D)} ≤∨{
f(c) : y ≥ c ∈ K(D)}. Since f(c) is compact in E, there is y ≥ c′ ∈ K(D)

with f(c) ≤ f(c′), so, since f is an order-isomorphism, c ≤ c′ ≤ y, as needed.

76 Chapter 3. Trajectory domains 2: Category

Extension: If x ∈ D is compact, we have f̂(x) =
∨
f
({
c ∈ K(D) : c ≤

x}
)

= f(x) since f(x) is defined and, by monotonicity, an upper bound of
f
({
c ∈ K(D) : c ≤ x}

)
, and, since f(x) is in this set, it also is a least upper

bound. 2

3.2.7. Lemma. Let f, g : D → E be Scott-continuous functions between algebraic
domains. If f and g agree on compact elements, then f = g.

Proof. For x ∈ D, we have

f(x) = f
(∨
{c ∈ K(D) : c ≤ x}

)
=
∨

f
(
{c ∈ K(D) : c ≤ x}

)
=
∨

g
(
{c ∈ K(D) : c ≤ x}

)
= g
(∨
{c ∈ K(D) : c ≤ x}

)
= g(x),

as needed. 2

3.2.3 Category theory

We only use the basic concepts of a category, a functor, and an adjunction; as
found in standard references like Leinster (2014) or the classic Mac Lane (1998).
We follow the slightly more general terminology of Sassone, Nielsen, and Winskel
(1996) and Winskel and Nielsen (1995) and call an adjunction reflective (resp.,
co-reflective) if the counit (resp., unit) is a natural isomorphism. This generalizes
the usual terminology of a subcategory D of a category C being reflective (resp.,
co-reflective) if the inclusion I : D→ C has a left adjoint (resp., right adjoint).

3.2.4 Recap from the previous chapter

The previous chapter provides an extensive discussion and motivation of the
notion of a behavioral transition system (BTS) and its axiomatization. As already
mentioned, the main idea was to extend an LTS A by a set T of ‘globally possible’
trajectories and an equivalence relation ≡ on T indicating when two trajectories
are instances of the same (type of) behavior. To support this interpretation, the
resulting structures (A, T,≡) should satisfy five axioms:

3.2.8. Definition. A behavioral transition system (BTS) is a structure M =
(A, T,≡) where A is an LTS, T is a set of A-trajectories, and ≡ is an equivalence
relation on T such that the following holds. (For finite t, t′ ∈ T , [t] ≤M [t′] :⇔
∀t0 ∈ [t]∃t1 ∈ [t′] : t0 � t1; we just write ≤ if clear from context.)

1. For all t ∈ T , if t′ is a nonempty finite initial segment of t, then t′ ∈ T .

3.2. Background 77

2. For all infinite A-trajectories t, if 0 < n0 < n1 < . . . with t � ni ∈ T and
[t � ni] ≤ [t � ni+1] (for all i ≥ 0), then t ∈ T .

3. For all t, t′ ∈ T with t ≡ t′, if t is empty, then t′ is empty, and if t is finite,
then t′ is finite.

4. For all infinite t, t′ ∈ T , if t ≡ t′, there is i, j ≥ 1 such that, for all n ≥ 0,
t � i+ n ≡ t′ � j + n.

5. For all infinite t ∈ T and 0 < n0 < n1 < . . . and 0 < m0 < m1 < . . ., if
[t � n0] ≤ [t � n1] ≤ . . . and [t � m0] ≤ [t � m1] ≤ . . ., then, for all i ≥ 0,
there is j ≥ 0 such that [t � ni] ≤ [t � mj].

We call M countable if A is countable.

A simple construction of a BTS from an LTS A is as follows: Let T be a set of
A-trajectories that is closed under nonempty finite initial segments (axiom 1) and
satisfies the following strengthening of axiom 2:

(2)∗ For all infinite A-trajectories t, if t 6∈ T , then there is n ≥ 1 such that
t � n 6∈ T .

For example, T could be the set of all A-trajectories. Define ≡ as extensional
equivalence: for t, t′ ∈ T , define t ≡ t′ iff

• both t and t′ are empty, or

• both t and t′ are nonempty finite and last(t) = last(t′), or

• both t and t′ are infinite and there are i, j ≥ 0 such that, for all n ≥ 0,
t(i+ n) = t′(j + n).

Then, as shown in the previous chapter, M := (A, T,≡) is a BTS.
In a BTS, we can define an ‘information containment’ order. (In the previous

chapter, we’ve discussed various equivalent definitions.)

3.2.9. Definition. Let M = (A, T,≡) be a BTS. Let t ∈ T . We write [t] :=
{t′ ∈ T : t′ ≡ t}. An approximation to [t] is a pair (t†, (ni)i≥0) with t† ∈ [t]
and (ni) a strictly increasing sequence of positive integers such that the sequence
([t† � ni])i is ≤M -increasing. We call t approximable if there is an approximation
to [t]. For t, t′ ∈ T we define [t]vM [t′] iff

(a) For all approximations τ = (t†, (ni)) to [t] and τ ′ = (t‡, (mj)) to [t′], τ ′

dominates τ , i.e., ∀i ≥ 0∃j ≥ 0 : [t† � ni] ≤M [t‡ � mj].

(b) If [t] is not approximable, then [t′] is not approximable.

78 Chapter 3. Trajectory domains 2: Category

As shown in the previous chapter, vM is a preorder on T/≡ that coincides with ≤
on equivalence classes of finite trajectories. We call it the information containment
preorder of M and just write v if M is clear from context.

This definition simplifies if M = (A, T,≡) is bisimulative: i.e., for all nonempty
finite t, t′ ∈ T , if t ≡ t′ and t0 ∈ T extends t by one element, then there is a finite
extension t1 ∈ T of t′ such that t0 ≡ t1. (Equivalently, for all finite t, t′ ∈ T , if
t � t′, then [t] ≤ [t′].) As shown in the previous chapter, then, for all t, t′ ∈ T , we
have

[t]v[t′]⇔ ∀n ≥ 0∃m ≥ 0 : [t � n] ≤ [t′ � m].

The characterization theorem of the previous chapter shows that, for countable
BTSs, the information containment preorder is, in a sense, unique and the partial
order induced by the information containment preorder is an ω-algebraic domain.

3.2.10. Definition. Let M = (A, T,≡) be a countable BTS. Let T(M) be
the partial order induced by (T/≡,vM): its elements are equivalence classes
[[t]≡]v :=

{
[t′] ∈ T/≡ : [t′]vM [t], [t]vM [t′]

}
, which often just denote [[t]], and they

are ordered by [[t]]vM [[t′]] iff [t]vM [t′]. We often write vM = vM . We call T(M)
the trajectory domain of M .

Below we see, as this notation suggests, that the trajectory domain construction
T(M) extends to a functor.

3.3 Category of behavioral transition systems

We define the category BTS of behavioral transition systems (section 3.3.1) and
we prove some basic facts about its morphisms (section 3.3.2). Then we show that
the category LTS can be ‘embedded’ into BTS (section 3.3.3) and that we can
ignore non-approximable behavior (section 3.3.4).

3.3.1 Definition

The notion of morphism for LTSs extends naturally to BTSs by requiring that they
additionally preserve the structure we care about: globally possible trajectories
should be mapped to globally possible trajectories and information containment
should be preserved.

3.3.1. Definition. Let M = (AM , TM ,≡M) and N = (AN , TN ,≡N) be BTSs. A
BTS-morphism f : M → N is an LTS-morphism f : AM → AN such that

1. For all t ∈ TM , f(t) ∈ TN .

3.3. Category of behavioral transition systems 79

2. For all t, t′ ∈ TM , if [t]vM [t′], then [f(t)]vN [f(t′)].

We call f synchronous if it is a synchronous LTS-morphism.

3.3.2. Proposition. We can form the category BTS whose objects are BTSs
and whose morphisms are BTS-morphisms. The identity morphism is idM =
(idSM , idLM) and morphism composition is given by pairwise function composition.

Proof. Since LTS-morphisms already form a category, we need to check that (a)
the identity LTS-morphism indeed satisfies the additional conditions (1) and (2)
on BTS-morphism, and that (b) compositions of BTS-morphisms are again BTS-
morphism. Now, (a) is immediate, so let f : M → N and g : N → K be
BTS-morphism and show g ◦ f = (σg ◦ σf , λg ◦ λf) again satisfies conditions (1)
and (2). Indeed, concerning (1), if t ∈ TM , then f(t) ∈ TN , so g(f(t)) ∈ TK , so,
using lemma 3.2.4, g ◦ f(t) = g(f(t)) ∈ TK . And concerning (2), if t, t′ ∈ TM and
[t]vM [t′], then [f(t)]vN [f(t′)], so [g(f(t))]vK [[g(f(t′))]. So, since g(f(t)) = g◦f(t)
and g(f(t′)) = g ◦ f(t′), we have [g ◦ f(t)]vK [[g ◦ f(t′)]. 2

We define various subcategories of BTS that we’ll use below.

3.3.3. Definition. Let BTSs be the (wide) subcategory of BTS where morphisms
are required to be synchronous. Let ωBTS be the full subcategory of BTS
consisting of countable BTS. For further properties p of BTSs, let BTSp be the
full subcategory of BTS whose objects have property p. Examples of p that we’ll
use are the following: If M = (A, T,≡) is a BTS, we say M is

f full if T is the set of all A-trajectories.

e extensional if ≡ is extensional equivalence.

u unlabeled if the label set LA is a singleton.

r reflexive if, for all s ∈ SA and α ∈ LA, s
α−→s.

a approximable if every t ∈ T is approximable.

y antisymmetric if ≤M is antisymmetric (i.e., a partial order).8

Thus, for example, ωBTSa is the full category of BTS consisting of countable and
approximable BTSs. And ωBTSs

fey is the full subcategory of BTSs consisting of
countable, full, extensional, and antisymmetric BTSs. More generally, the naming
pattern is this: Categories are denoted by three upper case, sans serif letters. The
countability restriction on objects is so prominent to deserve a place at the front

8Since the letters a (as in antisymmetric) and s (as in antisymmetric) are already taken,
the next best mnemonic seems to be the letter y which appears rather idiosyncratically in
‘antisymmetric’.

80 Chapter 3. Trajectory domains 2: Category

(i.e., a prefixed ω). Restrictions on morphisms are noted as suffixed superscripts.
And restrictions on objects (other than the countability restriction) are noted as
suffixed subscripts. If there are several properties, we don’t need any notation to
separate them since a single letter stands for a unique property.

In the previous chapter we’ve established f&e⇒ bisimulative⇒ a.

3.3.2 Basic properties

We show two basic properties about BTS-morphisms: First, that their definition
simplifies considerably for various subcategories of BTS. And second, that they
preserve approximability.

3.3.4. Proposition. Let M = (AM , TM ,≡M) and N = (AN , TN ,≡N) be BTSs
and f : AM → AN an LTS-morphism. Then:

1. Assume M is approximable and N is bisimulative. Then f is a BTS-
morphism iff

(a) for all t ∈ TM , f(t) ∈ TN , and

(b) for all nonempty finite t, t′ ∈ TM , if [t] ≤M [t′], then [f(t)] ≤N [f(t′)].

2. In (1), clause (b) is implied by

(c) for all nonempty finite t, t′ ∈ TM , if t ≡M t′, then f(t) ≡N f(t′).

Moreover, if N additionally is antisymmetric, then (b) also implies (c).

3. If M and N are full and extensional, then f already is a BTS-morphism.

Proof. Ad (1). (⇒) If f is a BTS-morphism, it has property (a) by definition.
Concerning (b), let t, t′ ∈ TM be nonempty finite with [t] ≤M [t′]. Since v coincides
with ≤ on finite trajectories, we have [t]vM [t′], whence, since f is a BTS-morphism,
[f(t)]vN [f(t′)], whence, since f(t) and f(t′) are finite, [f(t)] ≤N [f(t′)].

(⇐) Assume f satisfies properties (a) and (b). By property (a), clause (1) of
being a BTS-morphism is satisfied. For clause (2), let t, t′ ∈ TM with [t]vM [t′], and
show [f(t)]vN [f(t′)]. As noted in section 3.2.4, we have, since N is bisimulative,
[f(t)]vN [f(t′)] iff ∀n∃m : [f(t) � n] ≤N [f(t′) � m]. So let n ≥ 0 and find m ≥ 0
such that [f(t) � n] ≤N [f(t′) � m].

If t is empty, then we can choose m := 0 since then [f(t) � n] = [ε] ≤N [ε] =
[f(t′) � m]. So let t be nonempty.

Since M is approximable, let (t†, (ni)) and (t‡, (mj)) be approximations to [t]
and [t′], respectively. Also let k ≥ 0 be such that f(t) � n = f(t � k). Let i ≥ 0 be
big enough such that ni > k ≥ 0. Since N is bisimulative and f(t � k) � f(t � ni),

3.3. Category of behavioral transition systems 81

we have [f(t) � n] = [f(t � k)] ≤N [f(t � ni)]. Since [t]vM [t′], there is j ≥ 0 such
that [t � ni] ≤M [t′ � mj]. We claim that we can choose m := mj.

If t′ � mj is empty, then also t � ni is empty (otherwise it cannot be extended
to a trajectory equivalent to t′ � mj), so t is empty (otherwise, since ni > 0, also
t � ni is nonempty). Hence also f(t) is empty, so [f(t) � n] = [ε] ≤N [f(t′) � mj],
as needed.

So assume t′ � mj is nonempty. Since ni > 0 and t is nonempty, also t � ni is
nonempty. And t � ni and t′ � mj are in TM qua nonempty initial segments of
the trajectories t and t′ in TM , respectively. Since [t � ni] ≤M [t′ � mj], clause (b)
implies

[f(t) � n] = [f(t � k)] ≤N [f(t � ni)] ≤N [f(t′ � mj)] ≤N [f(t′) � mj)],

where the last step follows since f(t′ � mj) � f(t′) � mj and N is bisimulative.
Ad (2). First, we show, in the setting of (1), that (c)⇒(b).
Indeed, let t, t′ ∈ TM be nonempty finite with [t] ≤M [t′]. So t can be extended

to t1 ∈ TM with t1 ≡M t′. In particular, t1 also is nonempty finite. So, by (c),
f(t) � f(t1) ≡N f(t′). Since N is bisimulative, [f(t)] ≤N [f(t1)] = [f(t′)].

Next, assume that N additionally is antisymmetric and show (b)⇒(c).
Indeed, let t, t′ ∈ TM be nonempty finite with t ≡M t′. By reflexivity of v,

[t]vM [t′] and [t′]vM [t], so, by (b), we have [f(t)]vN [f(t′)] and [f(t′)]vN [f(t)].
Since vN coincides with ≤N on finite trajectories and ≤N is antisymmetric, we
have [f(t)] = [f(t′)], so f(t) ≡N f(t′).

Ad (3). Let M and N be full and extensional. In particular, M is approximable
and N is bisimulative. By (1) and (2), it suffices to show that clauses (a) and (c) are
satisfied. Indeed, (a) is satisfied since N is full. For (c), let t, t′ ∈ TM be nonempty
finite with t ≡M t′. Since ≡M is extensional equivalence, last(t) = last(t′). Hence

last(f(t)) = σf (last(t)) = σf (last(t′)) = last(f(t′)),

so, since ≡N is extensional equivalence, f(t) ≡N f(t′). 2

3.3.5. Proposition. Let f : M → N be a BTS-morphism. If [t] is approximable
in M , then [f(t)] is approximable in N .

Proof. By assumption, there is an approximation (t†, (ni)) to [t]. It suffices to
show that f(t†) is approximable in N : Then, since t ≡ t†, we have, by reflexivity
of v, [t]vM [t†], whence, since f preserves v, [f(t)]vN [f(t†)]. By definition of v,
this implies that, if [f(t)] is non-approximable, also [f(t†)] is non-approximable.
So if [f(t†)] is approximable, also [f(t)] is.

If f(t†) is finite, it is approximable, so let it be infinte (so also t† is infinite).
Hence |f(t† � ni)| grows unboundedly (otherwise there is m such that all transitions
t†(m′) with m′ ≥ m get mapped by f to undefined transitions, so f(t†) is finite).
Let (nij)j≥0 be a subsequence such that 0 < |f(t† � nij)| < |f(t† � nij+1

)|.

82 Chapter 3. Trajectory domains 2: Category

Now, define mj := |f(t† � nij)|. Note that f(t† � nij) = f(t†) � mj.
9 Then

0 < m0 < m1 < . . . and, for any j ≥ 0, we have [t† � nij] ≤M [t† � nij+1
], so, since

f preserves v which coincides with ≤ on finite trajectories, we have

[f(t†) � mj] = [f(t† � nij)] ≤N [f(t† � nij+1
)] = [f(t†) � mj+1].

Hence, (f(t†), (mj)) is an approximation to f(t†) in N . 2

3.3.3 Embedding labeled transition systems

We have the forgetful functor G : BTS → LTS that maps a BTS M = (A, T,≡)
to the underlying LTS A and that maps a BTS-morphism f : M → N to
G(f) := f : AM → AN . Conversely, we show that there also is an optimal way of
turning an LTS into a BTS, i.e., the forgetful functor G has a left adjoint F:

LTS BTS
F

G

a

and the unit of the adjunction is an isomorphism. Thus, the computational model
LTS can be abstracted from (i.e., embedded into) the computational model BTS.
Spelled out, this means the following.

3.3.6. Proposition. The forgetful functor G : BTS → LTS is a right adjoint:
For each B in LTS there is F(B) in BTS and an isomorphism ηB : B → G(F(B))
such that, for every M in BTS and every g : B → G(M), there is a unique
morphism f : F(B)→M with G(f) ◦ ηB = g.

B G(F(B))

G(M)

g

ηB

G(f)

Proof. Construction of F(B). Define F(B) := (B, TB,≡B) with TB := ∅ and
≡B:= ∅. This is a BTS: B is an LTS, TB is a set of B-trajectories, and ≡B is an
equivalence relation on TB, and it vacuously satisfies the axioms (1)–(5).

Construction of ηB. Define ηB := idB = (idSB , idLB) : B → B = G(F(B)). This,
in particular, is an isomorphism in LTS.

Universality. Now, let M = (A, T,≡) be in BTS and let g : B → G(M) be
a morphism, and find a unique f : F(B) → M with G(f) ◦ ηB = g. Uniqueness
is immediate: if f, f ′ are such morphisms, then f = f ◦ idB = G(f) ◦ ηB = g =

9Proof: Since t† � nij � t†, we have f(t† � nij) � f(t†), so f(t† � nij) = f(t†) � |f(t† � nij)| =
f(t†) � mj .

3.3. Category of behavioral transition systems 83

G(f ′)◦ηB = f ′◦idB = f ′. For existence, it suffices to show that f := g : F(B)→M
is a BTS-morphism (since it automatically has the property G(f)◦ηB = g◦idB = g).
Indeed, it is an LTS-morphism B → G(M) of the underlying LTSs and, since
TB = ∅, it vacuously satisfies the axioms (1)–(2) of BTS-morphisms. 2

3.3.4 Removing non-approximable behavior

We show that we can systematically ignore the ‘pathological’ non-approximable
behavior: The operation A of ‘removing’ non-approximable trajectories from a
BTS yields an approximable BTS and is optimal in the sense of being right-adjoint
to the inclusion

BTS BTSa.
A

I

a

Spelled out, this means the following.

3.3.7. Theorem. The inclusion I : BTSa → BTS is a left adjoint: For each M
in BTS there is A(M) in BTSa and εM : A(M) → M such that, for every N in
BTSa and every f : N → M , there is a unique morphism g : N → A(M) with
εM ◦ g = f .

N

A(M) M

f
g

εM

Proof. Construction of A(M). Write M = (A, T,≡). Define

T ′ :=
{
t ∈ T : [t] approximable in M

}
.

Define A(M) := (A, T ′,≡′), where ≡′ is the restriction of the equivalence relation
≡ on T to the subset T ′. So T ′ is a set of A-trajectories and ≡′ an equivalence
relation on T ′, so, to verify that A(M) is in BTSa, we need to show that it satisfies
axioms (1)–(5) and is approximable.

We signal notions in A(M) by an apostrophe (e.g., ≤′ or [t]′). We first show
four claims.

(C1). For finite t, t′ ∈ T ′, we have [t]′ ≤′ [t′]′ iff [t] ≤ [t′].
Proof: For finite t ∈ T ′, we have, since finite trajectories are approximable

and since finite trajectories can only be equivalent to finite trajectories, that
[t]′ = {t′ ∈ T ′ : t′ ≡′ t} = {t′ ∈ T : t′ ≡ t} = [t]. Hence, [t]′ ≤′ [t′]′ iff
∀t0 ∈ [t]′∃t1 ∈ [t′]′ : t0 � t1 iff ∀t0 ∈ [t]∃t1 ∈ [t′] : t0 � t1 iff [t] ≤ [t′].

(C2). If (t†, (ni)) is an approximation to [t] in M , it is also an approximation
to [t]′ in A(M), and vice versa.

84 Chapter 3. Trajectory domains 2: Category

Proof: So the ni > 0 are strictly increasing and ([t† � ni]) is ≤-increasing and
t† ∈ [t]. In particular, t† ∈ T also is approximable, so t† ∈ T ′, whence also all
t† � ni are in T ′. Hence t† ∈ [t]′ and ([t† � ni]′)i is, by (C1), ≤′-increasing. So
(t†, (ni)) is an approximation to [t]′ in A(M).

Conversely, if (t†, (ni)) is an approximation to [t]′ in A(M), then (ni) is strictly
increasing and ([t† � ni]′) is ≤′-increasing and t† ∈ [t]′. So also t† ∈ [t] and, by (C1),
([t† � ni]) is ≤-increasing, so (t†, (ni)) is an approximation to [t] in M .

(C3). In particular, each t ∈ T ′ is approximable in A(M).
Proof: By definition of T ′, [t] has an approximation in M , which is, by (C2),

an approximation in A(M), so t is approximable in A(M).
(C4). For t, t′ ∈ T ′, [t]′v′[t′]′ iff [t]v[t′].
Proof: (⇒) Assume [t]′v′[t′]′, and show [t]v[t′]. Since t ∈ T ′, [t] is approximable

in M , so the (b)-condition of v is satisfied, and we need to show the (a)-condition.
So let (t†, (ni)) and (t‡, (mj)) be approximations in M to [t] and [t′], respectively,
and let i ≥ 0. By (C2), these also are approximations in A(M) to [t]′ and [t′]′,
respectively. Since [t]′v′[t′]′, there is j ≥ 0 such that [t† � ni]′ ≤′ [t‡ � mj]

′,
so, by (C1), [t† � ni] ≤ [t‡ � mj], as needed. (⇐) Assume [t]v[t′], and show
[t]′v′[t′]′. Since, by (C3), [t]′ is approximable in A(M), the (b)-condition of v′ is
satisfied, and we need to show the (a)-condition. So let (t†, (ni)) and (t‡, (mj))
be approximations in A(M) to [t]′ and [t′]′, respectively, and let i ≥ 0. By (C2),
these are also approximations in M to [t] and [t′], respectively, Since [t]v[t′], there
is j ≥ 0 such that [t† � ni] ≤ [t‡ � mj], so, by (C1), [t† � ni]′ ≤′ [t‡ � mj]

′.
Now, concerning axiom (1), assume t′ � t ∈ T ′ with t′ nonempty finite. So

t′ is approximable, and it is in T qua nonempty initial segment of t ∈ T ′ ⊆ T ,
whence t′ ∈ T ′.

Concerning axiom (2), assume t is an infinite A-trajectory and 0 < n0 < n1 <
. . . with t � ni ∈ T ′ and [t � ni]′ ≤′ [t � ni+1]

′. Then t � ni ∈ T and, by (C1),
[t � ni] ≤ [t � ni+1]. This implies that [t] is approximable in M , and, since M
satisfies this axiom (2), t ∈ T . Hence t ∈ T ′.

Concerning axiom (3), if t, t′ ∈ T ′ with t ≡′ t′, then t, t′ ∈ T with t ≡ t′, so, if
t is empty, also t′ is empty, and if t is finite, also t′ is finite, as needed.

Concerning axiom (4), if t, t′ ∈ T ′ are infinite with t ≡′ t′, then t, t′ ∈ T are
infinite with t ≡ t′, so there is i, j ≥ 1 such that, for all n ≥ 0, t � i+n ≡ t′ � j+n,
whence, since these trajectories are in T ′ (qua nonempty finite initial segments of
trajectories in T ′), t � i+ n ≡′ t′ � j + n, as needed.

Concerning axiom (5), assume t ∈ T ′ is infinite and (ni) and (mj) are strictly
increasing with ([t � ni]′)i and ([t � mj]

′)j ≤′-increasing. By (C1), ([t � ni])i and
([t � mj])j are ≤-increasing. So, for all i ≥ 0, there is j ≥ 0 with [t � ni] ≤ [t � mj],
so, by (C1), [t � ni]′ ≤′ [t � mj]

′, as needed.
Finally, A(M) is approximable by (C3).
Construction of εM . Write A = (S, i, L,→) for the underlying LTS of M .

Let εM := (idS, idL) be the identity LTS-morphism. To show that it is a BTS-
morphism, we need to verify properties (1) and (2). Concerning (1), if t ∈ T ′,

3.4. Trajectory domain functor 85

then εM (t) = t ∈ T since T ′ ⊆ T . Concerning (2), if t, t′ ∈ T ′ with [t]′v′[t′]′, then,
by (C4), [εM(t)] = [t]v[t′] = [εM(t′)].

Universality. Now, let N be in BTSa and f : N →M a BTS-morphism. We
need to find a unique morphism g : N → A(M) with εM ◦ g = f .

Uniqueness is immediate: if g, g′ are such morphisms, we have, since εM is
the identity LTS-morphism, g = εM ◦ g = f = εM ◦ g′ = g′. For existence,
we need to show that g := f : N → A(M) is a BTS-morphism. It is an LTS-
morphism AN → A, so we need to show that it satisfies properties (1) and (2) of
a BTS-morphism.

Concerning (1), if t ∈ TN , then, qua BTS-morphism N →M , f(t) ∈ T . Since
[t] is approximable in N (since N is in BTSa), [f(t)] is, by proposition 3.3.5,
approximable in M , so f(t) ∈ T ′.

Concerning (2), assume t, t′ ∈ TN with [t]vN [t′]. Since f is a BTS-morphism
N → M , we have [f(t)]v[f(t′)]. Since f(t), f(t′) ∈ T ′, we have, by (C4), that
[f(t)]′v′[f(t′)]′, as needed. 2

We also note that the adjunction restricts to the countable case.

ωBTSs ωBTSs
a

A

I

a

Indeed, if M is in ωBTSs, then the LTS A underlying M is countable, so, since
A is also the LTS underlying A(M), also A(M) is countable and hence in ωBTSs.
Moreover, the morphism εM : A(M) → M is in ωBTSs since it is synchronous
(λεM is the identity).

3.4 Trajectory domain functor

We show that the trajectory domain construction is functorial: it naturally
extends to a functor from the category ωBTS to the category ωALG of ω-algebraic
domains with Scott-continuous functions. This will follow easily from the following
proposition.

3.4.1. Proposition. Let M and N be in ωBTS and f : M → N a BTS-
morphism. Then the function T(f) : T(M) → T(N) given by [[t]] 7→ [[f(t)]]
is well-defined and Scott-continuous.

Proof. Well-defined: Since t ∈ TM , f(t) ∈ TN , so [[f(t)]] ∈ T(N), and if [[t]] =
[[t′]], then [t]v[t′] and [t′]v[t], so, by clause (2) of BTS-morphisms, [f(t)]v[f(t′)]
and [f(t′)]v[f(t)], so [[f(t)]] = [[f(t′)]]. Similarly, we see that T(f) is monotone.

Thus, T(f) is a monotone function between the two ω-algebraic domains T(M)
and T(N). So to show that it is continuous, it suffices, by lemma 3.2.5, to show
that, for an ω-chain C ⊆ K(T(M)), we have T(f)(

∨
C)v

∨
T(f)(C).

86 Chapter 3. Trajectory domains 2: Category

Now, C is of the form [[t0]]v[[t1]]v . . . for ti ∈ TM , whence [t0] ≤ [t1] ≤ If
C has a greatest element (i.e., ‘stagnates’ with some [tk]), the claim is immediate
by monotonicity. So we can assume without loss of generality that the chain is
strictly increasing, doesn’t start with [ε], and all tk are finite (if some tk were
infinite, it must be non-approximable since it is compact, so it would be maximal).

Let t′0 := t0 ∈ [t0] and n0 := |t′0| > 0. Then we can extend t′0 to t′1 ∈ [t1] and
have n1 := |t′1| > |t′0| = n0. We continue and extend t′1 to t′2 ∈ [t2], etc., and define
t ∈ T by: t(n) := t′k(n) for some k with |t′k| > n. Then C = [[t � n0]] ≤ [[t � n1]] ≤
. . ., so, by the characterization theorem (from the previous chapter),

∨
C = [[t]].

Moreover, T(f)(C) = {[[f(t � n0)]], [[f(t � n1)]], . . .}.
By monotonicity, [f(t)] is a v-upper bound of T(f)(C). So if f(t) is finite,

there is a big enough ni such that f(t) = f(t � ni), so [[f(t)]] ∈ T(f)(C) is the
least upper bound, i.e., T(f)(

∨
C) = T(f)([[t]]) =

∨
T(f)(C).

So assume f(t) is infinite. For each ni define mi := |f(t � ni)|. Then
f(t � ni) = f(t) � mi (since f(t � ni) is an initial segment of f(t) of length mi).
Note that mi ≤ mi+1 and [f(t) � mi] = [f(t � ni)] ≤ [f(t � ni+1)] = [f(t) � mi+1].
And the mi grow unboundedly (if not, f(t) would be finite). Pick a subsequence
(mij)j that is strictly increasing with mi0 > 0. Then we have, by the characteriza-
tion theorem, that [[f(t)]] =

∨
i[[f(t) � mi]]. And since [f(t) � mi] ∈ T(f)(C), we

have T(f)(
∨
C) = T(f)([[t]]) = [[f(t)]] =

∨
[f(t) � mi]v

∨
T(f)(C), as needed. 2

3.4.2. Theorem. We have the trajectory domain functor T : ωBTS → ωALG
which sends a BTS M to its trajectory domain T(M) and which sends a BTS-
morphism f : M → N to the Scott-continuous function T(f) : T(M) → T(N)
defined by [[t]] 7→ [[f(t)]].

Proof. It remains to check that T satisfies the compositionality conditions.
Indeed, T(idM) maps [[t]] to [[idM(t)]] = [[t]] and hence is the identity on T(M).
And if f : M → N and g : N → K are BTS-morphisms, then we have, for all
t ∈ TM , that g ◦ f(t) = g(f(t)), hence

T(g) ◦ T(f)
(
[[t]]
)

= T(g)
(
T(f)([[t]])

)
= T(g)

(
[[f(t)]]

)
= [[g(f(t))]] = [[g ◦ f(t)]] = T(g ◦ f)

(
[[t]]
)
,

so T(g ◦ f) = T(g) ◦ T(f). 2

Three comments: First, when restricting to approximable BTSs, any simulation
between BTSs is turned by T into a Scott-continuous function that preserves
compactness (i.e., maps compact elements to compact elements): If f : M → N is
in ωBTSa and [[t]] ∈ T(M) is compact, then t is a finite trajectory, so T(f)([[t]]) =
[[f(t)]] ∈ T(N) is compact since f(t) is finite.

Second, the fact that T(f) preserves compactness is, in a sense, the consequence
of LTS-morphisms being ‘uniform’ or ‘context insensitive’: Whether a state s

3.5. Adjunction between systems and domains 87

or label α in A is mapped to a state s′ or label α′ in B has to be determined
without reference to the context—i.e., trajectory—in which s and α occur. Thus,
one might consider generalized BTS-morphisms that can be sensitive to context
(but are insensitive to informationally equivalent trajectories) as Scott-continuous
functions T(M)→ T(N). Here, tough, we stick to the standard definition.

Third, since T is a functor, it maps isomorphisms to isomorphisms. So
equivalence in operational semantics in the sense of isomorphism of countable
BTSs implies equivalence in denotational semantics in the sense of isomorphism of
the trajectory domains. In the context of the discussion of full abstraction (Cardone
2021; Ong 1995), this is the difficult direction in establishing the coincidence of
operational and denotational semantics (since in that setup the denotational
semantics usually is too rich). Here it is the other way round since the denotation
abstracts away information as will become clear in the next section. We discuss
this further in section 3.7.

3.5 Adjunction between systems and domains

As motivated in the introduction, the functor T : ωBTS → ωALG invites the
question whether the computational model ωALG is an abstraction of the com-
putational model ωBTS. In this section, we tackle this question—as explained
in the introduction—by establishing an adjunction ωBTSs

a � iALG obtained as a
composition of the following three reflective adjunctions:

ωBTSs
a ωBTSs

fey ωBTSs
feyur iALG

E

I

a

U

I

a

Ti

B

a

The following three subsections establish these three adjunctions in turn (from left
to right) and also formally define (and recall) the involved categories and functors.

Thus, we can indeed think of the computational model iALG as an abstraction
of the computational model ωBTSs

a.

3.5.1 Extensionalizing

Recall that if a BTS M is full and extensional, it in particular is approximable,
so we have the inclusion I : ωBTSs

fey → ωBTSs
a. (To recall, f stands for full, e for

extensional, and y for antisymmetric.) In this subsection, we show that this is
a right adjoint: i.e., there is an optimal way of rendering an M in ωBTSs

a full,
extensional, and antisymmetric.

ωBTSs
a ωBTSs

fey

E

I

a

88 Chapter 3. Trajectory domains 2: Category

Spelled out, this means the following.

3.5.1. Proposition. The inclusion I : ωBTSs
fey → ωBTSs

a is a right adjoint: For
each M in ωBTSs

a there is E(M) in ωBTSs
fey and ηM : M → E(M) such that,

for every N in ωBTSs
fey and every g : M → N , there is a unique morphism

f : E(M)→ N with f ◦ ηM = g.

M E(M)

N

g

ηM

f

Proof. Construction of E(M). Write M = (A, T,≡) and A = (S, i, L,→).
First, we define a preliminary LTS A0: Define the equivalence relation ∼0 on

S by

s ∼0 s
′ :⇔ s = s′ or ∃t, t′ ∈ T nonempty finite : last(t) = s, last(t′) = s′, t ≡ t′.10

Write the equivalence classes as [s]0. Now, we define A0 := (S0, i0, L0,→0) as:

• S0 := S/ ∼0, i0 := [i]0, L0 := L.

• [s]0
α−→0[s

′]0 iff ∃s0 ∈ [s]0∃s1 ∈ [s′]0 : s0
α−→s1.

Next we define the actual LTS A1: Define an equivalence relation ∼1 on S0

by: [s]0 ∼1 [s′]0 iff, roughly, there is a (possibly empty) path in A0 from [s]0 to
[s′]0 and one from [s′]0 back to [s]0. Precisely:

[s]0 ∼1 [s′]0 iff [s]0 = [s′]0 or there is a nonempty finite A0-trajectory t starting
in [s]0 and ending in [s′]0 and there is a nonempty finite A0-trajectory t′

starting in [s′]0 and ending in [s]0.
11

(This is a very familiar concept: if we think of states as topological spaces
and trajectories as continuous functions between these spaces with a trivial
notion of homotopy between functions, then [s]0 ∼1 [s′]0 means that [s]0 and
[s′]0 are homotopy equivalent.) So, essentially, ∼1 clusters S0 into its connected
components.

Write the equivalence classes as [[s]0]1. We define A1 := (S1, i1, L1,→1) as:

10This is indeed an equivalence relation: It is reflexive by construction. Symmetry is immediate
since ≡ is symmetric. And for transitivity: if s ∼0 s

′ and s′ ∼0 s
′′, then if one or both of these

relations hold due to identity, we immediately get s ∼0 s
′′, so assume these relations hold since

there are nonempty finite t, t′, t′′ ∈ T with last(t) = s, last(t′) = s′, last(t′′) = s′′, t ≡ t′, and
t′ ≡ t′′, then we have, by transitivity of ≡, that t ≡ t′′, so s ∼0 s

′′, as needed.
11This is indeed an equivalence relation: It is reflexive by construction. Symmetry is immediate

(swap t and t′). And for transitivity: if [s]0 ∼1 [s′]0 and [s′]0 ∼1 [s′′]0, then if one or both of
these relations hold due to identity, we immediately get [s]0 ∼1 [s′′]0, and if we have the loop
(t0, t

′
0) between [s]0 and [s′]0 and the loop (t1, t

′
1) between [s′]0 and [s′′]0, then (t0t1, t

′
1t
′
0) is a

loop between [s]0 and [s′′]0.

3.5. Adjunction between systems and domains 89

• S1 := S0/ ∼1, i1 := [i0]1, L1 := L0 = L.

• [[s]0]1
α−→1[[s

′]0]1 iff ∃[sa]0 ∈ [[s]0]1∃[sb]0 ∈ [[s′]0]1 : [sa]0
α−→0[sb]0.

Then we define E(M) := (A1, T1,≡1) where T1 is the set of all A1-trajectories and
≡1 is extensional equivalence.

So E(M) is a full and extensional BTS (as mentioned in section 3.2.4), and it
is countable (since L1 = L is countable and |S1| ≤ |S0| ≤ |S| ≤ ω is countable).
So we need to show that it is antisymmetric:

Assume t, t′ ∈ T1 are finite with [t] ≤ [t′] and [t′] ≤ [t], and show [t] = [t′].
If t or t′ are empty, this implies that both are empty, so [t] = [t′]. So let both
be nonempty. If last(t) = last(t′), then t ≡1 t

′ and the claim follows. So let
last(t) 6= last(t′). Then there is nonempty path ta in A1 from last(t) to last(t′)
and a nonempty path tb in A1 from last(t′) to last(t). Write

ta : last(t) = [[s0]0]1
α1−→1[[s

1]0]1
α2−→1 . . .

αn−→1[[s
n]0]1 = last(t′)

tb : last(t′) = [[r0]0]1
α′1−→1[[r

1]0]1
α′2−→1 . . .

α′m−−→1[[r
m]0]1 = last(t).

We show that [s0]0 ∼1 [sn]0, so last(t) = last(t′), whence t ≡1 t
′, as needed.

By definition, for i = 0, . . . , n− 1, there is [sia]0 ∈ [[si]0]1 and [si+1
b]0 ∈ [[si+1]0]1

with [sia]0
αi+1−−→0[s

i+1
b]0. Similarly, for j = 0, . . . ,m− 1, there is [rja]0 ∈ [[rj]0]1 and

[rj+1
b]0 ∈ [[rj+1]0]1 with [rja]0

α′j+1−−→0[r
j+1
b]0. Thus,

[s0]0 ∼1 [s0a]0
α1−→0[s

1
b]0 ∼1 [s2a]0

α2−→0 . . .
αn−→0[s

n
b]0 ∼1 [sn]0 ∼1 [r0]0

∼1 [r0a]
α′1−→0[r

1
b]0 ∼1 [r2a]0

α′2−→0 . . .
α′m−−→0[r

m
b]0 ∼1 [rm]0 ∼1 [s0]0.

Note that [s]0 ∼1 [s′]0 in particular means that there is a (possibly empty) path
in A0 from [s]0 to [s′]0. So we have:

• from [s0]0 there is a (possibly empty) A0-path to [s0a]0, from which there is a
(one-step) A0-path to [s1b]0, from which there is (possibly empty) A0-path
to [s2a]0, from which . . . , from which there is a (one-step) A0-path to [snb]0,
from which there is (possibly empty) A0-path to [sn]0

• from [sn]0 there is a (possibly empty) A0-path to [r0a]0, from which there is
a (one-step) A0-path to [r1b]0, from which there is (possibly empty) A0-path
to [r2a]0, from which . . . , from which there is a (one-step) A0-path to [rmb]0,
from which there is (possibly empty) A0-path to [s0].

In sum, there is a nonempty A0-path from [s0]0 to [sn]0, and there is a nonempty
A0-path from [sn]0 to [s0]0. Hence [s0]0 ∼1 [sn]0, as needed.

Construction of ηM . We define ηM := (σ, λ) : M → E(M) by σ : S → S1, s 7→
[[s]0]1 and λ : L→ L1, α 7→ α.

90 Chapter 3. Trajectory domains 2: Category

This is an LTS-morphism: First, it maps i to [[i]0]1 = i1. Second, assume

s
α−→s′ in A. Note that λ(α) always is defined, so we need to show σ(s)

λ(α)−−→σ(s′).
Indeed, since α ∈ L and s ∈ [s]0 and s′ ∈ [s′]0, we have, by definition, [s]0

α−→0[s
′]0.

Similarly, [[s]0]1
α−→1[[s

′]0]1, i.e., σ(s)
λ(α)−−→σ(s′).

We see that it is an BTS-morphism M → E(M) as follows. Since M is
approximable and E(M) is bisimulative (since full and extensional), we can apply
proposition 3.3.4. So it suffices to show: (a) for all t ∈ T , ηM(t) ∈ T1, and (c) for
all nonempty finite t, t′ ∈ T , if t ≡ t′, then ηM(t) ≡1 ηM(t′).

Since T1 is the set of all A′-trajectories, (a) is trivial. Concerning (c), assume
t, t′ ∈ T are nonempty finite with t ≡ t′. Note that, since λ is total, ηM(t) and
ηM(t′) are nonempty finite, too. Write s := last(t) and s′ := last(t′). So s ∼0 s

′,
whence σ(s) = [[s]0]1 = [[s′]0]1 = σ(s′), so

last(ηM(t)) = σηM (last(t)) = σ(s) = σ(s′) = σηM (last(t′)) = last(ηM(t′)).

Since ≡1 is extensional equivalence, we have ηM(t) ≡1 ηM(t′).
Finally, since λ is total, ηM is synchronous, whence a morphism in ωBTSs

a.
Universality. Now, let N be in ωBTSs

fey and let g : M → N be a morphism,
and find a unique f : E(M)→ N with f ◦ ηM = g.

Concerning uniqueness, Assume f, f ′ are such morphisms. On labels, since
ληM is the identity, we have λf = λf ◦ ληM = λg = λf ′ ◦ ληM = λf ′ . On states, we
have, for a state [[s]0]1 in E(M), that

σf ([[s]0]1) = σf ◦ σηM (s) = σg(s) = σf ′ ◦ σηM (s) = σf ′([[s]0]1).

Concerning existence, define f = (σf , λf) as follows: λf := λg, and σf :
SE(M) → SN is defined by

σf ([[s]0]1) := σg(s).

To show that this is well-defined, we show (a) if s ∼0 s
′, then σg(s) = σg(s

′), and
(b) if [s]0 ∼1 [s′]0, then σg(s) = σg(s

′).
Concerning (a), assume s ∼0 s

′ and show σg(s) = σg(s
′). If s = s′, this is

trivial, so assume s 6= s′. Then, by definition of ∼0, there are nonempty finite
t, t′ ∈ T with last(t) = s, last(t′) = s′, and t ≡ t′. In particular, [t]vM [t′] and
[t]vM [t′]. Since BTS-morphisms preserve v, [g(t)]vN [g(t′)] and [g(t′)]vN [g(t)].
Since v agrees with ≤ on finite trajectories, [g(t)] ≤N [g(t′)] and [g(t′)] ≤N [g(t)].
Since N is antisymmetric, [g(t)] = [g(t′)], whence g(t) ≡N g(t′). Moreover, g(t)
and g(t′) also are nonempty finite since g is synchronous, so, since N is extensional,
they have the same last state. So

σg(s) = σg(last(t)) = last(g(t)) = last(g(t′)) = σg(last(t′)) = σg(s
′).

Concerning (b), assume [s]0 ∼1 [s′]0 and show σg(s) = σg(s
′). If [s]0 = [s′]0,

then, by (a), σg(s) = σg(s
′), so assume [s]0 6= [s′]0. Then, by definition of ∼1,

3.5. Adjunction between systems and domains 91

there is a nonempty finite A0-trajectory t (resp., t′) starting in [s]0 (resp., [s′]0)
and ending in [s′]0 (resp., [s]0). We show that there is a nonempty finite path ta in
N from σg(s) to σg(s

′) and another one tb back. Then, since N is extensional and
full, [ta] ≤ [tatb] = [tb] and [tb] ≤ [tbta] = [ta], so tb ≡ ta, so, since N is extensional,
σg(s) = last(tb) = last(ta) = σg(s

′), as needed.

Write t as [s0]0
α1−→0[s

1]0
α2−→0 . . .

αn−→0[s
n] with s0 = s and sn = s′. For each

i = 0, . . . , n−1, there is, by definition, sia ∈ [si]0 and si+1
b ∈ [si+1]0 with sia

αi+1−−→si+1
b .

Thus,

s = s0 ∼0 s
0
a
α1−→s1b ∼0 s

1 ∼0 s
2
a
α2−→s2b ∼0 s

2 ∼0 s
3
a
α3−→ . . .

αn−→snb ∼0 s
n = s′

By applying the synchronous LTS-morphism g = (σg, λg) we get, using (a), that

σg(s) = σg(s
0) = σg(s

0
a)

λg(α1)−−−−→σg(s1b) = σg(s
1) = σg(s

2
a)

λg(α2)−−−−→

σg(s
2
b) = σg(s

2) = σg(s
3
a)

λg(α3)−−−−→ . . .
λg(αn)−−−−→σg(snb) = σg(s

n) = σg(s
′)

This is a nonempty path ta in N from σg(s) to σg(s
′). Similarly, the nonempty

finite A0-trajectory t′ from [s′]0 to [s]0 yields a nonempty path tb in N from σg(s
′)

to σg(s), as needed.
Next, we show that f is an LTS-morphism. First, we have σf (i1) = σf ([[i]0]1) =

σg(i) = iN . Second, assume [[s]0]1
α−→1[[s

′]0]1 in E(M). Since λf = λg is always

defined (qua synchronous morphism), we need to show σf ([[s]0]1)
λf (α)−−−→σf ([[s′]0]1).

Indeed, by definition, there is [sa]0 ∈ [[s]0]1 and [sb]0 ∈ [[s′]0]1 such that
[sa]0

α−→0[sb]0. So, again by definition, there is sc ∈ [sa]0 and sd ∈ [sb]0 such
that sc

α−→sd. Note that [sc]0 = [sa]0, so [[sc]0]1 = [[sa]0]1 = [[s]0]1, and similarly
[[sd]0]1 = [[s′]0]1. Since g is an LTS-morphism, we have

σf ([[s]0]1) = σf ([[sc]0]1) = σg(sc)
λg(α)=λf (α)−−−−−−−→σg(sd) = σf ([[sd]0]1) = σf ([[s

′]0]1).

Also note that, by construction, f ◦ ηM = g (as LTS-morphisms): On labels,
λf ◦ ληM = λf = λg. On states, for s ∈ SM , σf ◦ σηM (s) = σf ([[s]0]1) = σg(s).

So it remains to show that f is a BTS-morphism (we already know it to
be synchronous). Since E(M) and N are extensional and full, this follows by
proposition 3.3.4. 2

3.5.2 Unlabeling and reflexing

In this subsection, we show that there is an optimal way of rendering an M
in ωBTSs

fey unlabeled and reflexive (recall that u stands for unlabeled and r for
reflexive):

92 Chapter 3. Trajectory domains 2: Category

ωBTSs
fey ωBTSs

feyur

U

I

a

Spelled out, this means the following.

3.5.2. Proposition. The inclusion I : ωBTSs
feyur → ωBTSs

fey is a right adjoint:
For each M in ωBTSs

fey there is U(M) in ωBTSs
feyur and ηM : M → U(M) such

that, for every N in ωBTSs
feyur and every g : M → N , there is a unique morphism

f : U(M)→ N with f ◦ ηM = g.

M U(M)

N

g

ηM

f

Proof. Construction of U(M). Write M = (A, T,≡) and A = (S, i, L,→). Define
U(M) = (A′, T ′,≡′) with A′ = (S ′, i′, L′,→′) as

• S ′ := S, i′ := i, L′ := {·} (where · is some object),

• s
·−→
′
s′ iff (a) s = s′ or (b) ∃α ∈ L : s

α−→s′.

• T ′ is the set of all A′-trajectories

• ≡′ is extensional equivalence.

Then U(M) is a countable, full and extensional BTS. It is unlabeled and reflexive
by construction. So we need to show that it still is antisymmetric:

Let t, t′ ∈ T ′ be finite with [t] ≤ [t′] and [t′] ≤ [t] in U(M). If t or t′ is empty,
this implies that both are empty, whence [t] = [t′], so let both be nonempty. Write
s := last(t) and s′ := last(t′) and show s = s′ (whence t ≡ t′).

By the assumption, there is a (possibly empty) A′-path t0 from s to s′ and a
(possibly empty) A′-path t1 from s′ to s. If t0 or t1 are empty, then s = s′, as needed.
So assume both are nonempty. Write t0 = t0(0) . . . t0(n) and t1 = t1(0) . . . t1(m).
Let t∗0 be the result of deleting those t0(i) of the form (s, ·, s). Thus, t∗0 is still an
A′-trajectory, and if t∗0 is empty, then s = s′, as needed. Similarly, let t∗1 be the
result of deleting those t1(j) of the form (s, ·, s). Thus, t∗1 is still an A′-trajectory,
and if t∗0 is empty, then s = s′, as needed.

So assume both t∗0 and t∗1 are nonempty. In particular, they still start in s
(resp., s′) and end in s′ (resp., s). Write n∗ := |t∗0| ≥ 1 and m∗ := |t∗1| ≥ 1.
Then each t∗0(i) (with i = 0, . . . , n∗ − 1) must be due to clause (b), i.e., of the

form si
·−→s′i such that there is αi ∈ L with si

αi−→s′i. Similarly, each t∗1(j) (with

3.5. Adjunction between systems and domains 93

j = 0, . . . ,m∗ − 1) must be due to clause (b), i.e., of the form rj
·−→r′j such that

there is α′j ∈ L with rj
α′j−→r′j. But then we have the following A-trajectories

ta : s = s0
α0−→s′0 = s1

α1−→s′1 = s2
α2−→ . . .

αn∗−1−−−→s′n∗−1 = s′

tb : s′ = r0
α′0−→r′0 = r1

α′1−→r′1 = r2
α′2−→ . . .

α′
m∗−1−−−−→r′m∗−1 = s

So, since M is full and extensional, [tb] ≤ [tbta] = [ta] and [ta] ≤ [tatb] = [tb], so,
since M is antisymmetric, tb ≡ ta, so s = last(tb) = last(ta) = s′, as needed.

Construction of ηM . We define ηM = (σ, λ) : M → U(M) as follows: σ : SM →
SU(M), s 7→ s and λ : LM → LU(M), α 7→ ·.

This is an LTS-morphism: It maps iM to iM = iU(M) and if s
α−→s′, then λ(α) = ·

is defined and, by clause (b), s
λ(α)=·−−−−→s′.

Moreover, it is synchronous and, qua LTS-morphism between full and exten-
sional systems, also a BTS-morphism.

Universality. Now let N be in ωBTSs
feyur and let g : M → N be a morphism.

Find a unique morphism f : U(M)→ N with f ◦ ηM = g.
Uniqueness: Let f, f ′ be two such morphisms. On labels, they have to map

the one label of U(M) to the one label of N qua synchronous morphisms between
unlabeled systems. On states, let s ∈ SU(M). Then σf (s) = σf ◦ σηM (s) = σg(s) =
σf ′ ◦ σηM (s) = σf ′(s).

Existence: Define f = (σf , λf) : U(M)→ N by σf : SU(M) = SM → SN , s 7→
σg(s) and λf as the unique function from the singleton LU(M) to the singleton LN .

This is an LTS-morphism: First, it maps iU(M) = iM to σg(iM) = iN . Second,

assume s
·−→s′, and show, since λf(·) = ·N is defined, that σf(s)

λf (·)−−−→σf(s′). If

s
·−→s′ is due to clause (a), then s = s′, so σf(s) = σf(s

′), whence, since N is

reflexive, σf(s)
λf (·)−−−→σf(s′). If s

·−→s′ is due to clause (b), then there is α ∈ LM
with s

α−→s′. Since g is a synchronous LTS-morphism, λg(α) = ·N is defined and

σf (s) = σg(s)
·N=λf (·)−−−−−→σg(s′) = σf (s

′).
Moreover, f is synchronous and, qua LTS-morphism between full and exten-

sional systems, also a BTS-morphism. 2

3.5.3 Adjunction to domains

In this subsection, we establish the remaining reflective adjunction. We show that
with a slight extension Ti of the trajectory domain construction we can go from
ωBTSs

feyur to iALG, and we show that there is an optimal way back: i.e.,

ωBTSs
feyur iALG

Ti

B

a

94 Chapter 3. Trajectory domains 2: Category

is a reflective adjunction.
First, we need to define iALG and then Ti. In the introduction, we’ve already

motivated and intuitively defined the category iALG. The formal definition is as
follows.

3.5.3. Definition. An initialized domain (or, in full, an initialized ω-algebraic
dcpo) is a pair (D, c) where D is an ω-algebraic dcpo and c ∈ K(D). We call c
the initial element of D.

A morphism f : (D, c) → (E, d) between initialized domains is a Scott-
continuous function f : D → E that preserves compactness (if x ∈ K(D), then
f(x) ∈ K(E)) and the initial element (f(c) = d).

Let iALG be the category of initialized domains and their morphisms (the
identity morphism is the identity function and morphism composition is function
composition).

Intuitively, in a domain with a least element, the least element acts like an
‘initial’ element. But in the absence of a least element, many choices of an initial
element are possible, and the notion of an initialized domain makes these choices
explicit.

In particular, we have a forgetful functor Gi : iALG→ ωALG sending (D, c) to
D and f : (D, c)→ (E, d) to f : D → E.

The trajectory domain of a system in ωBTSs
feyur naturally yields an initialized

domain.

3.5.4. Lemma. The following defines a functor Ti : ωBTSs
feyur → iALG:

• For M in ωBTSs
feyur, define Ti(M) :=

(
T(M) \ {[[ε]]}, [[iM

·M−→iM]]
)
.

• For f : M → N in ωBTSs
feyur, define Ti(f) := T(f) \ {([[ε]], [[ε]])}.

Proof. First, we show that Ti(M) is in iALG. We already know that T(M) is
an ω-algebraic domain and since M is full, ε ∈ TM , so [[ε]] is the least element of
T(M) (since M is bisimulative, it suffices to note that, for every n ≥ 0, there is
m := 0 ≥ 0 such that [ε � n] = [ε] ≤ [t � m]). So, after removing the least element,
T(M) \ {[[ε]]} still is an ω-algebraic domain, and its compact elements are those of

T(M) minus the least element.12 Moreover, since M is full and reflexive, i
·−→i ∈ T ,

whence [[i
·−→i]] ∈ K

(
T(M) \ {[[ε]]}

)
.

12To show this in detail: Let D be an ω-algebraic dcpo with least element ⊥, and show that
D′ := D \ {⊥} (with the inherited order) is again an ω-algebraic dcpo. Indeed, D′ is a partial
order, and it is directed: If A ⊆ D′ is directed, then also A ⊆ D is directed, so x :=

∨
A exists

in D and x ∈ D′ (because there is, since A is nonempty, some a ∈ A ⊆ D′, so ⊥ < a ≤ x) and
x is a least upper bound of A in D′. Also note that if A ⊆ D is directed with

∨
A 6= ⊥, then

A′ := A \ {⊥} ⊆ D′ is directed and
∨
A =

∨
A′. So, for all x ∈ D′, we have: x is compact

in D′ iff x is compact in D. Hence K(D′) = K(D) \ {⊥}. In particular, K(D′) is countable.
So it remains to show algebraicity: If x ∈ D′, then A := {c ∈ K(D) : c ≤ x} is directed and∨
A = x > ⊥, so A \ {⊥} = {c ∈ K(D′) : c ≤ x} is directed and

∨
A \ {⊥} =

∨
A = x, as

needed.

3.5. Adjunction between systems and domains 95

Second, we show that Ti(f) : Ti(M)→ Ti(N) is a morphism between initialized
domains. First, it is well-defined: T(f) : T(M) → T(N) is a Scott-continuous
function that maps [[ε]] to [[ε]] and any [[t]] with t nonempty to [[f(t)]] with
f(t) nonempty since f is synchronous. So T(f) \ {([[ε]], [[ε]])} : T(M) \ {[[ε]]} →
T(N)\{[[ε]]} is a well-defined function and it still is Scott-continuous.13 Moreover,
if [[t]] is compact, then t ∈ TM is finite, so f(t) ∈ TN is finite, so T(f)([[f(t)]]) is

compact. And we have T(f)([[iM
·M−→iM]]) = [[f(iM

·M−→iM)]] = [[iN
·N−→iN]].

Third, the functor conditions are satisfied: We have

Ti(idM) = T(idM) \ {([[ε]], [[ε]])} = idT(M) \ {([[ε]], [[ε]])} = idTi(M)

and

Ti(g ◦ f) = T(g ◦ f) \ {([[ε]], [[ε]])} =
(
T(g) ◦ T(f)

)
\ {([[ε]], [[ε]])}

= T(g) \ {([[ε]], [[ε]])} ◦ T(f) \ {([[ε]], [[ε]])} = Ti(g) ◦ Ti(f),

as needed. 2

In fact, this functor Ti : ωBTSs
feyur → iALG has a right adjoint.

3.5.5. Proposition. The functor Ti : ωBTSs
feyur → iALG is a left adjoint: For

each (D, c) in iALG there is B(D, c) in ωBTSs
feyur and an isomorphism ε(D,c) :

TiB(D, c)→ (D, c) such that, for every M in ωBTSs
feyur and every f : Ti(M)→

(D, c), there is a unique morphism g : M → B(D, c) with ε(D,c) ◦ Ti(g) = f .

M Ti(M)

B(D, c) TiB(D, c) (D, c)

g f
Ti(g)

ε(D,c)

Proof. Construction of B(D, c). We define B(D, c) := (A, T,≡) with A :=
(S, i, L,→) as follows:

• S := K(D), i := c, L := {·},

• s
·−→s′ iff s ≤ s′.

• T is the set of all A-trajectories,

• ≡ is extensional equivalence.

13If A ⊆ T(M) \ {[[ε]]} is directed, also A ⊆ T(M) is directed, so Ti(f)
(∨

A
)

= T(f)
(∨

A
)

=∨
T(f)

(
A
)

=
∨
Ti(f)

(
A
)
.

96 Chapter 3. Trajectory domains 2: Category

So B(D, c) is a full and extensional BTS. It is countable since K(D) is countable
(D is ω-algebraic). It is unlabeled and reflexive by construction. And it is
antisymmetric: For t, t′ ∈ T , if [t] ≤ [t′] and [t′] ≤ [t], then, if t or t′ are empty,
[t] = [ε] = [t′], and if both t and t′ are nonempty, there is a (possibly empty)
path from last(t) to last(t′) and one from last(t′) to last(t), which, by definition
of →, means last(t) ≤ last(t′) ≤ last(t), so, since (D,≤) is a partial order,
last(t) = last(t′), so t ≡ t′. Hence B(D, c) is in ωBTSs

feyur.

Construction of ε(D,c). We first show that the function ϕ : K
(
T(B(D, c)) \

{[[ε]]}
)
→ K(D) given by [[t]] 7→ last(t) is a well-defined order-isomorphism (then

we’ll define ε(D,c) as an extension of ϕ). We’ve essentially given the proof already
in the previous chapter, but we repeat it here for convenience.

Well-defined: Note that [[t]] 6= [[ε]] so t is nonempty finite, whence last(t) ∈
S = K(D). Moreover, if t, t′ ∈ TB(D,c) are finite with [[t]] = [[t′]], then, by
antisymmetry, t ≡ t′, so last(t) = last(t′).

Surjective: Let x ∈ K(D), then t := x
·−→x is in T and ϕ([[t]]) = last(t) = x.

Monotone: Assume [[t]] ≤ [[t′]] for t, t′ ∈ T finite nonempty, and show ϕ([[t]]) ≤
ϕ([[t′]]). Since t can be extended to a trajectory equivalent to t′, there is a trajectory
from last(t) to last(t′), whence, since →=≤, we have ϕ([[t]]) = last(t) ≤ last(t′) =
ϕ([[t′]]).

Order-respecting: Assume ϕ([[t]]) ≤ ϕ([[t′]]) for t, t′ ∈ T finite nonempty, and
show [[t]] ≤ [[t′]]. Then s := last(t) = ϕ([[t]]) ≤ ϕ([[t′]]) = last(t′) =: s′. So we

have [t] ≤ [t′]: if t0 ∈ [t], then last(t0) = last(t) = s, so t1 := t0s
·−→s′ ∈ T is an

extension of t0 with t1 ∈ [t′] since last(t1) = s′ = last(t′).

Now, we define ε(D,c) : TiB(D, c)→ (D, c) by

ε(D,c)([[t]]) :=
∨{

ϕ([[t′]]) : [[t′]] ∈ K(TiB(D, c)), [[t′]]v[[t]]
}

=
∨{

last(t′) : t′ ∈ TB(D,c) finite, [[t′]]v[[t]]
}

which is an order-isomorphism T(B(D, c)) \ {[[ε]]} → D by lemma 3.2.6. In par-
ticular, ε(D,c) is Scott-continuous and preserves compactness. And ε(D,c) preserves

the initial element: Since the initial element [[i
·−→i]] is compact, ε(D,c)([[i

·−→i]]) =

ϕ([[i
·−→i]]) = last(i

·−→i) = i = c. Hence also the inverse ε−1(D,c) is Scott-continuous,
preserves compactness, and preserves the initial element. So ε(D,c) is an isomor-
phism in iALG.

Universality. Now, let M be in ωBTSs
feyur and f : Ti(M)→ (D, c) a morphism,

and find a unique morphism g : M → B(D, c) with ε(D,c) ◦ Ti(g) = f .

Uniqueness: Assume g, g′ are such morphisms. On labels, they both are, qua
synchronous BTS-morphisms between unlabeled systems, the unique function
from the singleton LM = {·M} to the singleton LB(D,c) = {·}. On states, let

s ∈ SM , and show σg(s) = σg′(s). Since M is reflexive and full, t := s
·M−→s ∈ TM

3.6. Toward incorporating labels on domains 97

is nonempty. So [[g(t)]] is compact in T(B(D, c)) \ {[[ε]]} and

σg(s) = σg(last(t)) = last(g(t)) = ε(D,c)([[g(t)]])

= ε(D,c) ◦ Ti(g)([[t]]) = f([[t]]) = ε(D,c) ◦ Ti(g′)([[t]])
= ε(D,c)([[g

′(t)]]) = last(g′(t)) = σg′(last(t)) = σg′(s).

Existence: Define g = (σ, λ) : M → B(D, c) as follows: λ is the unique function
from the singleton LM to the singleton LB(D,c) and σ : SM → SB(D,c) is defined by

σ(s) := f([[s
·M−→s]])

This is well-defined: Since M is reflexive and full, t := s
·M−→s ∈ TM , so [[s

·M−→s]] ∈
T(M)\{[[ε]]} on which f is defined. Since f preserves compactness, f([[s

·M−→s]]) ∈
K(D) = SB(D,c).

We show that g is an LTS-morphism: First, it maps iM to f([[iM
·M−→iM]]) = c

since f preserves the initial element. Second, assume s
·M−→s′, and show, since λ, is

total, σ(s)
λ(·M)=·−−−−→σ(s′). We have [s

·M−→s] ≤ [s′
·M−→s′] because if t0 ∈ [s

·M−→s], then,

since M is extensional, t0 ends in s, so t1 := t0(s
·M−→s′) is, since M is full, in TM ,

and last(t1) = s′, so t0 � t1 ∈ [s′
·M−→s′], as needed. Hence, since f is monotone,

σ(s) = f([[s
·M−→s]]) ≤ f([[s′

·M−→s′]]) = σ(s′), i.e., σ(s)
·−→σ(s′).

Finally, g is a BTS-morphism since it is an LTS-morphism between extensional
and full BTSs, and it is synchronous by construction.

So it remains to show ε(D,c) ◦ Ti(g) = f . Since both sides are Scott-continuous
functions T(M) \ {[[ε]]} → D, it is enough to show that they agree on compact
elements (lemma 3.2.7). Indeed, given [[t]] with t ∈ TM finite nonempty, write

last(t) = s, whence, since M is extensional, [[t]] = [[s
·M−→s]]. Then

ε(D,c) ◦ Ti(g)
(
[[t]]
)

= ε(D,c) ◦ Ti(g)
(
[[s
·M−→s]]

)
= ε(D,c)

(
[[g(s

·M−→s)]]
)

= last(g(s
·M−→s)) = σ(last(s

·M−→s)) = σ(s) = f([[s
·M−→s]]) = f([[t]]),

as needed. 2

3.6 Toward incorporating labels on domains

The trajectory domain of a BTS abstracts away labels. (Though, depending on
the choice of trajectory equivalence, information about labels may be ‘hidden’
in equivalence classes). So if we think of the trajectory domain as denotations
of LTSs, we may wonder whether we can appropriately add explicit information
about labels. In this section, we show how this might be done and that this
curiously leads to an interpretation of relevance logic.

98 Chapter 3. Trajectory domains 2: Category

3.6.1 Marked domains

In fact, there actually are two reasons for considering labels. The first is the one
just mentioned: In other words, now that we know that iALG is a computational
model that is more abstract than ωBTSs, we may ask whether we can bring them
closer together by adding labels. The second reason is that if we want to extend
the adjunction ωBTSs

a � iALG to the partial simulation case, it seems like we
have to keep some information about the labels: namely, on which labels the label
function is defined.

Looking at trajectory domains, there is a suggestive idea of how to add labels:
Given a countable BTS M = (A, T,≡), assume we have finite t, t′ ∈ T such
that t′ extends t by one transition, i.e., t′ = ts

α−→s′. If we have [[t]]v[[t′]] in
the trajectory domain T(M), it then is natural to think of the order interval
([[t]], [[t′]]) :=

{
x ∈ T(M) : [[t]]vxv[[t′]]

}
as being marked by the label α. More

generally, we think of ([[t]], [[t′]]) as being marked by a label α (abbreviated as
([[t]], [[t′]])mα), if there are representative ta and tb of [[t]] and [[t′]], respectively,
that are of the form tb = talast(ta)

α−→last(tb).
14

We can extend this idea by adding the concept of an idle transition. (See
Winskel and Nielsen (1995) and footnote 7 above.) We fix a symbol ∗ (which
no LTS is allowed to use as a label) and interpret it as the ‘do nothing action’.

Thus, we can extend each LTS by adding all transitions of the form s
∗−→s, which

we call idle transitions. Then we can think of the trivial intervals in the trajectory
domain—i.e., those ([[t]], [[t′]]) with [[t]] = [[t′]]—as always being marked by the
idle label ∗ since we can ‘extend’ a representative of [[t]] by the ‘do nothing action’
and obtain a representative of [[t′]]. Since the idle label cannot occur in other
transitions, we have ([[t]], [[t′]])m ∗ iff [[t]] = [[t′]].

This, then, suggests a general idea of adding labels to an (ω-algebraic) domain
in a domain-theoretic fashion: We have a domain D (e.g., the trajectory domain)
and a countable set of labels L (e.g., from the countable BTS) with an additional
label ∗, together with a relation (x, y)m a between pairs (x, y) of elements in K(D)
that are in the ≤-relation and elements a of L ∪ {∗}. Now, L ∪ {∗} naturally
forms a domain: A common way to represent a (countable) set L in domain
theory (e.g., the natural numbers) is as the flat domain L⊥ consisting of L with
the discrete order (x ≤ y iff x = y) together with a least element ⊥ = ∗. If L
is countable, this is indeed an ω-algebraic domain. Thus, we get the following
purely domain-theoretic definition.

3.6.1. Definition. A marked domain is a structure (D, m , F) where D is an
ω-algebraic domain, F is a countable flat domain, and m ⊆

(
≤D� K(D)

)
× F is

a relation such that

1. for all (x, y) ∈≤D� K(D), we have (x, y)m⊥F iff x = y.

14Also cf. the labelled domains of Bracho and Droste (1994) for another way of adding labels
to domains (in the context of automata with concurrency).

3.6. Toward incorporating labels on domains 99

We read (x, y)m a as ‘the interval (x, y) is marked with a’.
A morphism f : (D, m , F) → (E, n , G) between marked domains is a pair

(α, β) of Scott-continuous functions α : D → E and β : F → G such that

1. α preserves compactness,

2. β(⊥) = ⊥, and

3. if (x, y)m a, then (α(x), α(y)) n β(a).

We write f = (αf , βf) and call it a marked domain morphism.
Let mALG be the category of marked domains with their morphisms. The

identity morphism is id(D,m ,F) = (idD, idF) and composition is component-wise:
g ◦ f = (αg ◦ αf , βg ◦ βf).

Two comments: First, condition (1) on morphisms ensures that condition (3)
‘type-checks’: if x ≤ y are compact, then, since α is monotone and preserves
compactness, α(x) ≤ α(y) are compact.

Second, the partiality of simluations of BTSs is mirrored on the domain-side as
follows: if f : (D, m , F)→ (E, n , G) is a morphism and (x, y)m a with βf (a) = ⊥
(i.e., is ‘undefined’), then (α(x), α(y)) n β(a), so α(x) = α(y).

Next, we show that the observation about the structure of trajectory domains
that motivated the above definition of marked domains does indeed yield a marked
domain—in a functorial way.

3.6.2. Proposition. The following defines a functor Tm : ωBTSa → mALG:

• M is sent to
(
T(M), m , (LM)⊥

)
, where ([[t]], [[t′]])m a with t, t′ finite iff (a)

[[t]] = [[t′]] and a = ⊥ or (b) [[t]]v[[t′]] and there is ta ∈ [t0] ∈ [[t]] and
tb ∈ [t1] ∈ [[t′]] with tb = talast(ta)

α−→last(tb).

• f : M → N is sent to
(
T(f), β

)
where β maps ⊥ to ⊥ and α ∈ LM to λf (α)

if defined and otherwise to ⊥.

Proof. First, note that
(
T(M), m , (LM)⊥

)
is indeed a marked domain: T(M) is

an ω-algebraic domain, (LM)⊥ is a countable flat domain, and, by construction
m ⊆

(
v � K(T(M))× (LM)⊥

)
with (x, y)m⊥ iff x = y.

Second, note that
(
T(f), β

)
satisfies requirements (1)–(3): Concerning (1),

since M is approximable, T(f) preserves compactness. Concerning (2), by defini-
tion, β(⊥) = ⊥. Concerning (3), assume ([[t]], [[t′]])m a and show(

[[f(t)]], [[f(t′)]]
)
m β(a).

If a = ⊥, this always follows.15 So let a 6= ⊥. Hence α := a ∈ LM and [[t]]v[[t′]]
and there is ta ∈ [t0] ∈ [[t]] and tb ∈ [t1] ∈ [[t′]] with tb = talast(ta)

α−→last(tb). Since
T(f) is monotone and well-defined, [[f(ta)]] = [[f(t)]]v[[f(t′)]] = [[f(tb)]].

15If (x, y)m a and a = ⊥, then x = y, so α(x) = α(y), so (α(x), α(y)) n⊥ = β(⊥).

100 Chapter 3. Trajectory domains 2: Category

If λf(α) is undefined, then f(tb) = f(ta), so [[f(t)]] = [[f(t′)]] and β(α) = ⊥,
so ([[f(t)]], [[f(t′)]])m β(a), as needed.

So assume λf (α) = β(α) is defined. Then [[f(t)]]v[[f(t′)]] and f(ta) ∈ [f(ta)] ∈
[[f(ta)]] = [[f(t)]] and f(tb) ∈ [f(tb)] ∈ [[f(tb)]] = [[f(t′)]] and

f(tb) = f(ta) last(f(ta))︸ ︷︷ ︸
=σf (last(ta))

λf (α)=β(α)−−−−−−−→ last(f(tb))︸ ︷︷ ︸
=σf (last(tb))

,

so ([[f(t)]], [[f(t′)]])m β(a), as needed.
Third, the functor conditions are satisfied: Concerning identity, Tm(idM) =

(T(idM), β) where T(idM) = idT(M) is the identity on T(M) and β maps the bottom
element to the bottom element and α ∈ LM to idLM (α) = α, so it is the identity
on (LM)⊥.

Concerning composition, let f : M → N and g : N → K be in ωBTSa. Write
Tm(f) = (T(f), β) and Tm(g) = (T(g), β′) and Tm(g ◦ f) = (T(g ◦ f), β′′), and
show Tm(g) ◦ Tm(f) = (T(g) ◦ T(f), β′ ◦ β) = (T(g ◦ f), β′′) = Tm(g ◦ f). Since T
is a functor, we have T(g ◦ f) = T(g) ◦ T(f). So it remains to show β′ ◦ β = β′′,
which is readily seen.16 2

3.6.2 An interpretation of relevance logic

Relevance logic (or relevant logic) aims at providing a conditional ϕ→ ψ where
the antecedent ϕ is relevant to the consequence ψ. Notoriously, classical logic (or,
more precisely, the material conditional or the strict conditional) cannot provide
this: a sentence like ϕ→ (ψ → ψ) is logically valid, although the antecedent ϕ
doesn’t need to provide a reason for—or be relevant to—the consequence ψ → ψ.

Various logical systems have been developed that provide such ‘relevant
conditionals’—both proof-theoretically and semantically. A common semantics is
the ternary relation semantics (for an overview see Mares 2020). As in the usual
Kripke semantics for modal logics, formulas are interpreted at possible worlds,
but instead of a binary relation (interpreting the necessity operator) one uses a
ternary relation R on worlds to interpret the conditional: a |= ϕ→ ψ iff, for all
worlds b and c, if Rabc and b |= ϕ, then c |= ψ.

This provides a powerful formal semantics, though a common criticism is
that it doesn’t have a clear intended interpretation that provides contentful (as
opposed to ‘formal’) meaning. (See e.g. Beall et al. (2012) and Mares (2020) for
discussion.) Several such interpretations have been suggested revolving around

16By construction, both sides preserve the bottom element, so let α ∈ LM and show β′ ◦
β(α) = β′′(α). If λf (α) is not defined, then also λg◦f (α) = λg ◦ λf (α) is not defined, so
β′ ◦ β(α) = β′(⊥) = ⊥ = β′′(α). So let λf (α) =: α′ be defined. If λg(α

′) is not defined, then
also λg◦f (α) = λg ◦ λf (α) is not defined, so β′ ◦ β(α) = β′(α′) = ⊥ = β′′(α). So let λg(α

′) be
defined, then also λg◦f (α) = λg ◦ λf (α) is defined, so β′ ◦ β(α) = λg ◦ λf (α) = λg◦f (α) = β′′(α).

3.6. Toward incorporating labels on domains 101

the notion of information (for an overview see Mares 2020). Here we sketch a
different concrete interpretation in terms of the behavior of labeled transition
systems (or the abstracted version as marked domains).

Interpretation Surprisingly, a marked domain (D, m , F) essentially has the
structure of a frame in the simplified semantics of relevance logic (Priest and
Sylvan 1992; Restall 1993; Restall and Tony 2009). We get the frame (g,W,R)—
i.e., an interpretation minus the assignment of truth-values—with the base world
g := ⊥F , the set of worlds W := K(D) ∪ F , and the ternary relation R ⊆ W 3

defined by

(∗) Rabc iff (i) (b, c)m a or (ii) a = g and b = c ∈ F .

In particular, clause (1) of marked domains ensures that we have the condition
on frames that Rgbc iff b = c. (This explains the somewhat technical additional
clause (ii) above.) This condition makes the truth conditions for the conditional
univocal (otherwise one would need to distinguish in a |= ϕ→ ψ between a = g
and a 6= g).

Thus, the conditional α |= p → q says: for any order interval (x, y) that is
marked with α, if x has property p, then y has property q. In the case of a
trajectory domain of a system, this says: whenever behavior [[t′]] can be obtained
from behavior [[t]] by a single α-action, if behavior [[t]] has property p, then [[t′]]
has property q.

Under this interpretation, the notorious sentence p→ (q → q) can be falsified—
as is typical, though not defining, for a relevance logic. Indeed, consider the
following marked domain (D, m , F): D is the chain consisting of two elements x
and y (the ≤-order is indicated by lines below), F is the flat domain of the singleton
{α} together with the least element g, and m relates (x, y)mα (indicated as
dotted lines below) and has otherwise only the ‘trivial’ relations (x, x)m⊥ and
(y, y)m⊥. The atomic sentence p is set to be true at α and the atomic sentence q
is set to be true x. Visualized:

y α

x g

p

q

(3.1)

Then g 6|= p → (q → q) since Rgαα and α |= p but α 6|= q → q because Rαxy
and x |= q but y 6|= q. A very simple BTS that realizes this marked domain is
M = (A, T,≡) where A is the following LTS

i sα

and T is the set of all trajectories and ≡ is extensional equivalence. So x = [[ε]]
and y = [[i

α−→s]]. Intuitively, q could be the property of being the empty behavior
and p could be the property of being a label.

102 Chapter 3. Trajectory domains 2: Category

Permuting The interpretation of R as in (∗) above is somewhat rigid: for
x, y ∈ D and α ∈ F we can at most have Rαxy, but never, say, Rxαy. (As a
result, for any x ∈ D, every conditional ϕ → ψ is trivially true at x.) Though
this ‘permutation’ Rxαy also would have a suggestive interpretation: x |= p→ q
meaning whenever x forms an interval with y that is marked by α and α has
property p, then y has property q.

This suggests allowing permutations of the α, x, y as long as they form a
‘marking triangle’: To be precise, a set {a, b, c} ⊆ W forms a marking if there is
x, y ∈ D and α ∈ F such that (x, y)mα and {a, b, c} = {x, y, α}. Then we define
the ‘closure’ of R under these permutations:

(∗∗) Rabc iff (i) {a, b, c} forms a marking or (ii) a = g and b = c ∈ F .

(Of course, one might also consider only allowing some but not all permutations.)
If we also loosen clause (ii) under some permutation, say, add “a 6= g, b = g,
c = a ∈ F”, then we have Rabc ⇒ Rbac which makes the assertion axiom
ϕ →

(
(ϕ → ψ) → ψ

)
true (Restall 1993, thm. 2). (This axiom is part of the

famous relevance logic R.) Note that both with and without this extension of (ii)
we still have Rgbc⇔ b = c.

Containment More correspondences between common axioms of various rel-
evance logics and semantic conditions are obtained by extending the simplified
semantics with a notion of containment (Restall 1993, p. 498): a relation ≤ on W
such that propositional atoms are monotone along ≤ and, given a ≤ b, if a 6= g,
then Rbcd⇒ Racd, and if a = g, then Rbcd⇒ c ≤ d.

We also have the domain-theoretic information containment order on W : the
‘merging’ of the order of D and the order of F , i.e., a ≤ b iff a ≤D b or a ≤F b.
We assume that D and F are (made) disjoint.

So it stands to reason that domain-theoretic information containment interprets
the notion of containment in relevance logic. Indeed, this is the case for any R
coming from a marked domain as in (∗) together with any interpretation of atoms
that is monotone along ≤:

Assume a ≤ b. First, if a 6= g and Rbcd, then the latter implies b ∈ F (both in
case (i) and in case (ii) the first entry of R is in F), whence a ≤ b implies a ∈ F ,
so a 6= g = ⊥F implies that a is maximal in F , whence a ≤ b implies a = b, so
Racd. Second, if a = g and Rbcd, then, if c ∈ D, Rbcd must be due to clause (i),
whence, by definition of the marking relation, c ≤ d, and if c ∈ F , then Rbcd must
be due to clause (ii), so c = d, whence c ≤ d.

This prompts some discussion: First, note that in the second part we didn’t
use the assumption a = g, whence Rabc ⇒ b ≤ c. This implies, for any ≤-
monotone interpretation of atoms, that ϕ → (ψ → ψ) is valid (Restall 1993,
thm. 11). Whether this validity is welcomed should be discussed: On the one
hand, although not defining, the non-validity of this sentence is nonetheless typical

3.7. Conclusion 103

for ‘proper’ relevance logics. On the other hand, however, this crucially hinges on
the monotonicity assumption: we’ve seen in (3.1) above that with a non-monotone
assignment of atoms, this formula can be violated (there x |= q but x ≤ y 6|= q).
And for the example interpretation of q as ‘is the empty behavior’ we indeed
shouldn’t expect this property to be monotone along ≤. Thus, if we restrict us to
the simpler logic of properties that are monotone along the domain order, we get
a stronger logic that validates ϕ→ (ψ → ψ)—and this logic may be interesting
in its own right.

Second, with the (∗∗)-interpretation as R, the above reasoning doesn’t go
through. So one may explore variants or special cases of R or ≤ that deliver a
containment relation.

Morphisms Furthermore, the conditions on a marked domain morphism f =
(α, β) : (D, m , F)→ (E, n , G) ensures that it translates into a ‘frame-morphism’,
i.e., a function between the set of worlds that preserves the base-world and the
ternary relation:

ϕ : K(D) ∪ F → K(E) ∪G

w 7→

{
α(w) if w ∈ K(D)

β(w) if w ∈ F .

Indeed, ϕ maps gD = ⊥F to gE = ⊥G. And if RDabc, then REϕ(a)ϕ(b)ϕ(c): If
RDabc is due to clause (i), then (b, c)m a, so (α(b), α(c)) n β(a), so REϕ(a)ϕ(b)ϕ(c).
If RDabc is due to clause (ii), then a = gD and b = c ∈ F , so ϕ(a) = gE and
ϕ(b) = ϕ(c) ∈ G, so REϕ(a)ϕ(b)ϕ(c).

Similarly for R: For clause (ii) we reason identically, and if RDabc is because
{a, b, c} forms a marking (x, y)mα, then {ϕ(x), ϕ(y), ϕ(α)} = {ϕ(a), ϕ(b), ϕ(c)}
forms a marking, so REϕ(a)ϕ(b)ϕ(c).

Open questions This interpretation poses many interesting questions: Which
models of relevance logic can be represented this way—both with (∗) and with (∗∗)?
What is (an axiomatization of) the relevance logic of this interpretation (i.e., the
set of sentences valid on it)? How do additional relevance logic axioms correspond
to restriction on the domains and the systems giving rise to them? Does this then
yield a logic for LTSs and BTS? And how does it compare to the usual one: linear
temporal logic?

3.7 Conclusion

To summarize, we’ve established the categorical connections depicted in figure 3.1:
Each adjunction either is reflective or co-reflective. The dotted arrows are to
indicate the adjunction ωBTSs

a � iALG masking the three adjunctions from which

104 Chapter 3. Trajectory domains 2: Category

ωBTS ωALG

ωBTSs ωBTSs
a ωBTSs

fey ωBTSs
feyur iALG

BTS BTSa

LTS

T

A

I

I

I

a
E

I

I

a

U

I

a

Ti

B

a

Gi

A

G

I

a

F

`

Figure 3.1: Summary of the results.

it is built. Intuitively, moving from left to right in the figure, the categories grad-
ually become less ‘system-like’ and more ‘domain-like’. Note that commutativity
is not claimed: While the small square involving the functor A commutes trivially,
there is no reason why the big square (or rather rectangle) involving the functor
T should commute.

We end with four open questions.
First, can the adjunction ωBTSs

a � iALG be extended to partial simulations?
One approach may be using the above concept of a marked domain, and another
approach may be using the representation of domains via Scott information systems
which are generalized, as seen in the previous chapter, as BTSs.

Second, the issue of coincidence of the operational and denotational semantics
(full abstraction) should be discussed further. We’ve seen that the strong sense
of operational equivalence as isomorphism between countable BTSs implies the
natural sense of denotational equivalence as trajectory domain isomorphism. What
about weaker senses of operational equivalence like bisimulation? (For a categorical
treatment of bisimulation, see Joyal, Nielsen, and Winskel (1996).) Approached
from the other direction, is there an ‘operational’ equivalent to ‘having the same
trajectory domain’, and is this related to bisimulation?

Third, we’ve seen that the denotational semantics provided by trajectory
domains has some compositionality (in virtue of being a functor). Which further
compositionality properties does it have? For example, is the denotation of
a product of BTSs the product of the denotations of the BTSs? Some such
preservation properties are already given by the established adjunctions, though
what more can be said? In particular, what are the categorical constructions and

3.7. Conclusion 105

properties of BTS?
Fourth, we’ve already listed several open questions on the interpretation on

relevance logic. Moreover, in the previous chapter, we’ve already asked whether
the generalization of Scott information systems provided by BTSs can be seen
as generalizing the underlying logic to substructural logics like relevance logic or
linear logic: This is motivated by the seeming connection to the game semantics
of linear logic discussed there and by the above interpretation of relevance logic.

Part Two

Non-symbolic computation

Chapter 4

Systems and domains 1: Model

Abstract With the aim of providing a new general tool for analyzing dynamical
systems, we define the category of dynamical domains. These are structures in the
sense of domain theory and can be seen as computational models for dynamical
systems. We show that every dynamical system is isomorphic to the dynamical
system modeled by some dynamical domain.

4.1 Introduction

Dynamical systems are tremendously important and ubiquitous in all areas of
science. Hence, a lot of effort has been put into developing tools to understand
dynamical systems. In this chapter (and the following ones), we wish to contribute
to this ongoing effort: For every dynamical system X, we construct what we
will call a dynamical domain D. This is a mathematical structure in the sense
of domain theory (which is a mathematical theory of computation). Intuitively,
it consists of ‘basic’ elements that represent increasingly finer observations of
the system X together with the ‘limits’ of these basic elements. The additional
domain-theoretic structure on D is such that it induces a dynamical system on
these limit elements that is isomorphic to X. Thus, to every dynamical system
X we associate the dynamical domain D which is a computational model for
X. So we can translate questions about dynamical systems into questions about
corresponding dynamical domains, to which the rich domain theory can be applied.

In this introduction, we motivate the class of dynamical systems that we’ll
consider, and we sketch both how we construct the dynamical domain for a
system and how we define the category of dynamical domains independently in a
domain-theoretic spirit. We state our main result that every dynamical system
can be modeled by a dynamical domain, and we mention two motivations for it.
Finally, we discuss related work and outline the structure of the chapter.

The chapter is self-contained and provides all relevant background from both
dynamical systems theory and domain theory. The length of this introduction is

109

110 Chapter 4. Systems and domains 1: Model

due to providing all the conceptual explanation and motivation for the formal
results and definitions to follow. The separation in paragraphs should help to skip
the parts that may be less relevant to some readers.

Dynamical systems There are many (formal) notions of dynamical systems.
What they have in common is that a dynamical system consists of a state space
together with a dynamics which is a collection of ‘transformations’ of the state
space indexed by a time parameter. These notions differ in what structure the
state space has (measurable space, probability space, topological space, manifold),
which of it is preserved by the transformations (measurable, measure-preserving,
continuous, diffeomorphism), and what the time parameters are (the integers, the
reals, a group).

Ergodic theory is about studying the qualitative behavior of dynamical systems
in these various senses. In doing so, the abstract setting of a measure-preserving
transformation of a probability space has proven to be particularly fruitful. (Formal
definitions of the concepts to follow are given in section 4.2.2.) Thus, a dynamical
system is a structure X = (X,A, µ, T) where (X,A, µ) is a probability space and
T : X → X is a measure-preserving function.1 Usually, one additionally assumes
that (X,A, µ) is a standard probability space (also called Lebesgue space) and
that T is invertible. In that case, we call X a standard dynamical system.

However, in many applications (we’ll mention an example below), the natural
measure on the state space may not be preserved by the dynamics: measure-
preservation is a theorem (e.g., the Liouville theorem in classical mechanics)
rather than an obvious axiom. Thus, by an abstract dynamical system we mean
a structure X = (X,A, µ, T) where (X,A, µ) is a probability space and T :
X → X is measurable (but not necessarily measure-preserving). To develop our
representation result also in this setting, we’ll eventually also add a (somewhat
milder) ‘standardness’ assumption on the underlying probability space: namely,
to be a standard Borel space. (As in the Lebesgue case, this allows for a unified
theory of isomorphism.) Thus, we call an abstract dynamical system (X,A, µ, T)
general if (X,A) is a standard Borel space.

To summarize, abstract dynamical systems include both the standard and
general ones and their main difference is that the latter don’t make any assumptions
about the dynamics except for being measurable. A topological perspective on
dynamical systems will eventually also be useful, in which case we call a structure
(X, τ, µ, T) a measured topological system if (X, τ) is a Polish topology (i.e.,
separable and completely metrizable), µ a measure on its Borel σ-algebra, and
T : X → X a continuous function.

1I.e., T is measurable (if A ∈ A, then T−1(A) ∈ A) and, for all A ∈ A, we have µ(T−1(A)) =
µ(A).

4.1. Introduction 111

Example (learning) Ergodic theory supplies many examples of measure-preser-
ving transformations of probability spaces. So, rather than reciting them here,
we refer to, e.g., Petersen (1983) and Walters (1982). However, we mention an
example that motivates generalizing our setting to transformations that may not
be measure-preserving (and also not bijective). The example comes from learning,
as, for instance, in neural networks or, more generally, in stochastic gradient
descend (in optimization).

At each stage of the learning (or training or optimizing) process, the machine
(or neural network or model) that we’re optimizing is characterized by a set of
parameters w (e.g., the weights of the neural network). Given a data point d, the
optimization algorithm (e.g., backpropagation or gradient descent) produces a
new set of parameters w′ = L(w, d) (‘L’ as in learning). The whole point of the
algorithm is that the machine in state w′ is (or aims to be) a better approximation
to the phenomenon from which the data points are sampled than it was before in
the state w.

Thus, we have a set W of sets of parameters w and a set D of data points d
and a function L : W ×D → W . Usually, the set W is the Rn, so we may, at the
very least, assume that it is a Polish space. And the data set D usually is a finite
set (finitely many samples), but, to account for the potential infinity of sampling,
we’ll only assume that D is countable (in fact, for our purposes here, D could be
any Polish space).

Now, to understand this learning process, we’re obviously interested in the
(statistical) long-term behavior of the learning dynamics (as is the general motiva-
tion for ergodic theory). So, for an infinite sequence of data points δ = 〈d0, d1, . . .〉
and an initial state w0, we’re interested in the sequence:

w0 , L(w0, d0) =: w1 , L(w1, d1) =: w2 , L(w2, d2) =: w3 , (4.1)

Does it converge to some w (i.e., learn)? Does it get stuck in a non-optimal area of
the state space? Is it ‘all over the place’ (e.g., dense in W) and hence doesn’t work
at all? However, due to, for example, noise or necessary imprecision in implement-
ing the algorithm on a computer, we can only ask these questions statistically:
Assuming a probability distribution p on W representing the likelihood of our
choice of initial state w0, and a probability distribution q on D representing the
likelihood of a datapoint in d (and hence of δ), we ask what is the probability of a
yes-answer to the above questions?

We can write this setting more conveniently: Let X := W ×Dω, which, qua
countable product of Polish spaces, is Polish. And the product measure µ := p×qω
is a probability distribution on X. Define T : X → X by

T (w, δ) :=
(
L
(
w, δ(0)

)
, S(δ)

)
,

where S(δ) := δ(1)δ(2) . . . is the shift function. Thus, the (first entry of the)
iterates T k(w, δ) correspond to the sequence (4.1). Moreover, if L is measurable

112 Chapter 4. Systems and domains 1: Model

(resp. continuous), then T is measurable (resp. continuous).2 Measurability of
L is a very weak demand, and continuity of L is a very plausible demand if the
optimization algorithm is to be computable (according to the well-known slogan
that ‘computability implies continuity’).

So our learning dynamics is the general dynamical system X := (X,B(X), µ, T).
(Here B(X) denotes the Borel σ-algebra of the space X.) And there is, of course,
no reason to expect T to be measure-preserving, i.e., X to be standard. However,
this poses the question of when (and what) preserved measures exists, and our
general framework provides a good framework to investigate this (we come back
to this in section 4.7 and chapter 7).3

Moreover, if L is continuous, then (X, τ, µ, T) is a measured topological system
(where τ is the topology on X). If we, e.g., restrict W = Rn to the irrational
numbers and work with a countable discrete D, this even is a measured zero-
dimensional topological system. These systems, where the topological structure is
reduced to a minimum, become important below as well.4

The construction We outline the construction of the dynamical domain for a
given abstract dynamical system X = (X,A, µ, T) (the details are in section 4.3).

A measurable subset A of X can be regarded as an observation or measurement
that we can make about the system: if the system is in a state x ∈ A, making
measurement A comes out positive. So if we have a finite set C of measurable
sets that cover the state space X (i.e., every state of X is in some set of C),
it provides a finite and non-deterministic dynamical system that ‘reflects’ the
original system: the states are the elements from C and there is a connection from

2Note that h : W ×Dω →W ×D defined by h(w, δ) := (w, δ(0)) is continuous, so T0 := L◦h
is measurable (resp. continuous). And S : Dω → Dω is continuous (for a subbasic open p−1n V ,
the preimage S−1(p−1n V) = p−1n+1V is open), so T1 : W ×Dω → Dω defined by T1(w, δ) := S(δ)
is continuous. So T = (T0, T1) is measurable (resp. continuous).

3 To give an idea of how this can be developed further: In this learning setting, there are
various loss (or cost) functions that assign each weight state w a real number that indicates how
‘well’ the machine approximates the real phenomenon. Thus, we can regard such a cost function
as a measurable function f : X → R. The move to such ‘observables’ is in striking analogy with
the situation in physics that has led to the operator approach to ergodic theory (Eisner et al.
2015). So the tools from there—most notably the Koopman operator—can be used to analyze
the learning dynamics. Also see chapter 7. Moreover, this idea of the data D ‘acting on’ the
weights W may be compared to the notion of a nonautonomous dynamical system (see, e.g.,
Berger and Siegmund 2003).

4A few more remarks on general dynamical systems like the given example not belonging
to the standard structures found in ergodic theory: As just seen, they cannot be regarded as
measure-preserving transformations. Since X is not compact, they also don’t belong to the
usual structures of topological dynamics. Measurable dynamics is somewhat of a middle ground
(Weiss 1984): X is a standard Borel space, but the role of measure zero sets is here taken over
by the sigma algebra generated by the wandering sets, yet this may not be the preferred notion
of negligible sets given by the measure. In addition to this, there also is the issue that the
dynamics is not necessarily bijective.

4.1. Introduction 113

state A to state B if there is x ∈ A with T (x) ∈ B. For each ‘observation length’
n ≥ 0, a state x ∈ X induces a set OnC (x) of trajectories in this observed system:
namely those t = A0, A1, . . . , An−1 such that T k(x) ∈ Ak (for k = 0, . . . , n − 1).
We can call OnC (x) an observation history, and let HnC be the set of observation
histories. The dynamics T naturally induces a multi-valued function fnC on HnC : it
maps OnC (x) to the set {OnC (T (y)) : OnC (y) = OnC (x)} of possible ‘next’ observation
histories. We can turn this into a ‘usual’ function by moving to the set Dn

C of
nonempty subsets of HnC ordered by reverse inclusion and define the monotone
function fnC (M) = {OnC (T (y)) : OnC (y) ∈ M}. In domain-theoretic terminology
(which we introduce in section 4.2.1), we’ve built the Smyth powerdomain Dn

C
(which here is a Scott domain). It is a tool to study the original multi-valued
(i.e., non-deterministic) function by the Scott-continuous function fnC : Dn

C → Dn
C .

We also can induce a valuation vnC of the Scott-open sets of Dn
C by assigning each

OnC (x) the value µ
{
y ∈ X : OnC (y) = OnC (x)

}
.

Thus, for the observation parameter i = (n, C), we’ve obtained the structure
Di = (Di, vi, fi) of a finite Scott domain with a valuation vi and a Scott-continuous
function fi : Di → Di. Now, we can also refine our observation parameter to
j = (m,D) where n ≤ m and D refines the cover C (with a slight twist to the usual
definition, see definition 4.3.2). And we have a function pij : Dj → Di induced by
mapping the finer observation history Oj(x) to the coarser Oi(x). Let’s write B
for the set of measurable subsets of X that we are prepared to count as ‘possible
observation’, and let I(B) be the set of observation parameters (n, C) that we
can built using this set. Then (Di, pij)I(B) is a diagram (or inverse system) of
the domain-theoretic structures Di. We want to take the (inverse) limit of the
diagram, which will then eventually yield the dynamical domain that models the
system X. However, to do so, we first have to specify what the category is in
which we build the diagram (and the limit).

Dynamical domains The category in which we can build the required limit will
be the category of dynamical domains. We motivate it in a purely domain-theoretic
way (with the above construction in the back of our mind). A common way to
define categories of domains (e.g., bifinite domains) is to first specify a collection
of finite domains (e.g., finite pointed posets) and define the desired category to
consist of those objects that are obtained as appropriate limits of appropriate
diagrams built with appropriate finite domains and appropriate morphisms (e.g.,
Scott-continuous projection).5 This idea, of course, is more general: for example,
profinite graphs and groups (Ribes 2017) and Stone spaces (Johnstone 1982) are
defined similarly; and the reason is that the resulting category usually has very
pleasant properties.

5The morphisms of the desired category are then taken as the morphisms that may occur in
the diagrams, but one drops the requirement of being a projection (i.e., in the case of bifinite
domains, these then are the Scott-continuous functions).

114 Chapter 4. Systems and domains 1: Model

We proceed similarly here: Our ‘appropriate finite domains’ are the structures
D = (D, v, f) where D is a finite Scott domain, v is a valuation on it with
v(D) = 1 and all value ‘sits’ in the maximal elements, and f : D → D is a
Scott-continuous function. Let’s call these finite max-normalized dynamical Scott
domains. Our ‘appropriate morphisms’ are Scott-continuous projections that
additionally satisfy some (not entirely obvious) properties having to do with the
appropriate preservation of v and f (see definition 4.4.2). And our ‘appropriate
diagrams’ are diagrams of these ‘finite domains’ with some (again not entirely
obvious) constraints on their shape ultimately having to do with constraining the
function f in the limit to model a dynamical system (see definition 4.4.7).

If we’re given an appropriate diagram (Di, pij)I of finite max-normalized
dynamical Scott domains Di = (Di, vi, fi), how do we build the appropriate limit
D = (D, v, f)? We build D =

{
a ∈

∏
I Di : pij(a(j)) = a(i)

}
as the usual limit of

an expanding sequence of domain (Abramsky and Jung 1994, sec. 3.3). Fortunately,
there also exist results on building the valuation v on D in a unique way from the
vi’s (Goubault-Larrecq 2018, thm. 4.2). However, the issue is with the function
f . The straightforward thing would be to define f : D → D elementwise by
f(a) := 〈fi(a(i)) : i ∈ I〉. But then f won’t, in general, preserve maximality (i.e.,
f(maxD) ⊆ maxD), since the fi, in general, don’t preserve maximality. However,
if we want that (D, v, f) models a dynamical system, we, in particular, want that
f induces a transformation on maxD (i.e., the space modeled by D; more on this
below) and, to do so, f has to be max-preserving. It turns out (theorem 4.4.8) that
there is a canonical way of selecting a (maximal, if a is maximal) element above
each fi(a(i)) in a way that builds an element in D: There is a largest function
f : D → D that is Scott-continuous and max-preserving such that, for all a ∈ D
and i ∈ I, f(a)(i) ≥ fi(a(i)). This will be our function f . One can then show that
D is a ‘restricted’ limit in the sense that it has the following universal property:
(D, pi)I is a cone for (Di, pij)I with a max-preserving function f , and for any cone
(E, qi)I with a max-preserving function, there is exactly one morphism α : E→ D
such that qi = pi ◦ α.

The system modeled by a dynamical domain We’ve already hinted at the
well-known idea that a domain D is a computational model for the space maxD of
maximal elements (with the relative Scott topology).6 With our dynamical domains
D = (D, v, f), we can extend this to dynamical systems: the state space modeled
by D is maxD (which will be a compact zero-dimensional Polish space), the contin-
uous dynamics is f � maxD, and the valuation v uniquely determines a probability
measure µv on maxD (see theorem 4.5.1). So (maxD,B(maxD), µv, f � maxD)
is a general dynamical system which we call the dynamical system modeled by D.

We’ll define standard dynamical domains as those dynamical domains that
are obtained as restricted limits of diagrams that satisfy some additional (again

6See e.g. Edalat and Heckmann (1998), Lawson (1997), and Martin (1998).

4.1. Introduction 115

not entirely obvious) conditions detailed in definition 4.4.7. These ensure that the
dynamical systems modeled by those standard dynamical domains are standard,
i.e., f � maxD is bijective and preserves the measure µv determined by the
valuation.

Roughly speaking, then, the setup of dynamical domains is general enough
to handle both deterministic and non-deterministic dynamics, and restricting in
a category-theoretic way to the appropriate diagrams and limits corresponds to
restricting to deterministic dynamics which are the object of study in ergodic
theory.

The main result While the main conceptual (and technical) contribution of
this chapter is to define the category of dynamical domains, the main result is to
show that:

For every (standard) dynamical system X, there is a (standard) dynam-
ical domain D such that the (standard) dynamical system modeled by
D is isomorphic to X (corollary 4.6.4 below).

We’ll now describe two interpretations of this result that motivate it: the repre-
sentational interpretation and the computational interpretation.

The representational interpretation To understand a given class of dynam-
ical systems, representation results are crucial: Given a class C, find a (more
restricted class) class D of dynamical systems such that every system in C is
isomorphic to a system from D. In other words, D realizes all the isomorphism
types of C.

Here are three examples from the literature. First, the Jewett–Krieger theo-
rem (see, e.g., Petersen 1983, sec. 4.4) states that every ergodic measure-preserving
transformation on a Lebesgue space (forming the class C) is isomorphic to a mini-
mal, uniquely ergodic homeomorphism of a compact metric space (forming the
class D). This is a ‘topological representation’ result: representing (measure-
theoretic) dynamical systems as coming from a topological dynamics. Second,
the Krieger Generator Theorem says that the class D of all finite subshifts (i.e.,
dynamical systems whose state space is the set of infinite sequences over a finite
alphabet and the dynamics is the ‘shift’ operator) is complete for the class C of
ergodic measure-preserving transformation with finite entropy over a Lebesgue
space. Third, as discussed by Weiss (1989), Rokhlin’s theorem states that every
ergodic aperiodic measure-preserving transformation is isomorphic to a shift space
on a countable alphabet. (See Weiss (1989) for similar results for the class of
measurable systems and the class of topological systems.) The theorems of Krieger
and Rokhlin are instances of ‘symbolic representation’: representing dynamical
systems as subshifts over a finite or countable alphabet.

In our result, C is the class of (standard) dynamical systems and D is the class
of dynamical systems modeled by a (standard) dynamical domain. This shares

116 Chapter 4. Systems and domains 1: Model

with the Jewett–Krieger theorem that the representing systems have compact
metric state spaces with continuous dynamics. Its conclusion is weaker, of course,
but (and since) it also applies to a vastly more general class of dynamical systems—
so this is a very general representation (and ‘topological realization’) result. And
if we restrict us to standard dynamical systems, the conclusion strengthens to the
representing system being a homeomorphism of a compact metric space. This, of
course, also is weaker than the Jewett–Krieger theorem, but (and since) we also
didn’t require any additional assumptions like ergodicity.

The computational interpretation The guiding idea behind the mentioned
idea of a domain D being a model for the space maxD is this: The domain
consists of ‘approximate’ elements that approximate, when moving up in the order
of the domain, the ‘maximal’ or ‘ideal’ elements of maxD. The classic example
is the domain D of closed intervals [x, x] ⊆ R ordered by reverse inclusion: the
‘approximate reals’—i.e., [x, x] with x < x—approximate the ‘maximal reals’—i.e.,
[x, x] with x = x—, whence D is a model for maxD ∼= R (Scott 1970, p. 16).
Moreover, a manipulation of the ideal elements (e.g., a function f : R → R) is
‘computational’ if it can be approximated by a manipulation of the ‘approximate’
elements. Formally, this is described by Scott-continuity of the extension f : D →
D of f . (For more on the idea of domain theory as a mathematical theory of
computation, see section 4.2.1.)

Thus, a dynamical domain D = (D, v, f)—obtained as a limit of some
Di = (Di, vi, fi)—is a computational model for the dynamical system X =
(maxD,B(maxD), µv, f � maxD) in the following sense: First, the elements
of maxD can be approximated by ‘finitary’ or ‘compact’ elements of D which in
turn are determined by the elements of the finite Di. In fact, D is a Scott domain
and hence a particularly well-behaved domain (especially as a domain model for a
space). Second, the measure µv is entirely determined by the valuation v, which in
turn is determined by the finite vi. Third, the dynamics f � maxD is modeled by
(i.e., extended by) the Scott-continuous f : D → D, so the dynamics f � maxD
can be approximated in a computable way by its action on the finitary elements.
A general theme will be that the concepts that we define for dynamical domains
will be finitary in the sense that they can be expressed purely as a condition on
the finitary diagrams from which the dynamical domains are constructed.

In that sense, our result says that every (standard) dynamical system has
(up to isomorphism) a computational model. The general motivation for domain-
theoretic computational models for classical mathematical structures is to provide
effective models to make these structures constructive and to provide new proofs
and algorithms using domain-theoretic tools (Edalat 1995a).

Finally, dynamical systems themselves may be seen as computing systems (see
chapter 1). However, they are ‘non-symbolic’ in the sense that they (usually) act
on a continuous state space (where a state is an infinite object) rather than a

4.1. Introduction 117

discrete one (as, e.g., in a Turing machine). Thus, our computational models for
dynamical systems may be regarded as providing a symbolic computational model
for the non-symbolic computation performed by the dynamical system. After all,
the domains are described by the discrete (i.e., countably many) compact elements
which approximate the dynamical system to arbitrary precision—more on this
in chapter 7. Note that the ‘symbolic representation’ of a dynamical system
is—contrary to what the name may suggest—not a symbolic computational model
of the dynamical system in this sense: its states are, qua infinite sequences of
symbols, still infinite (and not discrete) objects.

Related work Concerning the construction of (Di, pij)I(B) from a system X,
some of its aspects are found in the following references. Polish spaces with a
distinguished basis play an important role for Danos and Garnier (2015) and
Dahlqvist, Danos, and Garnier (2016) in the finitary analysis of natural transfor-
mations between functors on the category of Polish spaces.7 Building the index set
using finite partitions of a space figures prominently in the proof that a topological
space is profinite (i.e., the projective limit of finite discrete spaces) iff it is a
compact Hausdorff totally disconnected space (i.e., a Stone space): see Borceux
and Janelidze (2001, thm. 3.4.7) and, in the (second-) countable case, Danos and
Garnier (2015); for more context, see Johnstone (1982, especially sec. VI 2.3).
Some smaller differences are: We work, in general, with measurable bases over
probability spaces and not just with open bases over Polish spaces, and we consider
covers and not just partition. But the two main differences are: The objects of
our diagrams are finite Scott domains with additional structure and not just finite
spaces (whence we are in a different ambient category), and, most importantly,
we additionally consider dynamics on the spaces; this is, as we’ll see in the proof
of the theorem 4.4.8, the lion’s share of the work.

Concerning the representational interpretation, there are results in topological
dynamics on obtaining certain topological dynamical systems (X,T) as an inverse
limit of finite graphs: see Gambaudo and Martens (2006), Kucharski (2020),
Shimomura (2014), and Shimomura (2020). There also is the well-known result
that a topological system is zero-dimensional iff it is (topologically conjugate
to) an inverse limit of subshifts (Downarowicz and Karpel 2016, thm. 2.21).
However, as with the ‘symbolic representation’ of measure-theoretic dynamical
systems, the elements of these subshifts are not discrete but infinite objects, so
the representation as limits of finite graphs has the advantage, as our result, of
being symbolic in the sense of approximating the system by finite means. There
also is a natural graph structure on the maximal elements of our approximating
domains Di given by aEib iff b ≥ fi(a). But, especially on the level of morphisms,

7 This has interesting applications to the Dirichlet distribution (as demonstrated in the
just cited papers) and to Bayesian learning (Clerc et al. 2017; Gagné and Panangaden 2018).
This suggests exploring whether there is a fruitful fusion of these and our ideas in the learning
example mentioned above. We leave this as an open question (mentioned in section 4.7).

118 Chapter 4. Systems and domains 1: Model

the constructions seem to be different.8 Moreover, our construction also takes
measures into account (which are absent in topological dynamics) and hence also
works for measure-theoretic dynamical systems, and, by using limits of domains
rather than limits of graphs, it connects more directly to a theory of computation
(i.e., domain theory).

Concerning the computational interpretation, the first paper that probably
comes to mind is Edalat (1995b) introducing domain theory to dynamical systems.9

It investigates topological systems (X, f) by looking at the induced hyperspaces
(X is not required to be compact). There are several hyperspace constructions
that one could choose. (Also see Edalat and Heckmann (1998) for a construction
using open balls.) The upper space is particularly suited for computational
models: The upper space UX consists of all nonempty compact subsets of X
with the topology given by the basic opens {C ∈ UX : C ⊆ A} for A ⊆ X
open. If X is locally compact, second countable, and Hausdorff, then UX under
reversed inclusion is an ω-continuous dcpo and its topology coincides with the
Scott topology, whence the function Uf : UX → UX defined by Uf(A) := f(A)
is Scott-continuous. (Moreover, if X is zero-dimensional compact, then UX is a
Scott domain.) Meaningful dynamic behavior of (X, f) like attractors then are,
in the interesting cases, fixed points of the domain Uf (and fixed points are a
central concept in domain theory).

Since Uf is max-preserving, the ω-continuous dcpo UX and Scott-continuous
function Uf model the topological system (maxUX,Uf � maxUX), and it is
readily seen that this system is isomorphic to the original (X, f) via the conjugate
homeomorphism ϕ : X → maxUX defined by ϕ(x) = {x}.10 Thus, this very
elegantly provides a computational model for topological systems (X, f) with X
locally compact, second-countable, Hausdorff and f continuous.

Our construction is, as outlined above, rather different, so let’s compare the two.
Our construction is more general in the sense that it works for arbitrary probability
spaces (rather than the above topological spaces) and measurable functions (rather
than continuous functions), and that, with the valuations, it has built in a domain-
theoretic representation of measures. Moreover, the constructed modeling domain
always is a Scott domain (rather than, generally, just ω-continuous). It models a
compact topological system with a continuous dynamics, but, due to the greater
generality, we can only ask the isomorphism to the original system to be a measure-

8For example, in our construction, there is no direct analogue of the ‘+ directionality’
condition of Shimomura (2014, p. 184), which would say, for the above relation, if aEjb and
aEjb

′, then pij(b) = pij(b
′).

9This is part of a broader research programme, an overview of which is provided by Edalat
(1997).

10The maximal elements of UX are precisely the singletons of X, so ϕ is well-defined and
bijective. For an open A ⊆ X, we have ϕ(A) = {{x} : x ∈ A} = {C ∈ UX : C ⊆ A} ∩maxUX,
so ϕ is open. Also, the preimage of the basic open {C ∈ UX : C ⊆ A} ∩ maxUX hence is
ϕ−1ϕ(A) = A, whence open, so ϕ is continuous. Finally, to see that ϕ is conjugate, we have, for
x ∈ X, that ϕ(f(x)) = {f(x)} = f({x}) = Uf({x}) = Uf(ϕ(x)).

4.2. Background 119

theoretic one (rather than a topological one). In section 4.6.2, we see that the
price for the ‘emergent’ topological structure on the modeled system is that, if we
restrict our setting to that of (zero-dimensional) topological systems, we, roughly,
only have a dense embedding of the original system into the modeled system (so
the modeled system acts as a ‘compactification’). But we do have a topological
isomorphism if the original system was zero-dimensional compact (which is the
case where the upper space model yields a Scott domain).

Outline of the chapter In section 4.2, we provide the relevant background
from domain theory and dynamical systems theory. In section 4.3, we detail the
above construction of observing an (abstract) dynamical system. In section 4.4,
we build the category of dynamical domains. In section 4.5, we show that every
dynamical domain models a dynamical system. In section 4.6, we show the main
result that every system is modeled (up to isomorphism) by some dynamical
domain. In section 4.7, we conclude with some open questions.

4.2 Background

We provide the relevant background in domain theory (section 4.2.1) and in
dynamical systems theory (section 4.2.2).

4.2.1 Domain theory

We provide a brief—but self-contained—introduction to domain theory by recalling
the basic notions that we’ll need. We follow the standard reference on domain
theory: Abramsky and Jung (1994). Only the last notion (that of a valuation) is
not covered there, for which we provide separate references below.

Dcpo. Let (D,≤) be a partial order (abbreviated to poset).11 (A subset
A ⊆ D is directed if it is nonempty and for any two a, b ∈ A, there is c ∈ A such
that a, b ≤ c. If every directed subset A of D has a least upper bound

∨
A, then

(D,≤) is directed complete. A dcpo is a directed complete partial order.
Scott domain. An element c of a dcpo (D,≤) is compact if for all directed

subsets A of D, if
∨
A ≥ c, then there is a ∈ A such that a ≥ c. The set of

compact elements is denoted K(D). A dcpo (D,≤) is ω-algebraic if K(D) is
countable and, for all a ∈ D, the set {b ∈ K(D) : b ≤ a} is directed and has
supremum a. Finally, a dcpo (D,≤) is bounded complete if any subset B ⊆ D that
has an upper bound also has a least upper bound. A Scott domain is a non-empty
ω-algebraic and bounded-complete dcpo (D,≤). Note that Scott domains have
a least element: since the empty set has an upper bound, it hence has a least

11I.e., D is a set and ≤⊆ D×D is reflexive (for all a ∈ D, a ≤ a), transitive (for all a, b, c ∈ D,
if a ≤ b and b ≤ c, then a ≤ c), and antisymmetric (for all a, b ∈ D, if a ≤ b and b ≤ a, then
a = b). If we don’t demand antisymmetry, (D,≤) is a preorder.

120 Chapter 4. Systems and domains 1: Model

upper bound, which must be the least element. (In different contexts, one works
with different classes of dcpos and calls the dcpos under consideration simply
‘domains’.)

Order-theoretic notation. Let (D,≤) be a poset. A subset A ⊆ D is an upset if,
for all a, b ∈ D, a ≤ b and a ∈ D implies b ∈ D. We call a ∈ D maximal if, for all
b ∈ D, if b ≥ a, then b = a. The set of maximal elements of D is denoted maxD.
More generally, if A ⊆ D is a subset, maxA := {a ∈ A : ∀b ∈ A.b ≥ a⇒ b = a}.12
Also, for a subset A ⊆ D, we define ↑A := {b ∈ D : ∃a ∈ A.b ≥ a} and
↓A := {b ∈ D : ∃a ∈ A.b ≤ a}. If A = {a} is a singleton, we write ↑a := ↑A and
↓a := ↓A. By Zorn’s lemma, any element of a dcpo has a maximal element above
it.13

Intuition. The guiding intuition is to think of the maximal elements of a dcpo
as the ‘ideal’ elements that are approximated by the ‘real’ non-maximal elements.
This intuition is made more precise by the way-below relation and continuous
domains. We don’t need to define them here, since, in our setting of Scott domains,
these more general concept can be described using compact elements only. Thus,
the compact elements are the ‘real’, ‘finitary’, or ‘directly accessible’ elements of
the Scott domain, and the maximal elements (or, more generally, the non-compact
elements) are the ‘ideal’ elements that are obtained as limits of approximating
them with the ‘real’ compact elements. As an example, consider the set D := 2≤ω

of binary sequences of length ≤ ω (the first infinite ordinal) ordered by extension.
This forms a Scott domain: the compact elements are the finite sequences 2<ω

and the maximal elements are the infinite sequences 2ω.
The more general intuition, and the reason why domain theory is motivated

as a ‘mathematical theory of computation’ (Scott 1970), is that domains can
be regarded as providing denotational semantics to computational processes: In
the above example, D can be regarded as the ‘data type’ of binary sequences
which contains the output (or denotations) of computational processes that specify
certain binary sequence (e.g., the process “print 0, print 1, repeat”). More
importantly, we could also consider a computational process that takes binary
sequences a as input and produces another one f(a) as output. For this mapping
to indeed be ‘computable’, we would expect that, if we want to approximate the
output f(a) to some finite degree b0 ≤ f(a), we only need to know the input a
up to some finite degree a0 ≤ a such that f(a0) ≥ b0 (or rather f(↑a0) ⊆ ↑b0).
The denotation of that process would then be an element of the domain [D → D]
of ‘computable’ functions on D. Domain constructions like this function domain
are central to domain theory, but will only implicitly play a role here (e.g., limits
and powerdomains), but we’ll come back to this in the conclusion. What is
important now is that specifying this kind of ‘(qualitative) computability’ is done

12If A ⊆ D is an upset, then maxA := {a ∈ A : ∀b ∈ D.b ≥ a⇒ b = a}.
13I.e., if D is a dcpo, then ∀x ∈ D∃y ∈ maxD : x ≤ y. Proof: Since D is directed complete,

any chain in the poset P := ↑x (with the order inherited from D) has a (least) upper bound, so,
by Zorn’s lemma, P has a maximal element y. Then y ∈ maxD with y ≥ x, as needed.

4.2. Background 121

by continuity in an appropriate topology.
Topology. The most important topology on a dcpo (D,≤) is the Scott topology .

The open sets are those U ⊆ D that are upsets and, whenever A ⊆ D is directed
and

∨
A ∈ U , there is a ∈ A such that a ∈ U . The intuition is that the Scott-open

sets are the (finitely) observable properties of elements of D: If the limit
∨
A of

an approximation has property U , then this will already be seen at a finite stage
a ∈ A. The Scott topology has an important refinement: the Lawson topology
which is the join of the Scott topology and the lower topology on D (generated by
the sets of the form D \ ↑a for a ∈ D). The Scott topology is denoted Σ(D) and
the Lawson topology is denoted Λ(D); we drop ‘D’ if it is clear from context. The
Scott-continuous functions f : D → D are those that are continuous with respect
to the Scott topology. Equivalently, they are the ≤-monotone functions that
preserve the supremum of directed subsets. (For continuous, and hence algebraic,
domains, this is equivalent to the ‘finite approximation’ property sketched above.)

Projections. The most concise definition of a projection is as a surjective
monotone function p : Q → P between posets such that preimages of principal
upsets are again principal upsets (i.e., for all a ∈ P , p−1(↑a) = ↑ b for some b ∈ Q).
This understanding should suffice for the chapter, however, the conceptually
apt definition is that projections are one half of a pair of monotone functions
p : Q� P : e that form an adjunction: so we’ll now explain that here as well.

Abstractly, a partial order (P,≤) can be considered as a category (the objects
of P are the elements of P and there is a single morphism from a to b iff a ≤ b).
A category-theoretic adjunction l : P � Q : u between two partial orders then
is, concretely, a pair of monotone functions l : P → Q (called the left or lower
adjoint) and u : Q→ P (called the right or upper adjoint) such that, for all a ∈ P
and b ∈ Q, l(a) ≤ b iff a ≤ u(b). The category-theoretic fact that the right adjoint
determines the left adjoint then becomes: For all a ∈ P , l(a) is the least element
of u−1(↑a) (dually for the left adjoint determining the right adjoint). And the
category theoretic fact that right adjoint functors preserve limits then becomes: u
preserves existing infima (dually, l preserves existing suprema). Moreover, u is
surjective iff u ◦ l = idP iff l is injective (where idX denotes the identity function
on the set X). Now it’s not hard to see that a surjective monotone function
p : Q→ P between posets is a projection (in the above sense) iff it is an upper
adjoint, i.e., there is a (uniquely determined) monotone function e : P → Q
such that e : P � Q : p form an adjunction—then e is injective and is called
an embedding . (Dually, we can define an embedding e : P → Q as an injective
monotone function that is a lower adjoint.)

Powerdomains. Powerdomains have been developed to describe non-determin-
istic processes: While a deterministic computational process over a data type D
maps an input a ∈ D to a unique output f(a) ∈ D, a non-deterministic process
maps an input a ∈ D to a set of possible outputs F (a) ⊆ D. Intuitively, a
powerdomain P(D) of D is a collection of subsets of D that can sensibly occur
as non-deterministic outputs. Moreover, P(D) is ordered in a way that provides

122 Chapter 4. Systems and domains 1: Model

domain-theoretic (or computable) structure. And the non-deterministic process f
extends to a deterministic function on P(D): sending a set M ⊆ D to

⋃
a∈M f(a).

There are several powerdomain constructions that make this precise (Abramsky
and Jung 1994, sec. 6.2). Here we’re using one of the common ones: the Smyth
powerdomain P. In fact, we’ll only build it for finite and discrete nonempty dcpos
(D,≤), i.e., where D is finite nonempty, and a ≤ b iff a = b. (But, conceptually,
it is worth knowing that there is a more general construction behind it.) In
this case, P(D) is defined as the finite partial order

(
P(D) \ {∅},⊇

)
, i.e., the

powerset of D ordered by reverse inclusion with the top element ∅ removed.14

This is a finite Scott domain, and a multi-function F : D → D (mapping each
a ∈ D to a nonempty subset F (a) ⊆ D) becomes a Scott-continuous function
f : P(D)→ P(D) mapping M to f(M) =

⋃
a∈M F (a).

Valuations. In domain theory, the notion of a valuation plays a crucial role
in the theory of probabilistic powerdomains (see e.g. Edalat 1995a; Jones and
Plotkin 1989; Lawson 1982). But it also is treated in a more general topological
setting (see e.g. Alvarez-Manilla, Edalat, and Saheb-Djahromi 2000; Keimel and
Lawson 2005).15

If (D,≤) is a dcpo, then a function v : Σ(D)→ [0,∞] is a valuation on (D,≤)
if, for all U, V ∈ Σ(D),

1. Strictness: v(∅) = 0,

2. Monotonicity: if U ⊆ V , then v(U) ≤ v(V), and

3. Modularity: v(U ∪ V) + v(U ∩ V) = v(U) + v(V).

The valuation v is continuous if, whenever (Uj)j∈J is a directed family in Σ(D),
then v(

⋃
J Uj) = supJ v(Uj). And v is normalized if v(D) = 1.

Intuitively, (normalized) continuous valuations are the domain-theoretic ana-
logues of (probability) measures.16 In the ‘computable’ spirit of domain theory,
the Scott-open sets of a domain are the observable properties of the data type
represented by the domain. A valuation then assigns probabilities to making the
observations represented by the open sets. Thus, the open sets are the events
to which we can assign probabilities, but, unlike the case of probability theory,
we shouldn’t expect to be able to this for all the Borel sets generated by the

14Here is how this is a special case of the Smyth powerdomain: Since D is finite nonempty,
this is a continuous dcpo (the only directed subsets are singletons). The Smyth powerdomain of
a continuous domain is (isomorphic to) the collection of non-empty Scott-compact saturated
subsets ordered by reverse inclusion (Abramsky and Jung 1994, thm. 6.2.14). Since D is finite
and discrete, these are precisely the non-empty subsets of Hi.

15As mentioned by Alvarez-Manilla, Edalat, and Saheb-Djahromi (2000, p. 629), the term
‘valuation’ goes back to the notion of a valuation on a lattice (Birkhoff 1973, ch. X).

16It is important to keep in mind that the analogy is not perfect (Keimel and Lawson 2005):
Borel measures restrict to valuations, but not every valuation can be extended to a measure.
However, as we’ll see below, for the more well-behaved domains this is true.

4.2. Background 123

Scott-open sets, since the complement of an observable property need not be
observable anymore.17

4.2.2 Dynamical and topological systems

Dynamical systems. Before defining dynamical systems (in the sense of ergodic
theory), we first recap their underlying spaces. There are three kinds: (1) prob-
ability spaces, which include both (2) standard Borel spaces with a probability
measure and (3) Lebesgue spaces. These are defined as follows.

(1) As usual, a probability space is a triple (X,A, µ) where X is a set, A is
a σ-algebra, and µ : A → [0, 1] is measure with µ(X) = 1. A probability space
(X,A, µ) is complete if, for all A ⊆ B ∈ A, if µ(B) = 0, then A ∈ A. The
completion of (X,A, µ) is denoted (X,Aµ, µ).18

(2) A standard Borel space is a pair (X,A) such that there is a Polish (i.e.,
separable and completely metrizable) topology τ on X with A = B(τ), where
B(τ) denotes the Borel σ-algebra of the topology τ (Kechris 1995, def. 12.5). A
probability measure µ on (X,A) is then often called a Borel probability measure
and (X,A, µ) a Borel probability space.

(3) Lebesgue spaces (or standard probability spaces) can be defined in two
equivalent ways.19 First, a Lebesgue space is a complete probability space (X,A, µ)
such that there is a second-countable topology τ on X with τ ⊆ A, B(τ)µ = A,
and µ inner regular, i.e., for A ∈ A, µ(A) = supµ(K) where the supremum is
taken over all τ -compact subsets K of A (de la Rue 1993, def. 1-1). Second, a
Lebesgue space is a complete probability space that is isomorphic mod 0 to the
ordinary Lebesgue space of an interval [0, a] ⊆ R together with countably many
point masses (Petersen 1983, def. 4.5, Walters 1982, def. 2.3). (For a proof of the
equivalence, see de la Rue (1993, thm. 4-3).) The latter definition probably is more
common and its intuition is that the unit interval with the Lebesgue measure (plus
countably many point masses) serves as the canonical probability space. The first
definition is, in a sense, conceptually more pure and its intuition is—analogous to
standard Borel spaces—to consider probability spaces arising from well-behaved
topological spaces. As a simple consequence of these definitions, any completion
of a standard Borel space with a probability measure is a Lebesgue space.20 And

17Similar motivation is given by, e.g., Jones and Plotkin (1989) and Keimel and Lawson
(2005).

18Here Aµ is the σ-algebra of sets of the form A ∪N for A ∈ A and N ⊆M for some M ∈ A
with µ(M) = 0, and µ(A ∪N) is taken to mean µ(A).

19Regarding references: As noted by Petersen (1983, p. 17) and Eisner et al. (2015, re-
mark 7.22), an early systematic treatment of Lebesgue spaces is provided by Rokhlin and
by Halmos and von Neumnann (see references therein). For a concise more modern treat-
ment, see de la Rue (1993) or the entry “Standard probability space” of the Encyclopedia of
Mathematics : http://encyclopediaofmath.org/index.php?title=Standard_probability_
space&oldid=24675 (accessed 31 January 2021).

20Proof: If (X,Aµ, µ) is the completion of the standard Borel space (X,A) with a probability

http://encyclopediaofmath.org/index.php?title=Standard_probability_space&oldid=24675
http://encyclopediaofmath.org/index.php?title=Standard_probability_space&oldid=24675

124 Chapter 4. Systems and domains 1: Model

any Lebesgue space is isomorphic mod 0 to the completion of a standard Borel
space with a Borel probability measure.21

A major reason for restricting attention to the subclasses (2) and (3) of proba-
bility spaces is that then different natural notions of isomorphism of probability
spaces—and hence dynamical systems built over them—coincide (Walters 1982,
ch. 2).

Now we can define dynamical systems in the sense of ergodic theory. (For
general references on ergodic theory, see, e.g., Petersen (1983) and Walters (1982).)
In the most abstract sense, these are structures (X,A, µ, T) where (X,A, µ) is a
probability space and T : X → X a measurable function.22 The standard setting
of ergodic theory, however is more concrete in that it additionally assumes that
the probability space is a Lebesgue space and that the transformation is measure-
preserving and bijective (i.e., invertible). As motivated in the introduction, we
aim for a treatment of dynamical systems that is general enough to not assume
measure-preservation and bijectiveness from the start (and rather leave it as an
option to obtain these as theorems). But it should also be reasonably concrete
(to, e.g., allow for a unified theory of isomorphisms) and in line with other strands
of dynamical systems theory, like measurable dynamics or descriptive dynamics.
Thus, our ‘general’ setting is that of a Borel probability space with a Borel-
measurable dynamics. As a result, a dynamical system in the standard sense is not
verbatim a dynamical system in the general sense but only ‘modulo isomorphism
and completion’. (Implicitly, this distinction between abstract, standard, and
general is also found in Walters (1982, esp. ch. 2).) The formal definition reads as
follows.

4.2.1. Definition. An abstract dynamical system is a structure X = (X,A, µ, T)
where (X,A, µ) is a probability space and T : X → X is measurable (i.e., for
A ∈ A, T−1(A) ∈ A). A (general) dynamical system is an abstract dynamical
system X = (X,A, µ, T) where (X,A) is a standard Borel space. A standard
dynamical system is an abstract dynamical system X = (X,A, µ, T) where (X,A, µ)
is a Lebesgue space and T : X → X is bijective and measure-preserving (i.e.,
measurable and for A ∈ A, µ(T−1(A)) = µ(A)). We often omit the term ‘general’.

measure µ on it, then there is a Polish topology τ on X such that A = B(τ). So (X,Aµ, µ)
is a complete probability space with a second-countable topology τ on X such that τ ⊆ Aµ,
B(τ)µ = Aµ, and to show inner regularity one uses that Borel measures on Polish spaces are
inner regular.

21If (X,A, µ) is a Lebesgue space it is, as shown in the proof of the equivalence by de
la Rue (1993, thm. 4-3), isomorphic mod 0 to the space (Y,B, ν) where Y is of the form
[0, a] ∪ {a1, a2, . . .} ⊆ R, ν is the Lebesgue measure on [0, a] and the point mass on the an, and
B = B(Y)ν . Note that Y is a Gδ subset (countable intersection of open sets) of the Polish space
R and hence Polish. So (X,A, µ) is isomorphic mod 0 to the completion of (Y,B(Y), ν) which is
a standard Borel space with a Borel probability measure.

22The only further generalization is to move from the iterations of one dynamics T to more
general group actions.

4.2. Background 125

The usual notion of isomorphism between dynamical systems is the follow-
ing (Walters 1982, ch. 2).

4.2.2. Definition. Two abstract dynamical systems X = (X,A, µ, T) and Y =
(Y,B, ν, S) are (metrically) isomorphic if there is a partial function ϕ : X → Y
with domain M ⊆ X and codomain N ⊆ Y such that

1. ϕ : M → N is a bijective function,

2. M and N are invariant sets of full measure: i.e., M ∈ A, µ(M) = 1,
T (M) ⊆M , and N ∈ B, ν(N) = 1, S(N) ⊆ N ,

3. ϕ is measure-preserving: i.e., for B ∈ B, we have ϕ−1(B) ∈ A and
µ
(
ϕ−1(B)

)
= ν

(
B
)
, and

4. ϕ is equivariant: i.e., for x ∈M , ϕ
(
T (x)

)
= S

(
ϕ(x)

)
.23

For a discussion of when this coincides with the generally weaker conjugacy
(equivariant isomorphism of measure algebras), see Walters (1982, ch. 2). For a
discussion of the (history of) spatial vs. spectral approaches to the definition of
isomorphisms, see Rédei and Werndl (2012).

Topological systems. We can look at a dynamical system (X,A, µ, T) with a
greater level of detail if we also consider topological information about the state
space X and not just the measure-theoretic information. The resulting notion
then is the following.

4.2.3. Definition. A (general) measured topological system is a structure X =
(X, τ, µ, T) where (X, τ) is a Polish space, µ is a probability measure on B(τ), and
T : X → X is continuous. It is standard if, additionally, T is a homeomorphism
and measure-preserving. It is zero-dimensional (resp. compact) if (X, τ) is. We
usually omit the term ‘general’.

Comments: First, in topological dynamics, one usually doesn’t consider mea-
sures, whence we add the term ‘measured’ to stress the presence of a measure.
The standard setting in topological dynamics is that X is a compact metric space
(hence Polish) and T is a homeomorphism. Here, however, we’ll also discuss
non-compact state spaces and non-bijective dynamics.

Second, a paradigm example of a zero-dimensional compact Polish space is
the Cantor space. A paradigm example of a zero-dimensional (non-compact)
Polish space is the space of irrational numbers considered as a subspace of the real
numbers, which is homeomorphic to the Baire space. (See, e.g., Kechris (1995,
ch. 7) for a discussion of these spaces and their ‘paradigmness’.)

Third, there are two perspectives on zero-dimensionality: From a topological
perspective, as described by Hjorth and Molberg (2006, p. 1117), this means

23Note that ϕ(T (x)) is defined because x ∈M implies ϕ(x) ∈M .

126 Chapter 4. Systems and domains 1: Model

minimizing the topological influence of the state space on the dynamical system
(e.g., trivializing homotopy and homology), whence the complexity of the system
comes from the dynamics. From a logical or computational perspective, the clopen
(closed and open) sets of the state space act as ‘(finitely) decidable’ properties of
states: Under the well-known computational interpretation of topology (Smyth
1983; Vickers 1989), the open sets of a topology are the ‘semi-decidable properties’
of the points of the space. Thus, the sets that not only are open but also have
an open complement—i.e., the clopen sets—are the ‘decidable properties’ of the
space. So, from this logico-computational perspective, the assumption that the
clopen sets form a basis (i.e., zero-dimensionality) means that we can describe
the states with these decidable properties. Moreover, from this perspective, zero-
dimensionality can be seen as a ‘without loss of generality assumption’: If we
start with a countable basis of our space (e.g., the intervals of R with rational
endpoints), then the points that lie exactly on the boundary of the basic opens
(i.e., the rational numbers) are very much ‘non-typical’ points, whence they may
be ignored, yielding a zero-dimensional space (the irrational numbers). This is a
common idea, for example, in algorithmic randomness (Downey and Hirschfeldt
2010).

Fourth, note that, if the state space X is compact, it is enough to check that
T is bijective and continuous to conclude that it is a homeomorphism.

Unlike the case of (measure-theoretic) dynamical systems, the notion of (iso-)
morphisms between topological systems is straightforward.

4.2.4. Definition. If X = (X, τ, µ, T) and Y = (Y, σ, ν, S) are measured topo-
logical systems, a morphism ϕ : X → Y of measured topological systems is a
function ϕ : X → Y that is continuous (i.e., if V ∈ σ, then ϕ−1(V) ∈ τ), measure-
preserving (i.e., if B ∈ B(σ), then µ(ϕ−1(B)) = ν(B))24, and equivariant (i.e.,
ϕ ◦ T = S ◦ ϕ). If ϕ additionally is a homeomorphism, then ϕ is an isomorphism
of measured topological systems.

Every topological system induces a dynamical system: If X = (X, τ, µ, T) is a
measured topological system, then

J(X) := (X,B(τ), µ, T)

is a general dynamical system.25 And if X additionally is standard, then

J(X) := (X,B(τ)µ, µ, T)

is a standard dynamical system.26

24Note that continuity implies ϕ−1(B) ∈ B(τ) so µ(ϕ−1(B)) is defined.
25Proof: Since τ is a Polish topology on X, (X,B(τ)) is a standard Borel space with probability

measure µ and T : X → X is measurable since it is continuous.
26Proof: As above, (X,B(τ), µ) is a Borel probability space, so its completion (X,B(τ)µ, µ) is

a Lebesgue space. Since T is continuous, it is measurable. And, by assumption, T is bijective
and measure-preserving.

4.3. Observing dynamical systems 127

A final word on notation: As a rule of thumb (i.e., when feasible), elements
of sets are denoted by lower-case letters (like x), sets are denoted by upper-case
letters (like Y), sets of sets are denoted by calligraphic letters (like A), and
structures are denoted by Fraktur letters (like X).

4.3 Observing dynamical systems

In this section, we describe the structure of possible ways of observing an abstract
dynamical system X = (X,A, µ, T).

4.3.1 Basis or ‘set of possible observations’

Intuitively, possible observations (or measurements or experiments) that we can
make about the system X correspond to subsets U of the state space X: to
make observation U is to realize that the system’s current state is in the set U .
The following describes some minimal properties that a set B—which we’ll call a
basis—of all possible observations (under consideration) should satisfy.

4.3.1. Definition. If X is a set, a basis for X is a collection B of subsets of X
closed under finite intersection.27 (The empty intersection equals X, so X ∈ B.)
If (X, τ) is a topological space, a topological basis for (X, τ) is a basis B for X
consisting of open sets (i.e., B ⊆ τ) such that the topology generated by B is τ
(i.e., every U ∈ τ can be written as unions of elements of B).28 If (X,A) is a
measurable space (i.e., X a set and A a σ-algebra on X), a measurable basis for
(X,A) is a basis B for X consisting of measurable sets (i.e., B ⊆ A).

If X is a set, B a basis for X, and T : X → X a function, we call B:

• forward T -closed if TB ⊆ B (i.e., if U ∈ B, then T (U) ∈ B).

• backward T -closed if T−1B ⊆ B (i.e., if U ∈ B, then T−1(U) ∈ B).

• countable if B is a countable set.

• separating if, for all x 6= y in X, there is U ∈ B such that x ∈ U but y 6∈ U .

This terminology naturally extends to systems: For example, if X = (X,A, µ, T)
is an abstract dynamical system, then a backward (T -) closed measurable basis
B for X is a measurable basis for (X,A) that is backward T -closed. Or if
X = (X, τ, µ, T) is standard measured topological system, then a countable
topological basis B for X is a topological basis for (X, τ) that is countable.

27I.e., if B1, . . . , Bn ∈ B for n ≥ 0, then
⋂n
k=1Bk ∈ B. If n = 0, the convention is that⋃n

k=1Bk := X.
28Note that the usual definition of a basis for a topology (e.g. Munkres 2000, p. 78) is a bit

more general and doesn’t require closure under intersection. But, for our purposes, the chosen
notion will be more convenient.

128 Chapter 4. Systems and domains 1: Model

Comments: First, eventually we’ll either use topological or measurable bases,
but for much of this section we can work with the general (set-theoretic) concept
of a basis.

Second, it is tempting to demand (some of) the above additional properties
of bases from the start, together with further logical closure conditions that B is
not only closed under finite intersection (conjunction), but also under finite union
(disjunction) and under complement (negation). We often can build bases with
(some of) these properties, but, at this general level, we’ll keep our assumptions
minimal. In particular, on the ‘possible observations’ interpretation of a basis, clo-
sure under finite intersection means that we can form conjunctions of observations,
which is rather uncontroversial. However, other logical combinations, like classical
negation or disjunction, may be more controversial, which is why we won’t require
them (but allow them).

Third, it may also be tempting to additionally demand, in analogy with
topological bases, that a measurable basis B for (X,A) generates the σ-algebra A
(in the sense that A is the smallest σ-algebra containing B). However, there are
two reasons not to: First, we don’t have to, and second, in complete probability
spaces, a countable B may fail to generate the σ-algebra, but only do so after
completion. Moreover, in standard Borel spaces, countable separating measurable
bases automatically generate (Mackey 1957, thm. 3.3), and, in Lebesgue spaces,
countable separating measurable bases generate after completion (de la Rue 1993,
thm. 3-4).

Fourth, de la Rue (1993, def. 3-3) uses the term ‘basis’ for a countable subset
of the σ-algebra of a Lebesgue space that separates points. And, as mentioned,
Polish spaces with a distinguished basis play an important role for Danos and
Garnier (2015) and Dahlqvist, Danos, and Garnier (2016).

Fifth, in the extreme cases, the powerset P(X) of a set X is always a basis for
X, and the only basis for X = ∅ is B = {∅}.

4.3.2 The index set or ‘set of observation parameters’

Given a basis (or set of possible observations) for system X, we define the index
set I(B) to consist of tuples (n, C) describing the observation parameters: n is the
observation length (i.e., the number of update steps that we observe) and C is
the granularity of our observation (i.e., the areas of the state space that we can
observe the system to be in).

4.3.2. Definition. Let X be a set and B a basis for X. A (finite) B-cover C of
X is a (finite) set of elements of B whose union is X. A B-cover D accurately
refines a B-cover C, written C � D, if

1. Refinement: for all D ∈ D, there is C ∈ C such that D ⊆ C, and

2. Accuracy: for all x ∈ C ∈ C, there is D ∈ D such that x ∈ D ⊆ C.

4.3. Observing dynamical systems 129

We define the index set I(B) := N× FCov(B) where N is the set of non-negative
integers with the usual order ≤ and FCov(B) is the set of finite B-covers of X
ordered by �. We often just write I if B is clear from context. We order I by the
product order ≤ × � which we’ll also denote ≤.

Comments: First, clause 1 is the usual definition of refinements of (open)
covers. However, it will turn out that the additional clause 2 will be crucial for our
purposes. To stress its presence we’ll speak of accurate refinement, but since this
is the only notion of refinement that we use, we’ll usually omit the term ‘accurate’.

Second, in words, clause 1 says that every set of D is contained in a set of C,
while clause 2 says (in a sense conversely) that every set of C can be written as a
union of sets from D.

Third, as mentioned, considering finite partitions of a space plays an important
role in the characterization of profinite spaces. However, since we’re also consid-
ering dynamics, we not only need to take into account which areas of the state
space we can observe (C), but also for how long we’re observing the dynamics (n).

4.3.3. Lemma. In the notation of definition 4.3.2, (I(B),≤) is a nonempty di-
rected preorder.

Proof. We first show that (I,≤) is a preorder. For that we need to show that ≤
and � is a preorder (since the product is again a preorder). For ≤ this is clear, so
we need to show that � is reflexive and transitive. That conditions (1) and (2)
are reflexive is clear. So assume C � D � E and show C � E . Ad (1). Let E ∈ E .
Then there is D ∈ D such that E ⊆ D. So there is C ∈ C such that D ⊆ C.
Whence E ⊆ C ∈ C, as needed. Ad (2). Let x ∈ C ∈ C. Then there is D ∈ D
such that x ∈ D ⊆ C. So there is E ∈ E such that x ∈ E ⊆ D. So x ∈ E ⊆ C for
E ∈ E , as needed.

Nonempty: since X ∈ B, {X} is a finite B-cover, whence (0, {X}) ∈ I.
Directed: If (n, C), (m,D) ∈ I, consider (max(n,m), C ∨ D) where C ∨ D :=

{C∩D : C ∈ C, D ∈ D}. To show that (max(n,m), C∨D) is in I, we need to show
that C ∨D is a finite B-cover: Since B is closed under intersection, the elements of
C ∨D are in B. Clearly, it is finite. And the union of C ∨D is X since: for x ∈ X,
there is, since C and D are covers, some C ∈ C with x ∈ C and some D ∈ D
with x ∈ D, so x ∈ C ∩D ∈ C ∨ D. To show (n, C), (m,D) v (max(n,m), C ∨ D),
we need to show, since n,m ≤ max(n,m), that C,D � C ∨ D. We show it for
C since for D is similar. Ad (1). Let C ∩ D be in C ∨ D with C ∈ C and
D ∈ D. Then C ∩D ⊆ C for C ∈ C, as needed. Ad (2). Let x ∈ C ∈ C. Since
D is a cover, there is D ∈ D with x ∈ D. Then x ∈ C∩D ⊆ C for C∩D ∈ C∨D. 2

4.3.3 Observed system

Given an observation parameter (n, C), the following captures the possible se-
quences of observations that we can make (realized by a single state).

130 Chapter 4. Systems and domains 1: Model

4.3.4. Definition. Let X be a set with basis B and T : X → X a function. Let
i = (n, C) ∈ I(B). For x ∈ X and t = (U0, U1, . . . , Un−1) ∈ Cn, we say x follows t
if T k(x) ∈ t(k) for all 0 ≤ k < n. We define

Oi(x) := OnC (x) :=
{
t ∈ Cn : x follows t

}
.

We call Oi(x) the observation history that x gives rise to (so each t ∈ Oi(x) is an
instantiation of that history). Define

Hi := HnC :=
{
Oi(x) : x ∈ X

}
We call Hi the set of observation histories of (X,B, T).

Comments: First, we can think of t as a trajectory in the transition system
(C,→) where U → V iff there is x ∈ U such that T (x) ∈ V . This is the system
that we observe when observing the underlying dynamical system X through ‘the
lens of’ parameter (n, C).

Second, note that the empty trajectory ε is the only trajectory of length 0 and
any x ∈ X follows ε (qua vacuous quantification), so for any x ∈ X, O0

C(x) = {ε}.
Also note that Hi is finite: Since Cn is finite, also Hi = {Oi(x) : x ∈ X} ⊆ P(Cn)
is finite. Also, Hi is nonempty if X is nonempty.

Third, we could also consider a ‘cumulative’ definition of HnC as
{
OkC(x) :

x ∈ X, 0 ≤ k ≤ n
}

and partially order HnC by OkC(x) ≤ OlC(y) iff k ≤ l and
OkC(x) = OkC(y). It would have a least element O0

C(x) (for any x ∈ X), and its
maximal elements are {OnC (x) : x ∈ X}. Much of our representation result could
also be developed with this idea, but the chosen one is simpler.

Fourth, note that the transition system dynamics extends from (C,→) to
Hi. Given observation history Oi(x) at the current time step, the observation
histories that are possible in the next time step are precisely the Oi(T (y)) with
Oi(y) = Oi(x). We think of this ‘observation dynamics’ as a non-deterministic
computational process that assigns each ‘input’ state Oi(x) the set of possible
‘output’ states

{
Oi(T (y)) : Oi(y) = Oi(x)

}
. Thus, we’re in the setting of pow-

erdomain theory, as described in section 4.2.1. As mentioned there, we can use
the Smyth powerdomain P applied to the special case of a finite discrete order.
Concretely, this is described as follows.

4.3.5. Lemma. Let X be a nonempty set with basis B and T : X → X a function.
Then P(Hi) is the finite partial order

(
P(Hi) \ {∅},⊇

)
which is a Scott domain

and

fi : P(Hi)→ P(Hi)

M 7→
{
Oi(T (y)) : Oi(y) ∈M

}
is a well-defined Scott-continuous function.

4.3. Observing dynamical systems 131

Proof. We consider Hi as a nonempty finite and discrete dcpo. Then, as shown
in section 4.2.1, the Smyth powerdomain P(Hi) is a Scott domain and fi is induced
by the multi-valued function Oi(x) 7→ {Oi(T (y)) : Oi(y) = Oi(x)} and hence
well-defined and continuous. 2

4.3.4 Refining observations

If we increase observation parameters, (n, C) ≤ (m,D), then we can compare the
observations OmD (x) from the finer level to those from the coarser level OnC (x).
The following lemma states that we can do this in a functional way:

4.3.6. Lemma. Let X be a set with basis B and T : X → X a function. Let
i = (n, C) ≤ (m,D) = j in I(B). Then, for all x, y ∈ X, if Oj(x) = Oj(y), then
Oi(x) = Oi(y).

Proof. Let t ∈ Oi(x) and show t ∈ Oi(y) (the other direction is analogous). So
t = (C0, . . . , Cn−1) ∈ Cn with T k(x) ∈ Ck ∈ C for k = 0, . . . , n−1. Since C � D we
have, by the ‘accuracy’ clause (2), that, for k = 0, . . . , n−1, there are Dk ∈ D with
T k(x) ∈ Dk ⊆ Ck. Moreover, since D is a cover, there are, for k = n, . . . ,m− 1,
some Dk ∈ D with T k(x) ∈ Dk. Let t′ := (D0, . . . , Dn−1, Dn, . . . Dm−1). So x
follows t′, whence t′ ∈ OmD (x) = OmD (y), so y also follows t′. So T k(y) ∈ Dk ⊆ Ck
for k = 0, . . . , n− 1. So y follows t, i.e., t ∈ Oi(y). 2

Note that here we made crucial use of the ‘accuracy’ clause in our notion of
cover refinement (definition 4.3.2).

Due to this lemma, we can define the surjective function hij : Hj → Hi by
mapping Oj(x) to Oi(x).29 Conveniently, the move to powerdomains to capture
the non-deterministic dynamics on the ‘observation system’ also ensures that this
function hij lifts to a projection on the powerdomains:

4.3.7. Lemma. Let X be a nonempty set with basis B and T : X → X a function.
Let i ≤ j in I(B). Then

pij : P(Hj)→ P(Hi)

M 7→ hij(M) := {Oi(x) : Oj(x) ∈M},

is a Scott-continuous projection.

Proof. Write p := pij, h := hij and define e : P(Hi)→ P(Hj) by e(M) := h−1(M);
since h is surjective, this is indeed a nonempty subset of Hj. Qua image and
preimage, we have, for ∅ 6= M ⊆ N ⊆ Hj, that p(M) ⊆ p(N), and for ∅ 6= M ⊆

29Surjective: Given Oi(x) ∈ Hi we have Oj(x) ∈ Hj , and h(Oj(x)) = Oi(x).

132 Chapter 4. Systems and domains 1: Model

N ⊆ Hi, that e(M) ⊆ e(N). Hence, p and e are monotone and thus, since P(Hi)
and P(Hj) are finite, also Scott-continuous.

To show that (e, p) is an embedding-projection pair, we show p ◦ e = idHi and
e ◦ p ≤ idHj . (This is an equivalent way of saying that (e, p) is an embedding-
projection pair, see Abramsky and Jung (1994, sec. 3.1.3–4).) We have, for
M ∈ P(Hi), that p ◦ e(M) = h

(
h−1(M)

)
= M since h is surjective.30 And, for

M ∈ P(Hj), we have e◦ p(M) = h−1
(
h(M)

)
⊇M ,31 so e◦ p(M) ≤M in P(Hj). 2

In fact, there is a more general statement of this lemma: If h : Q → P is a
surjective on monotone function between two posets with least elements, then
p : P(Q) → P(P) given by p(M) := ↑h(M) is a projection with the embedding
e(M) := h−1(M). But for our purposes the above is enough.

4.3.5 Observation probabilities

We show how we can assign probabilities to the possible observations in a domain-
theoretic manner using valuations.

We start by defining observational equivalence.

4.3.8. Definition. Let X be a set with basis B and T : X → X a function. For
i = (n, C) ∈ I(B), we define the i-observational equivalence relation on X by

x ≈i y :iff Oi(x) = Oi(y)

iff ∀U ∈ C ∀k ∈ {0, . . . , n− 1} : T kx ∈ U ⇔ T ky ∈ U.32

We denote the equivalence classes [x]i := {y ∈ X : x ≈i y}.

These equivalence classes are well-behaved in the measurable and topological
setting, respectively:

4.3.9. Lemma. 1. Let (X,A) be a measurable space, B a measurable basis,
and T : X → X a measurable function. Then, for i ∈ I(B), [x]i ∈ A.

30If b ∈ M ⊆ Hi, let, by surjectivity, a ∈ Hj with h(a) = b. Then a ∈ h−1(M), so
b ∈ h(h−1(M)). The other direction is trivial: If b ∈ h(h−1(M)), then b = h(a) for a ∈ h−1(M),
so b = h(a) ∈M .

31If b ∈M , then h(b) ∈ h(M), so b ∈ h−1(h(M)).
32Proof: (⇒) Assume Oi(x) = Oi(y). Let U ∈ C and k ∈ {0, . . . , n − 1}. Assume T kx ∈

U and show T ky ∈ U (the other direction is analogous). Since C is a cover, there is t =
(U0, . . . , Uk−1, U, Uk+1, . . . , Un−1) ∈ Cn with T l(x) ∈ Ul for l ∈ {0, . . . , n− 1} \ {k}. So x follows
t, whence t ∈ Oi(x) = Oi(y), so y follows t, so T k(y) ∈ U .

(⇐) Let t ∈ Oi(x) and show t ∈ Oi(y) (the other direction is analogous). Write t =
(U0, . . . , Un−1) ∈ Cn. Since x follows t, we have, for k = 0, . . . , n− 1, that T k(x) ∈ Uk, so, by
the assumption, T k(y) ∈ Uk. So also y follows t, whence t ∈ Oi(y).

4.3. Observing dynamical systems 133

2. Let (X, τ) be a zero-dimensional topological space, B a topological basis of
clopen sets, and T : X → X a continuous function. Then, for i = (n, C) ∈
I(B), [x]i can be written as Boolean combination of sets from

⋃n−1
k=0 T

−kC
and hence is, in particular, a clopen subset of X.

Proof. Let’s first only assume what is common to both claim (1) and (2): that X
is a set with basis B and T : X → X a function. We first describe [x]i in this general
setting with i = (n, C): For x ∈ X, define JxK+ :=

{
t ∈ Cn : x ∈

⋂n−1
k=0 T

−k(t(k))
}

and JxK− := (JxK+)c. We claim that

[x]i =
⋂

t∈JxK+

n−1⋂
k=0

T−k(t(k)) ∩
⋂

t∈JxK−

(n−1⋂
k=0

T−k(t(k))
)c
.

Indeed, first note that, by definition of ≈i, we have for x, y ∈ X:

x ≈(n,C) y ⇔ ∀t ∈ Cn : x ∈
n−1⋂
k=0

T−k(t(k)) iff y ∈
n−1⋂
k=0

T−k(t(k)). (4.2)

This is readily seen to imply the claimed identity.33 Now, the two claims follow:

Concerning claim (1), since t(k) ∈ C ⊆ B ⊆ A and T is measurable (and hence
also its compositions), T−k(t(k)) ⊆ X is in A. Hence, qua finite intersection,⋂n−1
k=0 T

−k(t(k)) is in A, and, qua complement,
(⋂n−1

k=0 T
−k(t(k))

)c
is in A. Since

C is finite, also Cn is finite, so JxK+ and JxK− are finite. Hence, [x]i is a finite
intersection of sets in A and hence in A, as needed.

Concerning claim (2), since t(k) ∈ C, each T−k(t(k)) is in
⋃n−1
k=0 T

−kC, so [x]i
is a Boolean combination of sets from

⋃n−1
k=0 T

−kC. Since C ⊆ B is a set of clopen
sets and T continuous, each set in

⋃n−1
k=0 T

−kC is clopen, whence, qua Boolean
combination of such sets, [x]i is clopen. 2

Given the measurability of the equivalence classes, we can define the following
valuation.

33(⊆). Assume y ∈ [x]i. To show y ∈
⋂
t∈JxK+

⋂n−1
k=0 T

−k(t(k)), let t ∈ JxK+ be given. Then

t ∈ Cn and x ∈
⋂n−1
k=0 T

−k(t(k)). Since x ≈i y, we have, by (4.2), that y ∈
⋂n−1
k=0 T

−k(t(k)).

To show y ∈
⋂
t∈JxK−

(⋂n−1
k=0 T

−k(t(k))
)c

, let t ∈ JxK− be given. Then t ∈ Cn and

x 6∈
⋂n−1
k=0 T

−k(t(k)). Since x ≈i y, we have, by (4.2), that y 6∈
⋂n−1
k=0 T

−k(t(k)). So

y ∈
(⋂n−1

k=0 T
−k(t(k))

)c
.

(⊇). Assume y ∈
⋂
t∈JxK+

⋂n−1
k=0 T

−k(t(k)) and y ∈
⋂
t∈JxK−

(⋂n−1
k=0 T

−k(t(k))
)c

. To show

x ≈i y via (4.2), let t ∈ Cn and show x ∈
⋂n−1
k=0 T

−k(t(k)) iff y ∈
⋂n−1
k=0 T

−k(t(k)). (⇒) If

x ∈
⋂n−1
k=0 T

−k(t(k)), then t ∈ JxK+, so y ∈
⋂n−1
k=0 T

−k(t(k)). (⇐) If x 6∈
⋂n−1
k=0 T

−k(t(k)), then

t ∈ JxK−, so y ∈
(⋂n−1

k=0 T
−k(t(k))

)c
, whence y 6∈

⋂n−1
k=0 T

−k(t(k)).

134 Chapter 4. Systems and domains 1: Model

4.3.10. Lemma. Let X = (X,A, µ, T) be an abstract dynamical system. Let B
be a measurable basis for X. Then, for i ∈ I(B) and Di := P(Hi), the following
defines a function vi : Σ(Di)→ [0, 1]:

vi(U) :=
m∑
k=1

µ
(
[xk]i

)
if ∃m ≥ 0 ∃x1, . . . , xm ∈ X :

maxU =
{
{Oi(x1)}, . . . , {Oi(xm)}

}
and Oi(xk) 6= Oi(xl) for k 6= l

This is a normalized continuous valuation with vi(maxDi) = 1.

Proof. We first show that vi is a well-defined function. First, note that X 6= ∅
(since µ(X) = 1), so Di is a Scott domain, and, by lemma 4.3.9, [xk]i is in A, so
µ
(
[xk]i

)
is defined. Moreover, since Oi(xk) 6= Oi(xl) for k 6= l, the equivalence

classes [xk]i and [xl]i are disjoint, so
∑m

k=1 µ
(
[xk]i

)
= µ

(⋃m
k=1[xk]i

)
∈ [0, 1].

Second, note that, if U ∈ Σ(Di), then we can find such m,x1, . . . , xm: If U = ∅,
then choose m := 0. So let U 6= ∅. Then maxU is, qua upset, a finite nonempty
subset of maxDi =

{
{Oi(x)} : x ∈ X

}
. So maxU =

{
{Oi(x1)}, . . . , {Oi(xm)}

}
for some m ≥ 1 and x1, . . . , xm ∈ X with {Oi(xk)} 6= {Oi(xl)} for k 6= l.

Third, to show that the function is independent of the choice of m,x1, . . . , xm,
let m,m′ ≥ 0 and x1, . . . , xm, x

′
1, . . . x

′
m′ ∈ X with Oi(xk) 6= Oi(xl) for k 6= l in

{1, . . . ,m} and Oi(x′k′) 6= Oi(x′l′) for k′ 6= l′ in {1, . . . ,m′} and{
{Oi(x1)}, . . . , {Oi(xm)}

}
= maxU =

{
{Oi(x′1)}, . . . , {Oi(x′m′)}

}
.

Then m = m′ and there is a bijection b : {1, . . . ,m} → {1, . . . ,m} with {Oi(xk)} =
{Oi(x′b(k))}. Hence [xk]i = [x′b(k)]i. So

m∑
k=1

µ
(
[xk]i

)
=

m∑
k=1

µ
(
[x′b(k)]i

)
=

m′∑
k=1

µ
(
[x′k]i

)
,

as needed.
Next we show that vi is a valuation. Concerning (i), we have vi(∅) =∑0
k=1 µ

(
[xk]i

)
= 0.

Concerning (ii), let U ⊆ V and show v(U) ≤ v(V). Let m,m′ ≥ 0 and
x1, . . . , xm, y1, . . . , ym′ ∈ X with maxU =

{
{Oi(x1)}, . . . , {Oi(xm)}

}
(pairwise

distinct) and maxV =
{
{Oi(y1)}, . . . , {Oi(ym′)}

}
(pairwise distinct). Since U ⊆

V are upsets, maxU ⊆ maxV . So m = |maxU | ≤ |maxV | = m′ and we can
write

maxV =
{
{Oi(x′1)}, . . . , {Oi(x′m′)}

}
with (x′1, . . . , x

′
m) = (x1, . . . , xm) and {x′m+1, . . . , x

′
m′} are the yk with Oi(yk) ∈

maxV \maxU . Hence

vi(U) =
m∑
k=1

µ
(
[xk]i

)
≤

m′∑
k=1

µ
(
[x′k]i

)
= vi(V).

4.3. Observing dynamical systems 135

Concerning (iii), let U, V ∈ Σ(Di) and show vi(U ∪ V) + vi(U ∩ V) = vi(U) +
vi(V). Let m,m′ ≥ 0 and x1, . . . , xm, y1, . . . , ym′ ∈ X with

maxU =
{
{Oi(x1)}, . . . , {Oi(xm)}

}
(pairwise distinct)

maxV =
{
{Oi(y1)}, . . . , {Oi(ym′)}

}
(pairwise distinct).

Let K+ :=
{
k ∈ {1, . . . ,m′} : {Oi(yk)

}
∈ maxU} and K− :=

{
k ∈ {1, . . . ,m′} :

{Oi(yk)
}
6∈ maxU}. Then

max(U ∪ V) = maxU ∪maxV =
{
{Oi(xl)}, {Oi(yk)} : l ∈ {1, . . . ,m}, k ∈ K−

}
max(U ∩ V) = maxU ∩maxV =

{
{Oi(yk)} : k ∈ K+

}
.

So, since K+ ∪K− = {1, . . . ,m′}, we have

vi(U ∪ V) + vi(U ∩ V) =
(m∑
k=1

µ[xk]i +
∑
k∈K−

µ[yk]i

)
+
(∑
k∈K+

µ[yk]i

)

=
m∑
k=1

µ[xk]i +
m′∑
k=1

µ[yk]i = vi(U) + vi(V).

Finally, we observe that vi automatically is continuous since Σ(Di) is fi-
nite. To see vi(Di) = 1 = vi(maxDi), note that maxDi ∈ Σ(Di) (qua up-
set of Di) and write maxDi =

{
{Oi(x1)}, . . . , {Oi(xm)}

}
(pairwise distinct).

Note that X =
⋃m
k=1[xk]i since each [xk]i is a subset of X and if x ∈ X, then

{Oi(x)} ∈ maxDi, so {Oi(x)} = {Oi(xk)} for some k ∈ {1, . . . ,m}, so x ∈ [xk]i.
Since max(maxDi) = maxDi, we have vi(Di) = vi(maxDi) =

∑m
k=1 µ[xk]i =

µ
(⋃m

k=1[xk]i
)

= µ(X) = 1. 2

4.3.6 Summary

We summarize the preceding results in the following theorem. We also add further
properties that will play an important role in section 4.4 below.

4.3.11. Theorem. Let X = (X,A, µ, T) be an abstract dynamical system. Let B
be a measurable basis for X. For i ∈ I = I(B), we have

1. Di := P(Hi) is a finite Scott domain.

2. vi : Σ(Di)→ [0, 1] defined by

vi(U) :=
m∑
k=1

µ
(
[xk]i

)
where maxU =

{
{Oi(x1)}, . . . , {Oi(xm)}

}
is a normalized continuous valuation with vi(maxDi) = 1.

136 Chapter 4. Systems and domains 1: Model

3. fi : Di → Di with fi(M) :=
{
Oi(T (x)) : Oi(x) ∈M

}
is Scott-continuous.

For i ≤ j in I, define pij : Dj → Di by pij(M) :=
{
Oi(x) : Oj(x) ∈M

}
. Then

4. pij is a Scott-continuous projection.

5. pii : Di → Di is the identity function.

6. pik = pij ◦ pjk if i ≤ j ≤ k.

7. If a ∈ maxDj, then pij(a) ∈ maxDi.

8. If a ∈ Dj and pij(a) ≤ e ∈ maxDi, then there is a ≤ d ∈ maxD with
pij(d) = e.

9. For all V ∈ Σ(Di), vi(V) = vj(p
−1
ij (V)).

10. For a ∈ maxDj, pij(fj(a)) ≥ fi(pij(a)).

11. For all i ∈ I, if ∃ai, bi 6= b′i ∈ maxDi : bi, b
′
i ≥ fi(ai), then there is j ≥ i in

I such that ∀aj, bj, b′j ∈ maxDj : if pij(aj) = ai, pij(bj) = bi, pij(b
′
j) = b′i,

34

then bj 6≥ fj(aj) or b′j 6≥ fj(aj).

If, additionally, T is bijective and µ-preserving, and B is forward T -closed, then

12. for all i ∈ I, if b ∈ maxDi, then there is a ∈ maxDi such that b ≥ fi(a).

13. For all i ∈ I, if ∃ai 6= a′i, bi ∈ maxDi : bi ≥ fi(ai), fi(a
′
i), then there is j ≥ i

in I such that ∀aj, a′j, bj ∈ maxDj : if pij(aj) = ai, pij(a
′
j) = a′i, pij(bj) = bi,

then bj 6≥ fj(aj) or bj 6≥ fj(a
′
j).

14. (a) For all i ∈ I and Ui ∈ Σ(Di), there is j0 ≥ i such that, for all j ≥ j0,
we have vj

(
f−1j (p−1ij (↓maxUi)) ∩ maxDj

)
= vj

(
p−1ij (↓maxUi) ∩ maxDj

)
(= vi(Ui)).35 (b) For all i ≤ j in I, if ai, bi ∈ maxDi with fi(ai) ≤ bi,
then there is aj, bj ∈ maxDj such that pij(aj) = ai and pij(bj) = bi and
fj(aj) ≤ bj.

Proof. Items (1)–(4) are summaries of the preceding results (again, X 6= ∅ since
µ(X) = 1).

Ad (5). We have pii(M) = {Oi(x) : Oi(x) ∈M} = M .
Ad (6). If a ∈ pik(M), then a = Oi(x) with Ok(x) ∈M . So Oj(x) ∈ pjk(M),

whence a = Oi(x) ∈ pij
(
pjk(M)

)
, so a ∈ pij ◦ pjk(M). Conversely, if a ∈

pij ◦pjk(M), then a = Oi(x) for b := Oj(x) ∈ pjk(M). So there is Ok(y) ∈M with
b = Oj(y). So Oj(x) = Oj(y), whence also a = Oi(x) = Oi(y). So a ∈ pik(M).

34Note that this implies bj 6= b′j since otherwise bi = pij(bj) = pij(b
′
j) = b′i.

35Note that, qua sets of maximal elements of finite domains, both sets are Scott-open.

4.3. Observing dynamical systems 137

Ad (7). If a ∈ maxDj, then a = {Oj(x)} for some x ∈ X, and pij(a) =
pij
(
{Oj(x)}

)
= {Oi(x)} ∈ maxDi.

Ad (8). Let a ∈ Dj and pij(a) ≤ e ∈ maxDi. So e = {Oi(x)} ⊆ {Oi(y) :
Oj(y) ∈ a}. So Oi(x) = Oi(y) for some Oj(y) ∈ a. Set d := {Oj(y)}. Then
a ≤ d ∈ maxDj and pij(d) = {Oi(y)} = {Oi(x)} = e.

Ad (9). Let V ∈ Σ(Di). Let

maxV =
{
{Oi(x1)}, . . . , {Oi(xm)}

}
(pairwise distinct)

max p−1ij (V) =
{
{Oj(y1)}, . . . , {Oj(ym′)}

}
(pairwise distinct).

We claim that

m⋃
k=1

[xk]i =
m′⋃
l=1

[yl]j

(⊆) Let z ∈ [xk]i. Then {Oj(z)} ∈ maxDj and pij
(
{Oj(z)}

)
= {Oi(z)} =

{Oi(xk)} ∈ V . So {Oj(z)} ∈ max p−1ij (V), whence {Oj(z)} = {Oj(yl)} for some
l ∈ {1, . . . ,m′}, so z ∈ [yl]j.

(⊇) Let z ∈ [yl]j. Then {Oj(z)} = {Oj(yl)}, so

{Oi(z)} = pij
(
{Oj(z)}

)
= pij

(
{Oj(yl)}

)
∈ V.

Since {Oi(z)} ∈ maxDi, it is in maxV . So {Oi(z)} = {Oi(xk)} for some k ∈
{1, . . . ,m}. So z ∈ [xk]i.

Then

vi(V) =
m∑
k=1

µ[xk]i = µ
m⋃
k=1

[xk]i = µ
m′⋃
l=1

[yl]j =
m′∑
l=1

µ[yl]j = vj
(
p−1ij (V)

)
.

Ad (10). We actually prove the claim for any a ∈ Dj. We have

pij(fj(a)) =
{
Oi(y) : Oj(y) ∈ fj(a)

}
=
{
Oi(y) : Oj(y) ∈

{
Oj(Tx) : Oj(x) ∈ a

}}
=: A

fi(pij(a)) =
{
Oi(Tx) : Oi(x) ∈ pij(a)

}
=: B

So we need to show that A ⊆ B (then A ≥ B). If u ∈ A, then u = Oi(y) for
Oj(y) ∈

{
Oj(Tx) : Oj(x) ∈ a

}
. So there is Oj(x) ∈ a such that Oj(y) = Oj(Tx).

So Oi(x) ∈ pij(a) and u = Oi(y) = Oi(Tx) ∈ B.36

36 Here is why the straightforward proof for the other direction (A ⊇ B) doesn’t go through:
If u ∈ B, then u = Oi(Tx) for some Oi(x) ∈ pij(a). So Oi(x) = Oi(z) for some Oj(z) ∈ a. So
Oj(Tz) ∈

{
Oj(Tx) : Oj(x) ∈ a

}
, whence Oi(Tz) ∈ A. However, even if Oi(x) = Oi(z), it is not

clear that we have Oi(Tx) = Oi(Tz).

138 Chapter 4. Systems and domains 1: Model

Ad (11). Let i = (n, C) ∈ I and ai = {Oi(xi)}, bi = {Oi(yi)}, b′i = {Oi(y′i)}
(for xi, yi, y

′
i ∈ X) be in maxDi with bi 6= b′i ≥ fi(ai). So Oi(yi),Oi(y′i) ∈

{Oi(Tzi) : Oi(zi) ∈ ai}. So there is zi, z
′
i ∈ X with Oi(zi) = Oi(xi) = Oi(z′i) and

Oi(yi) = Oi(Tzi) and Oi(y′i) = Oi(Tz′i).
We have i = (n, C) ≤ (n + 1, C) =: j ∈ I. To see that j has the required

properties, let aj = {Oj(xj)}, bj = {Oj(yj)}, b′j = {Oj(y′j)} (for xj, yj, y
′
j ∈ X) be

in maxDi with pij(aj) = ai, pij(bj) = bi, pij(b
′
j) = b′i. Assume for contradiction

that bj, b
′
j ≥ fj(aj).

First, note that Oi(yj) = Oi(Tzi) and Oi(y′j) = Oi(Tz′i): Indeed, we have

{Oi(Tzi)} = {Oi(yi)} = bi = pij(bj) = pij({Oj(yj)}) = {Oi(yj)},

and similarly for y′j.
Second, since bj, b

′
j ≥ fj(aj), we have, as above, zj, z

′
j ∈ X with Oj(zj) =

Oj(xj) = Oj(z′j) and Oj(yj) = Oj(Tzj) and Oj(y′j) = Oj(Tz′j). The latter two
identities imply, together with the first observation, Oi(Tzi) = Oi(yj) = Oi(Tzj)
and Oi(Tz′i) = Oi(y′j) = Oi(Tz′j).

Third, we claim Oi(Tzj) = Oi(Tz′j). Indeed, let t = (C0, . . . , Cn−1) ∈ C with
Tzj following t, i.e., T k(Tzj) ∈ Ck for k = 0, . . . , n− 1. Let C ∈ C with zj ∈ C.
Then zj follows t′ = (C,C0, . . . , Cn−1) ∈ Cn+1. Since Oj(zj) = Oj(z′j), also z′j
follows t′. In particular, for k = 0, . . . , n− 1, we have T k(Tz′j) ∈ Ck. So Tz′j also
follows t. Similarly for the other direction.

Finally, putting everything together, we obtain

Oi(Tzi) = Oi(Tzj) = Oi(Tz′j) = Oi(Tz′i)

which contradicts {Oi(Tzi)} = bi 6= b′i = {Oi(Tz′i)}.
For the last three items, we now assume T to be bijective and measure-

preserving, and B to be forward T -closed.
Ad (12). Let b = {Oi(y)} be in maxDi (for some y ∈ X). Since T is

surjective, let x ∈ X with T (x) = y. Let a := {Oi(x)} ∈ maxDi. We have
b = {Oi(y)} = {Oi(Tx)} ⊆ {Oi(Tx) : Oi(x) ∈ a} = fi(a), so b ≥ fi(a), as
needed.

Ad (13). Let i = (n, C) ∈ I and ai = {Oi(xi)}, a′i = {Oi(x′i)}, bi = {Oi(yi)}
(for xi, x

′
i, yi ∈ X) be in maxDi with ai 6= a′i and bi ≥ fi(ai), fi(a

′
i).

Since ai 6= a′i, we have xi 6≈i x′i, so there is, without loss of generality (the
other case is analogous), U ∈ C and k ∈ {0, . . . , n − 1} (so n ≥ 1) such that
T k(xi) ∈ U but T k(x′i) 6∈ U . Since U ∈ C ⊆ B and B is T -closed, T (U) ∈ B, so
j0 := (n, {T (U), X}) ∈ I. By directedness, let j ≥ i, j0 be in I.

To see that j has the required properties, assume for contradiction that there
are aj = {Oj(xj)}, a′j = {Oj(x′j)}, bj = {Oj(yj)} (for xj, x

′
j, yj ∈ X) in maxDj

with pij(aj) = ai, pij(a
′
j) = a′i, pij(bj) = bi but bj ≥ fj(aj), fj(a

′
j).

The former implies Oi(xj) = Oi(xi), Oi(x′j) = Oi(x′i), Oi(yj) = Oi(yi). The
latter implies Oj(yj) = Oj(Tzj) for some Oj(zj) = Oj(xj) and Oj(yj) = Oj(Tz′j)

4.3. Observing dynamical systems 139

for some Oj(z′j) = Oj(x′j). Since i ≤ j we, in particular, have Oi(zj) = Oi(xj) =
Oi(xi) and Oi(z′j) = Oi(x′j) = Oi(x′i).

Since U ∈ C, k ∈ {0, . . . , n − 1}, and xi ≈i zj, the fact that T kxi ∈ U hence
implies T kzj ∈ U . Similarly, T kx′i 6∈ U implies T kz′j 6∈ U . Thus, T kTzj ∈ T (U).
And we cannot have T kTz′j ∈ T (U) since otherwise T kTz′j = Tu for some u ∈ U ,
so, by injectivity of T , T kz′j = u ∈ U . Hence Tzj and Tz′j can be separated in j0,
so Oj0(Tzj) 6= Oj0(Tz′j), so, since j0 ≤ j,

Oj(yj) = Oj(Tzj) 6= Oj(Tz′j) = Oj(yj),

which is a contradiction.
Ad (14). (a). Let (n, C) = i ∈ I and Ui ∈ Σ(Di). Without loss of generality,

Ui 6= ∅ (otherwise both evaluated sets are empty, and hence both have the value
0). Write maxUi =

{
{Oi(y1)}, . . . , {Oi(yr)}

}
for y1, . . . , yr ∈ X (r ≥ 1). Let

j0 := (n+ 1, C) ≥ i. To show that this has the required property, let j ≥ j0, and
show vi

(
f−1j (p−1ij (↓maxUi)) ∩maxDj

)
= vj

(
p−1ij (↓maxUi) ∩maxDj

)
= vi(Ui).

We first show the second equality: Since, by (7), pij preserves maximal-
ity, we have vj

(
p−1ij (↓maxUi) ∩ maxDj

)
= vj

(
p−1ij (maxUi) ∩ maxDj

)
. Since,

by (2), vj(maxDj) = 1 and vj is a normalized valuation, this further equals
vj
(
p−1ij (maxUi)

)
.37 By (9), this equals vi(maxUi). Again, since vi is normalized,

vi(maxUi) = vi(Ui ∩maxDi) = vi(Ui).
Concerning the first equality, write maxDj =

{
{Oj(x1)}, . . . , {Oj(xm)}

}
(for

some m ≥ 1), and let

K :=
{
k ∈ {1, . . . ,m} : ∃s ∈ {1, . . . , r} ∃z ∈ [xk]j.T (z) ∈ [ys]i

}
.

We claim that T−1
(⋃r

s=1[ys]i
)

=
⋃
k∈K [xk]j. Indeed, if x ∈ T−1(

⋃r
s=1[ys]i),

then, since the [xk]j’s partition X, there is k ∈ {1, . . . ,m} with x ∈ [xk]j, so
it remains to show k ∈ K: we have z := x ∈ [xk]j with T (z) = T (x) ∈ [ys]i
for some s ∈ {1, . . . , r}. Conversely, if x ∈ [xk]j for some k ∈ K, then there is
s ∈ {1, . . . , r} and z ∈ [xk]j with T (z) ∈ [ys]i. In particular, z ≈j x. Since j ≥ j0
this implies z ≈j0 x. Since j0 = (n+ 1, C), we have

∀C ∈ C∀k = 0, . . . , n : T kx ∈ C ⇔ T kz ∈ C.

Since T (z) ≈i ys and i = (n, C), we have

∀C ∈ C∀k = 0, . . . , n− 1 : T k(Tx) ∈ C ⇔ T k(Tz) ∈ C ⇔ T k(ys) ∈ C.

Hence T (x) ∈ [ys]i, so x ∈ T−1
⋃r
s=1[ys]i.

37 If v : Σ(D) → [0, 1] is a normalized valuation and A,B ∈ Σ(D) with v(B) = 1, then
v(A) = v(A ∩ B). Proof: By modularity, v(A ∪ B) + v(A ∩ B) = v(A) + v(B). Since v is
normalized and monotone, 1 ≥ v(A ∪B) ≥ v(B) = 1, so v(A ∪B) = 1. Since also v(B) = 1, the
modularity yields v(A ∩B) = v(A).

140 Chapter 4. Systems and domains 1: Model

Next, we write Uj := f−1j (p−1ij (↓maxUi)) ∩ maxDj. We claim that Uj ={
{Oj(xk)} : k ∈ K

}
. Indeed, for any {Oj(xk)} = a ∈ maxDj we have: a ∈ Uj

iff ∃s ∈ {1, . . . , r} : pij(fj(a)) ≤ {Oi(ys)} iff ∃s ∈ {1, . . . , r} :
{
Oi(Tz) : Oj(z) =

Oj(xk)
}
⊇ {Oi(ys)} iff ∃s ∈ {1, . . . , r} ∃z ∈ [xk]j : T (z) ∈ [ys]i iff k ∈ K iff

a ∈
{
{Oj(xk)} : k ∈ K

}
.

Hence, since T is µ-preserving, we have

vj
(
f−1j (p−1ij (↓maxUi)) ∩maxDj

)
= vj(Uj) =

∑
k∈K

µ([xk]j) = µ
(⋃
k∈K

[xk]j
)

= µ
(
T−1

r⋃
s=1

[y]i
)

= µ
(r⋃
s=1

[y]i
)

=
r∑
s=1

µ([y]i) = vi(Ui),

which, by the already established second equality, equals vj
(
p−1ij (↓maxUi) ∩

maxDj

)
, as needed.

(b). Let i ≤ j in I and let ai = {Oi(x)} and bi = {Oi(y)} be in maxDi with
fi(ai) ≤ bi. Then {Oi(y)} ⊆ {Oi(Tz) : Oi(z) = Oi(x)}. So there is z ∈ X with
Oi(y) = Oi(Tz) and Oi(z) = Oi(x). Choose aj := {Oj(z)} and bj = {Oj(Tz)}
in maxDj. Then pij(aj) = {Oi(z)} = {Oi(x)} = ai and pij(bj) = {Oi(Tz)} =
{Oi(y)} = bi and bj = {Oj(Tz)} ⊆ {Oj(Tw) : Oj(w) = Oj(z)} = fj(aj), so
fj(aj) ≤ bj, as needed. 2

Note that, in the proofs of the last three items, we’ve only assumed T to be
surjective for (12), we’ve only assumed T to be injective and B to be forward
T -closed for (13), and we’ve only assumed T to be measure-preserving for (14). So
we could be more precise and specify more classes of dynamical systems between
general and standard (injective, surjective, measure-preserving) and link them
to the respective properties above. However, to avoid introducing even more
distinctions, we won’t do this explicitly.

4.4 Dynamical domains

This section is written from a purely domain-theoretic perspective: motivating a
certain category of domains in a domain-theoretic way. However, given the last
section, many definitions should be natural (additionally highlighted by using the
same notation). So the domain-theoretic definitions could also be motivated by
dynamical systems.

4.4.1 Dynamical dcpo’s

We first fix some terminology. Given a dcpo D, recall that maxD is the set
of maximal elements of D. We call a function f : D → E between dcpos
max-preserving if f(maxD) ⊆ maxE (i.e., if a ∈ maxD, then f(a) ∈ maxE).

4.4. Dynamical domains 141

Recall that, intuitively, (normalized) continuous valuations are domain-theoretic
analogues of (probability) measures. We call a valuation v on D max-normalized if
v is normalized and maxD can be written as a countable intersection of Scott-open
sets with v-value 1.38 This condition captures the idea that the valuation is a
domain-theoretic description of a probability measure on maxD, i.e., the space
that the domain D is a computational model for.

Note that a normalized valuation v on a finite dcpo D is max-normalized iff
v(maxD) = 1 (since D is finite, maxD is Scott-open).39

4.4.1. Definition. A dynamical dcpo is a triple D = (D, v, f) where D is a dcpo,
v : Σ(D)→ [0,∞] is a continuous valuation, and f : D → D is Scott-continuous.
We call D:

• finite if D is finite

• max-normalized if v is max-normalized

• max-preserving if f is max-preserving

• a dynamical Scott domain if D is a Scott domain

• max-surjective if, for all b ∈ maxD, there is a ∈ maxD such that b ≥ f(a).

• valuation-preserving if, for all U ∈ Σ(D), v(f−1(U)) = v(U).

Comments: First, this definition of a dynamical dcpo mimics that of a dynam-
ical system: D is like the state space, v like the (probability) measure, and f like
the transformation. However, there is an important difference: a dcpo contains
both ‘real’ and ‘ideal’ elements while the state space of a dynamical system only
contains ‘ideal’ points.

Second, in general we don’t require f to be max-preserving (i.e., ‘idealness’-
preserving). So f may map an ideal (or informationally complete) state to only a
non-ideal (or informationally non-complete) state. As we’ve seen in the (Di, vi, fi)
coming from the finite observations of a dynamical system (section 4.3), this may
be interpreted as non-determinism: Even given the knowledge of the maximal
state a = {Oi(x)}, there still is some uncertainty which of the {Oi(T (y))} for

38A simple example of a dcpo (in fact, Scott domain) with a normalized continuous valuation
that is not max-normalized is D := 2 = {0, 1} with the natural order and v : Σ(D)→ [0, 1] given
by v(∅) = 0, v({1}) = 1

2 , and v({0, 1}) = 1.
39Proof: If v(maxD) = 1, then maxD can trivially be written as a countable intersection of

Scott-open sets with v-value 1 (and v is already assumed to be normalized). Conversely, if v
is max-normalized, then maxD can be written as a countable intersection of Scott-open sets
with v-value 1. Since there are only finitely many Scott-opens (since D is finite), this, in fact,
is a finite intersection. As in footnote 37, for a normalized valuation the modularity condition
implies that a finite intersection of sets of v-value 1 has v-value 1.

142 Chapter 4. Systems and domains 1: Model

Oi(y) = Oi(x) will be the successor state, so f only determines an informationally
non-complete successor state f(a).

Third, and dually, f being max-preserving may be interpreted as being de-
terministic: from the complete information about the current state (a maximal
element a of D), the dynamics determines the complete information about the
successor state (the maximal element f(a)). If D is to be a computational model
for a dynamical system, we want that (maxD, f � maxD) is a dynamical system,
so we need max-preservation of f and the valuation should be like a probability
measure on maxD (which is the max-normalized condition).

Fourth, the definition of a dynamical dcpo is an instance of the more general
idea of adding additional domain-theoretic structure to the order-theoretic (and
induced topological) structure of a domain: here a (domain-theoretic) valuation
and a (domain-theoretic) function.

Next, we define morphisms between dynamical dcpos. Some parts of the
definition are not obvious, but we’ll offer some (preliminary) explanation below.

4.4.2. Definition. A dynamical morphism α : D→ E between two dynamical
dcpos D = (D, v, f) and E = (E,w, g) is a function α : D → E such that

1. Scott-continuous: α is Scott-continuous.

2. Max-preserving: α is max-preserving.

3. Max-bisimulative: For all a ∈ D and e ∈ maxE, if α(a) ≤ e, then there is
d ∈ maxD such that d ≥ a and α(d) = e.40

4. Valuation-preserving: For all V ∈ Σ(E), w(V) = v(α−1(V)).

5. Max-semi-equivariant: For all a ∈ maxD, α(f(a)) ≥ g(α(a)).

Note that, if g : D → D is max-preserving, then α is max-equivariant, i.e., for all
a ∈ maxD, α(f(a)) = g(α(a)).

Among the obvious conditions are: Scott-continuity as the requirement for
a morphism between domains, and valuation-preserving as the straightforward
counterpart to measure-preservation of morphisms between dynamical systems.

Among the ‘semi’-obvious conditions are: max-semi-equivariance as ‘half’ of
the equivariance of morphisms of dynamical systems, and max-preserving as being
‘deterministic’ (in the above sense of mapping an ‘ideal information-complete’
state to another such state). Concerning the former, an indication for why we
should only expect this inequality rather than full equality is the following: if f
is max-preserving but g is not (which may happen), then f(a), and hence also

40Note that we can equivalently only require that d ∈ D (instead of d ∈ maxD). We can
then choose d′ ∈ ↑d ∩maxD and we get that d′ ∈ maxD with d′ ≥ a and α(d′) = e (since e is
maximal and α monotone).

4.4. Dynamical domains 143

α(f(a)), is maximal, but g(α(a)) may fail to be maximal (even though α(a) is),
so they cannot be identical. More concretely, in the dynamical dcpos coming
from observing a dynamical system, we saw in theorem 4.3.11 that we could only
expect this ‘semi-max-equivariance’ of the projections pij : Dj → Di (especially
footnote 36).

The least obvious may be the max-bisimulation condition. Presumably, its
best explanation—although unsatisfactory at this stage—is that it makes things
work. We’ll see it being used in several places below, but its raison d’être will only
become completely apparent in the next chapter in proving that the ‘observation
domain’ construction is adjoint to the ‘model of a dynamical domain’ construction.

Now, with dynamical dcpos and their morphisms at hand, we can define their
categories.

4.4.3. Proposition. The following define categories:

1. dDCP: the objects are dynamical dcpos and the morphisms are the dynamical
morphisms. The identity morphism is the identity function and morphism
composition is function composition.

2. dDCPp: the wide (also called lluf) subcategory of dDCP with the same objects
and as morphisms those dynamical morphisms that also are projections.

3. dSCO: the full subcategory of dDCP with dynamical Scott domains as objects.

4. dSCOp: the full subcategory of dDCPp with dynamical Scott domains as
objects.

We can build further categories indicated by the following suffixed subscripts:

f restricting to finite dynamical dcpos.

m restricting to max-preserving dynamical dcpos.

n restricting to max-normalized dynamical dcpos.

For example, dSCOp
nf is the full subcategory of dSCOp consisting of max-normalized

finite dynamical Scott domains.

Proof. Ad (1). For dynamical dcpos D = (D, v, f), E = (E,w, g), F = (F, u, h),
and dynamical morphisms α : D → E (so α is a function from D to E) and
β : E → F (so β is a function from E to F), let β ◦ α be the composition of
the two functions α and β. This is again a dynamical morphism: Ad (1), a
composition of (Scott) continuous functions is again (Scott) continuous. Ad (2), if
a ∈ maxD, then α(a) ∈ maxE, so β ◦ α(a) = β(α(a)) ∈ maxF . Ad (3), if a ∈ D
and f ∈ maxF with β ◦ α(a) ≤ f , then (since α(a) ∈ E and f ∈ maxF with
β(α(a)) ≤ f) there is e ∈ maxE such that e ≥ α(a) and β(e) = f . Hence there is

144 Chapter 4. Systems and domains 1: Model

d ∈ maxD such that d ≥ a and α(d) = e, whence also β ◦ α(d) = β(α(d)) = f .
Ad (4), for W ∈ Σ(F),

u(W) = w
(
β−1(W)

)
= v
(

(α−1
(
β−1(W)

))
= v
(
(β ◦ α)−1(W)

)
.

Ad (5), we have, for a ∈ maxD, that (since α is max-semi-equivariant): α
(
f(a)

)
≥

g
(
α(a)

)
. Since β is monotone, we get

(β ◦ α)
(
f(a)

)
= β

(
α
(
f(a)

))
≥ β

(
g
(
α(a)

))
.

Since α is max-preserving, α(a) ∈ maxE. So, since β is max-semi-equivariant,
this continues by

≥ h
(
β
(
α(a)

))
= h

(
(β ◦ α)(a)

)
,

as needed.
This composition operation satisfies, qua function composition, the associativity

axiom, and also the identity axiom: For a dynamical dcpo D = (D, v, f), it is
readily seen that the identity function idD := idD : D → D is a dynamical
morphism. And we clearly have idD ◦ α = α (resp. β ◦ idD = β) for dynamical
morphism α (resp. β) with target (resp. source) D.

Ad (2). dDCPp is indeed a wide subcategory of dDCP since the identity
function in particular is a projection and the composition of projections is again a
projection.

Ad (3) and (4), this is immediate. 2

4.4.2 Dynamical expanding systems

To construct the dynamical domains that we’ll be working with, we proceed in a
way that is common in domain theory: roughly, they are defined as the limits of
certain diagrams of finite domains. So they are, as mentioned in the introduction,
certain ‘profinite’ objects. We first recall this standard construction (remark 4.4.4)
and explain why there is an additional twist to it in our case (remark 4.4.5 and
definition 4.4.6). Then we present the definition of the appropriate diagrams of
finite domains (definition 4.4.7).

4.4.4. Remark (‘Profinite’ domains). SFP domains (Plotkin 1976) and, more
generally, bifinite domains (see Abramsky and Jung 1994), are defined as follows.41

We start with a ‘background’ category C of domains. Adding a superscript p
means considering the wide subcategory Cp where the morphisms are additionally

41The acronym SFP stands for Sequences of Finite inductive Partial orders.

4.4. Dynamical domains 145

required to be projections. Adding the subscript f means restricting to the full
subcategory Cf of finite domains. Both for bifinite and SEP domains, C is the
category of dcpos with least element together with Scott-continuous functions.
For us, C = dSCOn.

Next, we define a notion of expanding system of finite domains as a diagram
in the category Cp

f with possibly additional properties. In the case of bifinite
domains, these are the diagrams in the category Cp

f with a directed index set. For
SFP domains, the index set is additionally required to be the naturals N. For us,
this will be the diagrams in the category dSCOp

nf with countable directed index set
that have an additional property that we call ‘upward deterministic’ (and some
more in the ‘standard case’).

Finally, we show that any such expanding system has a limit in the category
Cp, and define the category D of domains (that we’re is interested in) as the
full subcategory of C whose objects are those domains that are the limits of the
expanding systems of finite domains. This way one obtains the bifinite and SEP
domains, respectively. However, for us, there will be an additional twist: we will
have to take a ‘restricted limit’ as we’ll explain next.

4.4.5. Remark (Intuition for ‘restricted’ limit). The intuition for the definition
of D is that the domains in D are those that are completely described in a finitary
way: If D is in D, i.e., a limit of an expanding system of finite domains, then the
expanding system is the finitary description of D. And the fact that D is the
limit means that D is precisely described by that expanding system. (Being a
cone of the diagram means that D contains all the information in the diagram,
and being limiting means that D also doesn’t contain more information.)

For our purposes, however, we not only want that the domains that we work
with have such a complete finitary description, we also need them to model
a deterministic dynamical system. So we want that (at least) they are max-
preserving dynamical Scott domains. (We’ll later see that this is enough to imply
that they model a deterministic system in a much stronger sense.)

Thus, we define the objects of D as the limits of expanding systems of finite
domains subject to the condition of being max-preserving. So, they are not cones
that are limiting among all the cones for the expanding systems of finite domains,
but they rather are limiting among all the cones built with max-preserving
dynamical Scott domains.

Formally, this idea of a ‘restricted’ limit is spelled out in a category-theoretic
way in the following definition.42 Technically, it is not necessary to understand
the chapter: it can be replaced with the concrete description of the restricted
limit provided in theorem 4.4.8 below. However, conceptually it is important as it
formalizes an important part of the intuition behind the definition of a dynamical

42Given the preceding remark, this concept occurs quite naturally in our setting, but we’re
not aware of it having been defined before.

146 Chapter 4. Systems and domains 1: Model

domain. (As a reference for the basic category-theoretic concepts used in the
definition, see, e.g., Leinster (2014).)

4.4.6. Definition. If C is a category, D a full subcategory, and F : I → C a
diagram (i.e., a functor), a D-limit of F is a cone (A, fi) to F in C,43 with A an
object in D, and the following universal property:

for any cone (B, gi) to F in C, if B ∈ D, then there is a unique morphism
u : B → A (in C and hence also in D) such that fi ◦ u = gi for all objects i
in I.

Note that, if it exists, (A, fi) is unique up to unique isomorphism in D: If (A′, f ′i)
is another D-limit to F, there is a unique isomorphism u : A → A′ in D with
f ′i ◦ u = fi.

44 Thus, we can also speak of ‘the’ D-limit. If the categories are clear
from context, we also say the restricted limit .

Finally, we state the definition of the appropriate notion of an expanding
system of domains.

4.4.7. Definition. An expanding system of dynamical dcpos is a structure(
Di, pij

)
I

where (I,≤) is a directed preorder (called the index set), the Di =
(Di, vi, fi) are dynamical dcpos, and, for i ≤ j in I, pij : Dj → Di is a dynamical
morphism such that,

1. For all i ≤ j in I, pij : Dj → Di is a projection.

2. For all i ∈ I, pii = idDi .

3. For all i ≤ j ≤ k in I, pik = pij ◦ pjk.

An expanding system of dynamical dcpos
(
Di, pij

)
I

is:

4. upward deterministic :iff for all i ∈ I, if ∃ai, bi 6= b′i ∈ maxDi : bi, b
′
i ≥

fi(ai), then there is j ≥ i in I such that ∀aj, bj, b′j ∈ maxDj : if pij(aj) =
ai, pij(bj) = bi, pij(b

′
j) = b′i, then bj 6≥ fj(aj) or b′j 6≥ fj(aj).

5. downward deterministic :iff for all i ∈ I, if ∃ai 6= a′i, bi ∈ maxDi : bi ≥
fi(ai), fi(a

′
i), then there is j ≥ i in I such that ∀aj, a′j, bj ∈ maxDj : if

pij(aj) = ai, pij(a
′
j) = a′i, pij(bj) = bi, then bj 6≥ fj(aj) or bj 6≥ fj(a

′
j).

43I.e., A is an object of C and, for each object i of I, fi : A→ F(i) is a morphism in C such
that, for every morphism ι : i→ j in I, F(ι) ◦ fi = fj .

44The usual proof: Since (A, fi) is a cone to F in C with A in D and (A′, f ′i) is a D-limit, there
is a unique morphism u : A→ A′ such that f ′i ◦ u = fi. Similarly, there is a unique morphism
u′ : A′ → A such that fi ◦ u′ = f ′i . Now, (A, fi) is a cone to F in C with A in D and both
u′ ◦u : A→ A and idA : A→ A are morphisms in D with fi ◦ (u′ ◦u) = (fi ◦u′) ◦u = f ′i ◦u = fi
and fi ◦ idA = fi. Since (A, fi) is limiting, there is a unique such morphism, so u′ ◦ u = idA.
Similarly, u ◦ u′ = idA′ . Hence u : A → A′ is an isomorphism. And, by definition of (A′, f ′i)
being a D-limit, it is unique with the property f ′i ◦ u = fi.

4.4. Dynamical domains 147

6. eventually valuation-preserving :iff (a) all Di are finite and, for all i ∈ I and
Ui ∈ Σ(Di), there is j0 ≥ i such that, for all j ≥ j0, we have

vj

(
f−1j
(
p−1ij (↓maxUi)

)
∩maxDj

)
= vj

(
p−1ij (↓maxUi) ∩maxDj

)
, 45

and (b) for all i ≤ j in I, if ai, bi ∈ maxDi with fi(ai) ≤ bi, then there is
aj, bj ∈ maxDj such that pij(aj) = ai and pij(bj) = bi and fj(aj) ≤ bj.

A finitary dynamical expanding system is an upward deterministic expanding
system of dynamical dcpos (Di, pij)I where I is countable and each Di is a finite
max-normalized dynamical Scott domain. It is standard if, additionally, the
Di are max-surjective and (Di, pij)I is downward deterministic and eventually
valuation-preserving.

Comments: First, the term ‘finitary’ is to stress that we’re assuming the index
set to be countable and the domains to be finite.

Second, at a very intuitive level, being upward deterministic means that if
fi fails, on input ai, to uniquely pick out a maximal element above it, then this
will be eventually remedied at some higher level j. Similarly, being downward
deterministic means that if bi informationally completes two images fi(ai) and fi(a

′
i)

of informationally complete and distinct states, then the underlying inconsistency
of these image will eventually be apparent at some higher level j.

Third, as usual, we can regard an expanding system (Di, pij)I as a diagram as
follows: Consider the preorder I as a category with the elements of I as objects
and with a single morphism ι : i→ j iff i ≤ j. Then (Di, pij)I corresponds to the
functor F : Iop → dDCPp that sends i ∈ I to F(i) := Di and that sends ιop : j → i
(i.e., i ≤ j) in I to F(ιop) := pij : Dj → Di.

46

Fourth, just to be sure: the domain-theoretic notion of an ‘expanding system’
has nothing to do with the notion of an ‘expanding (or expansive) dynamical
system’ from dynamical systems theory.

4.4.3 The limit theorem

The main technical contribution of this chapter is to show that the desired
restricted limits of finitary dynamical expanding system do indeed exist.

4.4.8. Theorem. Let (Di, pij)I be a finitary dynamical expanding system. Write
Di = (Di, vi, fi). Then

45Qua sets of maximal elements of finite domains, both sets are Scott-open.
46This is a functor: By clause (2), F(idi) = F(i→ i) = pii = idDi

. By clause (3), if κop : k → j
and ιop : j → i are in Iop (so k ≥ j ≥ i), then F(ιop ◦ κop) = F(k → i) = pik = pij ◦ pjk = F(j →
i) ◦ F(k → j) = F(ιop) ◦ F(κop).

148 Chapter 4. Systems and domains 1: Model

1. D :=
{
〈a(i) : i ∈ I〉 ∈

∏
i∈I Di : ∀i ≤ j ∈ I . a(i) = pij(a(j))

}
with the

pointwise order47 is a Scott domain and maxD is closed in the Lawson
topology. For i ∈ I, the function pi : D → Di defined by pi(a) := a(i) is a
max-preserving Scott-continuous projection.

2. There is a unique continuous valuation v : σ(D)→ [0,∞] such that, for all
Ui ∈ Σ(Di), we have vi(Ui) = v(p−1i (Ui)). Moreover, v is max-normalized.

3. There is a largest (in the pointwise ordering) function f : D → D that is
Scott-continuous and max-preserving such that, for all a ∈ D and i ∈ I,
f(a)(i) ≥ fi(a(i)). (The proof provides a concrete description of f .)

Hence D := (D, v, f) is a max-normalized and max-preserving dynamical Scott
domain. Moreover, (D, pi) is a dSCOp

nm-limit of the diagram (Di, pij)I in dSCOp
n:

4. (D, pi) is a cone to the diagram with D in dSCOp
nm (so the pi are morphisms

in dSCOp
n such that pij ◦ pj = pi for all i ≤ j in I).48

5. If (E, βi)I is a cone to the diagram with E in dSCOp
nm, then there is a unique

morphism β : E→ D in dSCOp
n, which is defined by β(e) := 〈βi(e) : i ∈ I〉,

such that pi ◦ β = βi for all i ∈ I.

If (Di, pij)I additionally is standard, then

6. f is bijective on maxD.

7. D is valuation-preserving (i.e., v(f−1(U)) = v(U) for U ∈ Σ(D)).

The proof will take up the rest of this subsection. Since it is rather long,
we don’t write it in a proof environment, but rather divide it up in paragraphs
corresponding to the items of the theorem (which then can have lemmas with
their own proof environments). To avoid repeating notation, we’ll always work in
the setting of the theorem.

Claim (1) This is the standard theory of limits in domain theory (Abramsky
and Jung 1994, sec. 3.3.1): (Di, pij) is a diagram with countable and directed
index set in the category of dcpos with continuous projections as morphisms and
(D, pi) is a limiting cone. Since the category of Scott domains is closed under
these (bi)limits, D again is a Scott domain (for ω-algebraicity, note that the index
set is countable).

Next, we show that pi is max-preserving: Otherwise, there are a ∈ maxD and
i ∈ I with a(i) 6∈ maxDi. Since I is a countable directed poset, we can find a

47I.e., for a, b ∈ D, a ≤ b iff ∀i ∈ I : a(i) ≤ b(i).
48Note that this agrees with the definition of a cone when we regard the expanding system as a

functor F : Iop → dSCOp
n: then this requires that, for ιop : j → i, we have pi = F(ιop)◦pj = pij◦pj .

4.4. Dynamical domains 149

cofinal chain i = j0 < j1 < . . . in I. We recursively define a sequence (djn)n≥0
with pjn−1jn(djn) = djn−1 and a(jn) ≤ djn ∈ maxDjn . This determines an element
d ∈ D with a ≤ d. Since a is maximal, this implies a = d, so a(i) = d(i) ∈ maxDi,
contradiction.

For n = 0, define dj0 as some maximal element of Di above a(i). Given
a(jn) ≤ djn ∈ maxDjn , we define djn+1 as follows. Since a(jn+1) ∈ Djn+1

and pjnjn+1(a(jn+1)) = a(jn) ≤ djn ∈ maxDjn , there is, since pjnjn+1 is max-
bisimulative, djn+1 := d ∈ maxDjn+1 such that a(jn+1) ≤ d and pjnjn+1(d) = djn .

Finally, we show that maxD is Scott-closed. Since the pi are max-preserving,
we have maxD =

⋂
i∈I p

−1
i (maxDi). Since the maxDi are Lawson-closed (the Di

are finite and the Lawson topology on a finite dcpo is the discrete topology), it
remains to show that the pi are Lawson-continuous (so maxD is an intersection
of Lawson-closed sets). Indeed, qua projection, the pi-preimages of upsets are
upsets, so pi is continuous in the lower topology. Since pi is Scott-continuous and
the Lawson topology is the join of the Scott topology and the lower topology, pi
is Lawson-continuous.

Claim (2) We’ll use a result of Goubault-Larrecq (2018, thm. 4.2) on projective
limits of valued topological spaces: it states that, given an ep-system (Xi, (pij, eij))
in the category of topological spaces with projective limit (X, pi) together with
valuations vi on Xi with the obvious compatibility condition, there is a unique
valuation v on X with the obvious compatibility condition. Let’s precisely state
and verify the assumption for our case.

Each Di with its Scott topology is a topological space whose specialization
ordering is precisely the partial order on the set Di (Abramsky and Jung 1994,
prop. 2.3.2). And the pij : Dj → Di are continuous with respect to the Scott
topologies on Dj and Di (since pij is Scott-continuous). In fact, since the pij
are projections (and the Di are T0 spaces), they have uniquely determined cor-
responding embeddings eij : Di → Dj, turning (Di, (pij, eij))I into an ep-system.
Moreover, qua bilimit of continuous domains, the Scott topology on D coincides
with the relative product topology, which is the projective topology of the pro-
jective system (Di, pij) (Abramsky and Jung 1994, ex. 3.3.12 (18)). Further,
each vi : Σ(Di) → [0, 1] is a continuous valuation on the topological space Di

turning (Di, vi) into a valued space. And, for i ≤ j and Ui ∈ Σ(Di), we have,
since pij : Dj → Di is valuation-preserving (qua dynamical morphism), that
vi(Ui) = vj(p

−1
ij (Ui)).

The result on valued spaces mentioned above now implies that there is a unique
continuous valuation v : Ω(D)→ [0,∞] on D (where Ω(D) = Σ(D) is the set of
open sets in the projective topology) such that, for each i ∈ I and Ui ∈ Σ(Ui),
vi(Ui) = v(p−1i (Ui)).

It remains to show that v is max-normalized. Indeed, to show that v is
normalized, choose any i ∈ I (recall that I is nonempty since it is directed), and

150 Chapter 4. Systems and domains 1: Model

we have, since vi is normalized, that v(D) = v(p−1i (Di)) = vi(Di) = 1. To show
that v is max-normalized, note that maxD =

⋂
i∈I p

−1
i (maxDi). Since Di is finite

and I countable, this is a countable intersection of Scott-open sets and, since vi is
max-normalized and Di finite, v(p−1i (maxDi)) = vi(maxDi) = 1.

Claim (3) We define f : D → D as follows: First we define a function f :
maxD → maxD. Next, we show that it is continuous. Then we extend it to a
function f : D → D. Finally, we show that this f has the required properties.

To define f we observe the following.

4.4.9. Lemma. 1. For each a ∈ maxD, there is some b ∈ maxD such that
∀i ∈ I : b(i) ≥ fi(a(i)).

2. For each a ∈ maxD, there is at most one b ∈ maxD such that ∀i ∈ I :
b(i) ≥ fi(a(i)).

Proof. Ad (1). For i ∈ I, define Fi := p−1i
(
↑fi(a(i))

)
∩maxD. Since maxD is

Lawson-closed and ↑fi(a(i)) ⊆ Di is Lawson-closed and pi Lawson-continuous, also
Fi is Lawson-closed. Moreover, Fi is nonempty: Let bi ∈ Di be a maximal element
above fi(a(i)). Since pi is surjective and monotone, there is a maximal element
b ∈ D with pi(b) = bi. So b ∈ Fi. Finally, if i ≤ j, then Fi ⊇ Fj: If b ∈ Fj, then
b ∈ maxD with pj(b) ≥ fj(a(j)). Since pij is monotone and max-semi-equivariant
(and a(j) ∈ maxDj), we have

b(i) = pij
(
pj(b)

)
≥ pij

(
fj(a(j))

)
≥ fi(pij(a(j)) = fi(a(i)).

Hence b ∈ Fi.
Thus, {Fi : i ∈ I} is a family of Lawson-closed subsets of D with the finite

intersection property. Since the Lawson topology on a Scott domain is compact,
there is b ∈

⋂
I Fi, so b ∈ maxD with b(i) ≥ fi(a(i)) for all i ∈ I, as needed.

Ad (2). Otherwise, there is a, b, b′ ∈ maxD with b 6= b′ and ∀i : b(i), b′(i) ≥
fi(a(i)). Since b 6= b′, there is i ∈ I with b(i) 6= b′(i), and a(i), b(i), b′(i) ∈ maxDi

(since the pi are max-preserving) and b(i), b′(i) ≥ fi(a(i)). However, for all
j ≥ i, the elements a(j), b(j), b′(j) ∈ maxDj are such that pij(a(j)) = a(i),
pij(b(j)) = b(i), pij(b

′(j)) = b′(i), but b(j), b′(j) ≥ fj(a(j)). This contradicts the
fact that the expanding system is upward deterministic. 2

Hence, we can define the function f : maxD → maxD by mapping a ∈ maxD
to the unique b ∈ maxD with ∀i : b(i) ≥ fi(a(i)). To establish the continuity of
f , we observe the following.

4.4.10. Lemma. 1. For all i ∈ I and a ∈ maxD, there is ja = j ≥ i such that,
for all b ∈ maxD, if b(j) ≥ fj(a(j)), then b(i) = f(a)(i).

4.4. Dynamical domains 151

2. For all i ∈ I there is j ≥ i such that, for all a, b ∈ maxD, if a(j) = b(j),
then f(a)(i) = f(b)(i).

3. For all i ∈ I and Ui ⊆ Di, there is j0 ≥ i such that, for all j ≥ j0,

f
−1

(p−1i Ui ∩maxD) =
⋃

aj∈R−1
ij Ui

p−1j (aj) ∩maxD

where R−1ij Ui :=
{
aj ∈ maxDj : ∃a ∈ maxD. a(j) = aj, f(a)(i) ∈ Ui

}
.

Note that (1) is like the ε-δ definition of continuity and (2) is like uniform
continuity. Indeed, the proof of (2) from (1) is, since maxD is a compact space,
essentially (the proof of) the Heine-Cantor theorem.
Proof. Ad (1). Let i ∈ I and a ∈ maxD. To show the claim, assume for
contradiction that for all j ≥ i there is b ∈ maxD with b(j) ≥ fj(a(j)) but
b(i) 6= f(a)(i). For j ≥ i consider the sets

Fj :=
{
b ∈ maxD : b(j) ≥ fj(a(j)), b(i) 6= f(a)(i)

}
.

Then Fj is a Lawson-closed subset of D: We have Fj = maxD ∩ p−1j
(
↑fj(a(j))

)
∩(

p−1i (f(a)(i))
)c

, and (i) maxD is Lawson-closed, (ii) pj is Lawson-continuous and

↑fj(a(j) ⊆ Dj Lawson-closed, and (iii) pi Lawson-continuous and {f(a)(i)} ⊆ Di

is Lawson-open, so p−1i (f(a)(i)) is Lawson-open and its complement Lawson-closed.
Moreover, by assumption, Fj is nonempty. And if j ≤ k, then Fj ⊇ Fk: If b ∈ Fk,
then b ∈ maxD with b(i) 6= f(a)(i) and b(k) ≥ fk(a(k)). The latter implies,
since pjk is monotone and max-semi-equivariant (and a(k) ∈ maxDk since pk is
max-preserving), that

b(j) = pjk
(
b(k)

)
≥ pjk

(
fk(a(k))

)
≥ fj

(
pjk(a(k))

)
= fj(a(j)),

so b ∈ Fj. Hence, {Fj : j ≥ i} is a family of Lawson-closed subsets of D with
the finite intersection property, so, since the Lawson topology on D is compact,
there is b ∈

⋂
j≥i Fi. But then, for all k ∈ I : b(k) ≥ fk(a(k)) (given k ∈ I, let, by

directedness, j ≥ k, i, so b(j) ≥ fj(a(j), and b(k) ≥ fk(a(k) follows as above by
applying pkj to both sides). So, by definition of f , b = f(a), which contradicts
b(i) 6= f(a)(i).

Ad (2). Let i ∈ I. First, we show that, for all a ∈ maxD, there is ja ≥ i such
that

(∗) For all b ∈ maxD, if b(ja) = a(ja), then f(a)(i) = f(b)(i).

Indeed, by (1), there is ja ≥ i such that, for all c ∈ maxD, if c(ja) ≥ fja(a(ja)),
then c(i) = f(a)(i). To show (∗), let b ∈ maxD with b(ja) = a(ja). So, for
c := f(b) ∈ maxD, we have c(ja) = f(b)(ja) ≥ fja(b(ja)) = fja(a(ja)). Hence
f(b)(i) = c(i) = f(a)(i), as claimed.

152 Chapter 4. Systems and domains 1: Model

Thus, for a ∈ maxD, we define Ua := p−1ja (a(ja))∩maxD, which is an open set
of maxD with a ∈ Ua. Thus, {Ua : a ∈ maxD} is an open cover of the compact
space maxD, so there is a finite subcover U = {Ua1 , . . . , Uam} (with m ≥ 1). By
directedness of I, let j ≥ ja1 , . . . , jam ≥ i.

We claim that j ≥ i has the required property: let a, b ∈ maxD with a(j) =
b(j). Since U is a cover, a ∈ Uak for some k ∈ {1, . . . ,m}. So a(jak) = ak(jak).
Since j ≥ jak and a(j) = b(j), also a(jak) = b(jak). So a(jak) = ak(jak) = b(jak),
whence (∗) implies f(a)(i) = f(ak)(i) = f(b)(i), as needed.

Ad (3). Let i ∈ I and Ui ⊆ Di. Let j0 ≥ i be as in (2). Let j ≥ j0. If

a ∈ f
−1

(p−1i Ui ∩ maxD), then aj := a(j) ∈ R−1ij Ui (since f(a)(i) ∈ Ui) and

a ∈ p−1j (aj) ∩maxD. For the other direction, let a ∈ p−1j (aj) ∩maxD for some

aj ∈ R−1ij Ui. So, by definition of R−1ij Ui, there is a′ ∈ maxD such that a′(j) = aj
and f(a′)(i) ∈ Ui. So a(j) = aj = a′(j), so, since j ≥ j0, also a(j0) = a′(j0),

whence, by (2), f(a)(i) = f(a′)(i) ∈ Ui. So a ∈ f−1(p−1i Ui ∩maxD). 2

Note that (3) shows that f : maxD → maxD is continuous (in the relative
Scott topology on maxD): For the subbasic open sets p−1i (Ui) ∩maxD of maxD

(with i ∈ I and Ui ⊆ Di Scott-open), f
−1(

p−1i (Ui)∩maxD
)

is a union of subbasic
open sets in maxD, and hence open.

Now, we can use a characteristic theorem about Scott domains to extend the
function f : maxD → maxD ⊆ D to the whole of D.

4.4.11. Lemma. Define the function f : D → D by

f(a) :=
∨{∧

f(U ∩maxD) : a ∈ U ∈ Σ(D)
}
.

Then f is the largest Scott-continuous function extending f : maxD → maxD. In
particular, f is max-preserving.

Proof. We’ll use the characterization of Scott domains (regarded as topological
spaces with the Scott topology) as precisely those T0 spaces that are densely
injective (Gierz et al. 2003, Prop. II-3.11). Since D is a Scott domain, it is densely
injective, which means that every continuous map h : A→ D extends continuously
to any space B containing A as a dense subspace. We choose A := maxD and
h : maxD → D as h(z) := f(z). By the previous lemma, h is indeed continu-
ous. We choose B := D. Then A is a dense subspace of B: It is a subspace,
so we need to show that maxD is dense in D. Indeed, given a point a ∈ D
and a Scott-open set a ∈ U ⊆ D, we show that U ∩ A is nonempty: since
D is a dcpo, there is a maximal element a′ ≥ a, whence, since U is an upset,
a′ ∈ U ∩maxD. Hence, h has an extension to a continuous h∗ : D → D which
is given as h∗(z) :=

∨{∧
h(U ∩ maxD) : y ∈ U ∈ Σ(D)

}
(Gierz et al. 2003,

Prop. II-3.9). Thus, h∗ = f is a Scott-continuous extension of f . 2

Finally, we check that f : D → D has the required properties.

4.4. Dynamical domains 153

4.4.12. Lemma. 1. The function f from lemma 4.4.11 has the property

∀a ∈ D ∀i ∈ I : f(a)(i) ≥ fi(a(i)) (4.3)

2. The function f is the largest Scott-continuous and max-preserving function
with property (4.3).

Proof. Ad (1). Let a ∈ D and i ∈ I. Since pi is Scott-continuous and a
projection, we have

f(a)(i) = pi
∨{∧

f(U ∩maxD) : a ∈ U ∈ Σ(D)
}

cont.
=
∨{

pi
∧

f(U ∩maxD) : a ∈ U ∈ Σ(D)
}

proj.
=
∨{∧

pi ◦ f(U ∩maxD) : a ∈ U ∈ Σ(D)
}

Consider U := p−1i (↑a(i)). Then a ∈ U ∈ Σ(D) (since pi is Scott-continuous
and ↑a(i) is an upset in a finite dcpo and hence Scott-open). So f(a)(i) ≥∧
pi ◦ f(U ∩maxD). Next, we show:

pi ◦ f(U ∩maxD) ⊆ ↑fi(a(i)) ∩maxDi.

Indeed, let bi ∈ pi◦f(U∩maxD). So bi = b(i) for b = f(c) for some c ∈ U∩maxD.
So bi ∈ maxDi (since pi is max-preserving and b = f(c) ∈ maxD) and, by
definition of f , bi = b(i) = f(c)(i) ≥ fi(c(i)) ≥ fi(a(i)), where the last step follows
since c(i) ≥ a(i) (since c ∈ U) and fi is monotone.

Note that
∧
↑fi(a(i)) ∩maxDi exists since any nonempty set has an infimum

in a Scott domain. Now, we have

f(a)(i) ≥
∧

pi ◦ f(U ∩maxD) ≥
∧
↑fi(a(i)) ∩maxDi ≥ fi(a(i))

where the last step follows since fi(a(i)) is a lower bound of the set over which
the infimum is taken.

Ad (2). By now, we’ve established that the function f is Scott-continuous
and max-preserving with property (4.3), so we need to show that it is the largest.
Assume f ′ is another such function. Since f ′ is max-preserving, f ′ � maxD
is a function from maxD to maxD, and it has, by assumption, the property
∀a ∈ maxD ∀i ∈ I : f ′ � maxD(a)(i) ≥ fi(a(i)). Hence f ′ � maxD = f . Thus,
f ′ is a Scott-continuous extension of f . Since, by lemma 4.4.11, f is the largest
Scott-continuous extension of f , we have f ′ ≤ f , as needed. 2

The second item of the lemma states that f : D → D has the required
properties, which finishes the proof of claim (3).

154 Chapter 4. Systems and domains 1: Model

Claim (4) We already know that the pi are projections and we have pij ◦pj = pi.
So it remains to show that pi is a dynamical morphism. In (1), we’ve already seen
that pi is Scott-continuous and max-preserving, so it remains to check conditions
(3)–(5) of being a dynamical morphism.

Concerning condition (3), let a ∈ D, pi(a) = a(i) ≤ e ∈ maxDi. We need to
find d ∈ maxD with d ≥ a and d(i) = e. Since I is a countable directed poset, we
can find a cofinal chain i = j0 < j1 < . . . in I. We recursively define a sequence
(djn)n≥0 with pjn−1jn(djn) = djn−1 and a(jn) ≤ djn ∈ maxDjn and di = e. This
determines an element d ∈ maxD with a ≤ d and d(i) = e, as needed.

For n = 0, define dj0 := e ∈ maxDi, so a(j0) ≤ dj0 . Given a(jn) ≤ djn ∈
maxDjn , we define djn+1 as follows. Since a(jn+1) ∈ Djn+1 and pjnjn+1(a(jn+1)) =
a(jn) ≤ djn ∈ maxDjn , there is, since pjnjn+1 is max-bisimulative, djn+1 := d ∈
maxDjn+1 such that a(jn+1) ≤ d and pjnjn+1(d) = djn .

Concerning condition (4), by the defining property of v, we have, for Ui ∈ Σ(Di),
that vi(Ui) = v(p−1i (Ui)).

Concerning condition (5), for a ∈ maxD, we have, by definition of f , that
pi
(
f(a)

)
= f(a)(i) ≥ fi(a(i)) = fi

(
pi(a)

)
.

Claim (5) Let (E, βi)I be another cone to the diagram (Di, pij)I in dSCOp
n with

E in dSCOp
nm. Write E = (E,w, g). Set β : E → D, α(e) := 〈βi(e) : i ∈ I〉.

From the standard theory of limits in domain theory (Abramsky and Jung 1994,
sec. 3.3.1), it is known that β : E → D is the unique continuous projection such
that βi = pi ◦ β for all i ∈ I. So we need to show that β is a dynamical morphism.

Concerning condition (1), as just mentioned, β is Scott-continuous.
Concerning condition (2), if e ∈ maxE, then β(e) = 〈βi(e) : i ∈ I〉 is a thread

of maximal elements (since all βi are max-preserving), so β(e) is maximal in D.
Concerning condition (3), let a ∈ E and β(a) ≤ e ∈ maxD. For i ∈ I, consider

Ci := ↑a ∩ β−1i (e(i)).
This is a Lawson-closed subset of E: First, by definition of the Lawson topology,

E \ ↑a is open (so ↑a is closed). Second, we have ↑e(i) = {e(i)} since e(i) = pi(e)
is maximal because pi is max-preserving. Further, βi is a projection since it is a
morphism in dSCOp

n. Hence, the βi preimage of ↑e(i) also is a principal upset, so
β−1i (e(i)) is Lawson-closed.

Moreover, Ci is nonempty: Since βi is max-bisimulative and βi(a) ≤ e(i) (since
β(a) ≤ e), there is d ∈ maxE with d ≥ a and βi(d) = e(i), so d ∈ Ci.

Finally, if i ≤ j, then Ci ⊇ Cj: If d ∈ Cj, then d ∈ E with d ≥ a and
βj(d) = e(j), so, since the βi’s are part of a cone,

βi(d) = pij
(
βj(d)

)
= pij

(
e(j)

)
= e(i),

whence d ∈ Ci.
Hence, {Ci : i ∈ I} is a family of Lawson-closed subsets of E with the finite

intersection property (given Ci1 , . . . , Cin , let I 3 j ≥ i1, . . . , in, then ∅ 6= Cj ⊆

4.4. Dynamical domains 155

Ci1 ∩ . . .∩Cin). Since E is a Scott domain, its Lawson topology is compact. Hence⋂
i∈I Ci is nonempty. Let d ∈

⋂
I Ci. Then d ≥ a and β(d) = 〈βi(d) : i ∈ I〉 =

〈e(i) : i ∈ I〉 = e, as needed.

Concerning condition (4), we first show that for the basic opens V = p−1i1 (Ui1)∩
. . . ∩ p−1in (Uin) of D (with ik ∈ I and Uik ∈ Σ(Dik) for k = 1, . . . , n), we have
v(V) = w(β−1(V)).

Since I is directed, let j ≥ i1, . . . , in. So

V =
n⋂
k=1

p−1ik
(
Uik
) pikj◦pj=pik=

n⋂
k=1

p−1j
(
p−1ikj(Uik)

)
= p−1j

(n⋂
k=1

p−1ikj(Uik)
)
.

Hence, since βj is valuation-preserving,

v(V) = v
(
p−1j
(n⋂
k=1

p−1ikj(Uik)
))

= vj

(n⋂
k=1

p−1ikj(Uik)
)

= w
(
β−1j
(n⋂
k=1

p−1ikj(Uik)
))

= w
(n⋂
k=1

β−1j
(
p−1ikj(Uik)

))
pikj◦βj=βik= w

(n⋂
k=1

β−1ik (Uik)
)
βi=pi◦β= w

(n⋂
k=1

β−1
(
p−1ik (Uik)

))
= w

(
β−1
(n⋂
k=1

p−1ik (Uik)
))

= w
(
β−1
(
V
))
.

Now we need to show the claim for arbitrary opens V of D. So V =
⋃
k∈K Vk

for basic opens Vk and an index set K. Without loss of generality, {Vk : k ∈ K}
is directed (otherwise consider the family of finite unions of the Vk’s). Note that
then also β−1(Vk) is a directed family of open sets in E. Then

v(V) = v
(⋃
k∈K

Vk

)
= sup

k∈K
v(Vk) = sup

k∈K
w
(
β−1(Vk)

)
= w

(⋃
k∈K

β−1(Vk)
)

= w
(
β−1
(⋃
k∈K

Vk
))

= w
(
β−1(V)

)
.

Concerning condition (5), let a ∈ maxE and show β(g(a)) ≥ f(β(a)). Since
E is in dSCOp

nm, g is max-preserving, so g(a) ∈ maxE. Since β is max-preserving,
β(g(a)) ∈ maxD. Since βi is max-semi-equivariant, we have, for i ∈ I,

β(g(a))(i) = βi(g(a)) ≥ fi(βi(a)) = fi(β(a)(i)).

Thus, β(a), β(g(a)) ∈ maxD are such that, for all i ∈ I, β(g(a))(i) ≥ fi(β(a)(i)).
Hence, by definition of f , f(β(a)) = β(g(a)), as needed.

156 Chapter 4. Systems and domains 1: Model

Claim (6) Injective: Let a 6= a′ be in maxD and assume, for contradiction,
that f(a) = f(a′) =: b. Then there is i ∈ I such that a(i) 6= a′(i) in maxDi

with b(i) = f(a)(i) ≥ fi(a(i)) and b(i) = f(a′)(i) ≥ fi(a
′(i)). However, for any

j ≥ i we have a(j), a′(j), b(j) ∈ maxDj with pij(a(j)) = a(i), pij(a
′(j)) = a′(i),

pij(b(j)) = b(i), but both b(j) = f(a)(j) ≥ fj(a(j)) and b(j) = f(a′)(j) ≥ fj(a
′(j)).

This contradicts (Di, pij)I being downward deterministic.
Surjective: Let b ∈ maxD and find a ∈ maxD such that f(a) = b. For i ∈ I,

define

Ci :=
{
a ∈ maxD : b(i) ≥ fi(a(i))

}
.

Closed: We have Ci = p−1i
(
f−1i (↓b(i))

)
∩maxD and f−1i (↓b(i)) ⊆ Di is closed

in the Lawson topology (since Di is finite and hence discrete in the Lawson
topology), so, since pi is Lawson-continuous, Ci is closed in the relative Lawson
topology, which coincides with the relative Scott topology.

Monotone: If i ≤ j in I, then Ci ⊇ Cj: if a ∈ Cj, then b(j) ≥ fj(a(j)), so

b(i) = pij
(
b(j)

)
≥ pij

(
fj(a(j))

)
≥ fi

(
pij(a(j))

)
= fi(a(i)),

so a ∈ Ci.
Nonempty: Given i ∈ I, we have b(i) ∈ maxDi. Since Di is max-surjective,

there is ai ∈ maxDi such that b(i) ≥ fi(ai). Since pi is surjective and monotone,
there is a ∈ maxD with pi(a) = ai. Hence a ∈ Ci.

Since maxD is compact, there is a ∈
⋂
i∈I Ci. So, for all i ∈ I, b(i) ≥ fi(a(i)),

whence, by definition of f on maximal elements, b = f(a), as needed.

Claim (7) We need to show v(f−1(U)) = v(U) for U ∈ Σ(D). The main task is
to show this for the subbasic opens U = p−1i (Ui) (for i ∈ I and Ui ∈ Σ(Di)). This
will imply the claim by a simple and general argument.

We first analyze the set f
−1

(p−1i Ui). We’ll use lemma 4.4.10 (3) which says

that, under appropriate assumptions, f
−1

(p−1i Ui) =
⋃
aj∈R−1

ij Ui
p−1j (aj) ∩ maxD.

To analyze (the v-value of) the union, we start by observing that requirement (b)
of being eventually valuation-preserving extends to the following.

4.4.13. Lemma. For all i ∈ I and ai, bi ∈ maxDi with bi ≥ fi(ai), there is
a ∈ maxD with a(i) = ai and f(a)(i) = bi.

Proof. Since I is countable and directed, let i = i0 ≤ i1 ≤ . . . be a cofinal chain
in I. Set ai0 := ai and bi0 := bi. Given ain and bin in maxDin with bin ≥ fin(ain),
choose, using requirement (b) of being eventually valuation-preserving, ain+1

and bin+1 in maxDin+1 with pinin+1(ain+1) = ain and pinin+1(bin+1) = bin and
bin+1 ≥ fin+1(ain+1). Then 〈ain〉 and 〈bin〉 determine a and b in maxD, respec-
tively, with a(i) = a(i0) = ai0 = ai and b(i) = b(i0) = bi0 = bi and, for all j ∈ I,

4.4. Dynamical domains 157

b(j) ≥ fj(a(j)).49 So f(a) = b, whence f(a)(i) = b(i) = bi. 2

We can use this now to analyze the union
⋃
aj∈R−1

ij Ui
p−1j (aj) ∩maxD.

4.4.14. Lemma. 1. For i ≤ j in I and UiinΣ(Di) we have, for aj ∈ maxDj,

aj ∈ R−1ij Ui
def⇔ ∃a ∈ maxD : a(j) = aj, f(a)(i) ∈ Ui
⇔ ∃bi ∈ maxUi : pij

(
fj(aj)

)
≤ bi

2. For i ≤ j in I and UiinΣ(Di),⋃
aj∈R−1

ij Ui

p−1j (aj) ∩maxD = p−1j
(
f−1j p−1ij (↓maxUi)

)
∩maxD

Proof. Ad (1). (⇒) Let a ∈ maxD with a(j) = aj and bi := f(a)(i) ∈ Ui. Since
f(a)(i) is maximal, bi ∈ maxUi. We have fj(a(j)) ≤ f(a)(j), so

pij
(
fj(aj)

)
≤ pij

(
f(a)(j)

)
= f(a)(i) = bi.

(⇐) Let bi ∈ maxUi with pij
(
fj(aj)

)
≤ bi. Since fj(aj) ∈ Dj with pij(fj(aj)) ≤

bi ∈ maxDi (since Ui is an upset) and pij is max-bisimulative, there is bj ∈ maxDj

with fj(aj) ≤ bj and pij(bj) = bi. By lemma 4.4.13, there is a ∈ maxD with
a(j) = aj and f(a)(j) = bj. So f(a)(i) = pij(f(a)(j)) = pij(bj) = bi ∈ Ui, as
needed.

Ad (2). By (1), we have, for c ∈ maxD,

∃aj ∈ R−1ij Ui : c(j) = aj

⇔∃aj ∈ maxDj : ∃bi ∈ maxUi : pij(fj(aj)) ≤ bi and c(j) = aj
50

⇔∃bi ∈ maxUi : pij(fj(c(j))) ≤ bi

⇔c ∈ p−1j
(
f−1j p−1ij (↓maxUi)

)
,

so the claim follows. 2

Using requirement (a) of being eventually valuation-preserving, we can simplify
the v-value of the set p−1j

(
f−1j p−1ij (↓maxUi)

)
.

4.4.15. Lemma. For i ∈ I and Ui ∈ Σ(Ui), there is j0 ≥ i such that, for all
j ≥ j0,

v
(
p−1j
(
f−1j p−1ij (↓maxUi) ∩maxDj

))
= vi(Ui).

49For the latter, given j ∈ I, let, by cofinality, in ≥ j. Then, since bin ≥ fin(ain), we have
b(j) = pjin(b(in)) ≥ pjin(fin(a(in)) ≥ fj(pjin(a(in))) = fj(a(j)).

50For the reverse direction, take aj := c(j).

158 Chapter 4. Systems and domains 1: Model

Proof. By requirement (a) of being eventually valuation-preserving, there is
j0 ≥ i such that, for all j ≥ j0,

vj
(
f−1j p−1ij (↓maxUi) ∩maxDj

)
= vj

(
p−1ij (↓maxUi) ∩maxDj

)
.

As in the proof of 4.3.11 (14), this further equals vi(Ui): Since pij is max-
preserving and valuation-preserving, and since vj is max-normalized, we have
vj
(
p−1ij (↓maxUi) ∩ maxDj

)
= vj

(
p−1ij (maxUi) ∩ maxDj

)
= vj

(
p−1ij (maxUi)

)
=

vi(maxUi) = vi(Ui ∩maxDi) = vi(Ui). Hence

v
(
p−1j
(
f−1j p−1ij (↓maxUi) ∩maxDj

))
= vj

(
f−1j p−1ij (↓maxUi) ∩maxDj

)
= vi(Ui),

as needed. 2

We need one last, rather general lemma.

4.4.16. Lemma. For U, V ∈ Σ(D), if U∩maxD = V ∩maxD, then v(U) = v(V).

Proof. This proof anticipates an argument that we’ll use below (in theorem 4.5.1).
Since v is a normalized continuous valuation on a Scott domain (hence continuous
dcpo), it can be extended to a (unique) measure µ on the Borel σ-algebra B(Σ(D))
of D with the Scott topology (Alvarez-Manilla, Edalat, and Saheb-Djahromi 2000,
cor. 4.3). (Below, we’ll use the similar result, specialized to bifinite domains,
which include Scott domains, by Abbes and Keimel (2006, thm. 2); for a general
treatment of these kinds of extension results, see Keimel and Lawson (2005).)
Since v is normalized, µ(D) = v(D) = 1, so µ is a probability measure on D. Since
v is max-normalized, maxD is a countable intersection of Scott-open sets with
v-value (and hence µ-value) 1. So maxD ∈ B(Σ(D)) and, since µ is a probability
measure, µ(maxD) = 1. Hence

v(U) = µ(U) = µ(U ∩maxD) = µ(V ∩maxD) = µ(V) = v(V),

as needed. 2

Now, we can show the main lemma.

4.4.17. Lemma. For i ∈ I and Ui ∈ Σ(Di), v
(
f−1
(
p−1i (Ui)

))
= v
(
p−1i (Ui)

)
.

Proof. By lemma 4.4.15, there is j0 ≥ i such that for all j ≥ j0,

v
(
p−1j
(
f−1j p−1ij (↓maxUi) ∩maxDj

))
= vi(Ui) (4.4)

Moreover, by lemma 4.4.10 (3), there is j1 ≥ i such that, for all j ≥ j1,

f
−1

(p−1i (Ui) ∩maxD) =
⋃

aj∈R−1
ij Ui

p−1j (aj) ∩maxD. (4.5)

4.4. Dynamical domains 159

By directedness, let j ≥ j0, j1 ≥ i. By lemma 4.4.14 (2) and f being the restriction
of f to maxD, we have, using (4.5),

f−1(p−1i (Ui)) ∩maxD = f
−1

(p−1i (Ui) ∩maxD)

=
⋃

aj∈R−1
ij Ui

p−1j (aj) ∩maxD

= p−1j
(
f−1j p−1ij (↓maxUi)

)
∩maxD

= p−1j
(
f−1j p−1ij (↓maxUi) ∩maxDj

)
∩maxD

So by lemma 4.4.16, after removing ‘∩maxD’ on both sides, the two resulting
open sets have the same v-value, so, using (4.4),

v
(
f−1(p−1i (Ui))

)
= v
(
p−1j
(
f−1j p−1ij (↓maxUi) ∩maxDj

))
= vi(Ui) = v

(
p−1i (Ui)

)
,

as needed. 2

As mentioned, the general case now follows by a simple and general argument.

4.4.18. Lemma. For U ∈ Σ(D), v
(
f−1U

)
= v
(
U
)
.

Proof. First, let’s assume U is a basic open set: U =
⋂m
k=1 p

−1
ik

(Uik) with ik ∈ I
and Uik ∈ Σ(Dik) for k = 1, . . . ,m. Since I is directed, let j ≥ i1, . . . , im. So

U =
m⋂
k=1

p−1j
(
p−1ikj(Uik)

)
= p−1j

(m⋂
k=1

p−1ikj(Uik)
)
.

So Uj :=
⋂m
k=1 p

−1
ikj

(Uik) ∈ Σ(Dj), whence, by lemma 4.4.17, v(U) = v(p−1j Uj) =

v(f−1p−1j Uj) = v(f−1U).
Now, let U be an arbitrary Scott-open of D. So U =

⋃
l∈L Ul for basic opens Ul

and an index set L. Without loss of generality, {Ul : l ∈ L} is directed (otherwise
consider the family of finite unions of the Ul’s). Note that then also f−1(Ul) is a
directed family of open sets in D. Then

v(U) = v
(⋃
l∈L

Ul

)
= sup

l∈L
v(Ul) = sup

l∈L
v
(
f−1(Ul)

)
= v
(⋃
l∈L

f−1(Ul)
)

= v
(
f−1
(⋃
l∈L

Ul
))

= v
(
f−1(U)

)
,

as needed. 2

160 Chapter 4. Systems and domains 1: Model

This shows that D = (D, v, f) is valuation-preserving. Thus, the proof of
theorem 4.4.8 is complete.

Again, note that, to conclude that f � maxD is injective and surjective
(claim (6) above), we’ve only used that the diagram is downward deterministic and
that the Di are max-surjective, respectively. And to conclude that f is valuation-
preserving (claim (7) above), we’ve only used that the diagram is eventually
valuation-preserving. So we could be more precise and specify further cases
between general and standard, but, again, won’t do so explicitly.

4.4.4 Definition of dynamical domains

In accordance with the tradition of calling the kinds of dcpos under study simply
‘domains’, we define:

4.4.19. Definition. A dynamical domain is a dynamical dcpo D that is the
dSCOp

nm-limit of a finitary dynamical expanding system. A standard dynamical
domain is a dynamical dcpo D that is the dSCOp

nm-limit of a standard finitary
dynamical expanding system.

The full subcategory of dSCOnm whose objects are dynamical domains is
denoted dDOM. The full subcategory of dSCOnm whose objects are standard
dynamical domains is denoted dDOMs. (Note that morphisms in dDOM and
dDOMs are not required to be projections.)

In particular, if D = (D, v, f) is a dynamical domain, f is max-preserving, and
if D also is standard, then f is bijective on maxD and valuation-preserving.51

Regarding examples, we’ll see next—as already suggested in section 4.3—
how dynamical systems induce dynamical domains through observation. But in
appendix B (esp. section B.1), we also provide a detailed example of a dynamical
domain constructed in a purely domain-theoretic way.

4.5 The system modeled by a dynamical domain

We show that a (standard) dynamical domain is a computational model for a
(standard) dynamical system.

4.5.1. Theorem. Let D = (D, v, f) be a dynamical domain. Then

51The former follows since D is in dSCOp
nm. For the latter, since D is a dSCOp

nm-limit of a
standard finitary dynamical expanding system, D is isomorphic in dSCOp

nm to the D′ = (D′, v′, f ′)
constructed in theorem 4.4.8. By that theorem, f ′ is bijective on maxD′ and preserves the
valuation v′. And these two properties are preserved by an isomorphism α : D′ → D: Since
f and f ′ are max-preserving, max-semi-equivariance implies max-equivariance, so, on maxD′,
α◦f ′ = f ◦α, whence f = α◦f ′◦α−1. Hence f � maxD = α � maxD′◦f ′ � maxD′◦α−1 � maxD
is bijective qua composition of bijective functions. And f is valuation-preserving qua composition
of valuation-preserving functions.

4.5. The system modeled by a dynamical domain 161

1. maxD with the relative Scott topology is a compact zero-dimensional Polish
space,

2. f restricts to a continuous function on maxD,

3. v determines a unique probability measure µv on B(D,Λ) extending v,

4. B(maxD) ⊆ B(D,Λ) and µv � B(maxD) is a probability measure on maxD.

Thus, we obtain the compact zero-dimensional measured topological system

S(D) :=
(

maxD , Σ(D) � maxD , µv � B(maxD) , f � maxD
)

which induces the general dynamical system JS(D). Moreover, if D is standard,
then both the topological system S(D) and the dynamical system J(D) are standard.

We call S(D) the topological system modeled by D and JS(D) (resp., JS(D) in
case D is standard) the dynamical system model by D.
Proof. By definition, D is the dSCOp

nm-limit of a finitary dynamical expanding
system

(
Di, pij

)
I
. So D is isomorphic in dSCOp

nm to the dSCOp
nm-limit D′ =

(D′, v′, f ′) described in theorem 4.3.11. In particular, D and D′ are isomorphic as
dcpos, so, since maxD′ is Lawson-closed, also maxD is.

Ad (1). The relative Scott topology on the maximal elements of a Scott domain
coincides with the relative Lawson topology and forms a Polish space (Lawson
1997, also see Edalat and Heckmann 1998; Martin 1998) which, due to algebraicity,
also is zero-dimensional (Flagg and Kopperman 1997). Finally, since maxD is
Lawson-closed and the Lawson topology of a Scott domain is compact, maxD
also is compact. Hence, also maxD with the relative Scott topology is compact.

Ad (2). Since f is max-preserving f � maxD is a function from maxD to
maxD, and it is continuous with respect to the relative Scott topology since
f : D → D is continuous in the Scott topology on D.

Ad (3). As shown by Abbes and Keimel (2006, thm. 2), for every continuous
valuation v on a Scott domain D (or any bifinite domain), there exists a unique
Radon measure µ on B(D,Λ(D)) extending v on Σ(D). Since D is ω-algebraic
and coherent, the Lawson topology on D is second-countable, compact, Hausdorff,
whence Polish, so any measure on B(D,Λ) is Radon, whence µv is the unique
measure on B(D,Λ) extending v. And since µv(D) = v(D) = 1 (because the
valuation is normalized), µv is a probability measure.

Ad (4). Since maxD is Lawson-closed, B(D,Λ) is a σ-algebra that, among
others, contains all sets of the form U ∩maxD for U ∈ Λ(D). Now, B(maxD)
is the smallest such σ-algebra, whence B(maxD) ⊆ B(D,Λ). So it remains to
show µv(maxD) = 1. Indeed, since v is max-normalized, maxD can be written
as countable intersection of Scott-open sets with v-value 1, and hence µv-measure
1, so maxD is a countable intersection of sets of full measure and hence has full
measure, too.

162 Chapter 4. Systems and domains 1: Model

For the ‘moreover’ part, since D is standard, f � maxD is bijective and f is
valuation-preserving. So, for U ∈ Σ(D),

µv
(
(f � maxD)−1(U ∩maxD)

)
= µv

(
f−1(U) ∩maxD

)
= µv

(
f−1(U)

)
= v
(
f−1(U)

)
= v
(
U
)

= µv
(
U
)

= µv
(
U ∩maxD

)
.

So the Borel probability measures

µv � B(maxD) and µv � B(maxD)(f � maxD)−1

on B(maxD) agree on the open sets of maxD, and hence on all of B(maxD) (see,
e.g., Bogachev 2007a, lem. 7.1.2, p. 68). So f � maxD is measure-preserving. 2

Note that, to conclude that µv is preserved by f � maxD, we’ve only used
that f is valuation-preserving.

4.6 Dynamical domain models for systems

Now we get to putting all the pieces together and build dynamical domains for
both dynamical and topological systems.

4.6.1 For dynamical systems

4.6.1. Definition. Let X be an abstract dynamical system and B a countable
measurable basis for X. Build Di = (Di, vi, fi) and pij : Dj → Di as in theo-
rem 4.3.11. Then (Di, pij)I(B) is a finitary dynamical expanding system.52 Let
D = (D, v, f) be the dSCOp

nm-limit of (Di, pij)I(B) as constructed in theorem 4.4.8.
So D(X,B) := D is a dynamical domain which we call the observation domain of
(X,B). We call

ϕ : X → maxD

x 7→
〈
{Oi(x) : i ∈ I(B)}

〉
the canonical embedding of X into S(D(X,B)).53

Here are the main facts about the canonical embedding.

52Theorem 4.3.11 states, in the terminology of section 4.4, that (Di, pij)I is a finitary dynamical
expanding system: the Di are max-normalized finite dynamical Scott domains, the pij are
dynamical morphisms and projections commuting appropriately, whence (Di, pij)I is a dynamical
expanding system of finite max-normalized dynamical Scott domains which, moreover, has a
countable index set I(B) (since B is countable) and is upward deterministic.

53This is a well-defined function because, for i ≤ j in I, we have {Oi(x)} ∈ maxDi and
pij({Oj(x)}) = {Oi(x)}, whence ϕ(x) ∈ maxD.

4.6. Dynamical domain models for systems 163

4.6.2. Lemma. Let X = (X,A, µ, T) be an abstract dynamical system and B
a countable measurable basis for X. Write I := I(B). Let D = (D, v, f) be
the observation domain built over diagram (Di, pij)I with Di = (Di, vi, fi). Let
ϕ : X → maxD be the canonical embedding. Then

1. For a nonempty basic open U ∩ maxD of maxD with U =
⋂m
k=1 p

−1
ik
Uik

(where ik ∈ I and Uik ∈ Σ(Dik) for k = 1, . . . ,m), we have

ϕ−1(U ∩maxD) =
m⋂
k=1

nk⋃
l=1

[x
(k)
l]ik

for some nk ≥ 1 and x
(k)
1 , . . . , x

(k)
nk ∈ X (k = 1, . . . ,m).

2. ϕ is measurable: for B ∈ B(maxD), ϕ−1(B) ∈ A.

3. ϕ is measure-preserving: for B ∈ B(maxD), µ
(
ϕ−1(B)

)
= µv(B).

4. ϕ is equivariant: for x ∈ X, ϕ(T (x)) = (f � maxD)(ϕ(x)).

5. ϕ(X) ⊆ maxD is dense.

Proof. Ad (1). Since U∩maxD is nonempty, each Uik is nonempty, so maxUik ⊆
maxDik is finite nonempty. Write maxUik =

{
{Oik(x

(k)
1)}, . . . , {Oik(x

(k)
nk)}

}
with

nk ≥ 1 and x
(k)
1 , . . . , x

(k)
nk ∈ X. Hence

x ∈ ϕ−1
(
U ∩maxD

)
⇔ ∀k ∈ {1, . . . ,m} : ϕ(x)(ik) ∈ Uik
⇔ ∀k ∈ {1, . . . ,m} : {Oik(x)} ∈ maxUik

⇔ ∀k ∈ {1, . . . ,m} ∃l ∈ {1, . . . , nk} : Oik(x) = Oik(x
(k)
l)

⇔ ∀k ∈ {1, . . . ,m} ∃l ∈ {1, . . . , nk} : x ∈ [x
(k)
l]ik .

So, ϕ−1(U ∩maxD) =
⋂m
k=1

⋃nk
l=1[x

(k)
l]ik .

Ad (2). We need to show that ϕ-preimages of open sets are Borel. So let
U ⊆ maxD be open. Since maxD is second-countable, U can be written as
countable union of basic open sets Un∩maxD. So ϕ−1(U) =

⋃
n ϕ
−1(Un∩maxD).

Without loss of generality, all Un ∩maxD are nonempty (if, after discarding all
empty ones, nothing remains, ϕ−1U = ∅ ∈ A since A is a σ-algebra). Recall from
lemma 4.3.9, the equivalence classes [x]i are in A. So, by (1), the ϕ−1(Un∩maxD)
are in A qua finite intersection of finite unions of elements from A. Hence ϕ−1(U)
is in A qua countable union of elements from A.

Ad (3). Since ϕ : X → maxD is measurable where maxD is equipped with
the relative Scott—i.e., relative Lawson—topology, also ϕ : X → D is measurable
where D is equipped with the Lawson topology. Since µ is a probability measure
on X, κ := µ(ϕ−1(·)) is a probability measure on B(D,Λ). Since (D,Σ) is second

164 Chapter 4. Systems and domains 1: Model

countable (by ω-algebraicity), any probability measure κ on B(D,Λ) restricts to
a continuous valuation on Σ(D).54 So w : Σ(D) → [0,∞], w(U) := κ(U) is a
continuous valuation.

Moreover, we claim that, for i ∈ I and Ui ∈ Σ(Di), we have vi(Ui) =
w
(
p−1i (Ui)

)
. Indeed, write max(Ui) =

{
{Oi(x1)}, . . . , {Oi(xm)}

}
. Then

m⋃
k=1

[xk]i = ϕ−1
(
p−1i (Ui)

)
because y ∈ [xk]i for some 1 ≤ k ≤ m iff Oi(y) = Oi(xk) for some 1 ≤ k ≤ m iff
ϕ(y)(i) = {Oi(y)} ∈ maxUi iff y ∈ ϕ−1

(
p−1i (Ui)

)
. Hence

vi(Ui) =
m∑
k=1

µ[xk]i = µ

m⋃
k=1

[xk]i = µϕ−1
(
p−1i (Ui)

)
= κ

(
p−1i (Ui)

)
= w

(
p−1i (Ui)

)
.

Now, v is the unique valuation on D with vi(Ui) = v
(
p−1i (Ui)

)
, so v = w.

Moreover, µv is the unique measure on B(D,Λ) extending v, and κ also is a measure
on B(D,Λ) extending w = v, so µv = κ. In particular, for B ∈ B(maxD) ⊆
B(D,Λ), we have µv(B) = κ(B) = µ

(
ϕ−1(B)

)
, as needed.

Ad (4). Let x ∈ X, and show ϕ ◦ T (x) = (f � maxD) ◦ ϕ(x). Recall that,
for a ∈ maxD, f(a) is defined as the unique b ∈ maxD such that, for all i ∈ I,
b(i) ≥ fi(a(i)). Since a := ϕ(x) ∈ maxD, it hence suffices to show that, for
b := ϕ(T (x)) ∈ maxD and i ∈ I, we have b(i) ≥ fi(a(i)). Indeed, we have

b(i) = {Oi(Tx)} ⊆
{
Oi(Ty) : Oi(y) ∈ {Oi(x)}

}
= fi(ϕ(x)(i)) = fi(a(i)).

Ad (5). Let a ∈ maxD and U ∩maxD a basic open set with U =
⋂m
k=1 p

−1
ik
Uik

(where ik ∈ I and Uik ∈ Σ(Dik) for k = 1, . . . ,m). Assume a ∈ U ∩maxD and
show (U ∩ maxD) ∩ ϕ(X) 6= ∅. Since I is directed, let j ≥ i1, . . . , im. Write
{Oj(x)} = a(j) ∈ maxDj for some x ∈ X. We show ϕ(x) ∈ U ∩maxD. So, for
k ∈ {1, . . . ,m} we have to show ϕ(x) ∈ p−1ik Uik . Indeed,

ϕ(x)(ik) = {Oik(x)} = pikj({Oj(x)}) = pikj(a(j)) = a(ik) ∈ Uik ,
54 Since κ is a Borel measure on (D,Λ) and Σ ⊆ Λ, the function v := κ � Σ : Σ → [0,∞]

satisfies the strictness, monotonicity, and modularity axiom for valuations (also see Keimel and
Lawson 2005, p. 58). So we need to check that v is continuous (also see Edalat 1995b, cor. 5.3).
Let {Uk}k∈K be a directed family in Σ(D), and show v(

⋃
k Uk) ≤ supk v(Uk) (we have ≥ by

monotonicity). Let’s first assume K is countable, so, after possibly reindexing, K = ω. Define
V0 := U0 and Vk := Uk \ (U0 ∪ . . . Uk−1). So Vk ∈ B(D,Λ) and

⋃
k Vk is a disjoint union that

equals
⋃
k Uk. So v(

⋃
k Uk) = κ(

⋃
k Vk) =

∑
k κ(Vk) = limk→∞

∑k
i=0 κ(Vi) = limk→∞ κ(V0 ∪

. . . ∪ Vk) ≤ supk v(Uk), where the last step follows since, for k ≥ 0, there is, by directedness,
Un ⊇ U0, . . . , Uk ⊇ V0, . . . , Vk, so κ(V0∪ . . .∪Vk) ≤ κ(Un) = v(Un) ≤ supk v(Uk). Now, let K be
arbitrary. Since Σ is second countable, there is K0 ⊆ K countable with

⋃
K Uk =

⋃
K0
Uk. Let

{Vl}L be the family of finite unions of sets from {Uk : k ∈ K0}. Then {Vl} is directed in Σ with
countable index set. So v(

⋃
K Uk) = v(

⋃
K0
Uk) = v(

⋃
L Vl) ≤ supL v(Vl) ≤ supK v(Uk), where

the last step follows since, for Vl = Uk1 ∪ . . .∪Ukm , there is, by directedness, Un ⊇ Uk1 , . . . , Ukm ,
so v(Vl) ≤ v(Un) ≤ supK v(Uk).

4.6. Dynamical domain models for systems 165

as needed. 2

To render the canonical embedding injective, we’ll consider separating mea-
surable bases. Recall that B is separating if, for all x 6= y in X, there is U ∈ B
such that x ∈ U but y 6∈ U . In the ‘non-pathological’ dynamical systems that are
built over standard Borel spaces, we can always find such bases: If (X,A) is a
standard Borel space, then it has a countable and separating measurable basis.55

In the Lebesgue case, we need to disregard null sets: A measurable basis B for
a standard dynamical system X = (X,A, µ, T) is separating mod 0 if there is
M ∈ A with µ(M) = 1 and, for all x 6= y in M , there is U ∈ B such that x ∈ U
but y 6∈ U . Then X has a countable and separating mod 0 measurable basis.56

Now we can state the main theorem on building dynamical domain models for
dynamical systems.

4.6.3. Theorem. 1. Let X be a general dynamical system and B a countable
and separating measurable basis. Let D be the observation domain. Then the
canonical embedding ϕ is an isomorphism X→ JS(D) of general dynamical
systems.

2. Let X be a standard dynamical system and B a countable and separating
mod 0 measurable basis that is forward closed (under the dynamics of X).
Let D be the observation domain. Then D is standard and the canonical
embedding ϕ is an isomorphism X→ JS(D) of standard dynamical systems.

Proof. Ad (1). Write (X,A, µ, T) and D = (D, v, f). We know that J(S(D))
is a general dynamical system. So we need to show that ϕ : X → maxD is an
isomorphism of (abstract) dynamical system.

From lemma 4.6.2, we already know that ϕ (considered with domain M := X
which is invariant and of full measure) is measure-preserving and equivariant. It
also is injective:

Assume x 6= y in X. Since B is separating, there is U ∈ B such that x ∈ U
and y 6∈ U . Define C := {U,X} (which is a finite B-cover) and n := 1, whence
i := (n, C) ∈ I(B). We have Oi(x) 6= Oi(y) since t := 〈U〉 ∈ Oi(x) but t 6∈ Oi(y).
So ϕ(x)(i) = {Oi(x)} 6= {Oi(y)} = ϕ(y)(i), so ϕ(x) 6= ϕ(y).

55By definition (e.g. Kechris 1995, def. 12.5), there is a Polish topology τ on X such that
A = B(τ). Since Polish spaces are second-countable, let B = {U0, U1, . . .} be a countable basis
for (X, τ), which we can assume to be closed under finite intersection. So B ⊆ B(τ), and every
open set can be written as a countable union of elements from B, whence σ(B) = B(τ). So B is
a countable measurable basis for (X,A) and it is separating since Polish spaces are Hausdorff.

56We know that (X,A, µ) is isomorphic mod 0 to the completion of a Borel probability space
(Y,B(σ), ν). Let ϕ : X → Y be that isomorphism with domain M ⊆ X. Let C be a countable
and separating measurable basis for (Y,B). Set B := ϕ−1C ∪ {X}. Since C is countable and
closed under finite intersection, also B is. Since ϕ is measurable, B is measurable. And B
separates points in M : if x 6= y in M , then ϕ(x) 6= ϕ(y) in Y , so there is C ∈ C with ϕ(x) ∈ C
and ϕ(y) 6∈ C, so ϕ−1(C) ∈ B with x ∈ ϕ−1(C) and y 6∈ ϕ−1(C).

166 Chapter 4. Systems and domains 1: Model

Finally, define the codomain N := ϕ(X), so ϕ : M → N is bijective. Thus, to
show that ϕ is an isomorphism, it remains to show that N is invariant and of full
measure.

Indeed, since ϕ : X → maxD is an injective Borel-measurable function between
standard Borel spaces, ϕ(X) is Borel (e.g. Kechris 1995, cor. 15.2). Since ϕ is
measure-preserving, we have, since X ⊆ ϕ−1ϕ(X),

µv
(
ϕ(X)

)
= µϕ−1ϕ(X) ≥ µ(X) = 1,

so µv
(
ϕ(X)

)
= 1. Finally, since ϕ is equivariant, N = ϕ(X) is invariant (if

ϕ(x) ∈ N , then (f � maxD)(ϕ(x)) = ϕ(T (x)) ∈ ϕ(X) = N).
Ad (2). Under the assumptions, T is bijective and measure-preserving, and B

is a measurable basis that is forward T -closed, so, by theorem 4.3.11, the finitary
dynamical expanding system (Di, pij)I(B) with which D is built is standard, so D

is a standard dynamical domain. Hence, J(S(D)) is a standard dynamical system.
Let M ∈ A be the set of full measure on which B is separating. We can

assume that M is invariant: Otherwise take M ′ :=
⋂
k∈Z T

k(M). Then B is still
separating on M ′ (since M ′ ⊆M), M ′ has full measure (qua countable intersection
of sets of full measure, using that T is measure-preserving), and T (M ′) = M ′ (by
construction and since T is bijective).

So it remains to show that ϕ with domain M and codomain N := ϕ(M) is an
isomorphism between (abstract) dynamical systems. Its domain M is invariant
and of full measure. By lemma 4.6.2, ϕ is measure-preserving and equivariant (on
M). As above, ϕ �M is injective: If x 6= y in M , then, since B is separating on M ,
there is U ∈ B such that x ∈ U and y 6∈ U , whence i := (1, {U,X}) ∈ I(B) yields
ϕ(x)(i) 6= ϕ(y)(i). So we need to show that N is invariant and of full measure.
Since M ⊆ X is of full measure, (M,A �M,µ) is again a Lebesgue space (since
we only removed a null set, it still is isomorphic mod 0 to an ordinary Lebesgue
interval with countably many point masses). So ϕ �M is a measure-preserving
injection between Lebesgue spaces, so its image N = ϕ(M) is measurable (de la
Rue 1993, thm. 3.5). As above, since ϕ is measure-preserving and equivariant,
this image has full measure and is invariant. 2

By using the existence of separating bases, we can state the above theorem
more concisely and as our main result:

4.6.4. Corollary. For every (standard) dynamical system X, there is a (stan-
dard) dynamical domain D such that the (standard) dynamical system modeled by
D is metrically isomorphic to X.

Proof. For the general case, i.e., if X is a general dynamical system, there
is, as noted above, a countable and separating measurable basis B for X, so,
by theorem 4.6.3 (1), there is a dynamical domain D such that X is metrically
isomorphic to the dynamical system JS(D) modeled by D.

4.6. Dynamical domain models for systems 167

For the standardized case, i.e., if X = (X,A, µ, T) is a standard dynamical
system, we need to show that there is a countable and separating mod 0 measurable
basis B for X that is forward T -closed. Then theorem 4.6.3 (2) implies that there
is a standard dynamical domain D such that X is metrically isomorphic to the
standard dynamical system JS(D) modeled by D.

Indeed, since (X,A, µ) is a Lebesgue space, it has, as noted above, a countable
and separating mod 0 measurable basis B0. Since T : X → X is an injective
measure-preserving functions between two Lebesgue spaces, it preserves measur-
ability (de la Rue 1993, thm. 3-5). So, for all A ∈ A, we have T (A) ∈ A. Let
B be the set of finite intersections of sets in

⋃
k≥0 T

kB0. So B is a basis (by
construction), countable (qua finite intersections of sets from a countable union
of countable sets), separating mod 0 (it contains B0 which is separating mod
0), measurable (its elements are in A), and forward T -closed (if A ∈ B, then
A = T k1A1 ∩ . . . ∩ T knAn, so T (A) = T k1+1A1 ∩ . . . ∩ T kn+1An ∈ B using that T
is injective). 2

4.6.2 For topological systems

We state the result with some more detail that is available in the topological
setting.

If X = (X, τ, µ, T) is a measured topological system and B a countable topo-
logical basis for X, then B is a countable and separating measurable basis for
the abstract dynamical system J(X) = (X,B(τ), µ, T). We define the observation
domain D(X,B) as the observation domain of J(X) with basis B. In particular, we
can still define the canonical embedding ϕ : X → maxD. Here are its topological
properties:

4.6.5. Lemma. Let X = (X, τ, µ, T) be a zero-dimensional measured topological
system and B a countable topological basis for X consisting of clopen sets. Let
D = D(X,B) = (D, v, f) be the observation domain and ϕ : X → maxD the
canonical embedding. Then

1. The ϕ-preimages of clopen sets of S(D) can be written as Boolean combina-
tions of equivalence classes [x]i ⊆ X (where x ∈ X and i ∈ I(B)) and hence
of sets in

⋃
k≥0 T

−kB.57

2. ϕ is relatively open (i.e., if U ⊆ X is open, then there is an open V ⊆ maxD
such that ϕ(U) = V ∩ ϕ(X)).

3. ϕ is an injective and relatively open homomorphism X→ S(D) of topological
systems whose image is dense in maxD.

57The latter part follows from lemma 4.3.9 (2).

168 Chapter 4. Systems and domains 1: Model

4. ϕ is surjective iff ϕ is a homeomorphism iff X is compact.

Proof. Ad (1). First, we show that the clopen sets of maxD are precisely finite
unions of basic open sets

⋂m
k=1 p

−1
ik

(Uik) ∩maxD. Indeed, these basic opens are
clopen (whence also finite unions thereof) since the Di are finite. Conversely,
assume U ⊆ maxD is clopen. Since it is open, it is a union of basic open sets
{Ui}, whence the Ui cover U . Since U is a closed subset of a compact space, it is
compact, so there is a finite subcover of {Ui}. Hence, U can be written as finite
union of basic open sets.

Next, note that the claim holds for basic opens U : if U is empty, then
ϕ−1(U) = ∅ trivially is a Boolean combination (the triviality or empty disjunction),
and if U is nonempty, lemma 4.6.2 (1) yields the claim.

Now, if U ⊆ maxD is clopen, it is a finite union U1∪ . . .∪Un of basic open sets,
so ϕ−1(U) = ϕ−1(U1) ∪ . . . ∪ ϕ−1(Un) is (a finite union of) Boolean combinations
of equivalence classes [x]i.

Ad (2). It is enough to check this for the opens of the basis B. So let U ∈ B.
If U = ∅, this is trivial, so let x0 ∈ U . Consider i := (1, {U,X}) ∈ I(B). Let
ai := {Oi(x0)} ∈ maxDi and Ui := {ai} ∈ Σ(Di). Set V := p−1i (Ui) ∩ maxD
which is open in maxD. We show ϕ(U) = V ∩ ϕ(X).

Indeed, if a ∈ ϕ(U), then a = ϕ(x) for some x ∈ U . So Oi(x) = {〈U〉, 〈X〉} =
Oi(x0), so

a(i) = ϕ(x)(i) = {Oi(x)} = {Oi(x0)} = ai ∈ Ui,

so a ∈ V ∩ ϕ(X). Conversely, if a ∈ V ∩ ϕ(X), then a = ϕ(x) ∈ V for some
x ∈ X. So {Oi(x)} = ϕ(x)(i) = a(i) ∈ Ui = {ai}, so {Oi(x)} = ai = {Oi(x0)}. So
〈U〉 ∈ Oi(x0) = Oi(x), whence x follows 〈U〉, so x ∈ U . Hence a = ϕ(x) ∈ ϕ(U).

Ad (3). By (1), ϕ is continuous: the clopens form a basis for maxD (since it
is zero-dimensional) and their preimages are Boolean combinations of equivalence
classes [x]i, which are clopen by lemma 4.3.9 (2). By (2), ϕ is relatively open. By
lemma 4.6.2, ϕ is measure-preserving, and equivariant, with dense image. So it
remains to show that ϕ is injective: This follows as in the proof of theorem 4.6.3
above since the topological basis is separating (if x 6= y there is, since X is
Hausdorff, a basic open set U such that x ∈ U and y 6∈ U).

Ad (4). If ϕ is surjective, then it is open by (2) and by (3) it is a continuous
bijection X → maxD, so ϕ is a homeomorphism. If ϕ is a homeomorphism, then,
since maxD is compact, also X is compact. So the following remains: Assume X
is compact, and show that ϕ is surjective.

Let a ∈ maxD and find x ∈ X such that ϕ(x) = a. Since a is maximal,
a = 〈{Oi(xi)} : i ∈ I(B)〉 for some xi ∈ X.

We claim that {[xi]i : i ∈ I} is a family of closed subsets of X with the
finite intersection property. Indeed, by lemma 4.3.9 (2), each such equivalence
class is closed (in fact clopen). And given [xi1]i1 , . . . , [xin]in , let, by directedness,

4.6. Dynamical domain models for systems 169

j ≥ i1, . . . , in. Then xj ∈
⋂n
k=1[xik]ik , since, for k = 1, . . . , n, we have {Oik(xj)} =

pikj(a(j)) = a(ik) = {Oik(xik)}, so xj ∈ [xik]ik .
Now, since X is compact, there is some x ∈

⋂
i∈I [xi]i. Then, for each i ∈ I,

ϕ(x)(i) = {Oi(x)} = {Oi(xi)} = a(i), so ϕ(x) = a. 2

Comments: First, the mathematical relevance of (1) is that it implies the
continuity of the canonical embedding. The philosophical relevance (and the
reason for stating it explicitly) is that the clopen sets of S(D) are the ‘computable’
or ‘observable’ properties of maxD, so (1) states that the canonical embedding
respects this ‘computability structure’: ϕ-preimages of clopens in S(D) are Boolean
combinations of T -preimages of elements of B. In particular, if B is logically and
backward dynamically closed, then ϕ-preimages of clopens in S(D) are possible
B-observations that can be made about the system X.

Second, note that item (4) shows that, as soon as the state space X is not
compact (e.g., a dynamics on the irrational numbers), the canonical embedding
ϕ fails to be surjective: there is a = 〈{Oi(xi)} : i ∈ I(B)〉 in maxD such that
a 6= ϕ(x) for all x. In words, a is a ‘refining’ sequence of observation histories
that cannot be generated by a single state x and rather must come from different
states xi (whose difference we hence, in a sense, cannot observe).

As in the case of dynamical systems, the following now is immediate from
lemma 4.6.5.

4.6.6. Theorem. 1. If X is a zero-dimensional measured topological system
and B a countable clopen topological basis, then D := D(X,B) is a dynamical
domain and the canonical embedding ϕ is an injective, dense, and relatively
open morphism X→ S(D(X,B)) of measured topological systems.

2. If X is a standard zero-dimensional measured topological system and B a
countable clopen topological basis that is forward closed, then D := D(X,B) is
a standard dynamical domain and the canonical embedding ϕ is an injective,
dense, and relatively open morphism X→ S(D(X,B)) of standard measured
topological systems.

And again as in the case of dynamical systems, we get a more concise formula-
tion using the existence of appropriate bases.

4.6.7. Corollary. For every (standard) zero-dimensional measured topological
system X, there is a (standard) dynamical domain D such that X can be densely
and relatively openly embedded into the (standard) zero-dimensional and compact
measured topological system modeled by D.

Proof. We need to show that every (standard) zero-dimensional measured topo-
logical system X has a countable clopen topological basis B (that is closed under
the dynamics of X). Then the corollary follows from theorem 4.6.6. Indeed, in

170 Chapter 4. Systems and domains 1: Model

the general case, since X is zero-dimensional Polish, it has a basis of clopens
which, by second-countability, can be chosen to be countable. After closing it
under finite intersections, it is a countable clopen topological basis B for X. In the
standard case, we consider the family of finite intersections of

⋃
k≥0 T

kB. This is
a basis (closed under intesection), countable, forward closed (since T is injective),
generates the topology (since it contains the basis B), and clopen (since T is a
homeomorphism it maps clopen sets to clopen sets). 2

Things come together particularly neatly in the following topological setting.

4.6.8. Corollary. Let X = (X, τ, µ, T) be a (standard) compact and zero-
dimensional measured topological system and B = Clp(X) the set of clopen sets of
X. Let D = D(X,B) be the (standard) observation domain. Then the canonical
embedding ϕ : X → S(D) is an isomorphism of (standard) topological systems
(measure-preserving and equivariant homeomorphism).

Proof. First, note that, since X is compact and second-countable, Clp(X) is
countable.58 So B is indeed a countable clopen topological basis of X and the
observation domain can be build. If X is standard, then Clp(X) is closed under T
since the homeomorphism T maps clopen sets to clopen sets, hence D is standard.
We already know that the canonical embedding is a morphism ϕ : X→ S(D) of
(standard) topological systems, and, since X is compact, it is a homeomorphism
by lemma 4.6.5 (4). 2

4.7 Conclusion

We’ve defined the category of dynamical domains in a domain-theoretic way
as restricted limits of dynamical expanding systems of finite dynamical Scott
domains. And we’ve shown that every (standard) dynamical system is modeled up
to isomorphism by the (standard) dynamical domain built as observation domain
from some countable and separating measurable basis of the system.

We end with some questions for future work.
(1) Category theory: Arguably the most pressing question by now is whether

the two constructions S (the system modeled by a dynamical domain) and D (the
observation domain of a system) actually form functors between the category of
dynamical systems and the category of dynamical domains. After phrasing this
more carefully, the answer will be yes, and, much better, they will be adjoint

58Proof: Let (Un) be a countable basis for X. If U ∈ Clp(X), then, since U is open, it is a
union of basic open sets, which can be written as finite union since U is compact (qua closed
subset of a compact space). Thus, we can assign to each U ∈ Clp(X) a unique finite sequence of
elements of (Un). Since there are only countably many such sequences, Clp(X) is countable.

4.7. Conclusion 171

(restricting to an equivalence for a natural subcategory of dDOM). This will be
the main result of the next chapter.

(2) Dynamical systems theory: The next pressing question is how our result
can be used to understand dynamical systems. Can we, for example, transfer
dynamical system concepts to the domain-theoretic setting and vice versa? Doing
this for one of the most central concepts of dynamical system theory—namely,
entropy—will be the topic of chapter 6.

(3) Computability theory: Can we give more content to the idea that dynamical
domains provide computational models for dynamical systems? Computability-
and recursion-theoretic concepts can be developed in domain theory by fixing an
enumeration of the countable basis of a domain (for a summary, see Abramsky
and Jung 1994, sec. 8.1.1). Such a basis is available to us since we work over Scott
domains. Can we thus provide a computability theory for dynamical systems,
analogously to how Edalat (1995b, sec. 3.2) provides an effective structure for
the topological dynamical systems via their upper spaces? How would such a
theory compare to existing ones like those of Blum, Shub, and Smale (e.g. 1989)
or Pour-El and Richards (1989)?

(4) Domain theory: As indicated in section 4.2.1, to ‘do domain theory’ means,
to an approximation, performing domain constructions (Abramsky and Jung 1994,
sec. 7.2.1, p. 124). So how do the usual domain constructions—product, function
space, limits, fixed points, powerdomains, etc.—lift to dynamical domains? Also,
are there other characterizations of dynamical domains without using a limit
(e.g., bifinite domains also have an order-theoretic characterization)? Moreover, is
there other domain-theoretic structure that can be added to a dynamical dcpo
D = (D, v, f)? Specifically, inspired by Martin and Panangaden (2011), can
the domain-theoretic notion of measurement be used to represent geometric (as
opposed to topological or measure-theoretic) information—e.g., when considering
diffeomorphisms on manifolds? Further, can dynamical domains be described—
as common in domain theory—as being obtained from a few basic dynamical
domains together with a few constructions, or from a ‘universal’ dynamical domain?
Interpreted in terms of (non-symbolic) computation, would these constructions
be a sign of a ‘programming language of machine learning’ (Cheung et al. 2018)?
Would that be a start for a ‘program logic’ (or axiomatic semantics) for neural
networks?59 And would a universal dynamical domain be a non-symbolic analogue
of a universal Turing machine?

(5) Measurement theory: In our construction of the observation domain of a
dynamical system (X,A, µ, T), we used a binary notion of observation: a system
state either is or is not in the measurable set representing the observation. In other
words, we only used those measurable functions f : X → R that are characteristic
functions of some measurable set. What would an observation domain (and
corresponding notion of dynamical domain) look like if we’d allow all measurable

59Also cf. ‘domain theory in logical form’ (Abramsky 1991).

172 Chapter 4. Systems and domains 1: Model

functions f : X → R (of some Lp space)? Thus, one is in the setting of the
operator-theoretic approach to ergodic theory (Eisner et al. 2015). How does this
compare to the observational logic of Abramsky and Vickers (1993)?

(6) Learning theory: To come full circle, let’s revisit the learning example
from the introduction. Following up on footnote 7, a continuous dynamics T on
a Polish space X naturally induces a dynamics G(T) : G(X) → G(X) on the
Polish space G(X) of probability measures on X with the weak topology; and this
Giry functor G plays a crucial role the papers mentioned in the footnote. This
also connects to the Krylov–Bogolioubov theory (see, e.g., Walters 1982, ch. 6)
where, for compact metrizable X, the ‘averaged’ action of T on G(X) is used
to construct preserved measures. Can we use this (together with our dynamical
domain model) to obtain meaningful preserved measures in the learning example?
For uniqueness, can we restrict the state space of X to the ‘µ-random’ elements to
obtain that the ergodic theorem holds surely, rather than almost surely (Galatolo,
Hoyrup, and Rojas 2010), and then conclude that the measure must be uniquely
ergodic? (We come back to ergodicity and randomness in chapter 7.) Following
up on footnote 3, can the ideas of question (5) be used to include loss functions of
the learning algorithm into the domain representation?

Chapter 5

Systems and domains 2: Category

Abstract In the previous chapter, we’ve shown that every dynamical system is,
up to isomorphism, modeled by some dynamical domain (a structure in the sense of
domain theory). This provides a tool to analyze individual dynamical systems, but
it doesn’t capture yet relationships between dynamical systems (in the category of
dynamical systems). In this chapter, we complete this tool by describing in detail
the category-theoretic connections between systems and domains. The main result
is that, roughly, the construction of the dynamical domain for a system and the
construction of the system modeled by a dynamical domain are adjoint. Moreover,
the category of dynamical systems is a localization of the category of compact
zero-dimensional measured topological systems which, in turn, is equivalent to an
interesting full and reflective subcategory of the category of dynamical domains.

5.1 Introduction

In the previous chapter, we’ve defined, as a general tool to analyze dynamical
systems, the category of dynamical domains. These are structures in the sense
of domain theory (a mathematical theory of computation). They can be seen as
computational models for dynamical systems: for every dynamical domain D, we
can naturally define the dynamical system S(D) modeled by D. We’ve also shown
that, for every dynamical system X, we can construct a dynamical domain D(X),
which we called the observation domain, such that X is isomorphic to S(D(X)).

This poses the question whether these two constructions, S and D, can be
extended in a category-theoretic way: Do they form functors between the category
of dynamical systems and the category of dynamical domains? If so, do they
even form an adjunction, indicating the optimality of these constructions? The
importance of the question is that, given a positive answer, we can not only
translate questions about particular dynamical systems into domain-theoretic
questions. We can also do this for questions about relationships between dynamical
systems: for example, can one be decomposed into two factors of a particular kind

173

174 Chapter 5. Systems and domains 2: Category

dDOM dDOMr

DS bTS0 TS0c

Ŝ
S

D̂◦S

S

I

a

Loc

C

D

IB

D̂

|∼D̂

a

Figure 5.1: The main diagram: The categories and their functorial connections
(here ` denotes adjunction, |∼ adjoint equivalence, and Loc a localization). The
diagram commutes up to natural isomorphism. It restricts from the general to
the standard setting by adding ‘s’ to every category.

(as it occurs, e.g., in the weak Pinsker conjecture). Thus, as a slogan, all questions
about dynamical systems can be translated into domain-theoretic questions, where
the rich domain theory can be applied (and also vice versa).

The short summary of this chapter is that the answer is a resounding ‘yes’.
The precise answer is given in the category-theoretic diagram of figure 5.1. We’ll
refer to it as the main diagram and explain it in this introduction.

Even though this chapter builds on the previous, it is self-contained: In
section 5.2.1, we provide a brief background of the required domain theory,
dynamical systems theory, and category theory, and, in section 5.2.5, we provide
a summary of the required results from the previous chapter. Moreover, since the
present chapter is rather long, the chapter outline at the end of this introduction
provides some suggested selective reading.

Explanation of the main diagram The bottom layer of the diagram consists
of categories of dynamical systems (DS, bTS0,TS0c), while the top layer consists
of categories of dynamical domains (dDOM, dDOMr). All formal definitions of the
categories are in section 5.2. The bottom layer constitutes the ‘foundation’ on
which we can build the connection to dynamical domains given by the top layer.
We first explain the diagram in a rough and ‘high-level’ way, and then we explain
in more detail the two layers in turn.

The high-level explanation. In the previous chapter, we’ve established a
translation between dynamical systems and dynamical domains via the ‘observation
domain’ construction D and the ‘modeled system’ construction S. In this chapter,
we’re concerned with extending this translation to morphisms between dynamical
systems (or factors) and morphisms between dynamical domains. This works

5.1. Introduction 175

particularly neatly if we additionally assume the dynamical systems to carry a
zero-dimensional compact topology that determines its measurable sets and that
is respected by the dynamics. (This is the category TS0c.) Then the constructions
D and S extend to a translation that also takes morphisms into account: in
category-theoretic terms, they form an adjunction. This is the diagonal of the
main diagram and the main result of this chapter—and hence will be the minimal
suggested reading. (The triangle above it analyzes this translation more precisely.)

However, since we’re concerned with relating dynamical systems and dynamical
domains, we should also provide an answer without making the topological
assumption. This is what the rest of the main diagram—i.e., the bottom layer—
does. On the object level, the topological assumption provides no restriction: in
the previous chapter, we’ve seen that, roughly, a dynamical system X is isomorphic
to SD(X), which satisfies the topological assumption. On the morphism level,
however, the issue is that morphisms between dynamical systems are only defined
up to sets of full measure and hence may ignore sets of states with probability 0.
But this leeway is not allowed for the morphisms between systems that naturally
come with the topological assumption. This mismatch is reconciled using the
category-theoretic concept of a localization together with the topological concept
of a compactification. Thus, we get a connection between the (unconstrained)
dynamical systems and the dynamical systems with the topological assumption
(where the above translation to dynamical domains starts). This connection is
the content of the bottom layer.

The bottom layer. The category DS of (measure-theoretic) dynamical systems
consists of objects X = (X,A, µ, T) where (X,A, µ) is a probability space and
T : X → X is a measurable function. Morphisms are, after possibly discarding
null sets, measure-preserving functions that commute with the dynamics. To allow
for a well-behaved isomorphism theory, we’ll make the mild assumption that the
probability space is Borel (i.e., there is a Polish topology on X that generates the
σ-algebra A). This is a very general definition of a measure-theoretic dynamical
system. (In chapter 4, we’ve motivated this choice as including systems, like
learning dynamics, that otherwise wouldn’t be covered.) The standard definition
(in ergodic theory) is to additionally assume that the probability space is a
Lebesgue space (roughly, a completion of a Borel probability space) and that the
dynamics T is both measure-preserving and invertible. In that case, we speak of
a standard dynamical system. (In fact, all our categories have a standard version
and the main diagram will restrict to them; but we’ll first explain the general case
and then get to the standard case below.)

As mentioned, the previous chapter establishes a topological realization result
(in the spirit of the Jewett–Krieger theorem in ergodic theory): every dynamical
system X is, after a choice of measurable basis, isomorphic to the dynamical
system induced by the compact zero-dimensional topological system SD(X). Thus,
as far as objects are concerned, we can do dynamical systems theory on measured
topological systems X = (X, τ, µ, T) where (X, τ) is a compact zero-dimensional

176 Chapter 5. Systems and domains 2: Category

Polish space, µ a probability measure on B(τ) (the induced Borel σ-algebra), and
T : X → X is a continuous function. They naturally form the category TS0c

where the morphisms are continuous, measure-preserving functions that commute
with the dynamics.

The mentioned issue with the morphisms is that any injective (modulo null
sets) morphism in TS0c will be an isomorphism in DS but need not be one in TS0c.
So we cannot expect the two categories to be equivalent, but we may expect them
to be equivalent after adding inverses to those injective morphisms in TS0c. We
show that this is indeed true: Formally, adding inverses is precisely the task of
localizations in category theory.

There is a subtlety in constructing such a localization, and this explains the
third category bTS0 in the bottom layer. If we have two topological (realizations
of dynamical) systems X and Y and a measure-theoretic morphism ϕ : X→ Y, we
also need to ‘topologically realize’ this morphism as a continuous one. We can use
the (Borel-) measurability of ϕ to refine the topology τ of X into a zero-dimensional
Polish topology τ ′ such that ϕ becomes continuous:

X with τ ′

X with τ Y

idX cont
ϕ cont

ϕ meas

so we’ve realized the measurable ϕ as a span of continuous morphisms. (This
observation will be at the heart of the formal localization result below.) However,
the finer τ ′ will, in general, not be compact (no strictly finer topology of a compact
Hausdorff space is compact). So we need to add the intermediate category of
zero-dimensional (not necessarily compact) measured topological systems TS0,
and localize that to obtain DS.

Compact zero-dimensional X have, with their sets of clopens ClpX, a canonical
countable basis that serves as the set of possible observations with which the ob-
servation domain D(X) is built. However, this is no longer true when compactness
is dropped. So we make the choice of basis explicit and work with pairs (X,B).
They form the objects of the category bTS0 and the morphisms are the usual ones
between measured topological systems except that they now also are required to
respect bases: the preimage of a basis element is a basis element.

Fortunately, after this addition we can still form the desired localization: First,
the class W of morphisms in bTS0 that are injective (technically, on a clopen
invariant set of full measure) admits what is called a right calculus of fractions.
This means that there is a concrete way of adding inverses (in the form of spans) to
those morphisms in W and obtain the category bTS0[W

−1] with the same objects
but with those additional added inverses as morphisms. Second, the category
of dynamical systems DS is indeed equivalent to that localization bTS0[W

−1].
Remarkably, the equivalence between spans that is used in the construction of

5.1. Introduction 177

the localization then coincides with the equivalence modulo null sets between
measure-theoretic morphisms of dynamical systems.

This explains the localization Loc in the diagram. The other two functors IB
and C show that we basically obtained the original naive aim of localizing the
category of compact systems TS0c directly: With C we can compactify any system
in bTS0 and obtain one in TS0c.

1 And with IB we can naturally regard a compact
system X in TS0c as one in bTS0 with its canonical basis Clp(X).

Finally, we may wonder: if the observation domain construction works more
generally for any (standard) dynamical system X with a countable and separating
measurable basis B, why don’t we define the domain functor on DS? (Or, in analogy
to bTS0, on the category ‘bDS’ whose objects are the (X,B)’s and morphisms
additionally respect bases.) The reason is that in bTS0 it is cleaner to show
that the construction is functorial on morphisms: since the morphisms then are
total, there is no fuzz in choosing appropriate representatives, etc. And with the
localization in place, we can restrict to bTS0, in a sense, without loss of generality.

The top layer. By now, we’ve established a solid foundation on which we can
build the top layer of dynamical domains. As constructed in chapter 4, dDOM
is the category of dynamical domains: Its objects are structures in the sense
of domain theory (domains with additional domain-theoretic structure), and its
morphisms are those in the sense of domain theory (Scott-continuous functions
that respect the additional domain-theoretic structure).

First, we establish that the constructions S (the system modeled by a dynamical
domain) and D (the observation domain of a system X relative to a choice of
basis B) extend to functors S : dDOM → TS0c and D : bTS0 → dDOM. We use
the IB functor to extend (resp., restrict) those functors so that they are of the
corresponding type: Ŝ := IB ◦ S : dDOM → bTS0 (resp., D̂ := D ◦ IB : TS0c →
dDOM).

Next, we show the result anticipated at the very beginning: that the domain
functor D̂ is right adjoint to the system functor S—in fact, it is a reflective
adjunction in the sense that the counit is a natural isomorphism.

This establishes the ‘lower’ triangle dDOM—bTS0—TS0c. So it remains to
explain the ‘upper’ triangle: Given a (reflective) adjunction, it is natural to analyze
what it takes to restrict it to an equivalence (i.e., that also the unit is a natural
isomorphism). We’ll make the surprising observation that this amounts to having
a simple and purely domain-theoretic property that we’ll call max-reflective. (The
maximal elements of the domain ‘reflect’, in a sense, the non-maximal elements,
see definition 5.2.19.) The full subcategory dDOMr of dynamical domains whose
underlying domain has this property will then turn out to be the right restriction
of dDOM such that S : dDOMr � TS0c : D̂ forms an (adjoint) equivalence. We’ll

1We’ll further analyze C into C ◦ · where · is a right-adjoint functor which closes bases under
logical and dynamical operations and C is a left-adjoint functor which compactifies the state
space in a way familiar from Stone duality.

178 Chapter 5. Systems and domains 2: Category

also show that the functor D̂ ◦ S is optimal in turning a dynamical domain D into
a max-reflective one, i.e., it is left-adjoint to the inclusion functor.

The standard case. So far we’ve discussed dynamical systems in our general
sense, but we’ve also mentioned that the usual setting of ergodic theory is that of
standard dynamical systems. They form the category sDS (with the same notion
of morphism). In a similar spirit, we define a measured topological system to be
standard if its dynamics is a homeomorphism that is measure-preserving. Thus,
TS0cs is the full subcategory of TS0c consisting of standard systems. Similarly,
bTS0s is the full subcategory of bTS0 consisting of those (X,B) where X is standard
and, additionally, B is closed under images of the dynamics. The reason for the
latter condition is the following. In chapter 4, we’ve developed a domain-theoretic
condition for being a standard dynamical domain and showed that it corresponds
to the system-theoretic notion. (In the sense that, for a standard dynamical
domain D, the system S(D) is standard, and if X is a standard system and
B closed under images of the dynamics, then D(X,B) is standard.) Thus, we
write dDOMs (resp., dDOMrs) for the full subcategory of dDOM (resp., dDOMr)
of standard dynamical domains. We’ll show that the main diagram remains valid
in this standard setting, i.e., after adding an s to every category (see figure 5.6 for
an explicit depiction of the resulting diagram). Much of this is immediate (from
the functors restricting appropriately), but for the localization this requires more
work.

Interpretation of the main diagram As mentioned at the very beginning,
the main motivation for the main diagram is to complete the tool of dynamical
domains: to have a full translation between systems and domains. We’ll add three
further remarks on interpretation.

First, the localization (together with the compactification) may also be regarded
as determining in categorical language what the common assumption of ‘working
modulo null sets’ in dynamical systems really amounts to. We can think of bTS0

(resp., TS0c) as the ‘honest toil’ category of dynamical systems: (1) To show that
a set is a null set we need to first show that it is a set that we can ‘grasp’ (i.e.,
is Borel) and then that its measure is 0; it is not enough to just note that it is
an (arbitrarily complicated) subset of such a set. (2) To show that a function is
a morphism we need to check its properties everywhere (e.g., equivariance, i.e.,
commutativity with the dynamics); we cannot just move to a partial function
where we discard a troublesome null set.2

Second, in the previous chapter, we’ve motivated that dynamical domains pro-
vide, in a sense, symbolic computational models (qua domain-theoretic structures)
to the non-symbolic computation realized by dynamical systems (‘non-symbolic’

2One might be tempted to ask: If TS0c is the ‘honest toil’ category of dynamical systems,
what, then, is DS? Well, that depends on one’s views: presumably either mathematical paradise
(inspired by the words of Hilbert (1926, p. 170)) or the advantage of theft (inspired by the words
of Russell (1919, p. 71)).

5.1. Introduction 179

in the sense that the state space is continuous rather than discrete). As already
discussed in chapter 3, the reflective adjunction S : dDOM� TS0c : D̂ thus has
a computational interpretation (Sassone, Nielsen, and Winskel 1996; Winskel
and Nielsen 1995): It means that the ‘non-symbolic’ model of computation TS0c

is more abstract than (i.e., can be embedded in) the ‘symbolic’ model dDOM.
What is abstracted away is precisely what violates being max-reflective, since the
symbolic model dDOMr is equivalent to the non-symbolic model TS0c. We discuss
this further in chapter 7.

Third, an important consequence of the fact that the main diagram commutes
is that the two functors S ◦ D,C : bTS0 → TS0c are naturally isomorphic. Both
compactify a system X relative to a basis B, but they do so in very different
ways. The first builds the computational model for X with respect to the possible
observations given by B and then takes the system modeled by this model—so we
may call this the computational compactification. The second builds the space of
logical models (the Stone space) that are possible according to the set of properties
B that can be observed—so we may call this the logical compactification.3 Two
important consequences are: (1) we obtain two very different but (measure-
theoretically) isomorphic topological realizations of the original dynamical system,
and (2) this alignment of domain theory and logic may hint at a ‘dynamical
domain theory in logical form’ à la Abramsky (1991).

Related work Since we’ve discussed work relating to the dynamical domain
construction in the previous chapter, we only add here work relating to the
categorical constructions of the present chapter.

There is, of course, work on a general category-theoretic approach to dynamical
systems. Inspiring earlier references are, for example, Lawvere (1986) and Niefield
(1996). More recently, there is, for example, Behrisch et al. (2017) and Schultz,
Spivak, and Vasilakopoulou (2020). Here we are in a more concrete setting by
explicitly working with the structures of ergodic theory.

Concerning the categories, the categories DS and sDS are standard, except for
the more general notion of dynamical system in the former. Though, the standard
references usually don’t explicitly define them as categories, so we check in some
detail that they indeed form a category and that the usual system-theoretic
notion of isomorphism coincides with the category-theoretic one. The categories
TS0c and TS0cs are standard, too: the usual setting of topological dynamics is a
compact metrizable space with a continuous dynamics that often is assumed to
be invertible, and a measure is added when considering topological realizations.
Concerning the category bTS0, as already discussed in chapter 4, Polish spaces
with a distinguished basis play an important role for Danos and Garnier (2015)
and Dahlqvist, Danos, and Garnier (2016). In the latter paper (in def. 3.1 on page

3Before performing this logical compactification, though, B is closed under logical and
dynamical operations.

180 Chapter 5. Systems and domains 2: Category

87), they also make the choice of basis explicit and form the category of based
Polish spaces where the morphisms need to be, as they call it, ‘base-preserving’.
The main difference here is that we also deal with dynamics.

Concerning the localization, viewing (measure-theoretic) dynamical systems
as a localization of topological dynamical systems is, as we hope to succeed in
motivating, a rather natural construction, but so far we haven’t yet found a
reference. A reason may be that localizations are usually used in a different field:
homological algebra and derived categories (Yekutieli 2020).

Concerning the compactification, we use the standard Wallman compactifica-
tion theory and extend it to include dynamics. This is done in sections 5.3.2–5.3.3
where we’ll provide references and discuss commonalities with (and differences to)
a construction of Danos and Garnier (2015).

Concerning the system and domain functors—i.e., the heart of this chapter—,
they are, to the best of our knowledge, new.

Overview of the chapter In section 5.2, we define all the categories that we’ll
deal with. In section 5.3, we establish the bottom layer of the main diagram. In
section 5.4, we construct the system and domain functors, and show, in section 5.5,
that they are adjoint. In section 5.6, we analyze the adjunction into forming an
adjoint equivalence with the reflective subcategory of max-reflective dynamical
domains. In section 5.7, we conclude that we have established the main diagram
(and that it restricts to the standard case).

As suggested selective reading, we recommend sections 5.4 (minus subsec-
tion 5.4.3) and 5.5 for the main result: the diagonal of the main diagram. With a
bit more time, this can be continued with section 5.6. As preparation one reads 5.2
but skips the categories one is not interested in (e.g., DS and dDOMr). Section 5.3
on the bottom layer can be read largely independently. It is recommended to those
who are not satisfied with taking the category TS0c of compact zero-dimensional
measured topological systems as a good enough category of dynamical systems
but rather want to see its connection to the ‘real’ category of dynamical systems
DS.

5.2 The categories

After introducing some background (section 5.2.1), we define the categories that
occur in the main diagram: dynamical systems (section 5.2.2), measured topologi-
cal systems (section 5.2.3), dynamical domains (section 5.2.4), based measured
topological systems (section 5.2.6), and max-reflective dynamical domains (sec-
tion 5.2.7). In section 5.2.5, we recap the main results from chapter 4.

5.2. The categories 181

5.2.1 Background

Domain theory We refer to section 4.2.1 of the previous chapter for a self-
contained introduction to the domain theory that we need. Here we’ll just recap
the main concepts. Unless noted otherwise, these are found in the standard
reference by Abramsky and Jung (1994).

A Scott domain (D,≤) is a directed-complete partial order (dcpo) that is
ω-algebraic and bounded-complete. For A ⊆ D, we write maxA := {a ∈ A : ∀b ∈
A.b ≥ a ⇒ b = a} and ↑A := {b ∈ D : ∃a ∈ A.b ≥ a} and ↓A := {b ∈ D : ∃a ∈
A.b ≤ a} (and ↑a := ↑{a} and ↓a := ↓{a}). The Scott topology on D is denoted
Σ = Σ(D) and the Lawson topology is denoted Λ = Λ(D).

A function f : D → E between dcpos is Scott-continuous iff it is monotone and
preserves the supremum of directed subsets. A function f : Q→ P between posets
is a projection if it is surjective, monotone, and preimages of principal upsets
(i.e., sets of the form ↑x) are principal upsets. Equivalently, there is a monotone
function e : P → Q (the embedding determined by f) such that f ◦ e = idP and
e ◦ f ≤ idQ (i.e., e ◦ f(y) ≤ y for all y ∈ Q).

For a dcpo D, a function v : Σ(D)→ [0,∞] is a continuous valuation (see e.g.
Edalat 1995a; Jones and Plotkin 1989; Lawson 1982) if, for all U, V ∈ Σ(D), (a)
v(∅) = 0, (b) if U ⊆ V , then v(U) ≤ v(V), (c) v(U ∪V)+v(U ∩V) = v(U)+v(V),
and (d) if (Uj)j∈J is a directed family in Σ(D), then v(

⋃
J Uj) = supJ v(Uj). And

v is normalized if v(D) = 1.

Dynamical systems theory Before defining dynamical systems in the next
subsection, we recap here their underlying spaces. (Again we just state the
definitions and refer to section 4.2.2 of the previous chapter for some more details.)
There are three kinds:

(1) As usual, a probability space is a triple (X,A, µ) where X is a set, A is
a σ-algebra, and µ : A → [0, 1] is measure with µ(X) = 1. A probability space
(X,A, µ) is complete if, for all A ⊆ B ∈ A, if µ(B) = 0, then A ∈ A. The
completion of (X,A, µ) is denoted (X,Aµ, µ).4

(2) A probability space (X,A, µ) is a Borel probability space if there is a
Polish (i.e., separable and completely metrizable) topology τ on X with A = B(τ),
where B(τ) denotes the Borel σ-algebra of the topology τ (see e.g. Kechris 1995,
def. 12.5). In that case, (X,A) is called a standard Borel space.

(3) A probability space (X,A, µ) is a Lebesgue space (or standard probability
space) if it is complete and there is a second-countable topology τ on X with
τ ⊆ A, B(τ)µ = A, and µ inner regular (de la Rue 1993, def. 1-1). Equivalently (de
la Rue 1993, thm. 4-3), a Lebesgue space is a complete probability space that is
isomorphic mod 0 to the ordinary Lebesgue space of a (possibly empty) interval
[0, a] ⊆ R together with countably many point masses. (See Walters (1982, def. 2.3)

4Here Aµ is the σ-algebra of sets of the form A ∪N for A ∈ A and N ⊆M for some M ∈ A
with µ(M) = 0, and µ(A ∪N) is taken to mean µ(A).

182 Chapter 5. Systems and domains 2: Category

or Petersen (1983, def. 4.5).) Thus, any completion of a standard Borel probability
space is a Lebesgue space, and any Lebesgue space is isomorphic mod 0 to the
completion of a standard Borel probability space.

When restricting to the subclasses (2) and (3) of probability spaces, different
natural notions of isomorphism of probability spaces coincide (Walters 1982, ch. 2).

Category theory We only use basic category theory: the definitions of cat-
egories, functors, limits, adjunctions, and equivalences; as found in standard
references like Leinster (2014) or the classic Mac Lane (1998). Concerning no-
tation, we use suffixed subscripts to denote restrictions (of the objects) to full
subcategories, and suffixed superscripts denote restrictions (of the morphisms) to
wide subcategories.

5.2.2 Categories of dynamical systems

On the object level, dynamical systems are defined as follows.

5.2.1. Definition. An abstract dynamical system is a structure X = (X,A, µ, T)
where (X,A, µ) is a probability space and T : X → X is measurable (i.e., for
A ∈ A, T−1(A) ∈ A). A (general) dynamical system is an abstract dynamical
system X = (X,A, µ, T) where (X,A, µ) is a Borel probability space. A standard
dynamical system is an abstract dynamical system X = (X,A, µ, T) where (X,A, µ)
is a Lebesgue space and T : X → X is bijective and measure-preserving (i.e.,
measurable and for A ∈ A, µ(T−1(A)) = µ(A)). We often omit the term ‘general’.

On the morphism level, we can use the usual notion of homomorphism of
systems. (See e.g. Walters (1982, p. 61) or Petersen (1983, p. 11).) Recall that,
for two sets X and Y , a partial function ϕ : X → Y with domain M ⊆ X and
codomain N ⊆ Y is (formally) a relation ϕ ⊆ X × Y such that for every x ∈M
there is exactly one y ∈ N such that xϕy.5

5.2.2. Definition. A (system) homomorphism or factor ϕ : (X,A, µ, T) →
(Y,B, ν, S) between abstract dynamical systems is a partial function ϕ : X → Y
with domain M ⊆ X and codomain N ⊆ Y such that

1. Domain: M ∈ A, T (M) ⊆M , and µ(M) = 1.

2. Codomain: N ∈ B, S(N) ⊆ N , and ν(N) = 1.

3. Measurable: For all B ∈ B, ϕ−1(B) ∈ A.6

5So ϕ �M ×N is a function M → N . Note that the function is not required to be surjective:
the image ϕ(M) is only included in the codomain N and need not be identical to it.

6So ϕ : M → N is measurable with respect to the sub-σ-algebras A �M and B � N .

5.2. The categories 183

4. Measure-preserving: For all B ∈ B, µ
(
ϕ−1(B)

)
= ν(B).

5. Equivariant: For all x ∈M , ϕ(T (x)) = S(ϕ(x)).

We identify two partial maps ϕ, ψ : X → Y iff they are identical on an invariant
set of full measure, i.e., there is A ∈ A such that T (A) ⊆ A, µ(A) = 1 and, for all
x ∈ A, both ϕ(x) and ψ(x) are defined and equal.7

One may wonder why bother with the complication of partial functions and
not just define morphisms to be total functions that preserve the relevant structure
everywhere rather than just almost everywhere. This is because, with the above
choice of morphisms, the resulting category-theoretic notion of isomorphism is
precisely the one that is the usual notion of isomorphism in dynamical systems
theory, as we’ll show below.

But first we check that this choice of objects and morphisms does indeed yield
a category. Since the standard references don’t do this explicitly, we provide a
full proof.

5.2.3. Proposition. The following forms the category aDS: the objects are ab-
stract dynamical systems and the morphisms are homomorphisms between them.
The identity morphism is the identity function (modulo equivalence) and com-
position of morphisms is function composition (modulo equivalence). We write
DS and sDS for the full subcategories of general and standard dynamical systems,
respectively.

Note that sDS is not a (full) subcategory of DS, but intuitively it is ‘modulo’
completion. (So we don’t write DSs.) Since we’re interested in dynamical systems
over ‘well-behaved’ spaces, we will be interested in DS and sDS. Thus, for us aDS
is only a convenient ambient category containing both categories of study.
Proof. We first show that composition is well-defined: Let X = (X,A, µ, T),
Y = (Y,B, ν, S), Z = (Z, C, κ, R), and let ϕ : X → Y and ψ : Y → Z be
homomorphisms in aDS where ϕ has domain M ⊆ X and codomain N ⊆ Y and
ψ has domain K ⊆ Y and codomain L ⊆ Z.

Let χ := ψ ◦ ϕ be the composition of partial functions: χ :=
{

(x, z) ∈ X × Z :
∃y ∈ Y : (x, y) ∈ ϕ, (y, z) ∈ ψ

}
. Then χ is a partial function with domain

M ′ := M ∩ϕ−1(K) = {x ∈ X : x ∈M,ϕ(x) ∈ K} and codomain L. In particular,
ψ ◦ ϕ(x) is defined (and equals z) iff ϕ(x) is defined and ψ(ϕ(x)) is defined (and
equals z). We need to show that χ : X → Z is a homomorphism, i.e., check
conditions (1)–(5).

Concerning (1), we have M ∈ A and, since ϕ is measurable and K ∈ B,
ϕ−1(K) ∈ A, also M ′ = M ∩ϕ−1(K) ∈ A. To show T (M ′) ⊆M ′, let x ∈M ′ and
show Tx ∈ M ′: Since x ∈ M and T (M) ⊆ M , we have Tx ∈ M , so we need to

7If T is measure-preserving, we can drop the condition T (A) ⊆ A (and thus recover the usual
‘identical mod 0’ equivalence relation of functions) since we can take A′ :=

⋂∞
n=0 T

−n(A).

184 Chapter 5. Systems and domains 2: Category

show Tx ∈ ϕ−1(K). Indeed, we have ϕTx = Sϕx and ϕx ∈ K. Since S(K) ⊆ K,
Sϕx ∈ K. Hence ϕTx ∈ K, as needed. Finally, to show µ(M ′) = 1, note that
µ(M) = 1 and µ(ϕ−1K) = ν(K) = 1 and the intersection of sets of full measure
is of full measure.

Concerning (2), we have, by assumption, L ∈ C, R(L) ⊆ L, κ(L) = 1, as
needed.

Concerning (3), if C ∈ C, then χ−1(C) = ϕ−1(ψ−1(C)).8 Since ψ is measurable,
ψ−1(C) ∈ B, so, since ϕ is measurable, χ−1(C) = ϕ−1(ψ−1(C)) ∈ A.

Concerning (4), if C ∈ C, then,

µ(χ−1C) = µ(ϕ−1(ψ−1C)) = ν(ψ−1C) = κ(C).

Concerning (5), For x ∈ M ′, we have Tx ∈ M ′, so χ(Tx) = ψ(ϕ(Tx)) is
defined, and ϕ(x) ∈ K, whence Sϕ(x) ∈ K, so

χ(T (x)) = ψ
(
ϕ(Tx)

)
= ψ

(
S(ϕ(x))

)
= R

(
ψ(ϕ(x))

)
= R(χ(x)).

Finally, note that composition of partial functions is associative,9 and the
(total) identity function idX : X → X is a homomorphism idX : X → X. And
this can be lifted to the equivalence classes: If ϕ is equivalent to ϕ′ (identical on
the invariant set A ⊆ X of full measure) and ψ is equivalent to ψ′ (identical on
the invariant set B ⊆ Y of full measure), then also χ = ψ ◦ ϕ is equivalent to
χ′ = ψ′ ◦ ϕ′ (identical on the invariant set A ∩ ϕ−1(B) of full measure).10 2

Next, as promised, we check that the category-theoretic notion of isomorphism
coincides with the usual notion of isomorphism in dynamical systems theory. For
this we first prove a lemma which also will be useful later on.

5.2.4. Lemma. 1. Let ϕ : X → Y be in DS. Assume there is an invariant
set A of full measure on which ϕ is defined and injective. Then ϕ is an
isomorphism in DS (i.e., has an inverse).

2. The same holds in sDS.

8We have, for x ∈ X, that: x ∈ χ−1(C) iff χ(x) is defined and χ(x) ∈ C iff x ∈ M ′ and
χ(x) ∈ C iff ϕ(x) is defined and ψ(ϕ(x)) is defined and in C iff x ∈ ϕ−1(ψ−1(C)).

9We have: χ ◦ (ψ ◦ ϕ))(x) is defined iff ψ ◦ ϕ(x) is defined and χ(ψ ◦ ϕ(x)) is defined iff ϕ(x)
is defined and ψ(ϕ(x)) is defined and χ(ψ(ϕ(x))) is defined iff ϕ(x) is defined and (χ ◦ ψ)(ϕ(x))
is defined iff (χ ◦ ψ) ◦ ϕ(x) is defined. And if defined, the values are identical.

10Full measure: Since ϕ is measurable and measure-preserving, A ∩ ϕ−1B is an intersection
of measurable sets with full measure and hence of full measure as well. Invariant: Assume
x ∈ A ∩ ϕ−1B. Then Tx ∈ A since A is T -invariant, so we need to show ϕTx ∈ B. Since x ∈ A
and ϕx ∈ B, and since ϕ is defined on A and B is S-invariant, ϕTx = Sϕx ∈ B. Identical: If
x, x′ ∈ A∩ϕ−1B, then ϕ(x) = ϕ(x′) and ψ is defined for them, so χ(x) = ψ(ϕ(x)) = ψ(ϕ(x′)) =
χ(x′).

5.2. The categories 185

Proof. We deal with DS in the main text and with sDS in square brackets.
Write X = (X,A, µ, T) and Y = (Y,B, ν, S). By assumption, ϕ : X → Y is a
homomorphism with domain M ⊇ A and codomain N . Define B := ϕ(A) ⊆ Y
and ψ : Y → X as the partial function with domain B ⊆ Y and codomain A ⊆ X
which assigns every y ∈ B the unique x ∈ A such that ϕ(x) = y. We claim that
ψ is a homomorphism—so we need to check conditions (1)–(5).

First an observation: Since (X,A, µ) is a Borel probability space [resp.,
Lebesgue space] and A ∈ A has full measure, also (A,A � A, µ) is a Borel
probability space [resp., Lebesgue space].11 Now, ϕ : A → Y is an injective
Borel-measurable [resp., measurable and measure-preserving] function between
standard Borel spaces [resp., Lebesgue spaces], so, for all C ∈ A � A, we have
ϕ(C) ∈ B by Kechris (1995, p. 15.2) [resp., by de la Rue (1993, thm. 3-5)].

Concerning (1), By the observation, B ∈ B. And B is S-invariant: If y ∈ B,
then y = ϕ(x) for some x ∈ A, so Tx ∈ A and, since x ∈ M , we have S(y) =
S(ϕ(x)) = ϕ(Tx) ∈ ϕ(A) = B. Finally, B is of full measure: ν(B) = ν(ϕ(A)) =
µ(ϕ−1ϕ(A)) ≥ µ(A) = 1, so ν(B) = 1.

Concerning (2), by assumption, A ∈ A, T (A) ⊆ A, µ(A) = 1.
Concerning (3), for C ∈ A, we have, ψ−1(C) = ϕ(C ∩ A).12 And, by the

observation, this is in B since C ∩ A ∈ A � A.
Concerning (4), for C ∈ A, we have, because ϕ is measure-preserving, that

ν(ψ−1(C)) = µ(ϕ−1ψ−1(C)). By the previous step, this equals µ(ϕ−1ϕ(C ∩ A)).
By definedness and injectivity on A, this further equals µ(C ∩ A).13 Since A is
of full measure, this equals µ(C), as needed. o Concerning (5), for y ∈ B, let
x := ψ(y) ∈ A. So, by definition, ϕ(x) = y. Since ϕ is equivariant (on M ⊇ A),
ϕ(T (x)) = S(ϕ(x)) = S(y). So T (x) is the element of A whose ϕ-image is S(y),
whence ψ(S(y)) = T (x) = T (ψ(y)), as needed.

To finish the proof, we see that ψ is an inverse to ϕ: First, ψ ◦ ϕ = idX on the
T -invariant set A ∈ A of full measure. Second, ϕ ◦ ψ = idY on the set B which,
by (1) above, is an S-invariant set of full measure. 2

5.2.5. Proposition. 1. X and Y are isomorphic in DS iff there is a partial
function ϕ : X → Y with domain M ⊆ X and codomain N ⊆ Y such that

11Proof: For the Borel case, this follows since, if (X,A) is a standard Borel space and A ∈ A,
also (A,A � A) is standard (Kechris 1995, p. 13.4), and µ still is a probability measure. For the
Lebesgue case, this follows since, if (X,A, µ) is a complete probability space that is isomorphic
mod 0 to an interval with Lebesgue measure together with countably many point masses, then,
after discarding a measure null set, this is still true for (A,A � A,µ).

12For y ∈ Y , we have y ∈ ψ−1(C) iff y ∈ B and ψ(y) ∈ C iff y ∈ B and the unique x ∈ A with
ϕ(x) = y is in C iff y ∈ ϕ(C ∩A). (For the reverse direction of the last step: if y ∈ ϕ(C ∩A),
then y = ϕ(x) for x ∈ C ∩ A, so y ∈ ϕ(A) = B and x ∈ A is such that ϕ(x) = y, whence x is
unique the unique element of A with ϕ(x) = y and it is in C.)

13If x ∈ C ∩ A, then ϕ(x) is defined and in ϕ(C ∩ A), so x ∈ ϕ−1ϕ(C ∩ A). Conversely, if
x ∈ ϕ−1ϕ(C∩A), then ϕ(x) is defined and in ϕ(C∩A). So there is x′ ∈ C∩A with ϕ(x) = ϕ(x′).
By injectivity on A, x = x′. So x ∈ C ∩A.

186 Chapter 5. Systems and domains 2: Category

(a) ϕ : M → N is a bijective function and M ∈ A, T (M) ⊆M , µ(M) = 1,
and N ∈ B, S(N) ⊆ N , ν(N) = 1.

(b) Measurable: For all B ∈ B, ϕ−1(B) ∈ A.

(c) Measure-preserving: For all B ∈ B, µ
(
ϕ−1(B)

)
= ν(B).

(d) Equivariant: For all x ∈M , ϕ(T (x)) = S(ϕ(x)).

2. The analogous claim holds in sDS.

Proof. We deal with DS and sDS simultaneously. (⇐) By the assumption,
ϕ : X→ Y is a homomorphism with domain M and codomain N which is injective
on the invariant set M of full measure. By lemma 5.2.4, ϕ is an isomorphism, so
X and Y are isomorphic. Note that this reasoning applies both to DS and sDS.

(⇒) Let ϕ : X→ Y and ψ : Y→ X be homomorphisms such that ψ ◦ ϕ = idX
on a T -invariant set A ∈ A of full measure and ϕ ◦ ψ = idY on a S-invariant set
B ∈ B of full measure. Note that ψ ◦ ϕ is defined on A, so ϕ is defined on A and
ψ is defined on ϕ(A). Similarly for B.

Set M := A ∩ ϕ−1(B) and N := ϕ(M). We show that the partial function
ϕ′ := ϕ �M : X → Y with domain M and codomain N has properties (1a)–(1d).

Concerning (1a), by construction, ϕ′ : M → N is surjective and it also
is injective: for x, x′ ∈ M , if ϕ′(x) = ϕ′(x′), then ϕ′(x) = ϕ(x) ∈ B and
ϕ′(x′) = ϕ(x′) ∈ B, so ψ(ϕ(x)) = ψ(ϕ(x′)) are defined and, since x, x′ ∈ A,

x = idX(x) = ψ(ϕ(x)) = ψ(ϕ(x′)) = idX(x′) = x′.

Since ϕ is measurable and measure-preserving, M = A∩ϕ−1(B) is of full measure,
and it is T -invariant: If x ∈ M , then T (x) ∈ A (since A is T -invariant) and
T (x) ∈ ϕ−1(B) since ϕT (x) = Sϕ(x) ∈ B (since ϕ(x) ∈ B and B is S-invariant).

We claim ϕ(M) = B ∩ ψ−1(A). (Then it follows, similarly as above, that
N = B ∩ ψ−1(A) is of full measure and S-invariant.) If y ∈ ϕ(M), then there is
x ∈ A ∩ ϕ−1(B) with ϕ(x) = y. So y = ϕ(x) ∈ B and ψ(ϕ(x)) = idX(x) = x ∈ A.
Hence y ∈ B ∩ ψ−1(A). Conversely, if y ∈ B ∩ ψ−1(A), then x := ψ(y) ∈ A is
defined. And ϕ(x) = ϕ(ψ(y)) = idY(y) = y ∈ B. So x ∈M and ϕ(x) = y, whence
y ∈ ϕ(M).

Concerning (1b), if C ∈ B, then ϕ′−1(C) = ϕ−1(C) ∩M ∈ A.
Concerning (1c), if C ∈ B, then, since M is of full measure, µϕ′−1(C) =

µ
(
ϕ−1(C) ∩M

)
= µϕ−1(C) = ν(C).

Concerning (1d), if x ∈M , ϕ′(T (x)) = ϕ(T (x)) = S(ϕ(x)) = S(ϕ′(x)).
Again, this reasoning applies both to DS and sDS. 2

5.2.3 Categories of measured topological systems

Usually, a topological system is defined as (X,T) where X is a compact metric
space (hence Polish) and T : X → X continuous (and, often, bijective, whence

5.2. The categories 187

homeomorphic). Here, we’ll be more general and don’t assume compactness (and
being homeomorphic only in the standard case). We also consider measures and
indicate this by the term ‘measured’.

5.2.6. Definition. A (general) measured topological system is a structure X =
(X, τ, µ, T) where (X, τ) is a Polish space, µ a probability measure on B(τ) (the
Borel σ-algebra generated by τ), and T : X → X is continuous. It is standard if,
additionally, T is a homeomorphism and measure-preserving. It is zero-dimensional
(resp., compact) if X is.

The notion of morphism is straightforward.

5.2.7. Definition. If X = (X, τ, µ, T) and Y = (Y, σ, ν, S) are measured topolog-
ical systems, a morphism ϕ : X→ Y of measured topological systems is a function
ϕ : X → Y that is continuous (if V ∈ σ, then ϕ−1(V) ∈ τ), measure-preserving
(if B ∈ B(σ), then µ(ϕ−1(B)) = ν(B))14, and equivariant (ϕ ◦ T = S ◦ ϕ).

Now, the following is immediate.

5.2.8. Proposition. We have the category TS consisting of measured topological
systems with their morphisms. We form full subcategories with the following
restrictions on objects:

0 restricting to zero-dimensional measured topological systems

c restricting to compact measured topological systems

s restricting to standard measured topological systems

For example, TS0 (resp., TS0c) is the full subcategory of TS consisting of (compact)
and zero-dimensional measured topological systems. Moreover, ϕ : X→ Y is an
isomorphism in TS iff ϕ is a morphism in TS that is a homeomorphism on the
underlying spaces.

Proof. Composition in TS is simply function composition and the identity
morphism is simply the identity function. So we need to show the ‘moreover’ part.
Write X = (X, τ, µ, T) and Y = (Y, σ, ν, S)

Assume ϕ : X → Y is an isomorphism in TS. Let ϕ−1 be its inverse in TS.
Since ϕ in particular is a morphism, we need to show that it is a homeomorphism
X → Y . But this follows since it has a continuous inverse function ϕ−1.

Assume ϕ is a morphism in TS that is a homeomorphism on the underlying
space. So ϕ has a continuous inverse function ϕ−1 : Y → X. We need to show that
ψ := ϕ−1 is measure-preserving and equivariant. Indeed, for A ∈ B(τ), we have,
since ϕ is measure-preserving and ψ−1(A) ∈ B(σ) (since ψ : Y → X is continuous

14Note that continuity implies ϕ−1(B) ∈ B(τ) so µ(ϕ−1(B)) is defined.

188 Chapter 5. Systems and domains 2: Category

and hence Borel-measurable), that ν(ψ−1(A) = µ(ϕ−1ψ−1(A)) = µ(ϕ−1ϕ(A)) =
µ(A). And for y ∈ Y , write x := ϕ−1(y), so ϕ(T (x)) = S(ϕ(x)) = S(y), whence
T (x) is the ϕ-preimage of S(y), so ϕ−1(S(y)) = T (x) = T (ϕ−1(y)), as needed. 2

Every topological system induces a dynamical system in a functorial way:

5.2.9. Proposition. 1. We can define the functor J : TS→ DS which sends
X = (X, τ, µ, T) to J(X) := (X,B(τ), µ, T) and ϕ : X→ Y to J(ϕ) := ϕ.

2. We can define the functor J : TSs → sDS which sends X = (X, τ, µ, T) to
J(X) := (X,B(τ)µ, µ, T) and ϕ : X→ Y to J(ϕ) := ϕ.

Proof. Ad (1). Note that J(X) = (X,B(τ), µ, T) is a general dynamical system:
Since τ is a Polish topology on X, (X,B(τ)) is a standard Borel space with
probability measure µ and T : X → X is measurable since it is continuous. And
since ϕ : X→ Y is continuous on the underlying state spaces, measure-preserving
and equivariant, J(ϕ) = ϕ, regarded as ‘partial’ function with total domain
and codomain, is (Borel-) measurable, measure-preserving, and equivariant, so a
morphism in DS. Since J is the identity on morphisms, it preserves composition
and identity, whence is a functor.

Ad (2). Note that J(X) = (X,B(τ)µ, µ, T) is a standard dynamical system: As
above, (X,B(τ), µ) is a Borel probability space, so its completion (X,B(τ)µ, µ) is
a Lebesgue space. Since T is continuous, it is measurable. And, by assumption,
T is bijective and measure-preserving. Again, J(ϕ) = ϕ : X → Y, regarded as
partial function with total domain and codomain, is (Borel-) measurable and
measure-preserving on the Borel σ-algebra and hence also on its completion,15

and it is equivariant, so a morphism in sDS. Since J is the identity on morphisms,
it preserves composition and identity, whence is a functor. 2

5.2.4 Categories of dynamical domains

We summarize the definition of the category dDOM of dynamical domains (and
the subcategory dDOMs of standard dynamical domains) that was motivated
in chapter 4. In short, dynamical domains are certain limits of certain finite
dynamical dcpos, where a dynamical dcpo is a domain-theoretic analogue of a
dynamical system. We also add some new lemmas about dynamical domains,
mostly about their categorical properties.

15If B = A∪N is in the completion of B(σ) with A ∈ B(σ) and N ⊆M ∈ B(σ) and ν(M) = 0,
then ϕ−1(B) = ϕ−1(A) ∪ ϕ−1(N) with ϕ−1(A) ∈ B(τ) and ϕ−1(N) ⊆ ϕ−1(M) ∈ B(τ) with
µ(ϕ−1(M)) = ν(M) = 0. So ϕ−1(B) is in the completion of B(τ) and we have µ(ϕ−1(B)) =
µ(ϕ−1(A)) = ν(A) = ν(B), as needed.

5.2. The categories 189

Dynamical dcpos Recalling from chapter 4, a function f : D → E between
dcpos is max-preserving if f(maxD) ⊆ maxE (i.e., if a ∈ maxD, then f(a) ∈
maxE). And a valuation v on D is max-normalized if v is normalized and maxD
can be written as a countable intersection of Scott-open sets with v-value 1.

5.2.10. Definition. A dynamical dcpo is a triple D = (D, v, f) where D is a
dcpo, v : Σ(D) → [0,∞] is a continuous valuation, and f : D → D is Scott-
continuous. We call D:

• finite if D is finite

• max-normalized if v is max-normalized

• max-preserving if f is max-preserving

• a dynamical Scott domain if D is a Scott domain

• max-surjective if, for all b ∈ maxD, there is a ∈ maxD such that b ≥ f(a).

• valuation-preserving if, for all U ∈ Σ(D), v(f−1(U)) = v(U).

5.2.11. Definition. A dynamical morphism α : D→ E between two dynamical
dcpos D = (D, v, f) and E = (E,w, g) is a function α : D → E such that

1. Scott-continuous: α is Scott-continuous.

2. Max-preserving: α is max-preserving.

3. Max-bisimulative: For all a ∈ D and e ∈ maxE, if α(a) ≤ e, then there is
d ∈ maxD such that d ≥ a and α(d) = e.

4. Valuation-preserving: For all V ∈ Σ(E), w(V) = v(α−1(V)).

5. Max-semi-equivariant: For all a ∈ maxD, α(f(a)) ≥ g(α(a)).

Note that, if g : D → D is max-preserving, then α is max-equivariant : for all
a ∈ maxD, α(f(a)) = g(α(a)).

5.2.12. Definition. We define dDCP as the category of dynamical dcpos with
dynamical morphisms. We define dSCO as the full subcategory of dDCP with
dynamical Scott domains as objects. We can build further categories indicated by
the following prefixes and suffixes:

·p restricting the morphisms to additionally be projections.

·m restricting to max-preserving dynamical dcpos.

·n restricting to max-normalized dynamical dcpos.

190 Chapter 5. Systems and domains 2: Category

For example, dSCOp
nm is the subcategory of dSCO consisting of max-normalized

and max-preserving dynamical Scott domains where the dynamical morphisms
also are projections.

The following characterizes isomorphisms in a ‘one-sided’ way:

5.2.13. Proposition. Let α : D→ E be a morphism in dDCP with D = (D, v, f)
and E = (E,w, g). Then α is an isomorphism in dDCP iff α : D → E is an order
isomorphism (monotone, order-reflecting, surjective) and α is max-equivariant
(for a ∈ maxD, α(f(a)) = g(α(a))).16 This also holds for dDCPp and all full
subcategories of dDCP and dDCPp.

Proof. (⇒) If α is an isomorphism, it has an inverse α−1. So α is monotone (since
it is Scott-continuous), surjective (since it has an inverse), and order-reflecting
(since its inverse is monotone: if α(a) ≤ α(a′), then a = α−1α(a) ≤ α−1α(a′) = a′).
Moreover, α is max-equivariant: For a ∈ maxD, we have, since α is max-semi-
equivariant, α(f(a)) ≥ g(α(a)), so we need to show ≤. Since b := α(a) ∈ maxE
and α−1 is max-semi-equivariant, α−1(g(b)) ≥ f(α−1(b)) = f(a). By applying α
to both sides, we get g(α(a)) ≥ α(f(a)), as needed.

(⇐). Since α : D → E is an order isomorphism, let α−1 : E → D be its
inverse, which hence again is an order isomorphism. We have to show that it is a
dynamical morphism, too.

Continuous: Qua order isomorphism, α−1 is Scott-continuous.
Max-preserving: Qua order isomorphism, α−1 maps maximal elements to

maximal elements.
Max-bisimulative: If b ∈ E and α−1(b) ≤ d ∈ maxD, define e := α(d) ∈ maxE

and we have e ≥ b (since α−1(b) ≤ d and α is monotone we get b = αα−1(b) ≤
α(d) = e) and α−1(e) = α−1α(d) = d.

Valuation-preserving: Let U ∈ Σ(D) and show v(U) = w((α−1)−1(U)). We
have, since α is valuation-preserving,

w((α−1)−1(U)) = w(α(U)) = v
(
α−1(α(U))

)
= v(U).

Max-semi-equivariant: For b ∈ maxE, write a := α−1(b) ∈ maxD, so we have,
since α is max-equivariant,

α−1
(
g(b)

)
= α−1

(
g(α(a))

)
= α−1

(
α(f(a))

)
= f(a) = f

(
α−1(b)

)
,

so, in particular, α−1
(
g(b)

)
≥ f

(
α−1(b)

)
.

In dDCPp we can use the same reasoning since the order isomorphism α−1 in
particular is a projection. And the claim holds in full subcategories, since α−1 will
then again be in that subcategory. 2

16Again note that the second requirement is satisfied as soon as E is max-preserving.

5.2. The categories 191

Finitary dynamical expanding system Before considering limits of dynam-
ical dcpos, we need to define the appropriate diagrams over which the limits
are taken. In domain theory, these are known as expanding systems, and they
generalize to dynamical dcpos as follows.

5.2.14. Definition. An expanding system of dynamical dcpos is a structure(
Di, pij

)
I

where (I,≤) is a directed preorder (called the index set), the Di are
dynamical dcpos, and, for i ≤ j in I, pij : Dj → Di is a dynamical morphism such
that,

1. For all i ≤ j in I, pij : Dj → Di is a projection.

2. For all i ∈ I, pii = idDi .

3. For all i ≤ j ≤ k in I, pik = pij ◦ pjk.

An expanding system of dynamical dcpos
(
Di, pij

)
I

is:

4. upward deterministic :iff for all i ∈ I, if ∃ai, bi 6= b′i ∈ maxDi : bi, b
′
i ≥

fi(ai), then there is j ≥ i in I such that ∀aj, bj, b′j ∈ maxDj : if pij(aj) =
ai, pij(bj) = bi, pij(b

′
j) = b′i, then bj 6≥ fj(aj) or b′j 6≥ fj(aj)

5. downward deterministic :iff for all i ∈ I, if ∃ai 6= a′i, bi ∈ maxDi : bi ≥
fi(ai), fi(a

′
i), then there is j ≥ i in I such that ∀aj, a′j, bj ∈ maxDj : if

pij(aj) = ai, pij(a
′
j) = a′i, pij(bj) = bi, then bj 6≥ fj(aj) or bj 6≥ fj(a

′
j).

6. eventually valuation-preserving :iff (a) all Di are finite and, for all i ∈ I and
Ui ∈ Σ(Di), there is j0 ≥ i such that, for all j ≥ j0, we have

vj

(
f−1j
(
p−1ij (↓maxUi)

)
∩maxDj

)
= vj

(
p−1ij (↓maxUi) ∩maxDj

)
, 17

and (b) for all i ≤ j in I, if ai, bi ∈ maxDi with fi(ai) ≤ bi, then there is
aj, bj ∈ maxDj such that pij(aj) = ai and pij(bj) = bi and fj(aj) ≤ bj.

A finitary dynamical expanding system is an upward deterministic expanding
system of dynamical dcpos (Di, pij)I where I is countable and each Di is a finite
max-normalized dynamical Scott domain. It is standard if, additionally, the
Di are max-surjective and (Di, pij)I is downward deterministic and eventually
valuation-preserving.

To state the main result on limits of these diagrams, we’ve introduced the
notion of a restricted limit : If C is a category, D a full subcategory, and F : I→ C
a diagram, a D-limit of F is a cone (A, fi) to F in C,18 with A an object in D, such

17Qua sets of maximal elements of finite domains, both sets are Scott-open.
18I.e., A is an object of C and, for each object i of I, fi : A→ F(i) is a morphism in C such

that, for every morphism ι : i→ j in I, F(ι) ◦ fi = fj .

192 Chapter 5. Systems and domains 2: Category

that, for any cone (B, gi) to F in C, if B ∈ D, then there is a unique morphism
u : B → A (in C and hence also in D) such that fi ◦ u = gi for all objects i in I.
Note that, as the usual proof shows, if it exists, (A, fi) is unique up to unique
isomorphism in D: If (A′, f ′i) is another D-limit of F, there is a unique isomorphism
u : A→ A′ in D with f ′i ◦ u = fi. Thus, if the categories are clear from context,
we call A the restricted limit.

5.2.15. Theorem. Let (Di, pij)I be a finitary dynamical expanding system. Write
Di = (Di, vi, fi). Then

1. D :=
{
〈a(i) : i ∈ I〉 ∈

∏
i∈I Di : ∀i ≤ j ∈ I . a(i) = pij(a(j))

}
with the

pointwise order19 is a Scott domain and maxD is closed in the Lawson
topology. For i ∈ I, the function pi : D → Di defined by pi(a) := a(i) is a
max-preserving Scott-continuous projection.

2. There is a unique continuous valuation v : σ(D)→ [0,∞] such that, for all
Ui ∈ Σ(Di), we have vi(Ui) = v(p−1i (Ui)). Moreover, v is max-normalized.

3. There is a largest (in the pointwise ordering) function f : D → D that is
Scott-continuous and max-preserving such that, for all a ∈ D and i ∈ I,
f(a)(i) ≥ fi(a(i)). If a ∈ maxD, then f(a) is the (unique) element b ∈
maxD with b ≥ fi(a(i)) for all i ∈ I.

Hence D := (D, v, f) is a max-normalized and max-preserving dynamical Scott
domain. Moreover, (D, pi) is a dSCOp

nm-limit of the diagram (Di, pij)I in dSCOp
n:

4. (D, pi) is a cone to the diagram with D in dSCOp
nm.

5. If (E, βi)I is a cone to the diagram with E in dSCOp
nm, then there is a unique

morphism β : E→ D in dSCOp
n, which is defined by β(e) := 〈βi(e) : i ∈ I〉,

such that βi = pi ◦ β for all i ∈ I.

If (Di, pij)I additionally is standard, then

6. f is bijective on maxD.

7. D is valuation-preserving.

Dynamical domains In accordance with the tradition of calling the kinds of
dcpos under study simply ‘domains’, we define:

5.2.16. Definition. A dynamical domain is a dynamical dcpo D that is the
dSCOp

nm-limit of a finitary dynamical expanding system. A standard dynamical

19I.e., for a, b ∈ D, a ≤ b iff ∀i ∈ I : a(i) ≤ b(i).

5.2. The categories 193

domain is a dynamical dcpo D that is the dSCOp
nm-limit of a standard finitary

dynamical expanding system.

The full subcategory of dSCOnm whose objects are dynamical domains is
denoted dDOM. The full subcategory of dSCOnm whose objects are standard
dynamical domains is denoted dDOMs. (Note that morphisms hence are not
required to be projections.)

We also note the following useful lemma for later on.

5.2.17. Lemma. Let (D, pi)I be a dSCOp
nm-limit of a finitary dynamical expanding

system (Di, pij)I . Write D = (D, v, f). Let A ⊆ maxD be closed in the relative
Scott topology and x ∈ maxD. If, for all i ∈ I, pi(x) ∈ pi(A), then x ∈ A.

Proof. Without loss of generality, we can assume that D is the limit constructed
in theorem 5.2.15.20 From the assumption, for each i ∈ I, there is yi ∈ A such
that pi(x) = pi(yi). Hence (yi)I is a net in the topological space maxD. It suffices
to show that (yi) converges to x, because the limit x of a net whose elements are
in a closed set A also is in A.

So let U be a basic open set of maxD with x ∈ U , and show that there is
j ∈ I such that, for all i ≥ j, yi ∈ U . The Scott topology on D coincides with the
relative product topology. (See Abramsky and Jung (see 1994, ex. 3.3.12 (18)); the
Di are, in particular, continuous.) So also the relative Scott topology on maxD
coincides with relative product topology, whence U =

⋂n
k=1 p

−1
ik

(Uik) ∩maxD for
some i1, . . . , in ∈ I and Uik ∈ Σ(Dik) (for k = 1, . . . , n). Since I is directed, let
I 3 j ≥ i1, . . . , in. Then we have, for i ≥ j, that, for k = 1, . . . , n,

pik(yi) = pikipi(yi) = pikipi(x) = pik(x) ∈ Uik ,

so yi ∈
⋂n
k=1 p

−1
ik

(Uik) ∩maxD = U , as needed. 2

5.2.5 Recap from chapter 4

Before we introduce the last two categories, we recap the results from the previous
chapter.

20To be precise: If (D, pi)I and (D′, p′i)I are two dSCOp
nm-limits of (Di, pij)I , there is a (unique)

isomorphism u : D′ → D with pi ◦ u = p′i. Assume the claim holds for (D, pi)I and show that it
holds for (D′, p′i)I . So let ∅ 6= A′ ⊆ maxD′ be closed, x′ ∈ maxD′, and ∀i : p′i(x

′) ∈ p′i(A′). Then,
since u : D′ → D is an order isomorphism, A := u(A′) is a nonempty closed subset of maxD,
x := u(x′) ∈ maxD, and for i ∈ I, pi(x) = pi ◦ u(x′) = p′i(x

′) ∈ p′i(A′) = pi ◦ u(A′) = pi(A). So
x ∈ A, whence u(x′) = x = u(y) for some y ∈ A′, so, by injectivity of u, x′ = y ∈ A′.

194 Chapter 5. Systems and domains 2: Category

From domains to systems The point of dynamical domains is that they are
computational models for dynamical systems: the maximal (‘ideal’) elements of
the domain form a dynamical system which is computationally modeled by the
other (‘real’) elements of the domain. Formally, recalling from theorem 4.5.1 in
chapter 4, if D = (D, v, f) is in dDOM, then

1. maxD with the relative Scott topology Σ(D) � maxD is a compact zero-
dimensional Polish space,

2. f restricts to a continuous function on maxD,

3. v determines a unique probability measure µv on B(D,Λ) extending v,

4. B(maxD) ⊆ B(D,Λ) and µv � B(maxD) is a probability measure on maxD.

Thus, we obtain the compact zero-dimensional measured topological system

S(D) :=
(

maxD,Σ(D) � maxD,µv � B(maxD), f � maxD
)

which induces the general dynamical system JS(D). Moreover, if D is standard,
then both the topological system S(D) and the dynamical system JS(D) are
standard. We call S(D) the topological system modeled by D and JS(D) (resp.,
JS(D) in case D is standard) the dynamical system model by D.

From systems to domains Conversely, we want to build such computational
models for any given dynamical system: we build finite dynamical dcpos Di

from observing the original system X in such a way that, as we keep refining the
‘observation granularity’ i, we obtain, in the limit, a dynamical domain D which
models a system S(D) that is isomorphic to the original system X. Formally this
is done as follows. Here we’ll state it only for topological systems (since this is all
we’ll need), but it also works for general and standard dynamical systems.

Let X = (X, τ, µ, T) be in TS0 and let B be a countable clopen topological basis
for X in the sense of chapter 4, i.e., B is a countable basis for (X, τ) consisting of
clopen sets that is closed under finite intersection. We called B forward (resp.,
backward) closed if, for all U ∈ B, we have T (U) ∈ B (resp., T−1(U) ∈ B).
To stress the dependence on the dynamics, we also say ‘dynamically closed’ or
‘T -closed’. [If X is standard, additionally assume that B is forward closed.]

Define I(B) as the set of pairs (n, C) where n ∈ ω (the set of non-negative
integers) and C is a finite B-cover (i.e., C ⊆ B is finite and every x ∈ X is in some
element of C). Order I(B) by (n, C) ≤ (m,D) iff n ≤ m and

1. for all D ∈ D, there is C ∈ C such that D ⊆ C, and

2. for all x ∈ C ∈ C, there is D ∈ D such that x ∈ D ⊆ C.

5.2. The categories 195

(We write C � D if these two conditions are satisfied for C and D.) Then I(B) is
a directed preorder.

For i = (n, C) ∈ I(B) and x ∈ X, define the ‘observation history’ of x:

Oi(x) :=
{
t ∈ Cn : x ∈

n−1⋂
k=0

T−k(t(k))
}
.

Define Hi := {Oi(x) : x ∈ X}, which is a finite set. And define

Di := P(Hi)

as the set of nonempty subsets of Hi ordered by reverse inclusion, whence Di is a
finite Scott domain. One reason for moving to this so-called powerdomain, which
is a domain-theoretic tool for analyzing non-deterministic functions, is that the
naturally induced dynamics on Hi is not deterministic but it is on Di: We define
the Scott-continuous function fi : Di → Di by

fi(M) :=
{
Oi(Tx) : Oi(x) ∈M

}
.

To define the valuation on Di, consider observational equivalence: x ≈i x′ iff
Oi(x) = Oi(x′). This partitions X into finitely many equivalence classes [x]i
that are clopen in X: they can be written as Boolean combinations of sets in⋃
k∈ω T

−kB. So we define the valuation vi : Σ(Di)→ [0, 1] by

vi(U) :=
m∑
k=1

µ
(
[xk]i

)
where maxU =

{
{Oi(x1)}, . . . , {Oi(xm)}

}
.

Then Di := (Di, vi, fi) is a max-normalized finite dynamical Scott domain.
For i ≤ j in I(B), define pij : Dj → Di by

pij(M) :=
{
Oi(x) : Oj(x) ∈M

}
.

Then (Di, pij)I(B) is a finitary dynamical expanding system, so we can construct
the dSCOp

nm-limit

D(X,B) := D := (D, v, f)

as in theorem 5.2.15. Hence D(X,B) is in dDOM. [If X is standard, then (Di, pij)I(B)
is standard, so D(X,B) is standard.] We call D(X,B) the observation domain of
(X,B).

Finally, the canonical embedding ϕX : X → maxD defined by

ϕX(x) :=
〈
{Oi(x)} : i ∈ I(B)

〉
is an injective and relatively open morphism X → S(D) in TS0 whose image
is dense in S(D). The ϕX-preimages of clopen sets of S(D) can be written as
Boolean combinations of equivalence classes [x]i. If X is compact and B = Clp(X),
then ϕ : X → S(D) is an isomorphism in TS0c (in this case we also call ϕX the
canonical homeomorphism). If context allows, we may drop the subscript of ϕX .

196 Chapter 5. Systems and domains 2: Category

5.2.6 Categories of based measured topological systems

In this subsection, we define the two categories bTS0 and bTS0s (and their subcat-
egories bTS0 and bTS0s) of based measured topological systems.

Given that, as seen above, the construction of the observation domain of a
measured topological system is relative to a choice of basis, it is suggestive to
make that choice explicit by working with pairs (X,B) of a topological system
with an appropriate basis. Such a pair (X,B) of a measured topological system X
and a topological basis for it may be called a based measured topological systems.
And we’re interested in those for which the above construction of the observation
domain goes through:

5.2.18. Proposition. The following define categories:

1. bTS0: Objects are pairs (X,B) with X in TS0 and B a countable clopen
topological basis for X.21 And a morphism (X,BX)→ (Y,BY) is a morphism
ϕ : X→ Y in TS0 such that ϕ−1BY ⊆ BX (i.e., for all B ∈ BY , ϕ−1(B) ∈
BX).

2. bTS0s: The full subcategory of bTS0 whose objects (X,B) are such that X is
in TS0s and B is forward closed.

3. bTS0: The full subcategory of bTS0 whose objects (X,B) are such that B is
backward closed and closed under Boolean operations (intersection, union,
and complement).22

4. bTS0s: The full subcategory of bTS0 whose objects (X,B) are such that X is
in TS0s and B is forward closed, backward closed, and closed under Boolean
operations.

Morphism composition is function composition and identity morphisms are identity
functions.

Proof. We need to show that bTS0 is a well-defined category: If ϕ : (X,BX)→
(Y,BY) and ψ : (Y,BY)→ (Z,BZ) are morphisms in bTS0, then ψ◦ϕ : X→ Z is a
morphism in TS0 and (ψ ◦ϕ)−1(BZ) = ϕ−1(ψ−1(BZ)) ⊆ BX . So ψ ◦ϕ : (X,BX)→
(Z,BZ) is a morphism in bTS0. Moreover, given (X,BX) in bTS0, the identity mor-
phism idX : X→ X in TS0 is a morphism (X,BX)→ (X,BX) since id−1X BX = BX .
This choice of morphism composition and identity morphism satisfies the identity
and associativity axioms qua function composition and identity function. 2

21Recall that we assume topological bases to be closed under finite intersection.
22By assumption, B is already closed under intersection. So being closed under Boolean

operations just requires B to be closed under complement (if U ∈ B, then U c = X \ U ∈ B);
because then it also is closed under union: if U, V ∈ B, then U ∪ V = (U c ∩ V c)c ∈ B.

5.2. The categories 197

Comments: First, to recap from chapter 4, we’ve motivated bases of dynamical
systems as the set of possible observations that we can make about the system.
The requirement of bases to be closed under finite intersection then means that we
can form the conjunction of observations. And also the other properties, ‘countable’
and ‘clopen’, are quite natural: Countability is necessary if these observations are
accessible to us in a ‘computable’ way, to make sure that every observation in the
basis has an index n ∈ N with which we can refer to it. Clopenness expresses the
idea that the observations in the basis are finitely decidable: under the well-known
computational interpretation of topology (Smyth 1983; Vickers 1989), the open
sets of a topology are ‘semi-decidable properties’ of the points of the space. Thus,
the sets that not only are open but also have an open complement—i.e., the clopen
sets—are ‘decidable properties’ of the space.

Second, other closure properties are possible. Logical ones are, for example,
closure under Boolean operations: for negation this says that if we can observe
whether the system is in a U -state, we can also observe whether it is in a U c-state
(i.e., conclude ‘yes’ if measuring U yields a negative answer). Dynamical closure
properties are, for example, backward or forward closure: backward closure says
that if we can observe whether the system is in a U -state, we can also observe
whether it is in a T−1(U) state (i.e., wait one time step and then measure U). These
further closure properties may be more controversial (thinking of non-classical
logics or bounded observation time). Thus, the full subcategories where these
closure properties are assumed are notationally highlighted by the ‘closure bar’ ·.
We show below that they are reflective subcategories, i.e., there is an optimal way
of closing a basis under the logical and dynamical operations.

Third, thus we can regard bases as ‘computability structure’ describing in a
computational way the possible observations that we can make. So it is natural
to demand that the morphisms should preserve this computability structure: for
a morphism ϕ : X → Y, if U is a possible observation in Y, also ϕ−1(U) is a
possible observation in X.

Fourth, if the system X in TS0 has a compact state space (i.e., is in TS0c),
there is a natural choice of basis: the set of all clopen sets Clp(X). (It consists
of clopen sets, is closed under Boolean operation, forms, by zero-dimensionality,
a basis, and, by compactness and second-countability, is countable.) The choice
is natural in the sense that if B is another clopen basis for X, then one can
show that I(B) is a cofinal subset of I(Clp(X)), whence they give rise to the
same limit.23 This naturality is not available for general X in TS0: if X has
uncountably many clopen subsets—e.g., if X is the Baire space—, then there can
be no countable clopen basis B0 such that, for any countable clopen basis B, we

23Proof: Since B ⊆ Clp(X), we have I(B) ⊆ I(Clp(X)). For cofinality, if (m,D) is in I(Clp(X)),
then each member U of D can be written, qua open set and B being a basis, as a union of
elements from B, whence, since U is a closed subset of a compact space, as finite union. Collecting
the sets used in these finite unions for the finitely many U ∈ D into the B-cover C, we have
(m,D) ≤ (m, C) ∈ I(B).

198 Chapter 5. Systems and domains 2: Category

have I(B) ⊆ I(B0) (let alone cofinal).24 In fact, if, for two bases B and B′ of X,
we have I(B) ⊆ I(B′) cofinal, then B and B′ are identical after closing under finite
union.25 This indicates that, for general X in TS0, we have to make a real choice
of basis.

Fifth, concerning related work we’ve already discussed the based Polish spaces
of Dahlqvist, Danos, and Garnier (2016) in the introduction.

5.2.7 Categories of max-reflective dynamical domains

As the last category, we introduce the full subcategory dDOMr of dDOM (and
dDOMrs of dDOMs) whose objects are those dynamical domains that satisfy a
property that we call ‘max-reflective’. Toward the end of this chapter, we make
the surprising observation that it is precisely this simple domain-theoretic property
that turns into an equivalence the adjunction between systems and domains. But,
to have the definitions of all the categories in one place, we already introduce this
property here.

5.2.19. Definition. We call a dcpo D max-reflective if

1. For all a ∈ D, a =
∧

(↑a ∩maxD).

2. If ∅ 6= A ⊆ maxD is closed in the relative Scott topology, then
∧
A exists

and (↑
∧
A) ∩maxD = A.

Note that if D is a Scott domain, the requirement that
∧
A exists in clause 2 can

be omitted since nonempty infima always exist.

The intuition behind this concept (and its name) is that not only, as in
every domain, do the non-maximal (or ‘real’) elements of the domain provide a
model for the maximal (or ‘ideal’) elements, but also, conversely, the maximal
elements ‘reflect’ the non-maximal ones in the following sense: (1) any non-
maximal element can be recovered from the maximal elements that it approximates,
and (2) a nonempty set A of maximal elements that is closed (‘with respect to
approximation’) can be recovered as those maximal elements that contain the
‘information’ that is in A (i.e., that are approximated by the element

∧
A that

contains precisely the ‘information’ that is in A). The following provides some
concrete intuition in the finite case.

24For a short proof that Baire space has continuum many clopen sets, see Scott (2013). For
the other claim: Assume there were such B0. Since it is countable but Clp(X) uncountable,
there is a clopen C with C 6∈ B0. Let B be the closure under finite intersection of B0 ∪ {C},
which is a countable clopen basis, so I(B) ⊆ I(B0). This implies B ⊆ B0 (if U ∈ B, then
(1, {U,X}) ∈ I(B) ⊆ I(B0), so {U,X} is a B0-cover, so U ∈ B0). But then C ∈ B0, contradiction.

25Proof: Write U(B) for the closure of B under finite union, similarly for B′. As in the previous
footnote, B ⊆ B′ (⊆ U(B′)). Conversely, we show B′ ⊆ U(B): If U ∈ B′, then, by cofinality,
there is (n, C) ≥ (1, {U,X}) in I(B). So, by clause (2) of cover-refinements, for all x ∈ U , there
is Ux ∈ C with x ∈ Ux ⊆ U . Since C is finite, U can hence be written as finite union of elements
from C ⊆ B.

5.2. The categories 199

(a) 1 & 2 (b) 1 & ¬2 (c) ¬1 & 2 (d) ¬1 & ¬2

Figure 5.2: Examples of finite Scott domains and their stance on the two condi-
tions (1) and (2) of being max-reflective.

5.2.20. Example. 1. Figure 5.2 provides finite Scott domains for all four
combinations of satisfying and violating the two conditions (1) and (2) of
being max-reflective. Note how (d) is the ‘fusion’ of (b) and (c).

2. If M is a nonempty finite set, then the Smyth powerdomain P(M) of M
(where M is regarded with the discrete order) is a max-reflective Scott
domain. (Recall that then P(M) is the set of nonempty subsets of M
ordered by reverse inclusion.) Figure 5.2a depicts P(2) where 2 = {0, 1}.
Proof: Qua finite lattice without top element (but with least element), P(M)
is a Scott domain. Regarding (1), if a ∈ P(M), then

∧
(↑a ∩maxP(M)) =⋃{

{m} : {m} ⊆ a
}

= a. Regarding (2), if ∅ 6= A ⊆ maxP(M), then
A =

{
{m1}, . . . , {mn}

}
for some m1, . . . ,mn ∈ M with n ≥ 1. Then∧

A =
⋃
A = {m1, . . . ,mn} =: a and (↑

∧
A)∩maxP(M) =

{
{m} : {m} ⊆∧

A
}

=
{
{m} : m ∈ a

}
= A.

We call a dynamical dcpo D = (D, v, f) max-reflective if D is max-reflective.
We show that this is a finitary concept in the sense that if the limit D fails to
have it, we’ll realize that at some finite stage of construction:

5.2.21. Proposition. Let D be a dSCOp
nm-limit of a finitary dynamical expanding

system
(
Di, pij

)
I
. Then the following are equivalent:

1. Each Di is max-reflective.

2. D is max-reflective.

Proof. We fix the notation D = (D, v, f) and Di = (Di, vi, fi). We first observe
that, for a ∈ D, we have

pi(↑a ∩maxD) = ↑pi(a) ∩maxDi. (5.1)

Indeed, if y = pi(x) for x ∈ ↑a ∩ maxD, then, since pi is monotone and max-
preserving, pi(a) ≤ pi(x) ∈ maxDi. So y = pi(x) ∈ ↑pi(a) ∩maxDi. Conversely,
if y ∈ ↑pi(a) ∩maxDi, then a ∈ D with pi(a) ≤ y ∈ maxDi, so, since pi is max-
bisimulative, there is a ≤ x ∈ maxD with pi(x) = y, so y = pi(x) ∈ pi(↑a∩maxD).

(1)⇒(2). Assume all Di are max-reflective. Without loss of generality, D is
constructed as in theorem 5.2.15 (if D were only isomorphic to the limit constructed

200 Chapter 5. Systems and domains 2: Category

there, it, too, would be max-reflective since that is a purely-domain theoretic
property). To show that D is max-reflective, we need to check conditions (1)–(2).

Concerning condition (1), let a ∈ D and show a =
∧
↑a ∩maxD. Indeed, for

i ∈ I, we have, since pi commutes, qua projection, with existing infima,

pi
(∧
↑a ∩maxD

)
=
∧

pi
(
↑a ∩maxD

) (5.1)
=
∧
↑pi(a) ∩maxDi,

which, since Di is max-reflective, equals pi(a). So a and
∧
↑a∩maxD are identical

at every component, and hence identical, as needed.
Concerning condition (2), let ∅ 6= A ⊆ maxD be closed. Since nonempty

infima exist in Scott domains (and D is a Scott domain), we need to show
↑
∧
A ∩ maxD = A. The ⊇-direction is easy: If x ∈ A, then x ∈ maxD and

x ≥
∧
A. For the other direction, let x ∈ ↑

∧
A ∩maxD and show x ∈ A. The

idea is to use lemma 5.2.17:
Note that, for any i ∈ I, pi(A) is nonempty (since A is nonempty) and a subset

of maxDi (since A ⊆ maxD and pi is max-preserving). Moreover, Di is finite, so
the Lawson topology on it is discrete, so, since the relative Lawson topology and
the relative Scott topology agree, maxDi is a discrete space, whence pi(A) also is
closed. Since Di is max-reflective and pi commutes with nonempty infima,

pi(A) = ↑
∧

pi(A) ∩maxDi = ↑pi
(∧

A
)
∩maxDi

(5.1)
= pi

(
↑
∧

A ∩maxD
)
.

Since x ∈ ↑
∧
A ∩ maxD, we have pi(x) ∈ pi

(
↑
∧
A ∩ maxD

)
= pi(A). Now,

lemma 5.2.17 applies and yields x ∈ A.
(2)⇒(1). Assume D is max-reflective. Let i ∈ I and show that Di is max-

reflective.
Concerning condition (1), let b ∈ Di and show b =

∧
(↑b ∩ maxDi). Since

pi is surjective (qua projection), there is a ∈ D such that pi(a) = b. Since D is
max-reflective, a =

∧
↑a ∩maxD, so, since projections commute with existing

infima,

b = pi(a) = pi
(∧
↑a ∩maxD

)
=
∧

pi(↑a ∩maxD)

(5.1)
=
∧
↑pi(a) ∩maxDi =

∧
↑b ∩maxDi.

Concerning condition (2), let ∅ 6= B ⊆ maxDi be closed in the relative
Scott topology. Since Di is a Scott domain,

∧
B exists, so we need to show

↑
∧
B ∩maxDi = B. Since B is closed in the relative Scott topology, we have

B = C ∩maxDi for some Scott-closed C ⊆ Di. Define A := p−1i (C) ∩maxD.
We claim that pi(A) = B. Indeed, if y = pi(x) for x ∈ A, then, by definition

of A, y = pi(x) ∈ C and, since x ∈ maxD and pi is max-preserving, y = pi(x) ∈
maxDi, so y ∈ B. Conversely, if y ∈ B, then, by surjectivity, there is a ∈ D with
pi(a) = y. Choose a maximal x ≥ a in D. Then, by monotonicity, pi(x) ≥ pi(a) =

5.3. The bottom layer of the main diagram 201

y, whence, by maximality of y, pi(x) = y ∈ B ⊆ C, so x ∈ p−1i (C) ∩maxD = A,
and y = pi(x) ∈ pi(A).

In particular, A 6= ∅ (otherwise B = pi(A) = ∅), and, since pi is Scott-
continuous, A ⊆ maxD is closed in the relative Scott topology on maxD. Since
D is max-reflective, ↑

∧
A ∩ maxD = A. So, since projections commute with

nonempty infima,

B = pi(A) = pi
(
↑
∧

A ∩maxD
) (5.1)

= ↑pi
(∧

A
)
∩maxDi

= ↑
∧

pi(A) ∩maxDi = ↑
∧

B ∩maxDi,

as needed. 2

5.2.22. Definition. Let dDOMr be the full subcategory of dDOM consisting
of max-reflective dynamical domains (equivalently, that are dSCOp

nm-limits of
finitary dynamical expanding systems consisting of max-reflective dynamical
dcpos). Analogously, we define the full subcategory dDOMrs of dDOMs.

5.3 The bottom layer of the main diagram

In this section, we establish the bottom layer of the main diagram:

DS bTS0 TS0c
Loc

C

IB

and similarly for the standard case. We first discuss the left half (section 5.3.1)
and then the right half (section 5.3.2–5.3.3).

5.3.1 Dynamical systems as category of fractions

Concerning the relation between the category of dynamical systems DS and
the category of zero-dimensional measured topological systems TS0, we already
observed in proposition 5.2.9 that we have the natural functor J : TS0 → DS which
sends X = (X, τ, µ, T) to (X,B(τ), µ, T) and ϕ : X→ Y to ϕ : J(X)→ J(Y).

Looking for a closer relationship, the following two questions come naturally.
(We’ve also discussed this, in different words, in the introduction.)

First, on the object level, we may wonder whether J ‘hits’ every dynamical
system: is every dynamical system generated by some Polish topology, i.e., iso-
morphic to a system of the form J(X)? (Formally, this means that J is essentially
surjective.) We show that this is indeed true: in part by results from the previous
chapter and in part by extending a well-known construction on Polish spaces.

Second, on the morphism level, lemma 5.2.4 says that if ϕ : X→ Y in TS0 is
injective on an invariant set of full measure, then ϕ : J(X)→ J(Y) already is an

202 Chapter 5. Systems and domains 2: Category

isomorphism in DS, while in TS0 this need not be the case. So, for starters, we
cannot expect J to be an equivalence. However, we may wonder whether those ϕ
are the only ones that aren’t yet isomorphisms in TS0 but become isomorphisms
in DS. Again, we’ll show that this is the case: J becomes an equivalence after
those ϕ are turned into isomorphisms. Category-theoretically, turning a collection
of morphisms in a category into isomorphisms is known as a localization.

We move the formal development of these result to appendix A. This is
because (a) it requires introducing additional theory which is somewhat different
from the main strand of the thesis, and (b) these results are self-standing (in
particular, are not needed in the remainder of the thesis) and may be of independent
interest. In that appendix, we formulate, in section A.1, the above informal claims
precisely. In section A.2, we show the first claim on topological realization. In the
remaining sections A.3–A.5, we show the second claim about the localization.

5.3.2 Compactification of a system: informally

Now we consider the right half of the bottom layer of the main diagram: ‘com-
pactifying’ a system in bTS0 to obtain one in TS0c. We first motivate and explain
this informally in this subsection, before we do it formally in the next subsection.

Let’s start by recalling the concept of a compactification from topology. As the
name suggests, a compactification of a topological space X is a way c of turning
X into a compact space Y : formally, it is a compact topological space Y together
with a homeomorphic embedding c : X → Y (Engelking 1989, sec. 3.5). A famous
example is the Stone–Čech compactification βX: For every Tychonoff space X,
there is a compactification c : X → βX such that every continuous function
from X into a compact space Z is continuously extendable to βX (Engelking
1989, sec. 3.6). So the Stone–Čech compactification βX is in a sense optimal in
providing a compactification. This optimality is concisely (and even more generally)
captured category-theoretically: the Stone–Čech compactification functor β from
the category Top of topological spaces with continuous maps to the category TopH

c

of compact Hausdorff spaces with continuous maps is left adjoint to the inclusion
I : TopH

c → Top (Leinster 2014, ex. 6.3.14).
Can we do something similar for systems where, in addition to the topological

space, we also have a dynamics (and a measure)? In this section, we provide a
positive answer.

There is a natural candidate for such a compactification: If we start with (X,B)
in bTS0, we can build the observation domain D(X,B). Then we can build the
compact zero-dimensional measured topological system SD(X,B) that is modeled
by the observation domain D(X,B). So we end up in the category TS0c and have
‘compactified’ the original system X with its choice of basis B.

There also is a natural way of going back from TS0c to bTS0. To recall, bTS0 is
the full subcategory of bTS0 defined by requiring its objects (X,B) to be such that
the basis B is backward dynamically closed and closed under Boolean operations.

5.3. The bottom layer of the main diagram 203

Conceptually, this way back is like an ‘inclusion’ of TS0c into bTS0:

5.3.1. Proposition. There is a functor IB : TS0c → bTS0 that sends X to
(X,Clp(X)) and ϕ : X → Y to ϕ : (X,Clp(X)) → (Y,Clp(Y)). It restricts to
TS0cs → bTS0s.

Proof. Write X = (X, τ, µ, T). As mentioned in section 5.2.6, Clp(X) is a count-
able clopen topological basis that is closed under Boolean operations and, since T is
continuous, it is also backward closed. So IB(X) is indeed in bTS0. Moreover, since
ϕ is continuous, the preimage of a clopen set is clopen, so ϕ−1(Clp(Y)) ⊆ Clp(X),
so IB(ϕ) = ϕ is indeed a morphism in bTS0. Since IB is the identity on morphisms,
it preserves composition and identity. Concerning the restriction, if X is in TS0cs,
then X is in TS0s and Clp(X) additionally is forward closed (since T is a homeo-
morphism). 2

So we wonder whether this provides a compactification in the ‘full-blown’ sense
that the SD construction provides a functor that is left adjoint to IB. This is
almost true. The full story—which we tell in the remainder of this subsection—is
a bit more subtle:

We may call the compactification of X relative to B via the SD construction
the computational compactification since it is obtained via the computational
model D(X,B) for X.

A standard way of constructing compactifications is as Wallman compactifica-
tion relative to a base (Johnstone 1982, sec. IV.2.4): Given a topological space
X, a Wallman base B is a sublattice of the lattice of all open sets of X that is a
topological base for X such that, for x ∈ U ∈ B, there is V ∈ B with U ∪ V = X
and x 6∈ V . The Wallman compactification of X relative to B then is the space
Y of maximal ideals of B with its usual topology. We may call this the logical
compactification since, as usual in Stone duality, we can regard the points of Y as
logical models of the properties in B (complete and consistent descriptions of how
things can be with respect to the properties collected in B).

This suggests to first build a compactification using the standard ‘logical’
techniques and then compare it to the computational compactification using
domains. Indeed, the Wallman construction parallels our setting: Given a system
X with basis B, we regard the elements of B as properties with which we can
measure the state space X, so it, too, is natural to build the logical compactification
of X as consisting of the possible models of B. However, this requires some
logical closure (the Wallman bases are, qua lattices, closed under conjunction and
disjunction). And if we want to lift the original dynamics of X to a dynamics on
these models, we’ll also need some dynamical closure. Thus, this suggests to work
over the category bTS0 for the logical compactification.

Fortunately, this is not a restriction since we can close a basis under the
logical and dynamical operations in an optimal way: Formally, bTS0 is a reflective
subcategory of bTS0.

204 Chapter 5. Systems and domains 2: Category

In the next subsection, we then establish formally what we can now hope for:

5.3.2. Theorem. The inclusion I : bTS0 → bTS0 has a right adjoint, the (logical
and dynamical) closure functor · : bTS0 → bTS0. And the functor IB : TS0c →
bTS0 has a left adjoint, the logical compactification functor C : bTS0 → TS0c:

bTS0 bTS0 TS0c.
·

Ia

C

IB

a

This restricts to the standard case (i.e., adding a suffixed subscript s to all three
categories). We define C := C ◦ · and also write IB for I ◦ IB.

The arguments from section 5.2.6 for working with bTS0 rather than TS0

reappear here: The countability of the basis ensures the second-countability of
the compactification, rendering it a Polish space. Thus, the ‘canonical’ choice of
all (cl)open sets is not available, since this needn’t be countable.26 So if there
is no canonical choice available, we better make the choice explicit to obtain a
functorial construction.

This leaves open the question of how this relates to the computational com-
pactification. In section 5.4, we show that S and D are indeed functors and, in
subsection 5.4.3, we show that the computational compactification SD is naturally
isomorphic to the logical compactification C.

The practical reason for this twofold approach to compactification is one
of compartmentalization: this way the bottom layer of the main diagram is
independent of the domain construction. More importantly, though, the conceptual
reason is this: It provides two very different, yet equivalent ways of compactifying a
zero-dimensional measured topological system. And, it provides two very different
topological realizations of a (standard) dynamical system X :

• Computational: Choose a countable and separating (mod 0 and forward
closed) basis B for X, then X is isomorphic to the (standard) dynamical
system induced by the compact SD(X,B). The state space of this topological
realization consists of the ‘ideal’ elements of the observation domain D(X,B)
of the system X with respect to the possible observations B.

• Logical: Using the localization, we may assume (up to isomorphism) that
there is a zero-dimensional Polish topology τ on X with countable clopen
(forward closed) basis B that generates the σ-algebra of X. Then X is
isomorphic to the (standard) dynamical system induced by the compact
C(X,B). The state space of this topological realization consists of the
possible models of the properties in (the logical and dynamical closure of)
B that measure the system X.

26Since Polish spaces are normal, the choice of all open sets would yield the Stone–Čech
compactification (Johnstone 1982, thm. on p. 138f.).

5.3. The bottom layer of the main diagram 205

This alignment of domain theory and logic may be a sign of a ‘dynamical domain
theory in logical form’ à la Abramsky (1991).

Finally, a comment on literature: As mentioned, the Wallman compactification
is a standard construction. Specifically, it also is used by Danos and Garnier (2015)
and Dahlqvist, Danos, and Garnier (2016) to compactify a zero-dimensional Polish
space. (The former also provides, on page 147, some more references on Wallman
compactifications, to which we may add Walker (1974) and Engelking (1989,
sec. 3.6).) They obtain this compactification by a limit construction of Polish
spaces which they then show to correspond to a Wallman compactification. (We, on
the other hand, building the Wallman compactification extended by dynamics and
then showing that it corresponds to a limit construction of dynamical domains.)
The main difference is that we also have to deal with the dynamics, and, as seen
in the proof of the limit theorem from the previous chapter, this is the lion’s share
of the work. Thus, because of this non-standard addition of dynamics to the
Wallman compactification (and also for completeness), we still provide the details
of the construction here.

5.3.3 Compactification of a system: formally

In this subsection, we prove theorem 5.3.2: the formal result on compactification
motivated in the preceding subsection. We first establish the left half of the
diagram of the theorem (in the paragraph ‘closing bases’ below) and then the
right half (starting in paragraph ‘compactification’ below).

Closing bases We first show that there is an optimal way of closing a given
basis under the logical and dynamical operations, i.e., we have the adjunction:

bTS0 bTS0

·

I

a

which restricts to the standard case. We first define the construction in a lemma
and then show the adjunction in the subsequent proposition.

5.3.3. Lemma. Let (X,B) in bTS0 with X = (X, τ, µ, T). Define B as the sub-
Boolean algebra of Clp(X) generated by the subset

⋃
k≥0 T

−kB. Then (X,B) is in

bTS0 and B is closed under Boolean operations and T -preimages. If (X,B) is in
bTS0s, then (X,B) is in bTS0s (i.e., B is also closed under T -image).

Proof. Write B1 :=
⋃
k≥0 T

−kB. Note that B1 is a countable set that contains B.

Since T is continuous, B1 consists of clopen sets. Thus, the sub-Boolean algebra B
of Clp(X) generated by B1 exists, and it is countable. It is closed under Boolean
operations by construction. It is a basis since it contains the basis B (and is

206 Chapter 5. Systems and domains 2: Category

closed under finite intersection). So it remains to show that B is closed under
T -preimages.

Indeed, let U ∈ B and show T−1(U) ∈ B. This claim holds by construction if
U is among the generators B1 of B. So it suffices to show that it is preserved by
the Boolean operations: Assume the claim holds for V,W ∈ B and show that (i)
if U = V ∪W ∈ B, then T−1(U) ∈ B, and (ii) if U = V c ∈ B, then T−1(U) ∈ B.
(Note that we don’t need to consider intersection since it is definable from union
and complement.) Concerning (i), we have T−1(U) = T−1(V) ∪ T−1(W) which is
in B since T−1(V) and T−1(W) are in B by assumption. Concerning (ii), we have
T−1(U) = (T−1(V))c which is in B since T−1(V) is in B by assumption.

Now, assume that (X,B) is in bTS0s, and show that B is also closed under
T -image: i.e., if U ∈ B, then T (U) ∈ B. This claim holds if U is among the
generators B1 of B: If U = T−k(V) for V ∈ B and k ≥ 0, then, if k = 0,
T (U) = T (V) ∈ B ⊆ B since B is closed under T -image, and if k ≥ 1, then,
since T is bijective, T (U) = T−(k−1)(V) ∈ B1 ⊆ B. And the claim is preserved
by Boolean operations: Assume the claim holds for V,W ∈ B and show that (i)
if U = V ∪W ∈ B, then T (U) ∈ B, and (ii) if U = V c ∈ B, then T (U) ∈ B.
Concerning (i), we have T (U) = T (V) ∪ T (W) which is in B since T (V) and
T (W) are in B by assumption. Concerning (ii), we have, since T is bijective, that
T (U) = (T (V))c,27 which is in B since T (V) is in B by assumption. 2

5.3.4. Proposition. The inclusion I : bTS0 → bTS0 is a left adjoint functor: For
each (X,B) in bTS0, (X,B) := (X,B) is in bTS0 and ε(X,B) := idX : (X,B)→ (X,B)

is a morphism in bTS0 such that, for any (Y, C) in bTS0 and ϕ : (Y, C)→ (X,B),
there is a unique ψ : (Y, C)→ (X,B) with ε(X,B) ◦ ψ = ϕ.

(Y, C)

(X,B) (X,B)

ϕ
∃!ψ

ε(X,B)

Proof. In lemma 5.3.3, we’ve shown that (X,B) is in bTS0. And ε(X,B) := idX :
(X,B)→ (X,B) is a morphism in bTS0 since idX : X→ X is a morphism in TS0

and it is base-preserving since, for U ∈ B, id−1X (U) = U ∈ B ⊆ B.
So let (Y, C) be in bTS0 and let ϕ : (Y, C)→ (X,B) be a morphism. We show

that ψ := ϕ : (Y, C) → (X,B) is a morphism in bTS0. Then ε(X,B) ◦ ψ = ψ = ϕ,
and ψ is unique with this property (if ψ′ is another such morphism, then ψ = ϕ =
ε(X,B) ◦ ψ′ = ψ′).

27For x ∈ X, we have: If x ∈ T (U), then x = T (x′) for x′ ∈ U = V c. If x were in T (V),
then x = T (y) for y ∈ V . By injectivity, x′ = y ∈ V , contradiction. Conversely, if x ∈ (T (V))c,
then, by surjectivity, there is x′ ∈ X with T (x′) = x. If x′ were not in U = V c, then x′ ∈ V , so
x = T (x′) ∈ T (V), contradiction. So x′ ∈ U and x = T (x′) ∈ T (U).

5.3. The bottom layer of the main diagram 207

Since ψ = ϕ : Y→ X is a morphism in TS0, we need to show: if U ∈ B, then
ϕ−1(U) ∈ C. We first show the claim for the generators of B and then that it is
preserved under Boolean operations.

So let U be among the generators of B. Then U = T−k(V) for V ∈ B and
k ≥ 0. So, by equivariance,

ϕ−1(U) = ϕ−1(T−k(V)) = (T k ◦ ϕ)−1(V) = (ϕ ◦ Sk)−1(V) = S−k(ϕ−1(V))

which is in C since ϕ−1(V) is in C (since V ∈ B and ϕ is a morphism in bTS0) and
C is closed under preimage (since (Y, C) is in bTS0).

Now, assume the claim holds for V,W ∈ B and show it for V ∪W and V c.
Indeed, we have ϕ−1(V ∪W) = ϕ−1(V)∪ϕ−1(W) ∈ C and ϕ−1(V c) = (ϕ(V))c ∈ C
since ϕ−1(V), ϕ−1(W) ∈ C by assumption and C is closed under Boolean opera-
tions. 2

As usual, these data determine the ‘full’ adjunction between bTS0 and bTS0,
i.e., the functor ·, the counit ε : I · → 1bTS0 , etc. (Mac Lane 1998, thm. 2, p. 83). In
particular, · acts on objects as described in the proposition, and it is the identity
on morphisms: If ϕ : (X,B)→ (Y, C) is a morphism in bTS0, then the diagram

(X,B) (X,B)

(Y, C) (Y, C)

ϕ

ε(X,B)

ϕ

ε(Y,C)

has to commute (by the naturality of the counit), so ε(Y,C) ◦ ϕ = ϕ ◦ ε(X,B). Since
ε(X,B) = idX, this reduces to ϕ = ϕ.

Also note that this adjunction restricts to an adjunction

bTS0s bTS0s

·

I

a

since, if (X,B) is in bTS0s, then (X,B) is in bTS0s as shown in lemma 5.3.3.

Compactification After having closed bases under the logical and dynamical
operations, we now show that there is an optimal way of rendering the state space
compact, i.e., we establish the adjunction

bTS0 TS0c

C

IB

a

which restricts to the standard case. The first proposition defines the construction
and the second proposition establishes the adjunction. The third proposition
verifies a further desired property of a compactification: that compactifying a
compact space ‘doesn’t do anything’.

208 Chapter 5. Systems and domains 2: Category

First proposition We first recall some basics from Stone duality theory. A
standard reference is Johnstone (1982). Given a Boolean algebra B (like the B
above), a filter on B is a subset P ⊆ B such that: (a) the top element > of the
Boolean algebra is in P , (b) if y ≥ x ∈ P , then y ∈ P , and (c) if x, y ∈ P , then
x ∧ y ∈ P (where ∧ is the conjunction of the Boolean algebra). It is an ultrafilter
if, additionally, (d) if x ∈ B, then exactly one of x and ¬x is in P (where ¬ is
the negation of the Boolean algebra). The set of all ultrafilters on B is denoted
Spec(B). It carries the topology generated by D(U) := {P ∈ Spec(B) : U ∈ P}
for U ∈ B (which forms a basis).28 It is called the Stone topology and turns
Spec(B) into a Stone space (i.e., zero-dimensional, compact, Hausdorff).

5.3.5. Proposition. Let (X,B) be in bTS0 (resp., bTS0s) with X = (X, τ, µ, T).
Let η : X → Spec(B) be defined by η(x) := {U ∈ B : x ∈ U}. Define the
compactification of X as C(X,B) := Y := (Y, σ, ν, S) where

• Y := Spec(B) is the set of ultrafilters of the Boolean algebra B

• σ is the Stone topology on Y

• ν : B(σ)→ [0, 1], ν(C) := µ
(
η−1(C)

)
• S : Y → Y , S(P) :=

{
U ∈ B : T−1(U) ∈ P

}
.

Then C(X,B) = Y is indeed in TS0c (resp., TS0cs) and η : (X,B)→ (Y,Clp(Y))
is an injective morphism in bTS0 (resp., hence also in bTS0s) which is relatively
open and has a dense image.

Note that, by lemma 5.2.4, η : (X,B(τ), µ, T)→ (Y,B(σ), ν, S) is an isomor-
phism in DS. So, roughly, dynamical systems are invariant under the operation of
compactification.
Proof. We start by checking that C(X,B) is well-defined and in TS0c. Note
that, by standard Stone duality, η : X → Y is a well-defined injective continuous
function.29

First, (Y, σ) is a compact zero-dimensional Polish space: Since B is countable,
Y is second-countable. Hence, since it also is compact and Hausdorff (by standard
Stone duality), Y is Polish.30

28The collection C := {D(U) : U ∈ B} is closed under finite intersection: It contains
Spec(B) = D(>) ∈ C, and given D(U1), . . . , D(Un) ∈ C for U1, . . . , Un ∈ B, consider U :=
U1 ∧ . . . ∧ Un ∈ B. Then D(U1) ∩ . . . ∩D(Un) = D(U) ∈ C because P ∈ D(U1) ∩ . . . ∩D(Un)
iff U1, . . . , Un ∈ P iff (since P is a filter) U1 ∧ . . . ∧ Un ∈ P iff P ∈ D(U).

29Well-defined: η(x) is readily seen to be an ultrafilter. Injective: If x 6= y, there is an open
set U of X such that x ∈ U and y 6∈ U (X is Hausdorff). Since B is a basis, we can assume that
U ∈ B. Hence U ∈ η(x) but U 6∈ η(y). So η(x) 6= η(y). Continuous: For a basic open D(U) of
Y (where U ∈ B), we have η−1(D(U)) = U (since x ∈ η−1(D(U)) iff η(x) ∈ D(U) iff U ∈ η(x)
iff x ∈ U). Since U ∈ B, U is open, whence η−1(D(U)) is open in X.

30As a basic fact about Polish spaces, any Hausdorff, second-countable, and locally compact
(which is implied by being compact given Hausdorffness) is Polish (see, e.g., Kechris 1995,
thm. 5.3, p. 29).

5.3. The bottom layer of the main diagram 209

Second, ν is well-defined: Since η in particular is Borel-measurable, ν is a
well-defined measure on B(σ).

Third, S : Y → Y is well-defined and continuous: Since B is closed under T -
preimage, F : B → B defined by F (U) := T−1(U) is a well-defined function, and it
is a Boolean algebra homomorphism (since preimages commute with complement,
union, and intersection). By standard Stone duality, S : Y → Y defined by
S(P) := F−1(P) = {U ∈ B : F (U) ∈ P} = {U ∈ B : T−1(U) ∈ P} is well-defined
and continuous.

In the standard case, we also need to check that S is measure-preserving and
bijective; the latter implies being homeomorphic since Y is compact and Hausdorff
and S is continuous.

Injective: If S(P) = S(Q), then, for all U ∈ B, we have T−1(U) ∈ P iff
T−1(U) ∈ Q. Now, for any V ∈ B, we have, since U := T (V) ∈ B, that
V = T−1T (V) = T−1(U) ∈ P iff V = T−1T (V) = T−1(U) ∈ Q. So P = Q.

Surjective: Given P ∈ Y , let Q := {T−1(U) : U ∈ P}. It is readily seen
that this is an ultrafilter on B and hence in Y .31 And we have S(Q) = P , since,
for U ∈ B: U ∈ S(Q) iff T−1(U) ∈ Q iff T−1(U) = T−1(V) for some V ∈ P iff
U ∈ P , where the non-trivial ⇒-direction of the last equivalence follows since T
is bijective: then U = TT−1(U) = TT−1(V) = V ∈ P .

Measure-preserving: To show that the Borel probability measures ν and νS−1

are identical on B(σ), it suffices to show that they are identical on the class E of
basic opens D(U) (with U ∈ B): then the probability measures agree on E which
is closed under finite intersections, so they agree on the σ-algebra generated by
E (Bogachev 2007b, lem. 1.9.4, p. 35), which is B(σ) since σ is second-countable.
So let D(U) be a basic open set of Y (for U ∈ B). Then P ∈ S−1(D(U)) iff
S(P) ∈ D(U) iff U ∈ S(P) iff T−1(U) ∈ P iff P ∈ D(T−1(U)). So, since T is
measure-preserving and η−1(D(U)) = U for U ∈ B, we have

ν
(
S−1(D(U))

)
= ν

(
D
(
T−1(U)

))
= µη−1

(
D
(
T−1(U)

))
= µ

(
T−1(U)

)
= µ

(
U
)

= µη−1
(
D(U)

)
= ν

(
D(U)

)
,

as needed.
Next, we check that η : (X,B) → (Y,Clp(Y)) is a morphism in bTS0 (we

already know that it is injective), relatively open, and has a dense image.
Base-preserving (and hence continuous): If V ⊆ Y is clopen, then V = D(U)

for some U ∈ B.32 So η−1(V) = η−1(D(U)) = U ∈ B.

31(a) The top element X of B is in P , so X = T−1(X) ∈ Q. (b) Given T−1(U) for U ∈ P
and T−1(U) ⊆ V for V ∈ B, we have, since T is bijective, U = TT−1(U) ⊆ T (V) ∈ B, so
T (V) ∈ P , whence V = T−1(T (V)) ∈ Q. (c) Given T−1(U) and T−1(V) for U, V ∈ P , we have
U ∩V ∈ P , whence, by injectivity of T , T−1(U)∩T−1(V) = T−1(U ∩V) ∈ Q. (d) Given U ∈ B,
we have V := T (U) ∈ B, so exactly one of V and V c is in P . If V ∈ P , then U = T−1(V) ∈ Q.
If V c ∈ P , then U c = T−1(V)c = T−1(V c) ∈ Q. And we cannot have U and U c in Q, since
otherwise ∅ ∈ Q, so ∅ = T−1(U) for U ∈ P , whence, by surjectivity of T , U = ∅, but ∅ 6∈ P .

32Proof: Since the D(U) form a basis, V =
⋃
i∈I D(Ui). Since V is a closed subset of a

210 Chapter 5. Systems and domains 2: Category

(X,B) (Y,Clp(Y)) = IB(C(X,B))

(Z,Clp(Z)) = IB(Z)

η

ψ
∃!ϕ (=IB(ϕ))

Figure 5.3: The compactification functor as left adjoint to IB.

Measure-preserving: By construction, since ν is the pushforward measure of µ.
Equivariant: Let x ∈ X and show ηT (x) = Sη(x). Indeed, for U ∈ B, we have

U ∈ ηT (x)⇔ T (x) ∈ U ⇔ x ∈ T−1(U)⇔ x ∈ F (U)

⇔ F (U) ∈ η(x)⇔ U ∈ F−1(η(x)) = Sη(x).

as needed.
Relatively open: For U ⊆ X is open, we have to find an open V ⊆ Y such that

η(U) = V ∩ η(X). Indeed, since B is a basis for X, we have U =
⋃
I Ui for Ui ∈ B.

We first show that η(Ui) = D(Ui)∩ η(X): If P ∈ D(Ui)∩ η(X), then P = η(x) for
some x ∈ X and Ui ∈ P = η(x). So x ∈ Ui. Hence P = η(x) ∈ η(Ui). Conversely,
if P ∈ η(Ui), then P = η(x) for some x ∈ Ui, so P ∈ η(X) and, since x ∈ Ui,
we have Ui ∈ η(x) = P , so P ∈ D(Ui). Now the claim follows: Since the image
of a union is the union of the images, η(U) =

⋃
I η(Ui) =

⋃
I D(Ui) ∩ η(X) and

V :=
⋃
I D(Ui) ⊆ Y is open.

Dense image: Since the D(U) (with U ∈ B) are a basis for Y , it suffices to
show that for every nonempty D(U), we have D(U) ∩ η(X) 6= ∅. Indeed, let
P ∈ D(U), so U ∈ P . Since P is an ultrafilter, U 6= ∅, so let x ∈ U . Then
Q := η(x) = {U ∈ B : x ∈ U} is in Y with U ∈ Q, so Q ∈ D(U) and Q ∈ η(X),
so D(U) ∩ η(X) 6= ∅. 2

The proof would almost go through for any (X,B) in bTS0 using B instead of
B. But base-preservation poses a problem: then we have η−1(V) = η−1(D(U)) =
U ∈ B but we need it to be an element of B.

Second proposition To show that this compactification construction indeed
forms a left adjoint to IB : TS0c → bTS0, we need to show the following—as
depicted in figure 5.3.

compact space, it is compact, so, for some n, V = D(Ui1) ∪ . . . ∪ D(Uin). So V = D(U)
for U := Ui1 ∪ . . . ∪ Uin ∈ B. (If P ∈ V , then P ∈ D(Uik) for some k = 1, . . . , n, whence
U ⊇ Uik ∈ P , so, since P is a filter, U ∈ P , whence P ∈ D(U). Conversely, if P ∈ D(U) but
P 6∈ V , then no Uik is in P , so, since P is an ultrafilter, all U cik are in P , whence, since P is a
filter, U c =

⋂n
k=1 U

c
ik
∈ P , contradicting U ∈ P .)

5.3. The bottom layer of the main diagram 211

5.3.6. Proposition. The functor IB : TS0c → bTS0 is a right adjoint functor:
Let (X,B) be in bTS0. Let Y = C(X,B) be the object in TS0c and η = η(X,B) :

(X,B)→ IB(Y) the injective morphism in bTS0 constructed in proposition 5.3.5.
Then, for every Z in TS0c and ψ : (X,B) → IB(Z) in bTS0, there is a unique
morphism ϕ : Y→ Z such that IB(ϕ) ◦ η = ψ.

Proof. We fix the notation X = (X, τ, µ, T), Y = (Y, σ, ν, S), and Z = (Z, ρ, λ,R).
We first show existence of ϕ. This is the main part of the proof. Afterward,
uniqueness follows straightforwardly.

Note that, since η : X → Y is injective, the following is a well-defined function:

ϕ̂ : η(X)→ Z

η(x) 7→ ψ(x).

It also is continuous (where η(X) gets the relative topology from Y): If U ⊆ Z is
open, then

ϕ̂−1(U) =
{
η(x) : x ∈ X and ψ(x) ∈ U

}
= η(ψ−1(U)).

So, since ψ is continuous and η is relatively open, η(ψ−1(U)) is open in η(X) with
the relative topology.

Now, we want to define ϕ : Y → Z as a continuous extension of ϕ̂ : η(X)→ Z.
Note that such an extension is unique: If ϕ′ were another, then, given y ∈ Y , we
can write y = lim yn for yn ∈ η(X) since η(X) is dense in Y , so, by continuity,
ϕ(y) = limϕ(yn) = lim ϕ̂(yn) = limϕ′(yn) = ϕ′(y).

To show that such an extension exists, we apply the characterization of
extendability of mappings into compact spaces (Engelking 1989, thm. 3.2.1):33

the continuous function ϕ̂ : η(X)→ Z from the dense subspace η(X) of the space
Y to the compact space Z has a continuous extension ϕ : Y → Z iff for any two
disjoint closed subsets C and C ′ of Z, the sets ϕ̂−1(C) and ϕ̂−1(C ′) have disjoint
closures in Y .

So let C,C ′ be closed subsets of Z, and show that ϕ̂−1(C) and ϕ̂−1(C ′) have
disjoint closures in Y . Since C is closed and Clp(Z) a basis, we can write
C =

⋂
i∈I Ui for Ui ∈ Clp(Z). Without loss of generality, I 6= ∅.34 Since ψ :

(X,B)→ (Z,Clp(Z)) is base-preserving, ψ−1(Ui) ∈ B. So

ϕ̂−1(C) = η(ψ−1C) = η(ψ−1
⋂
I

Ui) = η(
⋂
I

ψ−1Ui).

33As noted by Engelking (1989, p. 145), this theorem goes back to Tăımanov and to Eilenberg
and Steenrod. It also is the key to continuously extend a continuous function f : X → Z, with
X a T1 space and Z compact, to the Wallman extension of X (Engelking 1989, thm. 3.6.21).

34If I = ∅, then C = Z, so we can write C =
⋂
i∈I′ Ui with I ′ = {i} a singleton set and

Ui := Z ∈ Clp(Z).

212 Chapter 5. Systems and domains 2: Category

Similarly, we can write C ′ =
⋂
j∈J U

′
j for U ′j ∈ Clp(Z) and J 6= ∅ with ψ−1(U ′j) ∈ B

and ϕ̂−1(C ′) = η(
⋂
J ψ
−1U ′j). Hence A :=

⋂
I D(ψ−1Ui) and A′ :=

⋂
J D(ψ−1U ′j)

are closed subsets of Y . And we have ϕ̂−1(C) ⊆ A: If P ∈ ϕ̂−1(C), then P = η(x)
for x ∈

⋂
I ψ
−1Ui, so, for any i ∈ I, we have x ∈ ψ−1Ui, so ψ−1Ui ∈ η(x), so

η(x) ∈ D(ψ−1Ui), whence P = η(x) ∈ A. Similarly, ϕ̂−1(C ′) ⊆ A′.
Thus, it suffices to show that A ∩ A′ = ∅ (then the closures of ϕ̂−1(C) and

ϕ̂−1(C ′) are contained in the closed sets A and A′, respectively, and hence are
disjoint). Assume for contradiction that there is P ∈ A ∩ A′. We argue that
F := {Ui ∩ U ′j : i ∈ I, j ∈ J} has the finite intersection property. Since this
is a family of closed subsets of the compact space Z, this implies that it has a
nonempty intersection, whence we’ll get the contradiction ∅ 6=

⋂
i∈I,j∈J Ui ∩ U ′j =⋂

I Ui ∩
⋂
J U

′
j = C ∩ C ′ = ∅.35 So let Ui1 ∩ U ′j1 , . . . , Uin ∩ U

′
jn be given and show

that their intersection is nonempty. Since P ∈ A, we have in particular that
P ∈ D(ψ−1Ui1) ∩ . . . ∩ D(ψ−1Uin), so ψ−1Ui1 , . . . , ψ

−1Uin ∈ P . Similarly, since
P ∈ A′, ψ−1U ′j1 , . . . , ψ

−1U ′jn ∈ P . Since P is a proper filter,

∅ 6= ψ−1Ui1 ∩ ψ−1U ′j1 ∩ . . . ∩ ψ
−1Uin ∩ ψ−1U ′jn ∈ P.

So there is x ∈ X with ψ(x) ∈ Ui1 ∩ U ′j1 ∩ . . . ∩ Uin ∩ U
′
jn , as needed.

Now, we have the continuous function ϕ : Y → Z. So it remains to show that
it is a morphism Y → Z and ϕ ◦ η = ψ (note that IB(ϕ) = ϕ). Regarding the
latter, we have, for x ∈ X, that, by construction, ϕ(η(x)) = ϕ̂(η(x)) = ψ(x). Since
ϕ is continuous, it remains to show that ϕ is measure-preserving and equivariant.

Measure-preserving: For E ∈ B(Z) we have, since η and ψ are measure-
preserving, that

ν
(
ϕ−1(E)

)
= µ

(
η−1
(
ϕ−1(E)

))
= µ

(
(ϕ ◦ η)−1(E)

)
= µ

(
(ψ)−1(E)

)
= λ(E).

Equivariance: Let y ∈ Y and show ϕS(y) = Rϕ(y). Let’s first assume
y ∈ η(X), so y = η(x) for some x ∈ X. Then we have, since η and ψ are
equivariant,

ϕS(y) = ϕSη(x) = ϕηT (x) = ψT (x) = Rψ(x) = Rϕη(x) = Rϕ(y).

If y 6∈ η(X), then, since η(X) ⊆ Y is dense, y = limn yn for yn ∈ η(X). Hence, by
the above and the continuity of the functions,

ϕS(y) = ϕS(lim
n
yn) = lim

n
ϕS(yn) = lim

n
Rϕ(yn) = Rϕ(lim

n
yn) = Rϕ(y).

This concludes the existence of ϕ. It remains to check uniqueness. Assume
ϕ′ : Y→ Z is another morphism with ϕ′ ◦ η = ψ (again, note that IB(ϕ′) = ϕ′).
Then ϕ′ : Y → Z is a continuous function that extends ϕ̂ (because for η(x) in

35For the first equality, we use that I, J 6= ∅.

5.3. The bottom layer of the main diagram 213

η(X) we have ϕ′η(x) = ψ(x) = ϕη(x) = ϕ̂η(x)). Since ϕ is, as noted above, the
unique such function, ϕ′ = ϕ. 2

Again, this determines the functor C : bTS0 → TS0c (Mac Lane 1998, thm. 2,
p. 83). On objects, it is described in the proposition, and if ϕ : (X,B)→ (Y, C)
is a morphism in bTS0, then C(ϕ) : C(X,B)→ C(Y, C) is the unique morphism
obtained from factoring η(Y,C) ◦ ϕ through η(Y,B):

(X,B) IBC(X,B) C(X,B)

(Y, C) IBC(Y, C) C(Y, C)

ϕ

η(X,B)

C(ϕ)=IBC(ϕ) C(ϕ)

η(Y,C)

which makes the square on the left commute.
In particular, we have the functor C := C ◦ · : bTS0 → TS0c mapping (X,B) to

C(X,B) = C(X,B) and mapping ϕ : (X,B)→ (Y, C) to C(ϕ) = C(ϕ) = C(ϕ).
Moreover, this adjunction restricts to an adjunction

bTS0s TS0cs

C

IB

a

since IB maps, as noted in proposition 5.3.1, objects from TS0cs to objects in bTS0s,
and, as noted in proposition 5.3.5, if (X,B) is in bTS0s, then C(X,B) is in TS0cs.

Third proposition We also note that, as we would expect of a compactification,
if we start with a compact X, the compactification ‘doesn’t do anything’:

5.3.7. Proposition. 1. If X is in TS0c, then ηX := η(X,Clp(X)) regarded as
morphism X→ C(X,Clp(X)), is an isomorphism in TS0c.

2. The family {ηX : X ∈ TS0c} is a natural isomorphism 1TS0c → CIB.

3. The family {ηX : X ∈ TS0c} also is a natural isomorphism 1TS0c → CIB.

Proof. Ad (1). By construction, η(X,Clp(X)) is a morphism (X,Clp(X)) →
IBC(X,Clp(X)) in bTS0, so it is a morphism X→ C(X,Clp(X)) in TS0 that also
preserves bases. In particular, since both objects are compact, it is a morphism in
TS0c.

It suffices to show that ηX is surjective: Then it is a bijective continuous map
between compact Hausdorff spaces and hence a homeomorphism, so, since it is a
morphism in TS0c, it is an isomorphism by proposition 5.2.8.

Indeed, the usual argument from Stone duality works: Let P be an element
of the state space Spec(Clp(X)) of C(X,Clp(X)). Then P is, qua filter of Clp(X)

214 Chapter 5. Systems and domains 2: Category

that doesn’t contain the empty set, a family of closed subset of the compact space
X with the finite intersection property, whence there is x ∈

⋂
U∈P U . Note that,

for U ∈ Clp(X), we have x ∈ U iff U ∈ P : If U ∈ P , then x ∈
⋂
U∈P U ⊆ U ; and

conversely, if x ∈ U , but U 6∈ P , then, qua ultrafilter, U c ∈ P , so x ∈
⋂
U∈P ⊆ U c,

contradiction. Hence ηX(x) = P since, for U ∈ Clp(X), we have U ∈ ηX(x) iff
x ∈ U iff U ∈ P .

Ad (2). As just seen, ηX : X→ CIB(X) is an isomorphism in TS0c, so we need
to show that it is natural in X. So let ϕ : X→ Y be in TS0c and show that the
diagram

X C(X,Clp(X)) = CIB(X)

Y C(Y,Clp(Y)) = CIB(Y)

ηX

ϕ C(ϕ)=CIB(ϕ)

ηY

commutes. Indeed, we’ve noted above that C(ϕ) ◦ η(X,Clp(X)) = η(Y,Clp(Y)) ◦ ϕ, as
needed.

Ad (3). Note that, for X = (X, τ, µ, T) in TS0c, (X,B) with B := Clp(X) is in
bTS0 and Clp(X) = Clp(X) (since Clp(X) is the sub-Boolean algebra of Clp(X)
generated by

⋃
k≥0 T

−kB)). Hence, by (1),

ηX : X→ C(X,Clp(X)) = C(X,Clp(X)) = C(X,Clp(X))

is an isomorphism in TS0c. It is natural in X by via the same diagram as above
since CIB(ϕ) = C(ϕ) = C(ϕ). 2

5.4 The system and domain functors

In this section, we establish the following part of the main diagram:

dDOM

bTS0 TS0c

Ŝ
S

D

C

IB

D̂

In subsections 5.4.1 and 5.4.2, we construct the functors S and D, respectively.
(We then define Ŝ := IB ◦ S and D̂ := D ◦ IB.) In subsection 5.4.3, we establish a
main ingredient to showing that the diagram commutes: that the two compacti-
fication functors S ◦ D and C are naturally isomorphic. (The complete proof of
commutativity and the standard case are in section 5.7.)

5.4. The system and domain functors 215

Those who follow the minimal reading and skipped the previous section only
need to know that IB : TS0c → bTS0 is the functor sending X to (X,Clp(X)) and
that is the identity on morphisms (established in proposition 5.3.1). They can
ignore the functor C : bTS0 → TS0c and skip subsection 5.4.3 below.

5.4.1 The system functor

We define the system functor S : dDOM→ TS0c and its ‘extension’ Ŝ := IB ◦ S.

5.4.1. Proposition. The following defines a functor S : dDOM→ TS0c:

• For D in dDOM, let S(D) be the (compact zero-dimensional measured)
topological system modeled by D (recalled in section 5.2.5).

• For α : D→ E in dDOM, let S(α) := α � maxD : S(D)→ S(E).

We also define Ŝ := IB ◦ S : dDOM→ bTS0.

Proof. We first verify that this is well-defined: As noted in section 5.2.5, S(D) is
an object in TS0c. So we need to show that, for α : D→ E in dDOM, the function
S(α) := α � maxD : S(D)→ S(E) is indeed a morphism in TS0c, where we write
D = (D, v, f) and E = (E,w, g).

Since α is, qua dynamical morphism, max-preserving and Scott-continuous,
α � maxD : maxD → maxE is a well-defined function which is continuous on
the relative Scott topology (since α � maxD is the restriction of the continuous
α : D → E).36 Since the morphisms in dDOM are max-equivariant,37 we have, for
a ∈ maxD, that (α � maxD)(f � maxD)(a) = αf(a) = gα(a) = (g � maxE)(α �
maxD)(a). So it remains to show that α � maxD is measure-preserving: For the
open sets V ∩maxE of maxE (where V ⊆ E is Scott-open) we have, since α is
valuation-preserving,

µv � B(maxD)
(
(α � maxD)−1(V ∩maxE)

)
= µv

(
α−1(V) ∩maxD

)
=µv

(
α−1(V)

)
= v
(
α−1(V)

)
= w

(
V
)

= µw
(
V
)

=µw(V ∩maxE) = µw � B(maxE)(V ∩maxE).

Now, the Borel probability measures µw � B(maxE) and µv � B(maxD)(α �
maxD)−1 on B(maxE) agree on the open sets of maxE, and hence on all of
B(maxE) (see e.g. Bogachev 2007a, lem. 7.1.2, p. 68).

Now, we verify that the functor conditions are satisfied: Regarding identity,
S(idD) = idD � maxD = idmaxD = idS(D). Regarding composition, if α : D → E

36If V ∩maxE is open in maxE, then α � maxD−1(V ∩maxE) = α−1(V) ∩maxD, which
is open in maxD.

37The fact that they are max-semi-equivariant already implies that they are max-equivariant
since the domain dynamics are max-preserving.

216 Chapter 5. Systems and domains 2: Category

Object in bTS0 Limit of diagram with

(X,BX), X = (X, τ, µ, T) D(X,BX) = (D, v, f) (Di, p
D
ij)I(BX) Di = (Di, vi, fi)

(Y,BY), Y = (Y, σ, ν, S) D(Y,BY) = (E,w, g) (Ei, p
E
ij)I(BY) Ei = (Ei, wi, gi)

(Z,BZ), Z = (Z, ρ, λ,R) D(Z,BZ) = (F, u, h) (Fi, p
F
ij)I(BZ) Fi = (Fi, ui, hi)

If clear from context, we drop the subscript from BX and the super-
scripts from pDij , p

E
ij, p

F
ij.

Figure 5.4: Notational conventions of this subsection.

and β : E→ F are morphisms in dDOM, then S(β ◦ α) = (β ◦ α) � maxD = (β �
maxE) ◦ (α � maxD) = S(β) ◦ S(α). 2

Note that S restricts to S : dDOMs → TS0cs since, as noted in section 5.2.5, if
D is standard, then S(D) is standard.

5.4.2 The domain functor

We define the domain functor D : bTS0 → dDOM and its ‘restriction’ D̂ := D ◦ IB :
TS0c → dDOM.

On objects, we use the observation domain construction recalled in section 5.2.5:
for (X,B) in bTS0, D(X,B) is the observation domain of X with respect to B.
Thus, the main task is to extend this construction to morphisms. This is done in
the following proposition. To avoid redefining notion over and over again, we fix
some notational conventions summarized in figure 5.4.

5.4.2. Proposition. Let ϕ : (X,BX)→ (Y,BY) be a morphism in bTS0. Then
we have a morphism α : D(X,BX)→ D(Y,BY) in dDOM defined by

α(a) :=
〈
π(m,D)

(
a(m,ϕ−1D)

)
: (m,D) ∈ I(BY)

〉
,

where π(m,D) : P(H(m,ϕ−1D))→ P(H(m,D)) is given by

M 7→
{
OmD (ϕ(x)) ∈ H(m,D) : Omϕ−1D(x) ∈M

}
.

The proof is rather long due to the number details to be checked. But this
shouldn’t obscure that the main idea of the proof is rather simple: Show that(

D(X,BX) , π(m,D) ◦ p(m,ϕ−1D)
)
I(BY)

is a cone to the diagram over which D(Y,BY) is obtained as restricted limit, and
then obtain α as the mediating morphism D(X,BX) → D(Y,BY). (Although

5.4. The system and domain functors 217

there is a complication to this idea which we discuss and circumvent in the proof.)
The idea behind π(m,D) is that ϕ plays two roles: In the backward direction, it
maps a BY -cover D to a BX-cover ϕ−1D, and hence an element (m,D) ∈ I(BY) to
(m,ϕ−1D) ∈ I(BX). In the forward direction, it then maps an observation history
Omϕ−1D(x) over X to an observation history OmD (ϕ(x)) over Y , and hence induces
a mapping P(H(m,ϕ−1D))→ P(H(m,D)).
Proof. Step 1. The map

ξ : I(BY)→ I(BX)

(m,D) 7→ (m,ϕ−1D),

is well-defined and monotone.
Well-defined: To show that (m,ϕ−1D) ∈ I(BX), we need to show that ϕ−1D =

{ϕ−1(V) : V ∈ D} is indeed a finite BX-cover of X: It is finite since D is finite,
its elements ϕ−1(V) are in BX since ϕ−1(BY) ⊆ BX and, for any x ∈ X, we have
ϕ(x) ∈ V for some V ∈ D, whence x ∈ ϕ−1(V) ∈ ϕ−1D.

Monotone: Assume (m,D) ≤ (m′,D′) and show (m,ϕ−1D) ≤ (m′, ϕ−1D′).
So we need to show that D � D′ implies ϕ−1D � ϕ−1D′. We need to verify
conditions (1) and (2) of the definition of � (recalled in section 5.2.5). Con-
cerning (1), given ϕ−1(V ′) with V ′ ∈ D′, there is V ∈ D with V ′ ⊆ V , so
ϕ−1(V ′) ⊆ ϕ−1(V) ∈ ϕ−1D. Concerning (2), given x ∈ ϕ−1(V) with V ∈ D,
we have ϕ(x) ∈ V ∈ D, so there is V ′ ∈ D′ such that ϕ(x) ∈ V ′ ⊆ V , so
ϕ−1(V ′) ∈ ϕ−1D′ and x ∈ ϕ−1(V ′) ⊆ ϕ−1(V).

Step 2. For j ∈ I(BY), the map

θj : Hξ(j) → Hj

Oξ(j)(x) 7→ Oj(ϕ(x))

is well-defined: if Oξ(j)(x) = Oξ(j)(x′), then Oj(ϕ(x)) = Oj(ϕ(x′)).
Indeed, write j = (m,D), so ξ(j) = (m,ϕ−1D). Let t = (D0, . . . , Dm−1) ∈

Oj(ϕ(x)). Then, by equivariance and definition, ϕT k(x) = Skϕ(x) ∈ Dk for
k = 0, . . . ,m − 1. So T k(x) ∈ ϕ−1Dk for k = 0, . . . ,m − 1. So x follows t′ :=
(ϕ−1D0, . . . , ϕ

−1Dm−1). By assumption, then also x′ follows t′. So T k(x′) ∈ ϕ−1Dk

for k = 0, . . . ,m− 1. Whence Skϕ(x′) = ϕT k(x′) ∈ Dk for k = 0, . . . ,m− 1. So
ϕ(x′) follows t, so t ∈ Oj(ϕ(x′)). The other direction is analogous.

Step 3. For each j ∈ I(BY), the map

πj : Dξ(j) = P(Hξ(j))→ P(Hj) = Ej

M 7→ θj(M),

is a well-defined dynamical morphism.
Well-defined: Since M is a nonempty subset of Hξ(j), also θj(M) is a nonempty

subset of Hj.

218 Chapter 5. Systems and domains 2: Category

Scott-continuous: Since the domains are finite, it suffices to show monotonicity.
If M ≤ M ′, then M ⊇ M ′, then πj(M) = θj(M) ⊇ θj(M

′) = πj(M
′), so

πj(M) ≤ πj(M
′).

Max-preserving: If M ∈ Dξ(j) is maximal, then M = {Oξ(j)(x)} for some
x ∈ X. Hence πj(M) = θj(M) = {Oj(ϕ(x))} is maximal in Ej.

Max-bisimulative: If M ∈ Dξ(j) and e ∈ maxEj with πj(M) ≤ e, then e
is a singleton subset of Hj that is a subset of πj(M), i.e., e = {Oj(ϕ(x))} for
some Oξ(j)(x) ∈ M . Then d := {Oξ(j)(x)} ∈ maxDξ(j) is such that d ≥ M and
πj(d) = e.

Valuation-preserving: Let V ∈ Σ(Ej), and show wj(V) = vξ(j)(π
−1
j (V)). Write

maxV =
{
{Oj(y1)}, . . . , {Oj(ym)}

}
. Consider ϕ−1

⋃m
k=1[yk]j ⊆ X. This set is

partitioned by ≈ξ(j) into finitely many equivalence classes [x1]ξ(j), . . . , [xn]ξ(j) (with
n ≥ 0).38 In particular, ϕ−1

⋃m
k=1[yk]j =

⋃n
l=1[xl]ξ(j).

39 We have maxπ−1j (V) ={
{Oξ(j)(x1)}, . . . , {Oξ(j)(xn)}

}
since: {Oξ(j)(x)} ∈ maxπ−1j (V) iff {Oj(ϕ(x))} =

πj({Oξ(j)(x)}) ∈ V iff Oj(ϕ(x)) = Oj(yk) for some k ∈ {1, . . . ,m} iff ϕ(x) ∈ [yk]j
for some k ∈ {1, . . . ,m} iff x ∈ [xl]ξ(j) for some l ∈ {1, . . . , n} iff {Oξ(j)(x)} =
{Oξ(j)(xl)} for some l ∈ {1, . . . , n}. Thus,

wj(V) =
m∑
k=1

ν
(
[yk]j

)
= ν

m⋃
k=1

[yk]j = µϕ−1
m⋃
k=1

[yk]j

= µ
n⋃
l=1

[xl]ξ(j) =
n∑
l=1

µ
(
[xl]ξ(j)

)
= vξ(j)(π

−1
j (V)).

Max-semi-equivariant: Let a ∈ maxDξ(j), and show πj(fξ(j)(a)) ≥ gj(πj(a)).
Write a = {Oξ(j)(x)}. On the left side, we have

πj(fξ(j)(a)) = πj
{
Oξ(j)(T (x′)) : Oξ(j)(x′) = Oξ(j)(x)

}
=
{
Oj(ϕT (x′)) : Oξ(j)(x′) = Oξ(j)(x)

}
.

On the right side, we have

gj(πj(a)) = gj{Oj(ϕ(x))} =
{
Oj(S(y)) : Oj(y) = Oj(ϕ(x))

}
.

Since ≤ is inverse inclusion, we need to show that the set on the left is a subset of
the set on the right. Thus, given Oj(ϕT (x′)) with Oξ(j)(x′) = Oξ(j)(x), we have to

38More precisely, choose a representative for each of the finitely many ≈ξ(j)-equivalence classes
and let {x1, . . . , xn} be the set of those representatives whose ϕ-image is in

⋃m
k=1[yk]j .

39Proof: (⊇) If x ∈ [xl]ξ(j) for some l ∈ {1, . . . , n}, then Oξ(j)(x) = Oξ(j)(xl), so Oj(ϕ(x)) =
Oj(ϕ(xl)). By definition, ϕ(xl) ∈ [yk]j for some k ∈ {1, . . . ,m}. So also ϕ(x) ∈ [yk]j .

(⊆) Assume x ∈ X with ϕ(x) ∈ [yk]j for some k ∈ {1, . . . ,m}. Let x′ be the chosen
representative of the equivalence class that x is in. So Oξ(j)(x) = Oξ(j)(x′), whence Oj(ϕ(x)) =
Oj(ϕ(x′)). Since ϕ(x) ∈ [yk]j , also ϕ(x′) ∈ [yk]j . So x′ is among those representatives whose
ϕ-image is in

⋃m
k=1[yk]j , i.e., x′ = xl for some l ∈ {1, . . . , n}. So x ∈ [xl]ξ(j).

5.4. The system and domain functors 219

show that it is in the set on the right side. Since πj is a function, {Oj(ϕ(x′))} =
πj{Oξ(j)(x′)} = πj{Oξ(j)(x)} = {Oj(ϕ(x))}. Writing y := ϕ(x′) ∈ Y , we have

Oj(ϕT (x′)) = Oj(Sϕ(x′)) = Oj(Sy) ∈
{
Oj(S(y)) : Oj(y) = Oj(ϕ(x))

}
.

Step 4. Recall that the projections pDij : Dj → Di in (Di, p
D
ij) are given by

M 7→ {Oi(x) : Oj(x) ∈M}. Similarly for the projections pEij : Ej → Ei in (Ei, p
E
ij).

We claim that, for all i ≤ j in I(BY), the following square commutes:

Dξ(i) Dξ(j)

Ei Ej

πi

pD
ξ(i)ξ(j)

πj

pEij

Indeed, let M ∈ Dξ(j) and show πi ◦ pDξ(i)ξ(j)(M) = pEij ◦ πj(M). On the left
side, we have

πi ◦ pDξ(i)ξ(j)(M) = πi
{
Oξ(i)(x) : Oξ(j)(x) ∈M

}
=
{
Oi(ϕ(x)) : Oξ(j)(x) ∈M

}
.

On the right side, we have

pEij ◦ πj(M) = pEij
{
Oj(ϕ(x)) : Oξ(j)(x) ∈M

}
=
{
Oi(ϕ(x)) : Oξ(j)(x) ∈M

}
.

So the two sides are identical.
Step 5. We show that (D,αi)i∈I(BY) with αi := πi ◦ pDξ(i) : D → Ei is a cone (in

the category of dcpos with Scott-continuous maps) to the expanding system of
dcpos (Ei, p

E
ij)i∈I(BY). Note that, qua composition of dynamical morphisms, the

αi are dynamical morphisms.
Indeed, qua dynamical morphism, αi in particular is Scott-continuous, and,

for i ≤ j in I(BY), we have

pEij ◦ αj = (pEij ◦ πj) ◦ pDξ(j) = (πi ◦ pDξ(i)ξ(j)) ◦ pDξ(j) = πi ◦ pDξ(i) = αi.

At this stage, we would be done if only the πi were projections (which is the
case if, for example, ϕ is surjective): Then (D, αi)i∈I(BY) is a cone in dSCOp

n to the
diagram (Ei, p

E
ij)i∈I(BY) with D in dSCOp

nm, so α : D→ E would be the mediating
morphism according to theorem 5.2.15 (recalled in section 5.2.5), and hence, in
particular, a morphism in dDOM. Nonetheless, we can closely follow the proof
of that theorem in our more general case here, too. (The only differences are
that, first, we cannot, and need not, conclude anymore that α is a projection,
and second, that we need a different argument that the set Ci in step 7 below is
closed.) This then also suggests proofs for more general ‘limit existence’ theorems
in dDOM, which, to keep to the point, we leave to future work.

220 Chapter 5. Systems and domains 2: Category

Step 6. It now follows (see Abramsky and Jung 1994, thm. 3.3.1 and thm. 3.3.7)
that the function α : D → E defined by

α(a) :=
〈
αi(a) : i ∈ I(BY)

〉
=
〈
πi
(
a(ξ(i))

)
: i ∈ I(BY)

〉
is well-defined and Scott-continuous.40 It also is max-preserving: If a ∈ maxD,
then each αi(a) is maximal, so each entry of α(a) is maximal, so α(a) ∈ maxE.
Thus, to show that α is a dynamical morphism it remains to show that it is
max-bisimulative, valuation-preserving, and max-semi-equivariant.

Step 7. We show that α is max-bisimulative. Let a ∈ D and α(a) ≤ e ∈ maxE.
We need to find d ∈ D with d ≥ a and α(d) = e. For i ∈ I(BY), consider
Ci := ↑a ∩ α−1i (e(i)) ⊆ D.

This is a Lawson-closed subset of D: First, by definition of the Lawson
topology, ↑a is closed. Second, pDξ(i) : D → Dξ(i) is Lawson-continuous qua Scott-

continuous projection,41 and πi : Dξ(i) → Ei is Lawson-continuous since it is a
function between finite domains on which the Lawson topology is the discrete
topology. Hence αi = πi ◦ pDξ(i) is Lawson-continuous. Third, {e(i)} ⊆ Ei is
Lawson-closed since the Lawson topology on the finite Ei is discrete. Hence
α−1i (e(i)) is Lawson-closed.

Moreover, Ci is nonempty: Since αi is max-bisimulative and αi(a) ≤ e(i) (since
α(a) ≤ e), there is d ∈ maxD with d ≥ a and αi(d) = e(i), so d ∈ Ci.

Finally, if i ≤ j, then Ci ⊇ Cj: If d ∈ Cj, then d ∈ D with d ≥ a and
αj(d) = e(j), so

αi(d) = pij
(
αj(d)

)
= pij

(
e(j)

)
= e(i),

whence d ∈ Ci.
Hence, {Ci : i ∈ I} is a family of Lawson-closed subsets of D with the

finite intersection property. Since D is a Scott domain, its Lawson topology
is compact, so

⋂
i∈I(BY)Ci is nonempty. Let d ∈

⋂
I(BY)Ci. Then d ≥ a and

α(d) = 〈αi(d) : i ∈ I(BY)〉 = 〈e(i) : i ∈ I(BY)〉 = e, as needed.

Step 8. We show that α is valuation-preserving. We first show this for the basic
Scott-opens of E. Since the Scott topology on a bilimit of continuous domains is the
restriction of the product topology (Abramsky and Jung 1994, exercise 3.3.12 (18)),
the basic opens of E are of the form V = p−1i1 (Ui1)∩ . . .∩ p−1in (Uin) with ik ∈ I(BY)
and Uik ∈ Σ(Eik) for k = 1, . . . , n. We show w(V) = v(α−1(V)).

40 This is readily seen directly: It is well-defined, since the αi commute with the pEij . It is
monotone, since, if a ≤ a′, then αi(a) ≤ αi(a′) for all i, so α(a) ≤ α(a′). It preserves directed
suprema, since, if A ⊆ D is directed, then α(

∨
A) = 〈αi(

∨
A) : i ∈ I(BY)〉 = 〈

∨
αi(A) : i ∈

I(BY)〉 =
∨{
〈αi(a) : i ∈ I(BY)〉 : a ∈ A

}
=
∨
α(A).

41 Proof: The Lawson topology on a dcpo D is generated by the Scott-open sets together with
complements of principal upsets (D \ ↑ x). And the preimage of a Scott-open set (resp. principal
upset) under a Scott-continuous projection is again Scott-open (resp. a principal upset).

5.4. The system and domain functors 221

Since I(BY) is directed, let j ≥ i1, . . . , in. So

V =
n⋂
k=1

p−1ik
(
Uik
)

=
n⋂
k=1

p−1j
(
p−1ikj(Uik)

)
= p−1j

(n⋂
k=1

p−1ikj(Uik)
)
.

Hence

w(V) = w
(
p−1j
(n⋂
k=1

p−1ikj(Uik)
))

= wj

(n⋂
k=1

p−1ikj(Uik)
)

= v
(
α−1j
(n⋂
k=1

p−1ikj(Uik)
))

= v
(n⋂
k=1

α−1j
(
p−1ikj(Uik)

))
= v
(n⋂
k=1

α−1ik (Uik)
)
αi=pi◦α= v

(n⋂
k=1

α−1
(
p−1ik (Uik)

))
= v
(
α−1
(n⋂
k=1

p−1ik (Uik)
))

= v
(
α−1
(
V
))
.

Now we need to show the claim for arbitrary opens V of E. So V =
⋃
k∈K Vk

for basic opens Vk and an index set K. Without loss of generality, {Vk : k ∈ K}
is directed (otherwise consider the family of finite unions of the Vk’s). Note that
then also α−1(Vk) is a directed family of open sets in D. Then

w(V) = w
(⋃
k∈K

Vk

)
= sup

k∈K
w(Vk) = sup

k∈K
v
(
α−1(Vk)

)
= v
(⋃
k∈K

α−1(Vk)
)

= v
(
α−1
(⋃
k∈K

Vk
))

= v
(
α−1(V)

)
.

Step 9. We show that α is max-semi-equivariant. Let a ∈ maxD and show
α(f(a)) ≥ g(α(a)). Since f is max-preserving, f(a) ∈ maxD. Since α is max-
preserving, α(f(a)) ∈ maxE. Since αi is max-semi-equivariant, we have, for
i ∈ I(BY),

α(f(a))(i) = αi(f(a)) ≥ gi(αi(a)) = gi(α(a)(i)).

Thus, α(a), α(f(a)) ∈ maxE are such that, for all i ∈ I(BY), we have α(f(a))(i) ≥
gi(α(a)(i)). Hence, by the properties of g (see theorem 5.2.15), g(α(a)) = α(f(a)),
as needed. 2

Now, we can define the functor D.

5.4.3. Proposition. The following defines a functor D : bTS0 → dDOM:

• For (X,B) in bTS0, D(X,B) is the observation domain of (X,B) which is in
dDOM (as recalled in section 5.2.5).

222 Chapter 5. Systems and domains 2: Category

• If ϕ : (X,BX) → (Y,BY) is a morphism in bTS0, then D(ϕ) := α is as in
proposition 5.4.2 and hence in dDOM.

We also define D̂ := D ◦ IB : TS0c → dDOM.

Proof. We need to check that D preserves identity and composition.
Identity. For (X,B) in bTS0, we have to show D(id(X,B)) = idD(X,B). So let

a ∈ D(X,B) and show D(id(X,B))(a) = a. Indeed, we have

D(id(X,B))(a) =
〈
π(m,D)

(
a(m, id−1(X,B)D)

)
: (m,D) ∈ I(B)

〉
=
〈
π(m,D)

(
a(m,D)

)
: (m,D) ∈ I(B)

〉
,

so it suffices to show that π(m,D)
(
a(m,D)

)
= a(m,D). Indeed, we have

π(m,D)
(
a(m,D)

)
=
{
OmD (id(X,B)(x)) : Om

id−1
(X,B)D

(x) ∈ a(m,D)
}

=
{
OmD (x) : OmD (x) ∈ a(m,D)

}
= a(m,D).

Composition. Let ϕ : (X,BX) → (Y,BY) and ψ : (Y,BY) → (Z,BZ) be
morphisms in bTS0. We have to show D(ψ◦ϕ) = D(ψ)◦D(ϕ). So let a ∈ D(X,BX)
and k = (l, E) ∈ I(BZ), and show D(ψ ◦ ϕ)(a)(k) = D(ψ) ◦ D(ϕ)(a)(k).

We write ψϕ for ψ ◦ ϕ, and we write πψϕ, πψ, πϕ for the functions occurring in
the definition of D(ψ ◦ϕ),D(ψ),D(ϕ), respectively. Thus, on the left side, we have

D(ψϕ)(a)(k) = πψϕ(l,E)
(
a(l, ψϕ−1E)

)
On the right side, we have

D(ψ) ◦ D(ϕ)(a)(k) = πψ(l,E)

(
D(ϕ)(a)(l, ψ−1E)

)
= πψ(l,E)

(
πϕ(l,ψ−1E)

(
a(l, ϕ−1ψ−1E)

))
.

Since ψϕ−1E = ϕ−1ψ−1E , it hence suffices to show that πψϕ(l,E) = πψ(l,E) ◦ π
ϕ
(l,ψ−1E).

Note that these two functions type-check:

πψϕ(l,E) : P(HX(l,ϕ−1ψ−1E))→ P(HZ(l,E))

πψ(l,E) ◦ π
ϕ
(l,ψ−1E) : P(HX(l,ϕ−1ψ−1E))→ P(HY(l,ψ−1E))→ P(HZ(l,E)).

Now, for M ∈ P(HX(l,ϕ−1ψ−1E)) we have

πψ(l,E) ◦ π
ϕ
(l,ψ−1E)(M) = πψ(l,E)

{
Olψ−1E(ϕ(x)) : Olϕ−1ψ−1E(x) ∈M

}
=
{
OlE(ψϕ(x)) : Olϕ−1ψ−1E(x) ∈M

}
= πψϕ(l,E)(M),

5.4. The system and domain functors 223

as needed. 2

Note that D restricts to D : bTS0s → dDOMs since, as noted in section 5.2.5, if
(X,B) is in bTS0s (i.e., in bTS0 and, additionally, X is standard and B is forward
closed), then D(X,B) is standard.

We also make the following observation—which will be useful later on—about
the behavior of D(ϕ) on the maximal elements of D(X,B).

5.4.4. Lemma. 1. For ϕ : (X,BX)→ (Y,BY) in bTS0, we have, in TS0,

SD(ϕ) ◦ ϕX = ϕY ◦ ϕ.

2. For ϕ : X→ Y in TS0c, we have, in TS0c,

SD̂(ϕ) = ϕY ◦ ϕ ◦ ϕ−1X .

Proof. Ad (1). For x ∈ X, we have

SD(ϕ)
(
ϕX(x)

)
= D(ϕ) � maxD

(
ϕX(x)

)
= D(ϕ)

(
ϕX(x)

)
=
〈
π(m,D)

(
ϕX(x)(m,ϕ−1D)

)
: (m,D) ∈ I(BY)

〉
=
〈
π(m,D)

(
{Omϕ−1D(x)}

)
: (m,D) ∈ I(BY)

〉
=
〈
{OmD (ϕ(x))} : (m,D) ∈ I(BY)

〉
= ϕY

(
ϕ(x)

)
.

Ad (2). Since X is compact, ϕX : X → SD̂(X) = SD(X,Clp(X)) is an
isomorphism in TS0c (recalled in section 5.2.5). So it has an inverse ϕ−1X . By (1),
we have for ϕ = IB(ϕ) : IB(X)→ IB(Y) that

SD̂(ϕ) ◦ ϕX = SD(IB(ϕ)) ◦ ϕX = ϕY ◦ IB(ϕ) = ϕY ◦ ϕ.

Thus, the claim follows by ‘multiplying’ ϕ−1X to the right. 2

5.4.3 Computational and logical compactification coincide

We show that the diagram

dDOM

bTS0 TS0c

SD

C

commutes up to natural isomorphism. Thus, as promised in section 5.3.2, the
computational compactification S ◦ D : bTS0 → TS0c coincides with the logical
compactification C : bTS0 → TS0c.

224 Chapter 5. Systems and domains 2: Category

5.4.5. Proposition. If (X,B) is in bTS0, let ψ(X,B) be the ψ in the diagram

(X,B) IB(C(X,B)) = IB(C(X,B))

IB(SD(X,B))

η

ϕX IB(ψ)=ψ

Then ψ(X,B) : C(X,B)→ SD(X,B) is an isomorphism in TS0c.

Proof. Let’s first check that the diagram makes sense. As recalled in section 5.2.5,
the canonical embedding ϕX : X→ SD(X,B) is in TS0. The equivalence classes
[x]i are Boolean combinations of sets in

⋃
k≥0 T

−kB, so they are in B. Since
ϕ-preimages of clopen subsets of SD(X,B) can be written as Boolean combinations
of such equivalence classes, they, too, are in B. Hence ϕX : (X,B)→ IB

(
SD(X,B)

)
is in bTS0. Since C is left adjoint to IB (proposition 5.3.6), we indeed obtain the
desired diagram.

To show that ψ is our desired isomorphism, we need to show that it is bijective:
it then is a homeomorphism (qua bijective continuous function between compact
Hausdorff spaces) and hence, by proposition 5.2.8, an isomorphism. Let’s write
X, Y, Z for the state spaces of X,C(X,B), SD(X,B), respectively, equipped with
their respective topologies.

Surjective: Note that ϕX(X) ⊆ ψ(Y): If z ∈ ϕX(X), then z = ϕX(x) for some
x ∈ X, so y := η(x) ∈ Y and ψ(y) = ψ ◦ η(x) = ϕX(x) = z, whence z ∈ ψ(Y).
Moreover, since ψ : Y → Z is a continuous function from a compact space into a
Hausdorff space, it is closed, so ψ(Y) ⊆ Z is closed. Since ϕX(X) ⊆ Z is dense
(section 5.2.5), it follows that ψ(X) = Z (since ψ(X) is a closed subset of Z that
contains a dense set), so ψ is surjective.

Injective: Let P 6= P ′ be in Y (so P and P ′ are ultrafilters on B), and show
ψ(P) 6= ψ(P ′). Since B is generated by

⋃
k≥0 T

−kB, there is V = T−kU with
k ≥ 0 and U ∈ B such that V ∈ P but V 6∈ P ′, or V 6∈ P but V ∈ P ′.42 Without
loss of generality, assume the former.

We first show that ψ(P) ∈ Cl(ϕX(V)). Since D(V) is an open neighborhood
of P and η(X) is dense in Y , there are Pn ∈ D(V) ∩ η(X) such that limn Pn = P .
So Pn = η(xn) for some xn ∈ X and, in fact, xn ∈ V (since η(xn) = Pn ∈ D(V),
we have V ∈ η(xn), so xn ∈ V). So, by continuity of ψ,

ψ(P) = lim
n
ψ(Pn) = lim

n
ψ ◦ η(xn) = lim

n
ϕX(xn) ∈ Cl(ϕ(V)).

Similarly, ψ(P ′) ∈ Cl(ϕX(V c)).

42Proof: An ultrafilter P on a Boolean algebra B essentially is a Boolean algebra homomor-
phism B → 2. And if two such homomorphisms agree on the generators B0 of B, they are
identical. So if P 6= P ′, there is a generator a ∈ B0 such that P (a) 6= P ′(a).

5.4. The system and domain functors 225

Next we show that Cl(ϕX(V)) and Cl(ϕX(V c)) are disjoint, which then implies
ψ(P) 6= ψ(P ′), as needed. For this, it is enough to find a clopen set A ⊆ Z such
that ϕX(V) ⊆ A and ϕX(V c) ⊆ Ac.

To this end, let i := (k+1, {U,X}) ∈ I(B) (recall that U ∈ B with V = T−kU).
So≈i partitions V into finitely many equivalence classes: V = ([x1]i∪. . .∪[xm]i)∩V
for x1, . . . , xm ∈ V and m ≥ 1 (since V 6= ∅ because V ∈ P). Define

A :=
m⋃
l=1

p−1i
(
{Oi(xl)}

)
∩maxD.

So A is clopen qua finite union of clopen sets.43 And we have ϕX(V) ⊆ A: if
z ∈ ϕX(V), then z = ϕX(x) for some x ∈ V , so x ∈ [xl]i for some l ∈ {1, . . . ,m}.
So z(i) = ϕX(x)(i) = {Oi(x)} = {Oi(xl)}. Hence z ∈ A.

So it remains to show ϕX(V c) ⊆ Ac. Assume for contradiction that there is
z ∈ ϕX(V c) but z ∈ A. So z = ϕX(x) for some x ∈ V c. So x 6∈ V , i.e., T k(x) 6∈ U .
Since z ∈ A, there is l ∈ {1, . . . ,m} such that z ∈ p−1i

(
{Oi(xl)}

)
∩maxD. Hence

{Oi(x)} = ϕX(x)(i) = z(i) = {Oi(xl)}.

However, we now argue that Oi(x) 6= Oi(xl), which yields the required contra-
diction. Indeed, consider the trajectory t = (X, . . . , X, U) ∈ {X,U}k+1 (where
the X’s are repeated k-times). Since xl ∈ V = T−kU , we have T k(xl) ∈ U , so xl
follows t, i.e., t ∈ Oi(xl). However, we cannot have t ∈ Oi(x), since this would
imply T k(x) ∈ U . 2

5.4.6. Proposition. The family of isomorphisms ψ := (ψ(X,B)) from proposi-

tion 5.4.5 is natural in (X,B). So ψ is a natural isomorphism from C to SD.

Proof. Let ϕ : (X,BX)→ (Y,BY) be a morphism in bTS0, and show

ψ(Y,BY) ◦ C(ϕ) = SD(ϕ) ◦ ψ(X,BX).

The proof is, as we’ll discuss now, essentially in figure 5.5. First note that, since
we want to show that ψ(Y,BY) ◦ C(ϕ) and SD(ϕ) ◦ ψ(X,BX) of the (outer) square are
identical as functions, we can also view them as being in the supercategory TS0

(instead of the full subcategory TS0c), which allows us to place the other (inner)
morphisms ηX , ϕX , ϕ, ηY , ϕY into the same diagram.

We will first show that the subdiagrams (a), (b), (c), (d) commute. Concern-
ing (a), as seen in the proof of proposition 5.4.5, we can regard ϕX as a morphism

(X,BX)
ϕX−−→ IB(SD(X,BX))

43The sets p−1i
(
{Oi(x)}

)
∩maxD are open in maxD since {Oi(x)} is maximal in Di and pi

Scott-continuous, and they are closed since the complement is given by the sets of the same
form constructed from the finitely many other maximal elements of Di.

226 Chapter 5. Systems and domains 2: Category

C(X,BX) SD(X,BX)

X

Y

C(Y,BY) SD(Y,BY)

ψ(X,BX)

C(ϕ) SD(ϕ)

ϕXηX

ϕ

(a)

(b) (d)

ηY ϕY(c)

ψ(Y,BY)

Figure 5.5: Proof that ψ = (ψ(X,B)) is natural in (X,B).

that commutes with

(X,BX)
ηX−→ IB

(
C(X,BX)

)
= IB

(
C(X,BX)

) ψ(X,BX)−−−−→ IB(SD(X,BX)),

so ϕX = ψ(X,BX) ◦ ηX , as needed. Concerning (c), we reason analogously. Concern-
ing (d), this is lemma 5.4.4 (1). Concerning (b), recall from section 5.3.3 that we
have

(X,BX) (X,BX) IB
(
C(X,BX)

)
(Y,BY) (Y,BY) IB

(
C(Y,BY)

)ϕ

εX=idX ηX

ϕ=ϕ C(ϕ)=C(ϕ)

εY =idY
ηY

and, in particular, the right square commutes, as needed.

Next, we argue that the outer morphisms agree on the subset ηX(X) of the
state space of C(X,BX): Given ηX(x) for some x ∈ X, we have, by commutativity
of the subdiagrams,

ψ(Y,BY) ◦ C(ϕ)(ηX(x)) = ϕY ◦ ϕ(x) = SD(ϕ) ◦ ψ(X,BX)(ηX(x)).

Finally, now the continuous functions ψ(Y,BY) ◦C(ϕ) and SD(ϕ) ◦ψ(X,BX) agree

on the dense subset ηX(X) of their domain C(X,BX), so they are identical, as
needed. 2

5.5. The systems-domains adjunction 227

5.5 The systems-domains adjunction

In this section, we establish the following part of the main diagram:

dDOM

TS0c

S

D̂

a

In other words, we show—as motivated in the introduction—that the domain
functor D̂ is right adjoint to the systems functor S. (The standard case is treated
collectively in section 5.7.)

We proceed by explicitly providing the counit ε : SD̂→ 1TS0c (which will turn
out to be a natural isomorphism) and the unit η : 1dDOM → D̂S of the adjunction
and then show that they satisfy the triangle identities.

Before we start, we note two more concrete corollaries of lemma 5.2.17 stating
a sufficient condition for being in a closed subset A ⊆ maxD of D in dDOM.

5.5.1. Lemma. Let X be in TS0c. Let x ∈ X and A ⊆ X closed. Assume that,
for each i ∈ I(ClpX), there is xi ∈ A such that Oi(x) = Oi(xi). Then x ∈ A.

Proof. Let D := D̂(X) and, for i ∈ I(ClpX), let pi : D → Di = P(Hi) be the
limiting morphisms. Let ϕX : X → maxD the canonical homeomorphism. So
A′ := ϕX(A) ⊆ maxD is closed. Let x′ := ϕX(x) ∈ maxD. Now, from the
assumption, we have, for i ∈ I(ClpX), that xi ∈ A, whence ϕX(xi) ∈ A′, and

pi(x
′) = pi(ϕX(x)) = {Oi(x)} = {Oi(xi)} = pi(ϕX(xi)) ∈ pi(A′).

Hence, lemma 5.2.17 yields x′ ∈ A′, so x = ϕ−1X (x′) ∈ ϕ−1X (A′) = A, as needed. 2

As a corollary we get the following.

5.5.2. Lemma. Let D = (D, v, f) be in dDOM. Let a ∈ D and x ∈ maxD. For
each j ∈ I(Clp(maxD)), let xj ∈ ↑a ∩ maxD such that Oj(x) = Oj(xj). Then
x ≥ a.

Proof. Note that X := S(D) is in TS0c with state space X = maxD. So x ∈ X.
And A := ↑a ∩maxD is a closed subset of X: Since ↑a ⊆ D is Lawson-closed,
A is closed in the relative Lawson topology on maxD, which coincides, since D
is a Scott domain, with the relative Scott topology on maxD = X. Now, by as-
sumption, for j ∈ I(ClpX), we have xj ∈ A with Oj(x) = Oj(xi). So lemma 5.5.1
implies x ∈ A, whence x ≥ a. 2

228 Chapter 5. Systems and domains 2: Category

5.5.1 The counit and unit

The counit is immediate.

5.5.3. Proposition. For X in TS0c, let εX := ϕ−1X be the inverse of the isomor-

phism ϕX : X→ SD̂(X) in TS0c. Then ε : SD̂→ 1TS0c is a natural isomorphism.

Proof. For each X in TS0c, εX : SD̂(X)→ X is an isomorphism in TS0c. So we
need to show that the morphisms εX are natural in X. Indeed, for a morphism
ϕ : X→ Y in TS0c, we have, by lemma 5.4.4 (2),

εY ◦ SD̂(ϕ) = ϕ−1Y ◦ ϕY ◦ ϕ ◦ ϕ
−1
X = ϕ ◦ ϕ−1X = 1TS0c(ϕ) ◦ εX,

as needed. 2

But the unit requires some work. In the first proposition below, we show how
to construct, for D in dDOM, a morphism ηD : D → D̂S(D), and in the second
proposition we then show that these are natural in D.

5.5.4. Proposition. Let D be in dDOM. Then the following defines a morphism
in dDOM:

ηD := α : D→ D̂S(D)

a 7→
〈
αj(a) : j ∈ I(Clp(maxD))

〉
where

αj(a) :=
{
Oj(x) : x ∈ ↑a ∩maxD

}
.

Moreover, for x ∈ maxD, α(x) = ϕmaxD(x). (Here ϕmaxD is the canonical
homeomorphism between the state space maxD of S(D) and the maximal elements
of the domain underlying D̂S(D).)

Proof. We first fix notation. Write D = (D, v, f), and write X = (X, τ, µ, T)
for S(D) = (maxD,Σ(D) � maxD,µv � B(maxD), f � maxD). Write D̂S(D) =
D̂(X) =: E = (E,w, g), the limit of (Ej, qij)j∈I(ClpX). So Ej = P(HXj).

Step 1. For j ∈ I(ClpX) define

αj : D → Ej

a 7→
{
Oj(x) : x ∈ ↑a ∩maxD

}
.

This is well-defined: Since x ∈ maxD = X, the set of trajectories Oj(x) ∈ HXj
is defined. Moreover, since D is a dcpo, ↑a ∩maxD is nonempty, so αj(a) is a
nonempty subset of HXj , and hence in Ej.

5.5. The systems-domains adjunction 229

Step 2. We show that αj is Scott-continuous. First note that αj is monotone:
If a ≤ a′ in D, then ↑a ∩maxD ⊇ ↑a′ ∩maxD, so αj(a) ⊇ αj(a

′), i.e., since Ej
is ordered by ⊇, αj(a) ≤ αj(a

′).
Now, let A ⊆ D be directed, and show αj(

∨
A) ≤

∨
αj(A) (the other direction,

≥, follows from monotonicity). Since Ej is ordered by ⊇, we have∨
αj(A) =

∨{{
Oj(x) : x ∈ ↑a ∩maxD

}
: a ∈ A

}
=
⋂
a∈A

{
Oj(x) : x ∈ ↑a ∩maxD

}
αj(
∨

A) =
{
Oj(x) : x ∈ ↑

∨
A ∩maxD

}
.

For a ∈ A, write Ma :=
{
Oj(x) : x ∈ ↑a ∩maxD

}
. Also write M :=

⋂
a∈AMa

and N :=
{
Oj(x) : x ∈ ↑

∨
A∩maxD

}
. Note that M,N ⊆ HXj . We need to show

M ⊆ N . So let Oj(y) ∈ HXj (for some y ∈ maxD) with Oj(y) ∈ M and show
Oj(y) ∈ N . Consider

F :=
{

[y]j ∩ (↑a ∩maxD) : a ∈ A
}
.

We show that F is a family of closed subsets of maxD with the finite intersection
property.

Closed: We know, from the construction of D̂(X), that [y]j ⊆ X = maxD is
clopen (see section 5.2.5). Moreover, ↑a ⊆ D is closed in the Lawson topology on
D, so ↑a∩maxD is closed in the relative Lawson topology on maxD, which, since
D is a Scott domain, coincides with the relative Scott topology. So ↑a ∩maxD is
a closed subset of maxD.

Finite intersection property: Since A is directed, it suffices to show (a) if a ≤ a′

in A, then [y]j ∩ (↑a ∩maxD) ⊇ [y]j ∩ (↑a′ ∩maxD), and (b) for a ∈ A, we have
[y]j ∩ (↑a ∩maxD) 6= ∅. Concerning (a), if a ≤ a′, then ↑a ⊇ ↑a′, so the claim
follows. Concerning (b), since, by assumption, Oj(y) ∈M , we have Oj(y) ∈Ma,
so there is x ∈ ↑a ∩maxD with Oj(y) = Oj(x). So x ∈ [y]j ∩ (↑a ∩maxD).

Since maxD is compact, there is x0 ∈
⋂
F . In particular (since A 6= ∅ qua

directed set), we have x0 ∈ [y]j, so Oj(y) = Oj(x0). And, for a ∈ A, we have
x0 ∈ ↑a ∩maxD, so x0 ≥ a. Hence, x0 ≥

∨
A. Thus, Oj(y) = Oj(x0) ∈ N , as

needed.
Step 3. We show that (D,αj)j∈I(ClpX) is a cone (in the category of dcpos

with Scott-continuous maps) to the expanding system of dcpos (Ej, qij)j∈I(ClpX).
Indeed, for i ≤ j in I(ClpX), we have, for any a ∈ D,

qij ◦ αj(a) = qij
{
Oj(x) : x ∈ ↑a ∩maxD

}
=
{
Oi(x) : x ∈ ↑a ∩maxD

}
= αi(a).

Thus, we can define the Scott-continuous function44

α : D → E

a 7→
〈
αj(a) : j ∈ I(ClpX)

〉
.

44We’ve used this argument already in the proof of proposition 5.4.2, see footnote 40.

230 Chapter 5. Systems and domains 2: Category

Step 4. We show that, for x ∈ maxD = X, we have α(x) = ϕX(x) where
ϕX : X → maxE is the canonical homeomorphism. This, in particular, implies
that α is max-preserving.

Indeed, if x ∈ maxD, then ↑x ∩maxD = {x}, so, for any j ∈ I(ClpX),

α(x)(j) = αj(x) =
{
Oj(y) : y ∈ ↑x ∩maxD

}
=
{
Oj(x)

}
= ϕX(x)(j).

Step 5. We show that α is max-bisimulative: Let a ∈ D and α(a) ≤ e ∈ maxE,
then d := ϕ−1X (e) ∈ X = maxD and, by step 4, α(d) = ϕX(d) = e, so it remains
to show d ≥ a. Since α(a) ≤ e, we have, for any j ∈ I(ClpX),{
Oj(x) : x ∈ ↑a ∩maxD

}
= αj(a) = α(a)(j) ≤ e(j) = ϕX(d)(j) = {Oj(d)}.

Since ≤ is reverse inclusion, there hence is, for every j ∈ I(ClpX) = I(ClpmaxD),
some xj ∈ ↑a ∩ maxD with Oj(d) = Oj(xj). Now, lemma 5.5.2 implies (with
x := d) that d ≥ a, as needed.

Step 6. We show that, for all V ∈ Σ(E), w(V) = v(α−1(V)). Recall that
µ = µv � B(maxD) is the measure on X = S(D) where µv is the unique proba-
bility measure on B(D,Λ) determined by v. Also, the valuation w of E = D̂(X)
determines a unique probability measure µw on B(E,Λ) and κ := µw � B(maxE)
is the measure on SD̂(X).

Since ϕX : X→ SD̂(X) is measure-preserving, we have

w(V) = µw(V) = µw(V ∩maxE) = κ(V ∩maxE) = µϕ−1X (V ∩maxE)

Moreover, by step 4, ϕ−1X (V ∩maxE) = α−1(V) ∩maxD. Hence

µϕ−1X (V ∩maxE) = µ
(
α−1(V) ∩maxD

)
.

Furthermore, by the properties of µv, we have, for U ∈ Σ(D), that v(U) = µv(U) =
µ(U ∩maxD). Since V ∈ Σ(E) and α is Scott-continuous, α−1(V) ∈ Σ(D), so

µ
(
α−1(V) ∩maxD

)
= v(α−1(V).

Putting everything together, we get w(V) = v(α−1(V), as needed.
Step 7. We show that for all x ∈ maxD, α(f(x)) = g(α(x)). Since x ∈ maxD

and f is max-preserving, we have by step 4, α(f(x)) = ϕX(f(x)). Recall that
T = f � maxD : X → X, and the dynamics on SD̂(X) = S(E) is given by
g � maxE. Since ϕX is equivariant, we have

α(f(x)) = ϕX(f(x)) = ϕX(T (x)) = (g � maxE)
(
ϕX(x)

)
= g(α(x)),

as needed.
In sum, α : D → E = D̂S(D) is a Scott-continuous, max-preserving, max-

bisimulative, valuation-preserving, and max-equivariant function, whence a mor-
phism in dDOM, which also coincides on maxD with ϕmaxD. 2

5.5. The systems-domains adjunction 231

5.5.5. Proposition. The family of morphisms (ηD) from proposition 5.5.4 con-
stitutes a natural transformation η : 1dDOM → D̂S.

Proof. We need to show that the morphisms ηD are natural in D. So let
β : D→ E be a morphism in dDOM. Write D = (D, v, f) and E = (E,w, g), and
show, for a ∈ D,

ηE ◦ 1dDOM(β)(a) = D̂S(β) ◦ ηD(a).

Both sides are elements of D̂S(E) which is the limit of (P(HmaxE
i), pij)I(Clp(maxE))

(omitting the valuation and dynamics on P(HmaxE
i)). So let j ∈ I(Clp(maxE)),

and show

ηE ◦ β(a)(j) = D̂S(β) ◦ ηD(a)(j).

We’ll write ηD := ηD and ηE := ηE, so we can use subscripts like ηDj for the
components of ηD. Then, on the left side, we have

ηE ◦ β(a)(j) = ηEj
(
β(a)

)
=
{
Oj(y) : y ∈ ↑β(a) ∩maxE

}
.

On the right side, write a′ := ηD(a) = 〈ηDi (a) : i ∈ I(Clp(maxD))〉, which is in
D̂S(D). Also write ϕ := S(β) = β � maxD : maxD → maxE and j = (m,D). So

D̂S(β) ◦ ηD(a)(j) = D̂(ϕ)(a′)(j)

= π(m,D)
(
a′(m,ϕ−1D)

)
= π(m,D)

(
ηD(m,ϕ−1D)(a)

)
= π(m,D)

{
O(m,ϕ−1D)(x) : x ∈ ↑a ∩maxD

}
=
{
O(m,D)(ϕ(x)) : x ∈ ↑a ∩maxD

}
=
{
Oj(β(x)) : x ∈ ↑a ∩maxD

}
.

So we need to show{
Oj(y) : y ∈ ↑β(a) ∩maxE

}
=
{
Oj(β(x)) : x ∈ ↑a ∩maxD

}
.

(⊇) Given Oj(β(x)) from the right set with x ∈ ↑a ∩ maxD, we have that
y := β(x) is maximal in E (since β is max-preserving) and ≥ β(a) (since x ≥ a
and β is monotone). Hence Oj(β(x)) = Oj(y) which is in the left set.

(⊆) Given Oj(y) with y ∈ ↑β(a)∩maxE, we have, since β is max-bisimulative
that there is d ∈ maxD such that d ≥ a and β(d) = y. Hence x := d ∈ ↑a∩maxD
with β(x) = y, so Oj(y) = Oj(β(x)), which is in the right set. 2

Note that in the ⊆-direction we have crucially used that morphisms in dDOM
are max-bisimulative.

232 Chapter 5. Systems and domains 2: Category

5.5.2 Triangle identities

We need one more observation. Then the triangle identities are immediate.

5.5.6. Lemma. Let X be in TS0c, write D̂(X) = (D, v, f), and let ϕX : X →
maxD be the canonical homeomorphism. Then, for a ∈ D and i ∈ I(ClpX), we
have {

Oi(ϕ−1X (z)) : z ∈ ↑a ∩maxD
}

= a(i).

Proof. Write ϕ := ϕX , and write pi for the Scott-continuous projections of D̂(X).
Denote the left set A. Both A and a(i) are subsets of HXi . So let Oi(x) ∈ HXi and
show Oi(x) ∈ A iff Oi(x) ∈ a(i).

(⇒). Assume Oi(x) ∈ A. Then Oi(x) = Oi(ϕ−1(z)) for some z ∈ ↑a ∩maxD.
By definition of ϕ,{

Oi(ϕ−1(z))
}

= ϕ(ϕ−1(z))(i) = z(i) ≥ a(i).

Since the order on D is reverse inclusion, we have

Oi(x) ∈
{
Oi(ϕ−1(z))

}
⊆ a(i),

as needed.
(⇐). Assume Oi(x) ∈ a(i) (note that x ∈ X and i ∈ I(ClpX)). For each

j ∈ I(ClpX), define the following subset of X:

Fj := [x]i ∩ {x′ ∈ X : ϕ(x′)(j) ≥ a(j)}.

We claim that {Fj : j ∈ I(ClpX)} forms a family of closed subsets of X with the
finite intersection property. This then finishes the proof: Since X is compact, let
x0 ∈

⋂
j∈I(ClpX) Fj. Define z := ϕ(x0) ∈ maxD. Then z ≥ a since, for j ∈ I(BX),

z(j) = ϕ(x0)(j) ≥ a(j) since x0 ∈ Fj . So z ∈ ↑a∩maxD. Further, Oi(x0) = Oi(x),
because x0 ∈ [x]i, since x0 ∈ Fi. Hence Oi(x) = Oi(x0) = Oi(ϕ−1(z)) ∈ A.

Closed: The equivalence classes [x]i are clopen subsets of X and

{x′ ∈ X : ϕ(x′)(j) ≥ a(j)} = ϕ−1
{
z ∈ maxD : z(j) ≥ a(j)

}
= ϕ−1

(
maxD ∩ p−1j (↑a(j))

)
is a closed subset of X since ϕ : X → maxD is continuous and maxD∩p−1j (↑a(j))
is, as we’ll argue now, a closed subset of maxD. Indeed, ↑a(j) is a subset of
the finite P(HXj), so it is Lawson-closed (since the Lawson topology on a finite

domain is discrete). Hence p−1j (↑a(j)) is a Lawson-closed subset of D (since
pj is a Scott-continuous projection and hence Lawson-continuous).45 Since the

45We’ve made this argument already in footnote 41.

5.5. The systems-domains adjunction 233

relative Lawson topology on maxD coincides with the relative Scott topology,
p−1j (↑a(j)) ∩maxD is closed.

Monotone: Let j ≤ k in I(ClpX) and show Fj ⊇ Fk. It suffices to show
{x′ ∈ X : ϕ(x′)(j) ≥ a(j)} ⊇ {x′ ∈ X : ϕ(x′)(k) ≥ a(k)}. So let x′ ∈ X with
ϕ(x′)(k) ≥ a(k). By monotonicity of pjk, we have

pjk
(
ϕ(x′)(k)

)
≥ pjk

(
a(k)

)
= a(j).

Moreover,

pjk
(
ϕ(x′)(k)

)
= pjk

(
{Ok(x′)}

)
= {Oj(x′)} = ϕ(x′)(j).

Hence x′ ∈ {x′ ∈ X : ϕ(x′)(j) ≥ a(j)}, as needed.

Nonempty: We show that Fj is nonempty. Since i, j ∈ I(ClpX) and I(ClpX)
is directed, there is k ∈ I(ClpX) such that i, j ≤ k. We have

Oi(x) ∈ a(i) = pik
(
a(k)

)
=
{
Oi(x′) : Ok(x′) ∈ a(k)

}
So there is x′ ∈ X with Ok(x′) ∈ a(k) and Oi(x) = Oi(x′). So x′ ∈ [x]i. And

Oj(x′) ∈
{
Oj(x′) : Ok(x′) ∈ a(k)

}
= pjk

(
a(k)

)
= a(j),

whence {Oj(x′)} ⊆ a(j). Since ≤ is reversed inclusion, ϕ(x′)(j) = {Oj(x′)} ≥ a(j).
Hence x′ ∈ Fj. 2

As promised, the triangle identities now are immediate:

5.5.7. Proposition. For X in TS0c and D in dDOM, we have

1. 1S(D) = εS(D) ◦ S(ηD).

2. 1D̂(X) = D̂(εX) ◦ ηD̂(X).

Proof. Write D = (D, v, f) and write D̂(X) = (E,w, g), which is obtained as a
limit over the index set I(ClpX).

Ad (1). We have S(ηD) = ηD � maxD which, by proposition 5.5.4, equals
ϕmaxD. Moreover, εS(D) = ϕ−1maxD. So the claim follows since ϕmaxD is a homeo-
morphism.

Ad (2). Write ε := εX = ϕ−1X : maxE → X. For a ∈ E and i ∈ I(ClpX), we
need to show

D̂(ε) ◦ ηD̂(X)(a)(i) = a(i).

234 Chapter 5. Systems and domains 2: Category

Indeed, we have the following. (Recall ξε : I(ClpX)→ I(ClpmaxE) maps (n, C)
to (n, ε−1(C).)

D̂(ε) ◦ ηD̂(X)(a)(i) = D̂(ε)
(
ηD̂(X)(a)

)
(i)

= πεi

(
ηD̂(X)(a)(ξε(i))

)
= πεi

(
η

D̂(X)
ξε(i) (a)

)
= πεi

{
Oξε(i)(x) : x ∈ ↑a ∩maxE

}
=
{
Oi(ε(x)) : x ∈ ↑a ∩maxE

}
By lemma 5.5.6, this further equals a(i), as needed. 2

5.6 Analyzing the systems-domains adjunction

In this section, we establish the following part of the main diagram:

dDOM dDOMr

TS0c

S

D̂◦S

S

I

a

D̂

|∼D̂

(That it commutes and restricts to the standard case is shown in section 5.7.)
Thus, we analyze the adjunction S : dDOM
 TS0c : D̂ into (a) an equivalence

between TS0c and dDOMr (section 5.6.1), and (b) a reflective subcategory dDOMr

of dDOM (section 5.6.2).

5.6.1 Restricting to equivalence

Now, we can see that, surprisingly, the simple and purely domain-theoretic property
of being max-reflective (definition 5.2.19) turns out to be precisely what is needed
to turn the adjunction between systems and domains into an equivalence.

5.6.1. Proposition. Let D be in dDOM. The following are equivalent.

1. D is isomorphic in dDOM to D̂(X) for some system X in TS0c.

2. D is max-reflective, i.e., D is in dDOMr.

5.6. Analyzing the systems-domains adjunction 235

3. ηD : D→ D̂S(D) is an isomorphism in dDOM.

Proof. Concerning the implication (1)⇒(2), since D is isomorphic in dDOM to
D̂(X), their underlying domains are isomorphic (proposition 5.2.13). Since being
max-reflective is a purely domain-theoretic property, it hence suffices to show that
D̂(X) is max-reflective. Indeed, it is, by definition, a dSCOp

nm-limit of the finitary
dynamical expanding system (Di, pij)I(ClpX) with underlying domains Di = P(HXi).
By example 5.2.20 (2), each Di hence is max-reflective (since HXi is a finite set),
so, by proposition 5.2.21, also the limit D = D̂(X) is max-reflective.

The implication (3)⇒(1) is immediate when taking X := S(D).
So it remains implication (2)⇒(3). Write α := ηD : D → D̂S(D) and D =

(D, v, f). To show that α is an isomorphism in dDOM, it suffices to show, by
proposition 5.2.13, that α is order-reflecting and surjective (since α is Scott-
continuous, it already is montone, and since α is semi-max-equivariant and its
codomain D̂S(D) max-preserving, it already is max-equivariant).

Order-reflecting : Let a, a′ ∈ D with α(a) ≤ α(a′) and show a ≤ a′. We’ll show

↑a ∩maxD ⊇ ↑a′ ∩maxD. (5.2)

By condition 1 of being max-reflective (definition 5.2.19), we’ll then have

a =
∧
↑a ∩maxD ≤

∧
↑a′ ∩maxD = a′,

as needed.
To show (5.2), let z ∈ ↑a′ ∩maxD and show z ≥ a (so z ∈ ↑a∩maxD). Since

α(a) ≤ α(a′), we have, for each j ∈ I(ClpmaxD), that αj(a) ≤ αj(a
′), so, since

≤ is reverse inclusion,{
Oj(x) : x ∈ ↑a ∩maxD

}
= αj(a) ⊇ αj(a

′)

=
{
Oj(x) : x ∈ ↑a′ ∩maxD

}
3 Oj(z).

Hence, for each j ∈ I(ClpmaxD), there is xj ∈ ↑a ∩maxD with Oj(z) = Oj(xj).
So lemma 5.5.2 implies z ≥ a, as needed.

Surjective: Write D̂S(D) =: E = (E,w, g) as the limit of (Ej, qij)J with
J := I(ClpmaxD), so Ej = P(HmaxD

j). Recall that α : D → E is defined, on
each component j ∈ J , by αj(a) = {Oj(x) : x ∈ ↑a ∩maxD}. Also, as seen in
the proof of proposition 5.5.4, (D,αj)j∈J is a cone (in the category of dcpos with
Scott-continuous maps) to the expanding system of dcpos (Ej, qij)J . We show
that each αj is a projection. It then follows that the mediating map α also is a
projection and hence surjective (see Abramsky and Jung 1994, cor. 3.3.10)).46

(This is not a detour: the hard part is not to show that αj is an upper adjoint,
but to show that it is surjective.)

46This can also be shown directly: Write ej : Ej → D for the embedding corresponding to αj .
Define e : E → D by e(b) :=

∨
{ej ◦ qj(b) : j ∈ J}. This is directed since J 6= ∅ and, for j ≤ k,

236 Chapter 5. Systems and domains 2: Category

So let j ∈ J . Consider the function ej : Ej → D which maps M ∈ Ej =
P(HmaxD

j) to

ej(M) :=
∧{

x ∈ maxD : Oj(x) ∈M
}
.

This is well-defined since M is nonempty, so it contains some Oj(x), so the infimum
is taken over a nonempty subset of the Scott domain D and hence exists. It also
is monotone: if M ≤M ′, then M ⊇M ′, so{

x ∈ maxD : Oj(x) ∈M
}
⊇
{
x ∈ maxD : Oj(x) ∈M ′},

so the infimum of the left set will be ≤ the infimum of the right set, i.e., ej(M) ≤
ej(M

′).
To show that ej is an embedding to the (continuous) projection αj, we need

to show (i) αj ◦ ej = idEj and (ii) ej ◦ αj ≤ idD.
Concerning (i), let M ∈ Ej and show αj ◦ ej(M) = M . Define A := {x ∈

maxD : Oj(x) ∈M}.
We claim that A is a nonempty closed subset of maxD. Indeed, by construction,

A is a subset of maxD, and it is nonempty since M is nonempty. To see
that it is closed, note that, since M ⊆ HmaxD

j is nonempty, we have M =
{Oj(x1), . . . ,Oj(xn)} for some x1, . . . , xn ∈ maxD (with n ≥ 1). Now,

A =
{
x ∈ maxD : ∃k ∈ {1, . . . , n}.Oj(x) = Oj(xk)

}
=

n⋃
k=1

[xk]j

and the latter is a finite union of clopen subsets of maxD and hence closed.
Now we can apply condition 2 of being max-reflective (definition 5.2.19) and

obtain A = (↑
∧
A) ∩maxD, whence

αj ◦ ej(M) = αj
(∧

A
)

=
{
Oj(x) : x ∈ ↑

∧
A ∩maxD

}
=
{
Oj(x) : x ∈ A

}
= M.

Concerning (ii), let a ∈ D and show ej ◦ αj(a) ≤ a. We have

ej ◦ αj(a) =
∧{

x ∈ maxD : Oj(x) ∈ αj(a)
}

=
∧{

x ∈ maxD : Oj(x) = Oj(x′) for x′ ∈ ↑a ∩maxD
}

we have ej ◦ qj(b) ≤ ek ◦ qk(b): indeed, we have

ej ◦ qj = ej ◦ qjk ◦ qk = ej ◦ qjk ◦ αk ◦ ek ◦ qk = ej ◦ αj ◦ ek ◦ qk ≤ ek ◦ qk.

We have e◦α ≤ idD: For a ∈ D, e◦α(a) =
∨
{ej ◦qj(α(a)) : j ∈ J} ≤ a since ej ◦qj(α(a)) = ej ◦

αj(a) ≤ a. And we have α◦e = idE : Since α preserves suprema, α◦e(b) =
∨
{α◦ej◦qj(b) : j ∈ J}

and we show that this equals b. Indeed, b is an upper bound: Given j ∈ J , we have, for any
k ≥ j: α ◦ ej ◦ qj(b)(k) = αk(ej ◦ qj(b)) ≤ αk(ek ◦ qk(b)) = qk(b) = b(k). (So this holds for any
k′ ∈ J : pick k ≥ j, k′, then α ◦ ej ◦ qj(b)(k′) = qk′k

(
αk ◦ ej ◦ qj(b)(k)

)
≤ qk′k

(
b(k)

)
= b(k′).)

And b is a least upper bound: If b′ is another upper bound, then, for any j ∈ J , we have
b(j) = αj ◦ ej ◦ qj(b) = α ◦ ej ◦ qj(b)(j) ≤ b′(j), whence b ≤ b′.

5.6. Analyzing the systems-domains adjunction 237

Note that the set in the last line is a superset of ↑a ∩maxD. So the last line can
be continued with

≤
∧
↑a ∩maxD,

which, in turn, equals a by condition 1 of being max-reflective (definition 5.2.19).
So ej ◦ αj(a) ≤ a, as needed. 2

Now, it is a purely categorical matter to obtain the promised result:

5.6.2. Theorem. We have the following diagram

dDOMr

dDOM TS0c

I

S

S

D̂S

D̂

a

D̂
|∼

where |∼ denotes adjoint equivalence.

Proof. Write C := TS0c and D := dDOM. So the adjunction S a D̂ has unit
η : 1D → D̂S and counit ε : SD̂→ 1C. By proposition 5.6.1, the full subcategory
D′ := dDOMr of dDOM consists of precisely those objects D of D such that ηD is
an isomorphism. Since the counit ε is a natural isomorphism, every object X of C
is such that εX is an isomorphism. Now, it is a well-known fact that an adjunction
(S, D̂, ε, η) restricts to an adjoint equivalence (S � D′, D̂, ε, η � D′) between the fixed
points of the adjunction (Leinster 2014, ex. 2.2.11).47 Hence D̂ |∼ S. 2

5.6.2 Max-reflecting a dynamical domain

Finally, we show that the functor D̂S : dDOM → dDOMr is the optimal way of
making a dynamical D max-reflective: we show that D̂S is left-adjoint to the
inclusion I : dDOMr → dDOM. Note that this question is somewhat analogous to
the question of how to compactify a system in bTS0.

We first make the important observation that morphisms in dDOMr are entirely
determined by their behavior on maximal elements. (In fact, that was the guiding
intuition in isolating dDOMr.)

47This is also discussed in the nLab entry https://ncatlab.org/nlab/show/fixed+point+

of+an+adjunction (last checked 3 July 2021) and in the stack exchange thread(s) https://math.
stackexchange.com/questions/3359118/adjunctions-restrict-to-an-equivalence (last
checked 3 July 2021).

https://ncatlab.org/nlab/show/fixed+point+of+an+adjunction
https://ncatlab.org/nlab/show/fixed+point+of+an+adjunction
https://math.stackexchange.com/questions/3359118/adjunctions-restrict-to-an-equivalence
https://math.stackexchange.com/questions/3359118/adjunctions-restrict-to-an-equivalence

238 Chapter 5. Systems and domains 2: Category

5.6.3. Lemma. Let β, β′ : D→ E be two morphisms in dDOMr. If β and β′ agree
on the maximal elements of the domain underlying D, then β = β′.

Proof. Write D = (D, v, f) and E = (E,w, g). Let a ∈ D and show β(a) = β′(a).
It suffices to show that

↑β(a) ∩maxE = ↑β′(a) ∩maxE,

since this implies, because E is max-reflective, that β(a) =
∧
↑β(a) ∩maxE =∧

↑β′(a) ∩maxE = β′(a).
Indeed, let y ∈ ↑β(a) ∩ maxE and show y ≥ β′(a) (the other direction is

analogous). Since β is max-bisimulative, there is x ∈ maxD with x ≥ a and
β(x) = y. Since β and β′ agree on maxD, we have y = β(x) = β′(x). Since a ≤ x
and β′ is monotone, β′(a) ≤ β′(x) = y, as needed. 2

5.6.4. Proposition. The inclusion I : dDOMr → dDOM is a right adjoint: For
every D in dDOM, the morphism ηD : D → D̂S(D) is such that, for any E
in dDOMr and β : D → E in dDOM, there is a unique α : D̂S(D) → E with
α ◦ ηD = β.

D D̂S(D)

E

ηD

β
∃! α

Proof. Existence: Since E is in dDOMr, ηE : E→ D̂S(E) is an isomorphism. So
we can define the morphism α := η−1E ◦ D̂S(β) : D̂S(D) → E in dDOMr. By the

naturality of η : 1dDOM → D̂S, we have ηE ◦ β = D̂S(β) ◦ ηD. So

α ◦ ηD = η−1E ◦ D̂S(β) ◦ ηD = η−1E ◦ ηE ◦ β = β.

Uniqueness: Assume α, α′ : D̂S(D) → E are such that α ◦ ηD = β = α′ ◦ ηD.
Write D = (D, v, f) and D̂S(D) = (D′, v′, f ′). So α and α′ agree on ηD(D). We
claim maxD′ ⊆ ηD(D). Indeed, by proposition 5.5.4,

ηD � maxD = ϕmaxD : maxD → maxD′,

is the canonical homeomorphism S(D)→ SD̂S(D). Thus, if x′ ∈ maxD′, there is,
by surjectivity, x ∈ maxD ⊆ D with x′ = ϕmaxD(x) = ηD(x), so x′ ∈ ηD(D).

Now, the two morphisms α, α′ : D̂S(D)→ E in dDOMr agree on the maximal
elements of the domain D′ underlying D̂S(D), so lemma 5.6.3 implies α = α′. 2

5.7. Conclusion 239

dDOM dDOMr

DS bTS0 TS0c

Ŝ

S

D̂◦S

S

I

a

Loc

C

D

IB

D̂

|∼D̂

a

dDOMs dDOMrs

sDS bTS0s TS0cs

Ŝ

S

D̂◦S

S

I

a

Loc

C

D

IB

D̂

|∼D̂

a

Figure 5.6: Overview of the results in the general case (top) and the standard
case (bottom). Both diagrams commute up to natural isomorphism.

5.7 Conclusion

We summarize the results to see that we indeed have established the main diagram
in the general case, and we check that it restricts to the standard case. For
convenience, the two cases are individually depicted in figure 5.6. For simplicity,
we omit from the diagram that we have analyzed the functors C and IB (which
provide the compactification operation) into the following subdiagram:

bTS0 bTS0 TS0c
·

C=C◦·

Ia

C

IB

a

IB=I◦IB

which restricts to the standard case (i.e., adding a suffixed subscript s to all three
categories).

The general case The bottom layer DS—bTS0—TS0c was established in sec-
tion 5.3. In sections 5.4 and 5.5, we’ve established the functors of the lower triangle
dDOM—bTS0—TS0c and the fact that C ∼= S ◦ D and D̂ ` S. In section 5.6, we
established the upper triangle dDOM—dDOMr—TS0c including the acclaimed
adjunctions.

240 Chapter 5. Systems and domains 2: Category

So it remains to check that the lower triangle and the upper triangle commute
up to natural isomorphism. For each pair (C,D) of categories in the lower triangle
(resp., upper triangle), we need to show that the ‘one-step’ functor from C to D is
naturally isomorphic to the ‘two-step’ functor. For the lower triangle:

• From dDOM to bTS0, we have IB ◦S = Ŝ by definition. From dDOM to TS0c,
we have C ◦ Ŝ ∼= (S ◦D) ◦ (IB ◦ S) = S ◦ D̂ ◦ S ∼= S where the last step follows
since SD̂ ∼= 1TS0c via the counit of the adjunction D̂ ` S.48

• From bTS0 to TS0c, we have S ◦ D ∼= C, by the already established fact.
From bTS0 to dDOM, we have D̂ ◦ C ∼= D̂S ◦ D ∼= D where the last step
follows since D̂S ∼= 1dDOMr via the unit of the adjoint equivalence D̂ ` S and
since D : bTS0 → dDOMr (since D(X,B) is a restricted limit of a finitary
dynamical expanding system of max-reflective domains).

• From TS0c to dDOM, we have D ◦ IB = D̂ by definition. From TS0c to bTS0,
we have Ŝ ◦ D̂ = (IB ◦ S) ◦ (D ◦ IB) ∼= IB ◦ C ◦ IB ∼= IB since CIB ∼= 1TS0c by
proposition 5.3.7.

For the upper triangle:

• From dDOM to dDOMr, we trivially have D̂ ◦ S = (D̂ ◦ S). From dDOM
to TS0c, S ◦ (D̂ ◦ S) = SD̂ ◦ S ∼= S since SD̂ ∼= 1TS0c by the counit of the
adjunction D̂ ` S.

• From dDOMr to TS0c, we have S◦ I = S regarded as functors dDOMr → TS0c.
From dDOMr to dDOM, we have D̂ ◦ S = D̂S ◦ I ∼= 1dDOMr ◦ I = I since
D̂S ∼= 1dDOMr by the unit of the adjoint equivalence D̂ |∼ S.

• From TS0c to dDOM, trivially I ◦ D̂ = D̂. From TS0c to dDOMr, we have, by
the counit of the adjunction D̂ ` S, that (D̂◦S)◦ D̂ = D̂◦SD̂ ∼= D̂◦1TS0c = D̂.

The standard case The bottom layer sDS—bTS0s—TS0cs also was established
in section 5.3. Moreover, the functors D and S restrict to functors D : bTS0s →
dDOMs and S : dDOMs → TS0cs (as seen in section 5.4). So all functors are indeed
well-defined restrictions to the full subcategories of the original diagram (IB and I
restrict appropriately as well). Thus, the original adjunctions also are adjunctions

48Here, and several times below, we use the following fact: If F ∼= G are naturally isomorphic
functors C → D (via the natural isomorphism F

α⇒ G) and F′ ∼= G′ are naturally isomorphic

functors D → E (via the natural isomorphism F′
α′⇒ G′), then F′F ∼= G′G (via the horizontal

composition α′ ∗ α). Indeed, the horizontal composition is a natural transformation F′F⇒ G′G
where (α′ ∗ α)X is defined as α′G(X) ◦ F

′(αX) = G′(αX) ◦ α′F(X) (Leinster 2014, p. 37). Since this

is a composition of isomorphisms in E, α′ ∗ α is a natural isomorphism. (This is, e.g., discussed
on this stack exchange thread: https://math.stackexchange.com/a/2516416 (last checked 3
July 2021).)

https://math.stackexchange.com/a/2516416

5.7. Conclusion 241

in the restricted diagram. And natural isomorphisms of original functors also are
natural isomorphisms in the restricted diagram, so the restricted diagram still
commutes up to natural isomorphism.

Further questions In addition to the many open questions already posed in
the previous chapter, one may ask for a characterization of the domain-theoretic
counterpart of metric isomorphism (i.e., when two dynamical domains model met-
rically isomorphic dynamical systems). Then one can explore whether this ‘weak
equivalence of dynamical domains’ and the established localization of topological
systems are the start of a ‘homotopy structure’ (cf. category of fibrant objects).

Chapter 6

Systems and domains 3: Application

Abstract In the previous two chapters, we’ve developed dynamical domains as
a tool to analyze dynamical systems. In this chapter, we extend this by developing
domain-theoretic counterparts to the important system-theoretic concepts of
metric and topological entropy.

6.1 Introduction

In the previous two chapters, we have introduced dynamical domains and have
shown that they are closely connected to dynamical systems. To further develop
the idea of dynamical domains as tools to analyze dynamical systems, we develop
domain-theoretic counterparts to the system-theoretic concept of entropy. Entropy
is a tremendously important concept to study dynamical systems. It provides a
quantitative measure of how ‘chaotic’ the system is. It also is an isomorphism
invariant and hence helps in determining whether two systems are, despite their
different appearances, isomorphic after all.

The chapter is structured as follows. In section 6.2, we provide the relevant
background on dynamical domains, dynamical systems, and entropy. In section 6.3,
we develop the concept of domain-entropy as a domain-theoretic counterpart to
metric entropy. In section 6.4, we develop the concept of max-entropy as a domain-
theoretic counterpart to topological entropy. In section 6.5, we conclude with
some open questions. In appendix B of the thesis, we discuss a detailed example
of a dynamical domain and calculate its max-entropy.

6.2 Background

We provide the relevant background on dynamical systems and dynamical domains
from the previous two chapters, and we recall the definitions of metric entropy
and topological entropy.

243

244 Chapter 6. Systems and domains 3: Application

6.2.1 Recap dynamical systems and dynamical domains

In the previous two chapters, we’ve motivated and defined (general and standard)
dynamical systems as structures X = (X,A, µ, T) where (X,A, µ) is a probability
space and T : X → X is a measurable function (that satisfy some further
conditions in the general and standard case, respectively).

We’ve seen that such a system X has a topological realization Y = (Y, σ, ν, S):
i.e., (Y, σ) is a compact zero-dimensional Polish space with a probability measure
ν on the Borel σ-algebra B(σ) and a continuous dynamics S : Y → Y , and the
system X is (modulo completion) isomorphic to the system (Y,B(Y), ν, S) induced
by Y. Thus, for our purposes here, we can restrict us to working with the category
TS0c of these zero-dimensional compact measured topological systems. The benefit
is that we then can define in one place not only measure-theoretic (i.e., metric)
entropy but also topological entropy.

In the previous two chapters, we’ve introduced the category dDOM of dynamical
domains and the adjunction

dDOM TS0c.
S

D̂

a

This means the following: A dynamical domain D is a structure (D, v, f) where D
is a Scott domain, v : Σ(D)→ [0, 1] a valuation, and f : D → D a Scott-continuous
function, and D is, moreover, obtained as a certain limit of finite structures of this
form. Each dynamical domain D induces (or ‘models’) a compact zero-dimensional
measured topological system S(D): Its state space consists of the maximal elements
maxD of D and the dynamics is given by the restriction f � maxD; the measure
µv is determined by the valuation v. In the other direction, each compact zero-
dimensional measure topological system X induces a dynamical domain D̂(D). It
is called the observation domain since it is constructed from the clopen subsets of
X which are viewed as possible observations that we can make about X. Here
we won’t repeat the details, but refer, for undefined notation and terminology, to
chapters 4–5.

Since metric entropy is only defined for measure-preserving transformations,
we need to restrict to the subcategory TS0cm of those X = (X, τ, µ, T) where
T : X → X is measure-preserving (i.e., for A ∈ B(τ), we have µ(T−1(A)) = µ(A)).1

This restriction is not necessary to discuss topological entropy, since it doesn’t
require a measure.

This restriction is mirrored on the domain-side by restricting to the category
dDOMv of those dynamical domains that are obtained as restricted limits to
diagrams that are, what we’ve called, eventually valuation-preserving. If X is
in TS0cm, then the diagram with which the observation domain D̂(D) is built

1We don’t assume T to be invertible, so TS0cm is a supercategory of the category TS0cs of
standard compact zero-dimensional measured topological systems.

6.2. Background 245

has this property (see the comments after theorem 4.3.11 in chapter 4). And if
D = (D, v, f) is in dDOMv, then f is valuation-preserving, i.e., v(f−1(U)) = v(U)
for all U ∈ Σ(D) (see the comments after theorem 4.4.8 in chapter 4), so S(D) is
measure-preserving (see the comments after theorem 4.5.1 in chapter 4). Thus,
the adjunction restricts to

dDOMv TS0cm.
S

D̂

a

Also recall that when we restrict to what we’ve called max-reflective dynamical
domains, these adjunctions restrict to equivalences.

6.2.2 Metric entropy

Metric entropy (or Kolmogorov-Sinai entropy) is a central concept in dynamical
systems theory. For a detailed discussion, we refer to the many references on the
topic—for example, Downarowicz (2011). Here we just recall its formal definition.

We’ll follow Walters (1982, sec. 4) who presents entropy theory in the general
setting of a probability space with a measure-preserving transformation. (So this
doesn’t presuppose a Lebesgue space or invertible transformation like some other
references do for independent reasons.) However, we’ll adjust the notation slightly
to highlight similarities with the domain-theoretic setting (in particular, with the
observation domain).

By ‘log’ we refer to the logarithm with basis 2, but other bases (like the natural
logarithm) are possible and will change the definition of entropy only by a fixed
multiplicative constant.

Although the definition can be stated more generally, we work, as motivated
in section 6.2.1, with the objects of TS0cm.

6.2.1. Definition. Let X = (X, τ, µ, T) be in TS0cm. A finite measurable parti-
tion of X is a finite subset C of B(τ) that partitions X. For such C and n ≥ 1
define,

H(n, C) := −
∑

(C0,...,Cn−1)∈Cn
µ
(n−1⋂
k=0

T−kCk

)
log µ

(n−1⋂
k=0

T−kCk

)
,

with the convention that 0 log 0 = 0. The metric entropy of X is

h(X) := sup
{

lim
n→∞

1

n
H(n, C) : C finite measurable partition of X

}
.

We collect some standard facts about entropy that we’ll need for the proofs
below. If (X,A, µ) is a probability space, we say, for two finite measurable
partition C and D, that D refines C (written C � D) iff every C-element is a union
of D-elements. A sequence (Ck) of finite measurable partitions generates A iff
A = σ

(⋃
k Ck
)

(where σ(·) is the smallest σ-algebra containing ·).

246 Chapter 6. Systems and domains 3: Application

6.2.2. Proposition. Let X = (X, τ, µ, T) be in TS0cm and let C and D be finite
measurable partitions. Then

1. If C � D and n ≥ 1, then H(n, C) ≤ H(n,D).

2.
(
1
n
H(n, C)

)
n

is a decreasing sequence of positive real numbers; in particular,
its limit exists.

3. If C � D, then limn
1
n
H(n, C) ≤ limn

1
n
H(n,D).

4. If (Ck) is a refining sequence of finite measurable partitions that generates
B(τ), then h(X) = limk

(
limn

1
n
H(n, Ck)

)
.

5. If ϕ : X→ Y is a morphism in TS0cm, then h(X) ≥ h(Y).

The proof is sketched in an appendix at the end of the chapter.

6.2.3 Topological entropy

Topological entropy is analogous to metric entropy but, as the name suggests,
it only uses topological information and no measure-theoretic information. It is
(usually) defined for topological systems (X,T) where X is a compact metric space
and T : X → X is continuous. There are several equivalent definitions available
(see, e.g., Downarowicz 2011, ch. 6). Here we use the ‘open cover’ definition
introduced by Adler, Konheim, and McAndrew (1965), because it best highlights
similarities to the observation domain construction.

We again follow Walters (1982, ch. 7) with slightly adjusted notation for
emphasis of similarity to the domain-theoretic setting. And, again, although the
definition can be stated more generally, we state it for the objects of TS0c (ignoring
the measure), which we’ve motivated as a convenient setting for our discussion.

6.2.3. Definition. Let X = (X, τ, µ, T) be in TS0c. (We ignore the measure µ.)
A finite open cover C of X is a finite subset of τ whose union is X. For such C
and n ≥ 1, define

Htop(n, C) := logN(Cn−10),

where Cn−10 :=
{⋂n−1

k=0 T
−kUk : U0, . . . , Un−1 ∈ C

}
and N(Cn−10) is the minimum

cardinality of the subcovers of Cn−10 . The topological entropy of X is

htop(X) := sup
{

lim
n→∞

1

n
Htop(n, C) : C finite open cover of X

}
.

We collect some facts about topological entropy. If C and D are two open covers
of a topological space, we say D refines C (written C � D) if every D-element is a
subset of a C-element (note the difference to the case of partitions).

6.3. Domain-entropy 247

6.2.4. Proposition. Let X = (X, τ, µ, T) be in TS0c and let C and D be open
covers. Then

1. If C � D and n ≥ 1, then Htop(n, C) ≤ Htop(n,D).

2. limn
1
n
Htop(n, C) exists.

3. If C � D, then limn
1
n
Htop(n, C) ≤ limn

1
n
Htop(n,D).

4. If (Ck) is a refining sequence of open covers that eventually refines every
open cover, then htop(X) = limk

(
limn

1
n
Htop(n, Ck)

)
.

5. If ϕ : X→ Y is a surjective morphism in TS0c, then htop(X) ≥ htop(Y).

The proof is sketched in an appendix at the end of the chapter.

6.3 Domain-entropy

In this section, we define the domain-theoretic counterpart to metric entropy—
which we’ll call domain-entropy. We first state its definition (section 6.3.1) and
then show that it indeed is a proper counterpart (section 6.3.2). Finally, we prove
that the domain-entropy of a dynamical domain can be expressed in a certain
‘normal form’ (section 6.3.3).

6.3.1 Definition of domain-entropy

Given the adjunction dDOMv � TS0cm, there are two suggestive ways to try to
construct domain-theoretic counterparts to metric entropy: First, we start with a
dynamical domain D and see how the metric entropy of the induced system S(D)
may carry over to D. Second, we start with a system X and see how its metric
entropy may carry over to the observation domain D̂(X).

The second way seems appealing given the use of pairs (n, C) in the definition
of entropy (highlighted in our formulation) which is reminiscent of the (index set
of) the observation domain. Indeed, the term H(n, C) in the definition of metric
entropy of a system X is, writing i = (n, C), very close to

−
∑

a∈maxDi

vi(a) log vi(a)

in the setting of the observation domain of the system X.
However, for a general dynamical domain D = (D, v, f), this doesn’t take into

account the dynamics f on the domain. And for an abstract index i, it is not
clear what the ‘time’ parameter n should be. Moreover, this would only work for
dynamical domains that are isomorphic to some observation domain, i.e., it only
works for max-reflective dynamical domains.

248 Chapter 6. Systems and domains 3: Application

For these reasons, we first consider the first way. Nonetheless, we’ll use the
second way in section 6.3.3 to prove a normal form theorem.

If D is in dDOMv, then by a diagram F giving rise to D via projections pi
we mean a finitary dynamical expanding system F = (Di, pij)I that is eventually
valuation-preserving together with dynamical morphisms pi : D→ Di which also
are projections such that (D, pi) is the restricted limit to F (see chapter 4 for
definitions of these terms). By definition of dDOMv, such (F, pi) always exist. If
it is clear from context, we write D = (D, v, f) and Di = (Di, vi, fi).

6.3.1. Definition. Let D be in dDOMv and let F = (Di, pij)I be a diagram
giving rise to D via projections pi. For i ∈ I and n ≥ 1, define

E(n, i) := −
∑

a∈(maxDi)n

v
(
Upi(a)

)
log v

(
Upi(a)

)
,

where Upi(a) :=
⋂n−1
k=0 f

−k(p−1i (a(k))
)

is the set of a ∈ D whose i-th projection
follows a under the domain dynamics f . We define the domain-entropy of D as

e
(
D
)

:= sup
{

lim
n→∞

1

n
E(n, i) : i ∈ I

}
. (6.1)

Below we show that these limits exist. In general, for D in dDOMv, we define
e(D) with respect to some (F, pi) giving rise to D (below we show that this is
well-defined, i.e., independent of the choice of (F, pi)).

Comments: First, for an intuitive interpretation of this definition, let’s first
recall from information theory that, for a random variable X with finitely many
outcomes x1, . . . , xn with corresponding probabilities p1, . . . , pn, its Shannon en-
tropy H(X) = −

∑n
k=1 pi log pi is interpreted as the average uncertainty in the

outcomes of variable X. Thus, we can interpret E(n, i) as the average uncertainty
in the n-long behavior of the domain dynamics as seen at (i.e., projected to) the
i-th component Di. Thus, limn→∞

1
n
E(n, i) is, in a sense, the time-average of

that uncertainty. So the least upper bound e(D) describes the uncertainty in the
domain dynamics that we have to reckon with.

Second, hence the intuition is much like that of metric entropy (see, e.g.,
Petersen 1983 or Downarowicz 2011). The role of the finite partitions C in metric
entropy is now taken over by the indices i.

Third, one might also try to formulate the definition only relying on the
diagram and not on the limit dynamics f (to have ‘finitary’ definition). However,
looking at the characterization of v(f−1Ui) in the limit theorem, this will, at least,
complicate notation, so we stick to the above definition. However, in the normal
form result below, we’ll consider a purely diagram based definition.

6.3. Domain-entropy 249

6.3.2 Main theorem on domain-entropy

The following is the main theorem about domain-entropy showing, in particular,
that it is well-defined (items (1) and (2) below), an isomorphism invariant as any
good notion of entropy should be (items (3) and (4) below), and a counterpart to
metric entropy (items (5) and (6) below).

6.3.2. Theorem. 1. The limits in equation (6.1) exist.

2. The domain-entropy e(D) is independent of the choice of (F, pi) giving rise
to D.

3. If α : D→ E is a morphism in dDOMv, then e(D) ≥ e(E).

4. In particular, domain-entropy is an isomorphism invariant: two dynamical
domains that are isomorphic in dDOMv have the same domain-entropy.

5. If D is in dDOMv, then e(D) = h(S(D)).

6. If X is in TS0cm, then h(X) = e(D̂(X)).

We prove the theorem in the remainder of this subsection. The following
lemma contains most of the calculations.

6.3.3. Lemma. Let D be in dDOMv and let F = (Di, pij)I be a diagram giving
rise to D via projections pi. Then

1. For each i ∈ I, Ci :=
{
p−1i (a) ∩ maxD : a ∈ maxDi

}
is a finite clopen

partition of maxD.

2. If i0 ≤ i1 ≤ . . . is cofinal in I, then (Cik)k is a refining sequence of finite
clopen partitions that generates B(maxD).

3. For each i ∈ I and n ≥ 1, we have H(n, Ci) = E(n, i) (where H(n, Ci) is
calculated in the system S(D)).

4. For i ≤ j in I and n ≥ 1, E(n, i) ≤ E(n, j).

Proof. Ad (1). Since Di is finite, Ci is finite. It is a partition, since, for each
a ∈ maxD, we have, because pi is max-preserving, that pi(a) ∈ maxDi, so a is
in one and only one cell of Ci. And its cells are clopen because sets of the form
p−1i (Ui) ∩maxD for Ui ∈ Σ(Di) are clopen in maxD.

Ad (2). Refining: For i := ik ≤ il =: j (with k ≤ l), we need to show that Cj
refines Ci (denoted Ci � Cj), i.e., each Ci-element is a union of Cj-elements. Indeed,
for ai ∈ maxDi, we have

p−1i (ai) ∩maxD =
⋃

aj∈p−1
ij (ai)

p−1j (aj) ∩maxD,

250 Chapter 6. Systems and domains 3: Application

since, for a ∈ maxD: if pi(a) = ai, set aj := pj(a) ∈ p−1ij (ai); and if pj(a) = aj for

some aj ∈ p−1ij (ai), then pi(a) = pij(pj(a)) = pij(aj) = ai.

Generating: We need to show that A := σ
(⋃

k≥0 Cik
)

= B(maxD). Since each
cell is (cl)open, we have⊆. For the other direction, we need to show thatA contains
all the opens of maxD. Indeed, qua second-countable space, any open of maxD
is a countable union of basic open sets, so it suffices to show that the latter are in
A (since A is closed under countable union). So let U =

⋂m
l=0 p

−1
jl

(Ujl)∩maxD be
a basic open set with j0, . . . , jm ∈ I and Ujl ∈ Σ(Djl) (for l = 0, . . . ,m). Since A
is closed under finite intersection, it suffices to show that each p−1jl (Ujl) ∩maxD
is in A. Indeed, given jl, let, since i0 ≤ i1 ≤ . . . is cofinal,ik ≥ jl. Then, similarly
as above,

p−1jl (Ujl) ∩maxD =
⋃

aik∈p
−1
jl ik

(Ujl)

p−1ik (aik) ∩maxD,

which is a finite union (since Dik is finite) of elements in A, whence in A.
Ad (3). Write C := Ci. Recall that H(n, C) is defined over the system S(D) as

H(n, C) = −
∑

(C0,...,Cn−1)∈Cn
µv
[n−1⋂
k=0

f
−k
Ck
]

log µv
[n−1⋂
k=0

f
−k
Ck
]
,

where f := f � maxD and µv is the probability measure on B(maxD) determined
by v.

Note that maxDi is in bijective correspondence with C by a 7→ b(a) :=
p−1i (a) ∩maxD. So we can write the sum as

H(n, C) = −
∑

(a0,...,an−1)∈(maxDi)n

µv
[n−1⋂
k=0

f
−k
b(ak)

]
log µv

[n−1⋂
k=0

f
−k
b(ak)

]
.

Moreover, we have, since f is max-preserving and f the restriction,

f
−k
b(ak) = f

−k(
p−1i (ak) ∩maxD

)
= f−k

(
p−1i (ak) ∩maxD

)
∩maxD

= f−k
(
p−1i (ak)

)
∩maxD.

Hence

µv
[n−1⋂
k=0

f
−k
b(ak)

]
= µv

[n−1⋂
k=0

f−k
(
p−1i (ak)

)
∩maxD

]
= µv

[n−1⋂
k=0

f−k
(
p−1i (ak)

)]
= v
[n−1⋂
k=0

f−k
(
p−1i (ak)

)]
.

6.3. Domain-entropy 251

So we can write the sum as

H(n, C) = −
∑

(a0,...,an−1)∈(maxDi)n

v
[n−1⋂
k=0

f−k
(
p−1i (ak)

)]
log v

[n−1⋂
k=0

f−k
(
p−1i (ak)

)]
= −

∑
a∈(maxDi)n

v
[
Upi(a)

]
log v

[
Upi(a)

]
= E(n, i),

as needed.
Ad (4). By (2), Cj refines Ci, so, by fact (1) about entropy (proposition 6.2.2)

and by (3),

E(n, i) = H(n, Ci) ≤ H(n, Cj) = E(n, j),

as needed. 2

Proof of theorem 6.3.2. We’ll prove the items in a different order than
listed, because to show that domain-entropy is independent of the diagram, we
need diagram-dependent versions of (3)–(5) which we mark with an asterisk and
state precisely below.

Ad (1). In the setting of definition 6.3.1, we need to show, for i ∈ I, that
limn

1
n
E(n, i) exists. By lemma 6.3.3 (3), we have limn

1
n
E(n, i) = limn

1
n
H(n, Ci)

and the latter exists by fact (2) about entropy (proposition 6.2.2).
Now, for (F, pi) giving rise to D in dDOMv, the extended real e(D, pi, F) in

equation (6.1) is well-defined.
Claim (5)∗: If (F, pi) gives rise to D, then e(D, pi, F) = h(S(D)).
Indeed, let i0 ≤ i1 ≤ . . . be cofinal in the index set I of F (which exists since

I is countable and directed). Write X := S(D). By lemma 6.3.3 (2), (Cik)k≥0
is a refining sequence of finite measurable partitions of X that generates B(X).
By fact (4) about entropy, h(X) = limk

(
limn

1
n
H(n, Cik)

)
. Since the terms are

increasing by fact (3), we can replace the ‘limk’ by ‘supk’. By lemma 6.3.3 (3),
this then further equals supk

(
limn

1
n
E(n, ik)

)
. So it remains to show

r := sup
k

(
lim
n

1

n
E(n, ik)

)
= sup

{
lim
n

1

n
E(n, i) : i ∈ I

} (
= e(D, pi, F)

)
.

By the subset relation, we have ≤. For the other direction, let i ∈ I and show
limn

1
n
E(n, i) ≤ r. By cofinality, there is ik ≥ i. By lemma 6.3.3 (4), we have, for

all n ≥ 0, that E(n, i) ≤ E(n, ik). So limn
1
n
E(n, i) ≤ limn

1
n
E(n, ik) ≤ r.

Claim (3)∗: If α : D→ E is in dDOMv and (F, pi) and (G, qj) giving rise to D
and E, respectively, then e(D, pi, F) ≥ e(E, qj, G).

Indeed, then S(α) : S(D)→ S(E) is a morphism in TS0cm, so by fact (5) and
by (5)∗,

e
(
D, pi, F

)
= h

(
S(D)

)
≥ h

(
S(E)

)
= e
(
E, qj, G

)
.

252 Chapter 6. Systems and domains 3: Application

Claim (4)∗: If D and E are isomorphic in dDOMv with (F, pi) and (G, qj)
giving rise to them, respectively, then e(D, pi, F) = e(E, qj, G).

Indeed, then there are, in particular, morphisms α : D → E and β : E → D
in dDOMv, so, by (3)∗, e(D, pi, F) ≥ e(E, qj, G) and e(E, qj, G) ≥ e(D, pi, F), as
needed.

Ad (2). Let (F, pi) and (G, qj) give rise to D in dDOMv. Since D is isomorphic
to itself, (4)∗ implies e(D, pi, F) = e(D, qj, G).

Hence, defining, for D in dDOMv, e(D) := e(D, pi, F) for some (F, pi) giving
rise to D is well-defined.

Now, (3)–(5) are implied by their asterisked versions. So it remains to show
the last item.

Ad (6). Let X be in TS0cm. Since the counit of the adjunction D̂ ` S is a natu-
ral isomorphism, X is isomorphic in TS0cm to SD̂(X). Since h is an isomorphism
invariant, h

(
X
)

= h
(
SD̂(X)

)
. Further, since D̂(X) is in dDOMv, we have, by (5),

h
(
SD̂(X)

)
= e
(
D̂(X)

)
, as needed. 2

6.3.3 Normal form for domain-entropy

Before we can state the normal form theorem, we fix some terminology. Recall
that a net (xi)I is a function from a directed set I to the reals R, and

lim inf
i∈I

xi := sup
i∈I

inf
j≥i

xj,

which takes values in the extended reals [−∞,+∞] (see, e.g., Beer 1993, p. 2). If
I is a directed set, we call, for reasons explained below, a projection t : I → N
a time function on I. Also, dDOMrv is the full subcategory of dDOMv whose
dynamical domains are max-reflective.

6.3.4. Theorem. Let D be in dDOMrv. Then there is a diagram (Di, pij)I giving
rise to D (via projections pi) and a time function t : I → N such that

e(D) = lim inf
i∈It

−1

t(i)

∑
a∈maxDi

vi(a) log vi(a), (6.2)

where It := {i ∈ I : t(i) 6= 0}.2

Comments: First, the term on the right in (6.2) only depends on the diagram
(Di, pij)I and the time function t, but not on the projections pi from the limit. So

2Thus, 1
t(i) is well-defined. Note that It is still directed (with the inherited order): Since t is

a projection, it is surjective, so, in particular, there is i ∈ I with t(i) 6= 0, whence It 6= ∅. And
if i, j ∈ It, let, since I is directed, k ∈ I with k ≥ i, j. Since t is monotone, t(k) ≥ t(i) > 0, so
k ∈ It.

6.3. Domain-entropy 253

it is ‘finitary’ in that it only depends on the finitary representation (the diagram)
of the dynamical domain together with an ‘abstract’ time assigned to each element
of the index set.

Second, the term on the right in (6.2) is static and not dynamic: it only
depends on the finite domains Di and their valuations vi, but not on the dynamics
fi on them. Thus, the dynamic domain-entropy e(D) can be expressed in a static
way by an appropriate choice of representation of D. Of course, the dynamic
information cannot be lost: the proof will show that it is, roughly, encoded into
the index set.

Third, here is an interpretation of

−
∑

a∈maxDi

vi(a) log vi(a) (6.3)

(for a given i ∈ I). Recall that we can think of a domain D as the (data type
of) possible outputs of a computational process (or a collection of processes);
the higher we go in the order of D, the more informationally complete (or
closer to termination) the outputs become. Then, the Scott-open sets are the
(finitely) observable properties of these processes, and the valuation v describes
the probabilities of observing these properties.3 Thus, for our finite domain Di

here, the vi(a) describe the probability of the computational process to terminate
with the (maximal, i.e., informationally complete) output a. Combining this with
the usual interpretation of Shannon entropy, we can interpret (6.3) as the average
uncertainty in the terminating output of the computational process.

Fourth, here is an interpretation of the time function t. As in the usual
interpretation of an expanding system of domains (Abramsky and Jung 1994,
sec. 3.1.4 and 3.3.2), we think of the finite domains Di as increasingly better
approximations to the domain D. Let’s assume for a moment that the index set
I is N and t : I → N the identity function. Then Di is the approximation to
D that we’ve reached after i = t(i) many (time-) steps. The limit expression
in (6.2) then describes, roughly, the time-average of the average uncertainty in the
terminating output—much like limn

1
n
H(n, C) describes the time-average of the

average uncertainty of the n-long behavior of the system seen through partition C.
However, in general, there may be many approximation chains (Di) to D that are
brought together by indexing them over a directed set I rather than just N. In
that case, the time function t assigns each index i the number of time-steps that
were needed to reach approximation Di to D.

Fifth, the ‘lim inf’ merges the two limits (the ‘sup’ and the ‘lim’) found in the
definition of both metric entropy and domain-entropy. (Cf. lemma 6.3.8 below.)
So domain-entropy is not formulated anymore as one limit over partitions and
one limit over time. Rather it is formulated as a ‘unified’ limit over the index set:

3We’ve mentioned these ideas (and references) in the brief introduction to domain theory in
chapter 4.

254 Chapter 6. Systems and domains 3: Application

as envisaged in the ‘second way’ of approaching domain-theoretic entropy at the
beginning of section 6.3.1.

We prove the theorem in the remainder of this subsection. We start with
several preparatory lemmas.

6.3.5. Lemma. In the setting of lemma 6.3.3 (2), J := {(n, Cik) : n, k ∈ N} is
cofinal in I(ClpmaxD).

Proof. Since each Ck := Cik is a finite clopen partition of maxD, it in particular
is a finite ClpmaxD-cover of maxD, so J is indeed a subset of I(ClpmaxD). So
we need to show that, for a finite ClpmaxD-cover D of maxD, there is some k
such that D ≤ Ck.

Write D = {D0, . . . , Dr}. Each Dk is, qua open set, a union of basic (cl)opens
and, qua compact set (since it is a closed subset of the compact space) this can be
assumed to be a finite union. Let D′ be the cover consisting of the finitely many
basic clopens occurring in the unions of the Dk. Then D′ is a finite ClpmaxD-cover
of maxD consisting of basic clopens with D ≤ D′ (every D′-element is a subset of
a D-element, and every D-element can be written as union of D′-elements).

Write D′ = {D′0, . . . , D′s}. Each D′l is a finite intersection of sets of the form
p−1i (Ui) ∩maxD. Since (ik) is cofinal in the directed I, we can choose ik to be
bigger than all the finitely many indices i used in the intersections of the D′l’s.
We claim that Ck ≥ D′ (which finishes the proof).

(1) Given a Ck-element p−1ik (a)∩maxD with a ∈ maxDik , we need to show that

it is a subset of some D′-element. Let x ∈ p−1ik (a)∩maxD (since pik is a projection),

so x ∈ D′l for some l ∈ {0, . . . , s}. Qua basic open, write D′l =
⋂m
t=0 p

−1
jt

(Ujt) ∩
maxD for j0, . . . , jm ∈ I and Ujt ∈ Σ(Djt). To show p−1ik (a) ∩ maxD ⊆ D′l,

let t ∈ {0, . . . ,m} and show p−1ik (a) ∩ maxD ⊆ p−1jt (Ujt) ∩ maxD. Indeed, if

y ∈ p−1ik (a) ∩ maxD, then y(ik) = a = x(ik), so, since jt ≤ ik and x ∈ D′l, also
y(jt) = x(jt) ∈ Ujt .

(2) Given x ∈ D′l (for l ∈ {0, . . . , s}), we need to find a Ck-element C with
x ∈ C ⊆ D′l. Again, write D′l =

⋂m
t=0 p

−1
jt

(Ujt) ∩ maxD, and let a := x(ik). So

x ∈ C := p−1ik (a) ∩ maxD ∈ Ck and, as seen in (1), C ⊆ D′l (if y ∈ C, then
y(ik) = a = x(ik), so, since jt ≤ ik and x ∈ D′l, also y(jt) = x(jt) ∈ Ujt). 2

6.3.6. Lemma. If (Di, pij)I is a finitary dynamical expanding system that is
eventually valuation-preserving and J ⊆ I is cofinal, then (Di, pij)J is again such
a diagram.

Proof. Then J is a countable directed index set, each Di is a finite max-
normalized dynamical Scott domain, and the pij are dynamical morphisms with
the appropriate commutativity conditions. So we need to show that (Di, pij)J is
(i) upward deterministic and (ii) eventually valuation-preserving.

6.3. Domain-entropy 255

Ad (i). Let i ∈ J and ai, bi 6= b′i ∈ maxDi with bi, b
′
i ≥ fi(ai). Since the original

diagram is upward deterministic, there is i ≤ j ∈ I with ∀aj, bj, b′j ∈ maxDj:

pij(aj) = ai, pij(bj) = bi, pij(b
′
j) = b′i ⇒ bj 6≥ fj(aj) or b′j 6≥ fj(aj). (6.4)

Since J ⊆ I is cofinal, let j ≤ k ∈ J . Let ak, bk, b
′
k ∈ maxDk with pik(ak) = ai,

pik(bk) = bi, and pik(b
′
k) = b′i. Show bk 6≥ fk(ak) or b′k 6≥ fk(ak). Indeed, consider

aj := pjk(ak), bj := pjk(bk), and b′j := pjk(bk). Since pjk is max-preserving, they are
in maxDj. They satisfy the condition of (6.4): pij(aj) = pij(pjk(ak)) = pik(ak) =
ai and similarly for bj and b′j. So bj 6≥ fj(aj) or b′j 6≥ fj(aj). This implies the
claim: If we had bk ≥ fk(ak), then, by monotonicity and max-semi-equivariance
of pjk,

bj = pjk(bk) ≥ pjk(fk(ak)) ≥ fj(pjk(ak)) = fj(aj),

and similarly for b′k.
Ad (ii). All Di are finite and, for i ∈ J and Ui ∈ Σ(Di), there is, since the

original diagram is eventually valuation-preserving, some i ≤ j0 ∈ I such that, for
all j0 ≤ j ∈ I a certain equation e(j) holds.4 By cofiniality, let j0 ≤ j1 ≤ J . So, in
particular, for j1 ≤ j ∈ J , equation e(j) holds, as needed. Moreover, for i ≤ j in
J , if ai, bi ∈ maxDi with fi(ai) ≤ bi, then there are, since the original diagram is
eventually valuation-preserving, some aj, bj ∈ maxDj such that pij(aj) = ai and
pij(bj) = bi and fj(aj) ≤ bj, as needed. 2

6.3.7. Lemma. Let X be in TS0cm. Let (Di, pij)I(ClpX) be the diagram with which

the observation domain D̂(X) is constructed. Then, for any finite clopen partition
C of X and n ≥ 0, we have i := (n, C) ∈ I(ClpX) and

H(n, C) = −
∑

a∈maxDi

vi(a) log vi(a).

Proof. Since C is a finite clopen partition of X it, in particular, is a finite
ClpX-cover of X, so i = (n, C) ∈ I(ClpX). Note that, since C is a partition,
each Oi(y) (for y ∈ X) is of the form {(Cy

0 , . . . , C
y
n−1)} where Cy

k is the unique
C-cell that contains T k(y).5 Write maxDi =

{
{Oi(x1)}, . . . , {Oi(xm)}

}
and

Oi(xl) = {(C l
0, . . . , C

l
n−1)}. Then

⋂n−1
k=0 T

−kC l
k = [xl]i.

6

4Namely, vj
(
f−1j (p−1ij (↓maxUi)) ∩maxDj

)
= vj

(
p−1ij (↓maxUi) ∩maxDj

)
.

5Proof: If t ∈ Oi(y), then, by definition, t ∈ Cn and y ∈
⋂n−1
k=0 T

−k(t(k)), so, since Cyk
is the unique cell containing T ky, t(k) = Cyk , so t = (Cy0 , . . . , C

y
n−1). Conversely, since t =

(Cy0 , . . . , C
y
n−1) ∈ Cn is such that y ∈

⋂n−1
k=0 T

−k(Cyk), we have t ∈ Oi(y).
6If y ∈

⋂n−1
k=0 T

−kClk, then each Clk is the unique C-cell that contains T k(y), so, Oi(y) =
{(Cl0, . . . , Cln−1)} = O(xl), so y ∈ [xl]i. Conversely, if y ∈ [xl]i, then Oi(y) = Oi(xl), so y also

follows (Cl0, . . . , C
l
n−1), i.e., y ∈

⋂n−1
k=0 T

−kClk.

256 Chapter 6. Systems and domains 3: Application

Define Cn• as the set of those (C0, . . . , Cn−1) ∈ Cn such that
⋂n−1
k=0 T

−k(Ck) 6= ∅.
Define a function b : maxDi → Cn• by

b({Oi(xl)}) := (C l
0, . . . , C

l
n−1)

We claim that this is a bijection. Surjective: For (C0, . . . , Cn−1), let y ∈⋂n−1
k=0 T

−k(Ck) and let xl be such that y ∈ [xl]i (since these equivalence classes
partition X). So {(C0, . . . , Cn−1)} = Oi(y) = O(xl) = {(C l

0, . . . , C
l
n−1)}, whence

b({Oi(xl)}) = (C0, . . . , Cn−1).
Injective: If {Oi(xl)} 6= {Oi(xl′)}, then

⋂n−1
k=0 T

−k(C l
k) = [xl]i 6= [xl′]i =⋂n−1

k=0 T
−k(C l′

k), so (C l
0, . . . , C

l
n−1) 6= (C l′

0 , . . . , C
l′
n−1).

Recall that, by definition of vi, we have vi
(
{Oi(xl)}

)
= µ([xl]i). Also recall

the convention 0 log 0 = 0. Hence

−
∑

a∈maxDi

vi(a) log vi(a) = −
∑

{Oi(xl)}∈maxDi

vi({Oi(xl)}) log vi({Oi(xl)})

= −
∑

{Oi(xl)}∈maxDi

µ([xl]i) log µ([xl]i)

= −
∑

(C0,...,Cn−1)∈Cn•

µ
(n−1⋂
k=0

T−kCk
)

log µ
(n−1⋂
k=0

T−kCk
)

= −
∑

(C0,...,Cn−1)∈Cn
µ
(n−1⋂
k=0

T−kCk
)

log µ
(n−1⋂
k=0

T−kCk
)

= H(n, C),

as needed. 2

6.3.8. Lemma. Let X = (X, τ, µ, T) be in TS0cm. Let (Ck) be a refining sequence
of measurable partitions that generates B(τ). Then

h(X) = lim inf
(n,k)∈N+×N

1

n
H(n, Ck).

where N+ × N = {(n, k) ∈ N2 : n > 0, k ≥ 0} is equipped with the product order
(whence directed).7

Proof. Define xn,k := 1
n
H(n, Ck), and show h(X) = sup(n,k) inf(m,l)≥(n,k) xm,l.

Recall from the facts about entropy (proposition 6.2.2) that: (a) for each k,
(xn,k)n decreases to limn xn,k, (b) for k ≤ l, limn xn,k ≤ limn xn,l, and (c) h(X) =

7I.e., (n, k) ≤ (m, l) iff n ≤ m and k ≤ l.

6.3. Domain-entropy 257

limk

(
limn xn,k

)
. By (a), we can replace limn by infn, and, by (b), we can replace

limk by supk. Further, for any (n, k),

inf
(m,l)≥(n,k)

xm,l = inf{xm,l : m ≥ n, l ≥ k}

= inf{xm,k : m ≥ n} (xm,l increases in l)

= inf{xm,k : m ≥ 1} (xm,l decreases in m)

= inf
n
xn,k.

Hence

sup
(n,k)

inf
(m,l)≥(n,k)

xm,l = sup
(n,k)

inf
n
xn,k = sup

k
inf
n
xn,k = h(X),

as needed. 2

Proof of theorem 6.3.4. Let (Di, pij)I(ClpmaxD) be the diagram with which

the observation domain D̂(S(D)) is constructed using projections pi. Since D is in
dDOMrv, we have, by the category equivalence to TS0c, that there is an isomorphism
u : D→ D̂S(D). Further, since D is in dDOMrv, it has a diagram giving rise to it
with a cofinal chain in the index set, so we can apply lemma 6.3.3 (2) and obtain a
refining sequence (Ck) of clopen partitions of maxD that generates B(maxD). We
can assume that C0 = {maxD} is the trivial partition. By lemma 6.3.5 we further
have that I := {(n, Ck) : n, k ∈ N} is cofinal in I(ClpmaxD). By lemma 6.3.6,
F := (Di, pij)I is an eventually valuation-preserving finitary dynamical expanding
system. And it gives rise to D via projections qi := pi ◦ u : D→ Di.

8

Define the function t : I → N by t(n, Ck) = n. This is a projection: It clearly
is monotone, and we find a corresponding embedding as follows. Define e : N→ I
by e(n) := (n, {maxD}). By construction, e is monotone and t ◦ e = idN. And
e ◦ t ≤ idI since e ◦ t(n, Ck) = (n, {maxD}) ≤ (n, Ck) since {maxD} ≤ Ck (every
element of Ck is a subset of maxD, and for x ∈ maxD, there is C ∈ Ck with
x ∈ C ⊆ maxD). Note that It = {(n, Ck) ∈ I : n > 0, k ≥ 0}.

To show the desired equation, we can apply lemma 6.3.8, since X := S(D) is in
TS0cm and (Ck) a refining sequence of finite measurable partitions that generates

8The usual argument: (D, qi)I is a cone to F with D in dSCOp
nm (we have pij ◦ qj =

pij ◦ pj ◦ u = pi ◦ u = qi). Assume (E, βi)I is another such cone. Then (E, β′i)I(Clp maxD)

with β′i := piki ◦ βki (for some i ≤ ki ∈ I with ki = i if i ∈ I) is a cone to the original
diagram: given i ≤ j in I(ClpmaxD), let ki, kj ≤ l ∈ I, so pij ◦ β′j = pij ◦ pjkj ◦ βkj =
pij ◦ pjkj ◦ pkj l ◦ βl = pil ◦ βl = piki ◦ pkil ◦ βl = piki ◦ βki = β′i. So there is a unique morphism

β′ : E → D̂S(D) with pi ◦ β′ = β′i (for i ∈ I(ClpmaxD)). Define β := u−1 ◦ β′ : E → D.
Then, for i ∈ I, qi ◦ β = (pi ◦ u) ◦ (u−1 ◦ β′) = pi ◦ β′ = β′i = βi. And if γ : E → D is

another morphism with qi ◦ γ = βi, then u ◦ γ : E→ D̂S(D) is such that, for i ∈ I(ClpmaxD),
pi ◦ (u ◦ γ) = piki ◦ pki ◦ u ◦ γ = piki ◦ qki ◦ γ = piki ◦ βki = β′i. So u ◦ γ = β′, so, by ‘multiplying’
u−1 to the left, γ = u−1 ◦ β′ = β.

258 Chapter 6. Systems and domains 3: Application

B(X), so

e(D)
thm 6.3.2

= h(S(D)) = lim inf
(n,k)∈N+×N

1

n
H(n, Ck).

We can re-index this by

lim inf
(n,k)∈N+×N

1

n
H(n, Ck) = lim inf

(n,Ck)∈It

1

t(n, Ck)
H(n, Ck) = lim inf

i∈It

1

t(i)
H(i).

Since (Di, pij)I(ClpmaxD) is the diagram with which the observation domain D̂(X)
is constructed and each Ck is a clopen partition of X = maxD, we can apply
lemma 6.3.7, so

lim inf
i∈It

1

t(i)
H(i) = lim inf

i∈It

−1

t(i)

∑
a∈maxDi

vi(a) log vi(a),

as needed. 2

6.4 Max-entropy

In this section, we define the domain-theoretic counterpart to topological entropy—
which we’ll call max-entropy. We first state its definition (section 6.4.1) and
then show that it indeed is a proper counterpart (section 6.4.2). We keep the
presentation as parallel as possible to that of domain-entropy, but, for reasons of
space, we omit a discussion of normal form.

6.4.1 Definition of max-entropy

Analogously to topological (as opposed to metric) entropy, we can drop the
assumption of being valuation-preserving when considering max-entropy and
hence work in dDOM. Thus, we no longer require the diagrams giving rise to a
dynamical domains to be eventually valuation-preserving.

6.4.1. Definition. Let D = (D, v, f) be in dDOM and let F = (Di, pij)I be a
diagram giving rise to D via projections pi. (We ignore the valuation v.) For i ∈ I
and n ≥ 1, define

W (n, i) :=
{
a ∈ (maxDi)

n : ∃x ∈ maxD ∀k = 0, . . . , n− 1. pi(f
k(x)) = a(k)

}
and M(n, i) := log |W (n, i)|. We define the max-entropy of D as

m
(
D
)

:= sup
{

lim
n→∞

1

n
M(n, i) : i ∈ I

}
. (6.5)

6.4. Max-entropy 259

Below we show that these limits exist. In general, for D in dDOM, we define
m(D) with respect to some (F, pi) giving rise to D (below we show that this is
independent of the choice of (F, pi)).

Comments: First, intuitively, W (n, i) is the set of ‘words’ of length n over the
finite alphabet consisting of the maximal elements of Di that can be realized by
the projection of the trajectory of some maximal element of D under the domain
dynamics. If the dynamics is very chaotic, their number grows exponentially in n,
and if the dynamics is very restricted, their number grows slowly. Thus, its ‘average
growth rate’ limn→∞

1
n
M(n, i) provides a good indication of the complexity of the

domain dynamics as seen at (i.e., projected to) the i-th component Di. So the
supremum m(D) of these growth rates describes the complexity of the domain
dynamics that we have to reckon with.

Second, hence the intuition is much like that of the topological entropy of a
subshift (see, e.g., Lind and Marcus 1995). Except that, as in the general case of
topological entropy, we also take a supremum, but now over indices which take
over the role of open covers.

6.4.2 Main theorem on max-entropy

The following is the main theorem about max-entropy showing, in particular,
that it is well-defined (items (1) and (2) below), an isomorphism invariant as any
good notion of entropy should be (items (3) and (4) below), and a counterpart to
topological entropy (items (5) and (6) below).

6.4.2. Theorem. 1. The limits in equation (6.5) exist.

2. The max-entropy m(D) is independent of the choice of diagram giving rise
to D.

3. If α : D→ E is a surjective morphism in dDOM, then m(D) ≥ m(E).

4. In particular, max-entropy is an isomorphism invariant: two dynamical
domains that are isomorphic in dDOM have the same max-entropy.

5. If D is in dDOM, then m(D) = htop(S(D)).

6. If X is in TS0c, then htop(X) = m(D̂(X)).

We prove the theorem in the remainder of this subsection. We start with a
lemma. Recall that an open cover D refines another C (written C � D) iff every
D-element is a subset of a C-element.

6.4.3. Lemma. Let D be in dDOM and let (Di, pij)I be a diagram giving rise to
D via projections pi. Then

260 Chapter 6. Systems and domains 3: Application

1. For each i ∈ I, Ci :=
{
p−1i (a) ∩ maxD : a ∈ maxDi

}
is a finite clopen

partition of maxD.

2. If i0 ≤ i1 ≤ . . . is cofinal in I, then (Cik)k is a refining sequence of finite
clopen partitions such that, for any open cover D of maxD, there is k such
that Cik refines D.

3. For each i ∈ I and n ≥ 0, we have Htop(n, Ci) = M(n, i) (where Htop(n, Ci)
is calculated in the system S(D)).

4. For i ≤ j in I and n ≥ 0, M(n, i) ≤M(n, j).

Proof. Ad (1). This is lemma 6.3.3 (1) (which didn’t use that the diagram is
eventually valuation-preserving).

Ad (2). By lemma 6.3.3 (2), we know that (Cik) is a refining sequence of
finite clopen partitions (again, this didn’t use that the diagram is eventually
valuation-preserving). So they also are refining as open covers.9 So let D be an
open cover of maxD and find k such that D � Cik .

Since each D-element is open, it is a union of basic clopen sets. Let D′ be the
collection of these basic clopens. Then D � D′ since each D′-element is a subset
of a D-element. Moreover, D′ is an open cover of the compact maxD, whence
there is a finite subcover D′′ = {D0, . . . , Dm}. We have D′ � D′′ since, trivially,
every D′′-element is (a subset of) a D′-element.

Since D′′ is a finite ClpmaxD-cover, (0,D′′) ∈ I(ClpmaxD). In lemma 6.3.5,
we’ve show (without using that the diagram is eventually valuation-preserving)
that {(n, Cik) : n, k ∈ N} is cofinal in I(ClpmaxD). In particular, there is k such
that Cik ≥ D′′. This implies Cik � D′′ � D, as needed.

Ad (3). Write C := Ci. Recall that Htop(n, C) = logN(Cn−10). We have, writing
f := f � maxD,

Cn−10 =
{ n−1⋂
k=0

f
−k
Uk : U0, . . . , Un−1 ∈ C

}
=
{ n−1⋂
k=0

f
−k(

p−1i (a(k)) ∩maxD
)

: a ∈ (maxDi)
n
}
.

Since C is a (clopen) partition, this is a partition. So, after possibly discarding
the empty set, Cn−10 has no nontrivial subcovers, i.e., N

(
Cn−10

)
=
∣∣Cn−10 \ {∅}

∣∣.
So it suffices to show that there is a bijection b : W (n, i)→ Cn−10 \ {∅}. Then

|W (n, i)| = |Cn−10 \ {∅}| = N
(
Cn−10

)
, so M(n, i) = Htop(n, C).

9Proof: If D is a finite clopen partition that partition-refines another finite clopen partition
C, it also cover-refines it: Let D ∈ D. Pick some x ∈ D. Then x ∈ C for some C ∈ C. By
partition-refinement, write C = D1 ∪ . . . ∪Dn. Then x ∈ Di for some i ∈ {1, . . . , n}. But then
D = Di (if Di 6= D, then x would be in two partition cells). So D ⊆ C, as needed.

6.4. Max-entropy 261

Indeed, define b : W (n, i)→ Cn−10 \ {∅} by

b(a) :=
n−1⋂
k=0

f
−k(

p−1i (a(k)) ∩maxD
)
.

Well-defined: If a ∈ W (n, i) there is, by definition, x ∈ maxD such that, for all

k = 0, . . . , n− 1, pi(f
k
(x)) = pi(f

k(x)) = a(k). So
⋂n−1
k=0 f

−k(
p−1i (a(k)) ∩maxD

)
is nonempty and hence in Cn−10 \ {∅}.

Surjective: If
⋂n−1
k=0 f

−k(
p−1i (a(k)) ∩maxD

)
∈ Cn−10 \ {∅} for a ∈ (maxDi)

n,
then, since this intersection is nonempty, there is x ∈ maxD such that, for all
k = 0, . . . , n − 1, we have pi(f

k(x)) = a(k), whence a ∈ W (n, i) and b(a) =⋂n−1
k=0 f

−k(
p−1i (a(k)) ∩maxD

)
.

Injective: If a 6= a′ in W (n, i), there is k ∈ {0, . . . , n−1} such that a(k) 6= a′(k).

If b(a) = b(a′), then there is x ∈ b(a) ∩ b(a′), whence a(k) = pi(f
k
(x)) = a′(k),

contradiction.
Ad (4). By (2), Cj refines Ci as open cover, so, by fact (1) about entropy

(proposition 6.2.4) and by (3),

M(n, i) = Htop(n, Ci) ≤ Htop(n, Cj) = M(n, j),

as needed. 2

Proof of theorem 6.4.2. We’ll prove the items in a different order than
listed, because to show that max-entropy is independent of the diagram, we need
diagram-dependent versions of (3)–(5) which we mark with an asterisk and state
precisely below.

Ad (1). In the setting of definition 6.4.1, we need to show, for i ∈ I, that
limn

1
n
M(n, i) exists. By lemma 6.4.3 (3), we have

lim
n

1

n
M(n, i) = lim

n

1

n
Htop(n, Ci)

and the latter exists by fact (2) about entropy (proposition 6.2.4).
Now, for (F, pi) giving rise to D, the extended real m(D, pi, F) in equation (6.5)

is well-defined.
Claim (5)∗: If (F, pi) gives rise to D, then m(D, pi, F) = h(S(D)).
Indeed, let i0 ≤ i1 ≤ . . . be cofinal in the index set I of F (I is countable

and directed). Write X := S(D). By lemma 6.4.3 (2), (Cik) is a refining sequence
of finite clopen partitions that eventually refine every cover. By fact (4) about
entropy, htop(X) = limk

(
limn

1
n
Htop(n, Cik)

)
. Since the terms are increasing by

fact (3), we can replace the ‘limk’ by ‘supk’. By lemma 6.4.3 (3), this then further
equals supk

(
limn

1
n
M(n, ik)

)
. So it remains to show

r := sup
k

(
lim
n

1

n
M(n, ik)

)
= sup

{
lim
n

1

n
M(n, i) : i ∈ I

} (
= m(D, pi, F)

)
.

262 Chapter 6. Systems and domains 3: Application

By the subset relation, we have ≤. For the other direction, let i ∈ I and show
limn

1
n
M(n, i) ≤ r. By cofinality, there is ik ≥ i. By lemma 6.4.3 (4), we have, for

all n ≥ 0, that M(n, i) ≤M(n, ik). So limn
1
n
M(n, i) ≤ limn

1
n
M(n, ik) ≤ r.

Claim (3)∗: If α : D → E is in dDOM with α(maxD) = maxE, and (F, pi)
and (G, qj) give rise to D and E, respectively, then m(D, pi, F) ≥ m(E, qj, G).

Indeed, then S(α) : S(D) → S(E) is a surjective morphism in TS0c, so by
fact (5) and by (5)∗,

m
(
D, pi, F

)
= h

(
S(D)

)
≥ h

(
S(E)

)
= m

(
E, qj, G

)
.

Claim (4)∗: If D and E are isomorphic in dDOM with (F, pi) and (G, qj) giving
rise to them, respectively, then m(D, pi, F) = m(E, qj, G).

Indeed, then there are, in particular, morphisms α : D → E and β : E →
D in dDOMrv with α(maxD) = maxE and β(maxE) = maxD, so, by (3)∗,
m(D, pi, F) ≥ m(E, qj, G) and m(E, qj, G) ≥ m(D, pi, F), as needed.

Ad (2). Let (F, pi) and (G, qj) give rise to D. Since D is isomorphic to itself,
(4)∗ implies m(D, pi, F) = m(D, qj, G).

Hence, defining, for D in dDOM, m(D) := m(D, pi, F) for some (F, pi) giving
rise to D is well-defined.

Now, (3)–(5) are implied by their asterisked versions. So it remains to show
the last item.

Ad (6). Let X be in TS0c. Since the counit of the adjunction D̂ ` S is a natural
isomorphism, X is isomorphic in TS0c to SD̂(X). Since htop is an isomorphism

invariant, htop

(
X
)

= htop

(
SD̂(X)

)
. Further, since D̂(X) is in dDOM, we have,

by (5), htop

(
SD̂(X)

)
= m

(
D̂(X)

)
, as needed. 2

6.5 Conclusion

Our aim was to indicate the potential of the adjunction between dynamical domains
and dynamical systems. We did so by determining domain-theoretic counterparts
to the important system-theoretic concept of entropy: i.e., independently defined
invariants of dynamical domains that turn out to correspond to system-theoretic
entropy along the adjunction. (A worked example is given in appendix B of the
thesis.) This clearly is but a first step. Here are some directions for future work.

First, how independent is the static representation of entropy given by the
normal formal theorem from the diagram and the time function? Second, develop
a normal form for max-entropy. Third, how do these domain-theoretic notions
of entropy relate to domain-theoretic constructions (product, sum, fixed-point,
powerdomain, etc.), and can it be described categorically as a fixed-point oper-
ator? Fourth, famously, variational principles relate metric notions of entropy
to topological notions of entropy. (The classic theorem is that topological en-
tropy is the supremum of the metric entropies of invariant measures.) What are

6.5. Conclusion 263

analogous principles for the domain-theoretic notions of entropy? Fifth, Ornstein
theory describes when entropy is a complete isomorphism invariant. What is
the domain-theoretic counterpart? When does identical domain-entropy imply
modeling metrically isomorphic systems? Sixth, entropy has also been discussed
in the context of computation (Fredkin and Toffoli 1982). How does this relate to
the computational interpretation of dynamical domains as computational models
for dynamical systems describing, for example, physical computation?

Appendix

Proof sketch of proposition 6.2.2. We only mention the main ideas (or
facts), but provide detailed references to Walters (1982, sec. 4).

To adjust notation, note that there is a one-to-one correspondence between
finite partitions of a probability space and finite sub-σ-algebras (see Walters 1982,
sec. 4.1): If C is a finite measurable partition, let A(C) be the finite σ-algebra
of unions of sets from C. (Conversely, for each finite sub-σ-algebra A there is a
natural partition ξ(A) and the two operations A and ξ are inverse to each other.)
It is readily seen that C � D iff A(C) ⊆ A(C) (Walters 1982, def. 4.2). So entropy
could be developed with either concept. Walters (1982, sec. 4) uses the σ-algebra
notation more (though not exclusively). But the partition notation will be more
convenient for us.

Here is how to adjust the notation: H(1, C) in our notation is H(A(C)) :=
H(ξA(C)) = H(C) = −

∑
C∈C µ(C) log µ(C) in the notation of Walters (1982,

def. 4.6). And H(n, C) in our notation is H
(∨n−1

k=0 T
−k(A(C))

)
in the notation

of Walters (1982, def. 4.9) where
∨n−1
k=0 · = σ

(⋃n−1
k=0 ·

)
. This is because, as noted

by Walters (1982, above def. 4.9), ξ
∨n−1
k=0 T

−1(A(C)) is the partition provided by
the sets of the form

⋂n−1
k=0 T

−kCk for Ck ∈ C. As Walters (1982, def. 4.10) notes,
entropy can be defined equivalently as supremum over all finite sub-σ-algebras or
over all finite partitions, so our h(X) is identical to h(T) there.

Ad (1). If C � D, then A(C) ⊆ A(D), so, since H(·) is readily seen to
be �-monotone, H(n, C) = H

(∨n−1
k=0 T

−k(A(C))
)
≤ H

(∨n−1
k=0 T

−k(A(D))
)

=
H(n,D) (Walters 1982, proof of thm. 4.12 (iii)).

Ad (2). Walters (1982, thm. 4.10) shows that 1
n
H
(∨n−1

k=0 T
−1A(C)

)
= 1

n
H(n, C)

decreases to limn
1
n
H
(∨n−1

k=0 T
−1A(C)

)
. The quick way to show that the limit

exists (without the ‘decreasing’) is by a subadditivity argument: Show that the
sequence (H(n, C))n is subadditive (i.e., H(n+m, C) ≤ H(n, C) +H(m, C)) and
conclude with Fekete’s Subadditive Lemma that limn

1
n
H(n, C) exists.

Ad (3). Immediate from (1).
Ad (4). If (Ci) is a refining sequence of finite partitions generating B(τ),

then (A(Ck))k is an increasing sequence of finite σ-algebras with
∨∞
k=0A(Ck) :=

σ
(⋃∞

k=0A(Ck)
)

= σ
(⋃∞

k=0 Ck
)

= B(τ). A standard result about entropy then
is that the entropy of T with respect to the A(Ck) converges to the entropy of

264 Chapter 6. Systems and domains 3: Application

T (Walters 1982, thm. 4.22):

h(X) = h(T) = lim
k

(
lim
n

1

n
H
(n−1∨
k=0

T−1A(Ck)
))

= lim
k

(
lim
n

1

n
H(n, Ck)

)
.

Ad (5). If ϕ : X → Y is in TS0cm with X = (X, τ, µ, T) and Y = (Y, σ, ν, S),
then ϕ is a factor (X,B(τ), µ, T) → (Y,B(σ), ν, S). It again is a basic property
of entropy that it at most decreases along factors (Walters 1982, comment after
thm. 4.11). So h(X) = h(T) ≥ h(S) = h(Y). 2

Proof sketch of proposition 6.2.4. We again only mention the main ideas
with detailed references to (Walters 1982, ch. 7). The only notational difference is
that we write Cn−10 instead of

∨n−1
k=0 T

−kC.
Ad (1). If C � D (as open covers), then also Cn−10 � Dn−10 , whence N(Cn−10) ≤

N(Dn−10) (if {V1, . . . , Vn} is a subcover of Dn−10 with minimal cardinality, pick, for
i = 1, . . . , n, some Ui ∈ Cn−10 with Ui ⊇ Vi, so {U1, . . . , Un} is a subcover of Cn−10),
so Htop(n, C) ≤ Htop(n,D). (See Walters (1982), proofs of remarks (3) and (7) on
pp. 165–166.)

Ad (2). The existence of the limit limn
1
n
Htop(n, C) is again shown by a

subadditivity argument. See Walters (1982, thm. 7.1).
Ad (3). Immediate from (1).
Ad (4). Since (Ck) is refining, the sequence

(
limn

1
n
Htop(n, Ck)

)
is increasing

by (3), so its limit is its supremum. So we need to show supC limn
1
n
Htop(n, C) =

supk limn
1
n
Htop(n, Ck). Here ≥ follows qua subset, and ≤ follows by (3) together

with (Ck) eventually refining any open cover. (Also see, e.g., Downarowicz 2011,
rmk. 6.1.7.)

Ad (5). If ϕ : X→ Y is a surjective morphism in TS0c, then ϕ is a surjective,
continuous, and equivariant map, so (similar to factors in the measure-theoretic
case), h(X) ≥ h(Y). See Walters (1982, thm. 7.2). 2

Part Three

Stability

Chapter 7

Interlude: symbolic vs. non-symbolic

Abstract In this informal interlude, we wrap up the previous two parts, and
we see how this leads us to the questions of the present third and final part.
Wrapping up, the work so far suggests the thesis that non-symbolic computation
is the limit of symbolic computation (section 7.1 below). This then poses the
converse question: when can non-symbolic computation be regarded as realizing
symbolic computation (section 7.2)? As a guiding intuition, we suggest that the
system’s behavior should be fairly stable. We explore this idea using the concepts
of ergodicity and randomness. In the next chapter, we start studying the idea in
detail with an analysis of the concept of stability that it involves.

7.1 Non-symbolic computation as limit of sym-

bolic computation

We describe how our results support the intuitive thesis that non-symbolic com-
putation is the limit of symbolic computation. This is summarized in figure 7.1,
which we now explain.

Let X be a dynamical system. For convenience, say X is compact and zero-
dimensional, i.e., in TS0c. (Then we don’t need to specify a choice of basis, but of
course our results also hold in the general case when X is in DS.) Then we can
apply the ‘semantic denotation’ functor D̂ to obtain the dynamical domain D̂(X),
which provides a computational model for X.

This already provides a sense in which the non-symbolic computation provided
by X is a limit of symbolic computation: X is, up to isomorphism, the system
SD̂(X) modeled by the dynamical domain D̂(X). And the states of this system are
the maximal elements of the domain D underlying D̂(X). These maximal elements,
in turn, correspond to maximal ideals of compact elements of D. Recall that the
compact elements are the ‘finite’ and ‘directly accessible’ elements of the domains
and thus are much like symbols. Intuitively, they represent the finite outputs of

267

268 Chapter 7. Interlude: symbolic vs. non-symbolic

Systems Domains

Limit (non-symbolic) X
D̂
� D̂(X)

Approximation (symbolic) Mi

T
� T(Mi) ∼= Di

Figure 7.1: Non-symbolic computation as limit of symbolic computation.

symbolic computational processes: here, the process of finite observations. So the
states of X ∼= SD̂(X) can be regarded as limits—or infinite sequences—of these
symbolic outputs.

We may call this the domain-theoretic sense in which X is a limit of symbolic
computation. It regards states of X as limits of (outputs of) symbolic computation.
There also is an additional sense: the category-theoretic one.1 It regards the whole
system X as a limit of structures describing symbolic computation. Qua dynamical
domain, D̂(X) is the restricted limit of the finite dynamical dcpos Di obtained from
finite observations of the system X. In particular, the domain D underlying D̂(X)
is the limit of the domains Di underlying Di. (In domain-theoretic terminology,
D is the bilimit of the Di because it is, in category-theoretic terminology, both
the limit and the colimit.) Since Di is a finite Scott domain, it is an initialized
domain (choosing the least element as initial element), so we can build the BTS
Mi := B(Di). Its states are the elements of Di and x → y iff x ≤ y. And the
trajectory domain T(Mi) is, after discarding the empty trajectory, isomorphic to
Di. Thus, qua finite BTS, Mi can be regarded as describing symbolic computation.
And the Mi can be regarded as approximating in the limit the system X in the
sense that the limit of their trajectory domains is the domain modeling X.2

So far, this shows that non-symbolic computation can be regarded as a limit
of symbolic computation: every dynamical system is isomorphic to the system
modeled by a restricted limit of a finitary dynamical expanding system of max-
reflective dynamical dcpos. In other words, limits of symbolic computation provide
an upper bound to what can be done by non-symbolic computation. However,
our results also suggest that this upper bound is achieved: every limit of symbolic
computation also constitutes non-symbolic computation. Indeed, every restricted
limit of a finitary dynamical expanding system (of max-reflective dynamical dcpos)
is a (max-reflective) dynamical domain and hence models a dynamical system.
(In fact, the category of max-reflective dynamical domains dDOMr is isomorphic
to the category TS0c of topological systems.)

This is somewhat similar to ‘pro-categories’ (in the sense of a category of

1A powerful tool in the theory of solving recursive domain equations is that, in certain
important cases (Scott information systems), these two senses are closely related: the category
of domains itself can be essentially regarded again as a domain (Winskel 1993, ch. 12).

2Also cf. the results mentioned in the discussion of related work in chapter 4 on obtaining
certain topological systems as inverse limits of finite graphs.

7.2. Non-symbolic realization of symbolic computation 269

pro-objects). Examples are profinite groups, profinite graphs, or profinite spaces.
They, too, are the limits of finite groups, graphs, and spaces, respectively. The
only difference is that here we take the restricted limit (rather than the limit) and
we don’t take it of any diagram but only of those diagrams that form a finitary
dynamical expanding system. Modulo this caveat, we could sharpen the thesis to:

Non-symbolic computation is profinite symbolic computation.

Or, more precisely: non-symbolic computation is pro-symbolic computation.3,4

Future work should further explore this way of obtaining non-symbolic com-
putation as the limit of symbolic computation. For example, the additional
domain-theoretic structure on Di (i.e., the valuation vi : Σ(Di)→ [0, 1] and the
domain dynamics fi : Di → Di) should be represented in the BTS Mi as well. This

could be achieved, for example, by (1) adding the transitions x
vi({x})−−−−→ x for those

states x of Mi that are maximal elements in Di, and by (2) adding the transitions

x
fi−→ y if fi(x) = y. Moreover, the established adjunctions TS0c � dDOM and

ωBTSs
a � iALG and their limit-preserving properties should also be useful for

this.5

7.2 Non-symbolic realization of symbolic com-

putation

Concerning the relation between symbolic and non-symbolic computation, the
previous section suggests that we can think of non-symbolic computation as
the limit of symbolic computation. This naturally poses the question whether
there also is a relation in the other direction: When can we think of symbolic
computation as being realized by non-symbolic computation?6 In other words,
when can non-symbolic computation be approximated by (or interpreted as)
symbolic computation?

Typically, this is the case when the dynamical system has a fairly stable (i.e.,
non-chaotic) behavior.7 Here are two examples.

3Also cf. profinite automata in automata theory (Pin 2009; Rowland and Yassawi 2017).
4In an adventurous mood, this makes one ponder how far this idea reaches: Continuous

(‘classical’) dynamical systems being the limit of finite/discrete (‘quantum’) order structures
is reminiscent of the causal set theory approach to quantum gravity or of quantum cellular
automata. Cf. Gogioso, Stasinou, and Coecke (2020).

5Also note that the limit Scott domain D can be represented as the BTS describing the Scott
information system giving rise to D.

6In the introduction (chapter 1, footnote 18), we’ve already mentioned literature on physical
computation, i.e., realizing an abstract symbolic computation in a physical system (whence in a
non-symbolic system).

7The terms ‘stable’ and ‘non-chaotic’ are understood here in an intuitive and not strictly
formal sense. (Though there are, of course, various formalizations of these concepts.)

270 Chapter 7. Interlude: symbolic vs. non-symbolic

A paradigm case is provided by cognitive systems like us: Crudely put, the
neural network involved in our cognition of objects is a physical dynamical system.
But we can also describe its behavior symbolically, for example, by “if an object
has the shape of a cylinder with a handle, it is a cup”. The reason is that this
encapsulates a stable behavior of the system: if the system is in a state with a
retinal input containing a cylinder-shaped object with a handle, then—for a wide
range of size, color, location, perspective, etc.—the system will usually move to a
state where the representation of the concept ‘cup’ is active. More generally, the
stability in the behavior of the system allows a symbolic description of the form
“on this kind of input state, the system usually moves to that kind of output state”.
As indicated by the ‘usual’, this should be taken as a defeasible conditional, i.e., a
rule that may have exceptions—see Leitgeb (2005).8

Another important and related example is learning. As we see more and more
instances (data points) of a concept—say, the concept ‘cup’—we form a more and
more refined representation of the concept. And usually this dynamics is fairly
stable: the convergence to the concept ‘cup’ isn’t highly dependent on the initial
state (e.g., which concepts we already know) and it isn’t highly dependent on the
exact instances we see (we all learn the concept of a cup from different examples).
This is true both for human cognition but also for learning in artificial neural
networks. Although, for artificial neural networks, learning is much of a ‘black
box’ process which we’d like to better understand by, e.g., finding a more symbolic
description.9

In this section, we informally explore this idea of stability allowing a symbolic
approximation. In the next chapter, we start doing this in detail by analyzing the
underlying concept of stability.

7.2.1 Symbolic approximation

By our results, a dynamical system X has a computational model D which is
obtained as a limit of finite models. So we may think that X realizes a symbolic
computation if that limit is already reached after finitely many steps: i.e., the
dynamical system is modeled by a finite (and hence symbolic) model. Although
this cannot literally be true (otherwise the system is finite to start with), this
seems to be on the right track. So let’s explore—by means of an example—the
question of when a finite model is already a good enough approximation to the

8For example, as demonstrated by Warrington and Taylor (1973), some subjects may correctly
recognize an object—say, a bucket—when seen from a conventional perspective but err on an
unconventional perspective—say, a bucket seen from the top.

9 One might also explore whether the ‘better understandability’ of stable systems (that allow
for a symbolic approximation) has something to do with their reduced complexity. At least in
the verification of hybrid systems, checking satisfiability of ‘robust’ formulas/properties (those
that are stable under small perturbations) becomes tractable (Franek, Ratschan, and Zgliczynski
2016; Ratschan 2010).

7.2. Non-symbolic realization of symbolic computation 271

prey

predator

III

III IV prey ↑
pred ↓

prey ↑
pred ↑

prey ↓
pred ↑

prey ↓
pred ↓ III

III IV

Figure 7.2: The state space of the predator-prey dynamics (left) and its symbolic
representation (right).

limit.

As a representative example, let’s not choose something as complicated as a
cognitive (learning) system, but let’s also avoid something too trivially stable. A
classic example that strikes this balance is the predator-prey model, as depicted
in figure 7.2. (For an overview, see, e.g., Hoppensteadt (2006).) When abstracting
away its quantitative description (provided as a solution to a differential equation),
this dynamics is qualitatively described as follows. In area I, as the predators feed
on the prey, the size of the prey population decreases while the predators multiply.
Until, in II, prey becomes scarce and the predator population decreases. With
fewer predation, in III, the prey population can recover. So, in IV, the growing
prey population can sustain a growing predator population—and the cycle starts
anew.

So the dynamical system ‘computes’ an oscillation of two variables (the prey
population size and the predator population size) that depend on each other
(there is a phase shift between the oscillations: a prey increase is followed by a
later predator increase). More interesting and also more ‘computational’ examples
would be models of a neuron like the Hodgkin–Huxley model or the FitzHugh–
Nagumo model that compute various firing patterns (oscillations) of the neuron.10

However, for our purposes the simpler predator-prey model is enough.

What does the domain-theoretic representation of this dynamical system look
like, and what does a finite symbolic approximation to it look like? Since the
predator-prey model is a continuous time system, we pick a discretization of time
(and a probability measure) to obtain a dynamical system X = (X,A, µ, T) in our
sense. Assume for simplicity that the time-discretization is such that the successor

10The latter also is two-dimensional where one variable describes the membrane voltage of the
neuron while the other variable describes a recovery variable. See, e.g., Izhikevich and FitzHugh
(2006).

272 Chapter 7. Interlude: symbolic vs. non-symbolic

of a state in area I (resp., II, III, IV) is in II (resp., III, IV, I). Assume we observe
the system with observation time n = 1 and measurements C = {I, II, III, IV}.
Then the ‘observation history’ OnC (x) of a state x is essentially just the area
in which the state is in. And by the assumption about time-discretization, the
mappingOnC (x) 7→ OnC (T (x)) is well-defined. So, writing i = (n, C), the observation
domain Di is (isomorphic to) P({I, II, III, IV}), i.e., the power set of {I, II, III, IV}
minus the empty set ordered by reverse inclusion. And its dynamics is induced by

I 7→ II II 7→ III III 7→ IV IV 7→ I

So the maximal elements of Di correspond to the states of the symbolic represen-
tation in figure 7.2. Its dynamics is max-preserving and bijective on the maximal
elements. This corresponds to the fact that the transition relation in the symbolic
representation is a bijective function.

Thus, it is suggestive to take Di with this dynamics to be a good enough
approximation to the limit D: it provides a good representation of the qualitative
behavior of the system and its dynamics is max-preserving (and bijective on
maximal elements).

This is a first suggestion for finding good enough symbolic approximation. But
before we ask whether this idea generalizes, we should discuss its feasibility.

7.2.2 Ergodicity

Dynamical systems are rarely as well-understood and analytically analyzed as
the above predator-prey model. So, given a less-understood system, how can we
know whether it has the kind of (stable enough) behavior that allows a symbolic
description as, e.g., in the predator-prey model? How can we know that some
stage of the limit construction already provides a good symbolic approximation?

To answer this, we need tools to understand the long-term behavior of the
system. Ergodic theory precisely provides such tools. So we introduce it briefly
to see what it—together with our results—has to say about the ‘fairly stable’
systems that we’re considering here.

We follow the concise story of (Eisner et al. 2015, ch. 1). The starting point of
ergodic theory was physical systems like a box of gas. It consists of a state space X
where a state x ∈ X is a vector in R6n describing the position and momentum in
three-dimensional space of each of the n-many gas particles (hence 2×3×n = 6n).
The dynamics T : X → X is given by the laws of classical mechanics dictating
how the particles move over time: if they are in state x at time t = 0, they will
be in state T (x) at time t = 1, and in state T 2(x) at time t = 2, etc. While
theoretically deep, this is practically not yet very useful due to the following three
problems. Their solution then started ergodic theory.

Problem 1 It is practically and physically not possible to uniquely determine
the current state x of the system, from which we then could compute the
long-term behavior x, T (x), T 2(x), . . . (the orbit of x).

7.2. Non-symbolic realization of symbolic computation 273

Solution All we can do is measurements. For example, we could measure the
temperature of the gas and see how this evolves over time. More generally,
a measurement is a function f : X → R: if the system is in state x and we
perform measurement f , we measure the value f(x). At the next time step,
we then measure f(T (x), and after that, we measure f(T 2(x)), etc. So the
evolution of the measurements is given by the function f ◦ T n.

Problem 2 The time steps in which the system is updated are much shorter than
those in which we can perform our measurements. So we cannot measure
frequently enough to observe the evolution f(x), f(T (x)), f(T 2(x)), . . . but
only some subsequence thereof.

Solution Based on these sampled subsequences of measurements, we only can get
a good indication of the average values over time:

1

n

n−1∑
k=0

f(T k(x))

and their limit as n→∞. This limit is the time average of the measurement
f starting with state x.

Problem 3 The time average still depends on the initial state x which we cannot
practically determine.

Solution As a response, Boltzmann formulated the ergodic hypothesis The sys-
tem X has a natural probability measure µ which is preserved by the
transformation T (coming from Liouville’s theorem in classical mechanics).
So Boltzmann hypothesized that the time average of any measurement f
starting in any initial state x should be the space average

∫
f dµ, i.e.,

lim
n→∞

1

n

n−1∑
k=0

f(T k(x)) =

∫
X

f dµ. (7.1)

If this is true, then we can get our desired knowledge about the long-term
behavior of the system: we can get to know the long-term value of an
evolution of a measurement starting in an initial state by estimating the
expected value of a one-time performance of this measurement (with respect
to the probability measure). And this now is independent of the initial state.

Thus, this allows a description of the long-term behavior of the system without
reference to specific points in space or time.

The intuition behind the ergodic hypothesis is that the system is ‘chaotic’
enough so that the orbit of a state x eventually visits every area of the state space—
in fact, with a relative frequency given by the measure of that area. This has the

274 Chapter 7. Interlude: symbolic vs. non-symbolic

following effect: In the time average, we compute the averages 1
n

∑n−1
k=0 f(T k(x)),

and take their limit as n goes to infinity. And in the space average, we compute the
value of f in the various areas of the state space and sum them weighted by their
probability, and we roughly take the limit as the areas get smaller and smaller.
Thus, if the orbit of x visits each area with the relative frequency provided by the
measure, we’d expect these calculated values to become more and more similar
until they are identical in the limit.

Ergodic theory develops these intuitions into a mathematical theory. Dynam-
ical systems are assumed to be structures X = (X,A, µ, T) where (X,A, µ) is
a (Lebesgue) probability space and T : X → X is a measure-preserving bijec-
tive function. The system is called ergodic if any measurable invariant set has
probability 0 or 1 (i.e., if A ∈ A with T−1(A) = A, then µ(A) ∈ {0, 1}). Thus,
being ergodic is one way of spelling out that the system moves through all areas
of the state space. If X is ergodic, the pointwise ergoic theorem implies that,
for any µ-integrable function f : X → R, equation (7.1) indeed holds almost
everywhere. This formulation generalizes far beyond physical systems: it even
finds applications in number theory.

With this knowledge of ergodic theory, let’s return to the fairly stable systems
that we’re considering. As already mentioned in chapters 2 and 4, there is a
striking analogy between physical systems motivating ergodic theory and the
learning dynamics (one of the paradigm examples): It is not feasible to understand
the (time evolution of) the position and momentum states of each and every gas
molecules in a box. This is not due to a lack of theoretical understanding, but it
is due to the sheer complexity of the number of particles involved. Analogously,
the very heart of the interpretability (or black box) problem of neural networks is
that it is not feasible to understand the (time evolution of) the weight of each
and every connection in a neural network (during learning). This, too, is not due
to lack of theoretical understanding (it is described, e.g., by the backpropagation
algorithm), but it is due to the sheer number of uninterpreted weights involved.
This issue is raised by problems 1 and 2 above.

However, there also is a disanalogy which concerns problem 3. The solution
to problem 3 via the ergodic hypothesis is motivated by the system being fairly
chaotic. However, the learning dynamics usually is the opposite: namely, fairly
stable. This poses the question of finding an analogue of the ergodic hypothesis
for learning dynamics and other fairly stable systems.

In the next subsection, we turn to the concept of randomness as a candidate
for a solution. But first, for the remainder of this subsection, we see what ergodic
theory—together with our results—has to say about fairly stable systems.

With our notion of a general dynamical system, we’ve covered a much broader
class of dynamical systems: namely, structures X = (X,A, µ, T) where (X,A, µ)
is a Borel probability space and T : X → X is only assumed to be measurable.
So this includes learning dynamics and also the predator-prey model. Due to
our representation theorem, X is isomorphic to the dynamical system generated

7.2. Non-symbolic realization of symbolic computation 275

by S(D̂(X,B)) for some measurable basis B. So we can assume that X is of the
form (X,B(τ), µ, T) where τ is a compact and zero-dimensional Polish topology
on X making T continuous. So (X, τ, T) is a topological system, whence Krylov–
Bogolioubov theory applies: the sequence of measures µn := 1

n

∑n−1
k=0 µT

−k on B(τ)
has a limit point µ and this measure is preserved by T (see e.g. Walters 1982,
thm. 6.9). The limit is with respect to the space M(X) of probability measures on
B(τ) with the weak∗ topology. So from the original measure µ we can construct a
preserved measure µ making (X,B(τ), µ, T) a measure-preserving transformation.

Moreover, by the Choquet representation theorem we can express µ as a
generalized convex combination of ergodic measures on (X,T) (Walters 1982,
rem. 2, p. 153). This is expressed formally as follows: Write M(X,T) (resp.,
E(X,T)) for all the preserved (resp., also ergodic) measures on (X,T). Then
M(X,T) is a compact convex subset of M(X). So there is a unique measure τ on
B(M(X,T)) such that τ(E(X,T)) = 1 and, for all continuous f : X → R,∫

X

f(x) dµ(x) =

∫
E(X,T)

(∫
X

f(x) dε(x)
)
dτ(ε), (7.2)

where, for ε-almost all x ∈ X,
∫
X
f(x) dε(x) = limn

1
n

∑n−1
k=0 f(T k(x)).11 This

indeed expresses µ as a generalized convex combination of ergodic measures: The
integral over a probability measure (here τ) generalizes the idea of summing
values weighted by their probability—like a convex combination. In particular, if
E(X,T) = {ε1, . . . , εn} is finite, then∫

X

f(x) dµ(x) = τ(ε1)
(∫

X

f(x) dε1(x)
)

+ . . .+ τ(εn)
(∫

X

f(x) dεn(x)
)
.

The fact that we can express a preserved measure µ as a generalized convex
combination of ergodic measures as in equation (7.2) is known as ergodic decom-
position. (See Viana and Oliveira (2016, ch. 5) for discussion.) Its purpose is
this: Assume we consider a dynamical system that has a preserved measure which,
however, is not ergodic. Then we cannot allude to the ergodic hypothesis to come
to know the desired time average of a measurement. However, by estimating
the expected value of the measurement, we can still come to know the convex
combination of the time averages—and thus still gain valuable information about
the long-term behavior.12

So far, we’ve seen what ergodic theory has to say about any general dynamical
system (in our sense). However, what about those that have a fairly stable

11This is because each ε is an ergodic measure, so the ergodic theorem applies. Note that f is
ε-integrable since it is bounded qua continuous function with compact domain (so its image is
compact in R and hence bounded) and ε is a probability measure.

12Incidentally, the proof of the (more general) ergodic decomposition theorem presented by
Viana and Oliveira (2016, ch. 5) uses the Rokhlin disintegration theorem and a sequence of
increasingly refining finite partitions. Thus, it seems worth investigating connections to our
observation domain construction.

276 Chapter 7. Interlude: symbolic vs. non-symbolic

Figure 7.3: A converging system.

behavior and thus might have a finite symbolic approximation?13 Here is an idea:
The fact that a system (X,T) is very stable—namely convergent—seems to be
related to the assumption that the set E(X,T) of preserved ergodic measures is
finite. This is true for the paradigm example of such a system: the North-South
map mentioned in chapter 2. (For a short discussion, see Walters (1982, sec. 6.6,
ex. 6).) But this works much more generally: Consider the system (X,T) depicted
in figure 7.3. It has two attracting fixed points x0 and x1. It could, for example,
describe a learning dynamics: If the neural network is initialized with weights
coming from the left (resp., right) half of the state space, the learning will converge
to the weights represented by x0 (resp., x1). And the measurement f : X → R
is provided by the loss function: f(x) quantifies the error that the network still
makes in weight setting x with respect to some test set.

Now, we can reason informally as follows. Consider the set Ω(T) of ‘non-
wandering’ states: a state x ∈ X is non-wandering if, for every neighborhood U
of x, there is n ≥ 1 such that T−nU ∩ U 6= ∅. So the only non-wandering states
are x0 and x1: For any other x ∈ X, choose a neighborhood U of x that is small
enough such that T takes any point y of U outside U (i.e., T (y) 6∈ U). Since the
dynamics is convergent any further iteration T n(y) will only get closer to x0 or x1
and thus further away from U , so the orbit of y will never return to U , whence
T−nU ∩ U = ∅. Now, it is a theorem that any preserved probability measure
assigns Ω(T) measure 1 (see e.g. Walters 1982, thm. 6.15). So the preserved
probability measures are precisely those that assign probability p to x0 and 1− p
to x1 (for p ∈ [0, 1]). Since the ergodic measures are precisely the extreme points
of M(X,T), the only two preserved ergodic measures are ε0 assigning probability
1 to x0 and ε1 assigning probability 1 to x1.

To summarize, combining our results with deep results from ergodic theory,

13Here we don’t mean that the system has a symbolic representation in the sense of having a
finite generator (as implied by the Krieger Generator Theorem). We’ve already discussed this in
chapter 4 (in the introduction at the end of the paragraph ‘the computational interpretation’).
The issue is that such symbolic representations still have an uncountable state space. But here
we’re looking for a ‘good enough’ symbolic approximation which has a finite state space.

7.2. Non-symbolic realization of symbolic computation 277

we can already say quite a lot also about the behavior of fairly stable systems.
However, what can we say for measures that aren’t preserved? What is an analogue
of the ergodic hypothesis there? To explore this question, we turn to randomness:
since, as we’ll see, it allows equating statistical behavior with actual behavior.

7.2.3 Randomness

As seen in the previous subsection, since we cannot uniquely determine the
states of a system (up to infinite precision), we can study the long-term behavior
generally only statistically through repeated measurement of the system. In
systems satisfying the ergodic hypothesis—like a box of gas—this still (with
probability 1) provides us with the time average of a measurement and thus
informs us about the long-term behavior. But in fairly stable systems without
a preserved measure—like learning dynamics—we’re missing an analogue of the
ergodic hypothesis.

In both cases, we face the following questions. Assume we know that statistically
the system shows a certain long-term behavior: e.g., deduced from the ergodic
hypothesis (in the box of gas) or being convergent (in the learning dynamics).
How do we know for certain that it will do this in the given state? In other words,
even if we know that with probability 1 (i.e., almost surely) the time average of
a measurement will converge to a certain value, how do we know surely that in
the current state the system will exhibit this behavior? In yet other words, even
if we know statistically that the system exhibits a certain behavior, is there an
explanation why we should expect with certainty this behavior in the current
state?

As a solution to this problem, we suggest randomness . We first state the rough
idea and then discuss it with the two examples (the box of gas and the learning
dynamics). The idea is that usually there always is some ‘random noise’ in a
system. This ensures that if we find the system in an initial state, this state is
‘random’ in the sense that it doesn’t have any rare statistical properties. So we
can expect the system to exhibit the statistically expected behavior when starting
in this state. In box of gas example (and in ergodic systems more generally), this
provides a way of knowing when the ergodic hypothesis holds for a state (rather
than just knowing that it holds with probability 1). In the learning dynamics,
this suggests, as we’ll discuss below, an analogue of the ergodic hypothesis.

As an example, consider again the box of gas: a physical system with a huge
amount of interacting particles. (Another classic example is the weather.) Then
we can consider ‘typical’ states of the system as random: Even if the state where
all particles are in the left half of the box and have identical momenta is possible,
we wouldn’t expect to ever observe it. Just like we would never expect to observe
an infinite sequence of tails when repeatedly tossing a coin. It is notoriously hard
to formalize this intuitive concept. But it is well researched:

Various formalizations are studied in the field of algorithmic randomness,

278 Chapter 7. Interlude: symbolic vs. non-symbolic

but arguably the most common one is Martin-Löf randomness. (As a standard
reference for what follows we use Downey and Hirschfeldt (2010); for a history of
the development of these notions, see Van Lambalgen (1987).) Such a formalization
describes what it means for an infinite object to be random. Typically, these objects
are infinite binary sequences. So they can be regarded as representing repeated
coin tosses. But they can also encode many other infinite objects. More generally,
the theory is also developed for more general spaces of infinite objects (Hoyrup
and Rojas 2009). This includes the Rn: the state space of the box of gas. The idea
behind Martin-Löf randomness is that—as already indicated—an infinite object is
random if it has no rare effective properties. Rare properties are those subsets
U of the state space X that can be described as an intersection of an ‘effective’
sequence of open sets Un with µ(Un) ≤ 2−n. So U is ‘rare’ because it is a null set;
and ‘effective’ means, roughly, that there is an algorithm that takes as input n and
enumerates more and more basic open sets whose union is Un. Such a sequence
(Un) then is also called a Martin-Löf test and an infinite object x is Martin-Löf
random if it fails every Martin-Löf test (Un), i.e., x 6∈

⋂
n Un. For example, the

sequence x = 000 . . . of only tossing tails is indeed not Martin-Löf random since it
passes the Martin-Löf test (Un) where Un is the set of binary sequences starting
with n-many 0’s. The notion of Martin-Löf randomness is relative to the measure
on the space X and the computability structure (which makes both the basic open
sets and the measure ‘computably accessible’). For our informal discussion, we can
omit these details (they are found in the above references). It also is worth noting
that there are other illuminating characterizations of Martin-Löf randomness in
terms of informational incompressability and unpredicatability.

Equipped with this concept of randomness, we return to the systems of
ergodic theory, i.e., measure-preserving transformations of a state space—which,
in particular includes the box of gas. In this setting, fairly recent research efforts
developed a connection between algorithmic randomness and ergodic theory. See,
e.g., Franklin and Towsner (2014), Gács, Hoyrup, and Rojas (2011), Galatolo,
Hoyrup, and Rojas (2010), and V’yugin (1998). This includes various theorems
relating a state being algorithmically random (e.g., Martin-Löf random) to the
state being dynamically typical, i.e., satisfying the ergodic hypothesis (7.1).

Thus, in the case of measure-preserving dynamical systems, randomness indeed
provides a solution to our problem (under the reasonable assumptions of the
mentioned theorems). If the system starts in a random state, it will exhibit the
statistically expected behavior. However, this leaves open the case when there is
no natural preserved measure available.

So let’s consider learning dynamics as the paradigm example of a system
with fairly stable behavior and hence likely no natural, non-trivializing preserved
measure. So, recalling from the introduction of chapter 4, X is the space of
parameters of the learning machine (e.g., a neural network) paired with the space
of possible sequences of data. And the dynamics T : X → X describes the learning:
how the current parameters are updated after seeing a data point according to the

7.2. Non-symbolic realization of symbolic computation 279

learning algorithm of the machine. The measure µ on X describes the probability
distribution of the choice of initial parameters of the system (initialization) and
the likelihood of the (sequences of) data points. Finally, f : X → R describes some
loss function with which we can measure the performance of the learning machine.
For our informal discussion, we again omit specifying the computability structure
on X: but it should be such that µ, T and f are computable functions—after all,
they describe a learning algorithm.

The field of statistical learning theory provides conditions ensuring the machine
to converge almost surely. See, e.g., Bottou (1998), Nguyen et al. (2019), Saad
and Solla (1996), and Vapnik (2000). Thus, this provides an assurance that the
learning will work almost always, but it doesn’t explain why it works for a given
specific initial state. The suggested solution via randomness then claims:

Randomness ensures learning : Assuming the learning dynamics con-
verges statistically, if the learning machine is initialized randomly and
samples data points randomly, then it converges certainly.14

We may regard this as a first step toward the missing analogue of the ergodic
hypothesis: From purely statistical knowledge about the system, we can deduce
something about the long-term behavior starting in a given initial state. Thus,
randomness provides stability: namely ensuring stable convergence with certainty
when we only know it statistically. Moreover, if true, this thesis also corroborates
theoretically the well-known practical rule of thumb that neural networks show
better convergence results when initialized randomly (as opposed to, say, setting
all parameters to 0).15 In the remainder of this subsection, we’ll argue for this
thesis.

First, we need to formally phrase the convergence assumption. We do this as
follows. Assume we know that statistically the system minimizes the loss function
reasonably fast: The expected average loss converges to zero fast enough such
that the accumulated expected average loss is finite. Formally,

∞∑
n=1

∫
1

n

n−1∑
k=0

f(T k(x)) dµ <∞. (7.3)

This is the case if, for example, the expected average loss converges effectively,
i.e.,

∫
1
n

∑n−1
k=0 f(T k(x)) dµ ≤ 2−n. Surely this is quite a strong convergence

14There is an interesting subtlety. In our continuous setting, the thesis expresses the intuition
that randomness ensures learning because randomness excludes statistical outliers where conver-
gence may fail. In a more symbolic setting, Osherson and Weinstein (2008) and Zaffora Blando
(2019) explore connections between randomness and learnability. Here the intuition is the
opposite: randomness defies learning because for a random binary sequence there precisely is no
pattern or concept generating it which we could learn through observing the sequence. These
intuitions don’t clash: rather, we’re considering two different learning settings.

15For more on randomness or noise in neural networks, see, e.g., An (1996), Neelakantan et al.
(2015), and Srivastava et al. (2014) or the blog post by Eric Jang at https://blog.evjang.

com/2016/07/randomness-deep-learning.html (last checked 3 July 2021).

https://blog.evjang.com/2016/07/randomness-deep-learning.html
https://blog.evjang.com/2016/07/randomness-deep-learning.html

280 Chapter 7. Interlude: symbolic vs. non-symbolic

assumption. It is more like the consequence of a theorem and not a condition. But
the point here is not how we precisely get the statistical convergence. It rather is
how we can use it to guarantee convergence for random starting states. So the
assumption only serve as a proof of concept. For actual applications, it would
be replaced by more detailed assumptions, for example, provided by statistical
learning theory. What is important, though, is that this is a purely statistical
assumption: it involves no ‘local’ knowledge about initial states but only about
the ‘global’ statistical behavior of the system.

Now, to argue for the thesis, we show that, from the purely statistical con-
vergence assumption (7.3), we can deduce that, if the learning dynamics starts
in a random state, it converges: i.e., if x ∈ X is Martin-Löf random, then
limn

1
n

∑n−1
k=0 f(T k(x)) = 0. The idea is to show that, given the statistical conver-

gence assumption, diverging is a rare effective property.
Indeed, fix some e ∈ {0, 1, . . .}. For n ≥ 0, define

U e
n :=

{
x ∈ X :

1

n

n−1∑
k=0

f(T k(x)) > 2−e
}
.

Again without going into details, this is a ‘computable’ set: given x, we compute
1
n

∑n−1
k=0 f(T k(x)) and then check whether it is > 2−e—and we can do this uniformly

in n. More precisely, given n, we can computably find the basic open sets
constituting the preimage of (2−e,∞) under the function 1

n

∑n−1
k=0 f ◦ T k. (Note

we don’t make use of the fact that we can choose Un to be only semi-computable
uniformly in n.)

Moreover, we have
∑

n µ(U e
n) <∞. Indeed, write gn(x) := 1

n

∑n−1
k=0 f(T k(x)).

By Markov’s inequality,

µ(U e
n) ≤ µ

({
x ∈ X : gn(x) ≥ 2−e

})
≤ 2e

∫
gn dµ.

So
∑

n µ(U e
n) ≤ 2e

∑
n

∫
gn dµ which is finite since

∑
n

∫
gn dµ <∞ by assump-

tion (7.3).
Now, assume x ∈ X is Martin-Löf random and show limn

1
n

∑n−1
k=0 f(T k(x)) = 0.

Indeed, we have shown that, for any e ≥ 0, the sequence (U e
n)n is a Solovay test

(which is a version of a Martin-Löf test), so x is in at most finitely many U e
n, whence

there is an Ne such that, for n ≥ Ne, x 6∈ U e
n. To show limn

1
n

∑n−1
k=0 f(T k(x)) = 0,

let ε > 0. Choose e ≥ 0 big enough such that 2−e < ε. Then we have, for any
n ≥ Ne, that x 6∈ U e

n, so 1
n

∑n−1
k=0 f(T k(x)) ≤ 2−e < ε, as needed.16,17

16Also note the generality of this argument: Apart from the converge assumption, we only made
computability assumptions but no measure-preservation assumptions on the system (X,µ, T).
Also, nothing was particular to the learning dynamics. And we could also assume the loss
function to converge to some limit function f̂ other than the zero function 0 by considering
f ′ := f − f̂ .

17Could these ideas on the role of (algorithmic) randomness in non-symbolic computation help

7.2. Non-symbolic realization of symbolic computation 281

7.2.4 Stability

This section dealt with the question of when a dynamical system can be regarded
as realizing—or being approximated by—symbolic computation. The guiding
intuition is that this is possible if the system exhibits a fairly stable behavior.
The previous subsections explored this idea. However, to begin doing this in
detail, we start at the very foundations: namely the underlying concept of stability.
According to this idea, if we consider a property of states—like showing converging
or oscillating behavior—, then it holds stably at a state if it not only holds at that
state but also at all sufficiently close ones. Analyzing this notion of stability is
the topic of the next chapter.

to incorporate ‘noise’ into analog/continuous computation? Bournez and Campagnolo (2008)
and Orponen (1997) describe this as an open problem.

Chapter 8

Stability: Fitch’s paradox and AI-safety

Abstract We investigate the notion of stability : a property holds stably at
a ‘state’ if it holds at that state and at sufficiently similar ones. Here a ‘state’
is understood in the most general sense: e.g., a state of a dynamical system, a
possible world, a model of a theory, an input to an AI, a parameter setting, etc.

We discuss a wide range of examples involving stability (many revolving around
AI-safety) and see that they are all instances of this general notion of stability.
We describe a formal logic to reason about stability across all these examples.

Then we formulate four desirable principles of stability and prove them in-
consistent: both proof-theoretically (via a novel interpretation of Fitch’s lemma)
and semantically (via Kripke semantics and topological semantics). Thus, we
obtain some consequences for the examples ‘just by logic’: The inconsistency
constraints the verifiable sentences (those that we can come to know) and the
falsifiable sentences (scientific hypotheses), and it poses fundamental limitations
on specifying AI-safety.

8.1 Introduction

When is a property stable? The idea is that an object has a property stably if not
only the object but also all sufficiently similar ones have the property.

For example, being heavy is stable, because if an object—say, a chair—is heavy,
then, even if it were slightly heavier or lighter, it would still be heavy. On the
contrary, weighing exactly 21.3 kg is not stable, because even the tiniest variation
in weight means losing that property. More formally, we may say: we consider the
set of possible states that the given object might be in (e.g., the state of weighing
5 kg, the state of weighing 0.1 kg more than in the actual world, etc.). And we
say that a state has property p if the object in that state has property p. Then the
property p of being heavy is a stable property of these states, because if a state
has it, also all sufficiently similar ones have it. But the property q of weighing
exactly 21.3 kg is not stable.

283

284 Chapter 8. Stability: Fitch’s paradox and AI-safety

The advantage of this somewhat cumbersome terminology is that it is much
more generally applicable: Instead of just considering

(1) the possibles states of an object

we may also consider, for example,

(2) the possible states of a dynamical system like the weather

(3) the possible activation states of a neural network

(4) the possible inputs to an artificial intelligence

(5) the possible dynamics that the economy may exhibit

(6) the possible models of a (scientific or mathematical) theory like the theory
of general relativity.

In studying these phenomena, various properties of the states are interesting.
For example, atomic properties like: ‘being heavy’ in (1), ‘it is going to rain’ in (2),
‘recognizing a dog’ in (3), ‘identifying a stop sign’ in (4), ‘being ergodic’ in (5),
or ‘having a global time’ in (6). This may also include Boolean combinations of
atomic properties, like being heavy and not red (p ∧ ¬q) in (1), and similarly for
the other examples. And, most crucially, we obtain further complex properties
by applying the stability claim to existing properties: if p is the property “it is
raining in s” that possible states s of the weather may or may not have, we can
also consider the property ‘stably, p’ (also written 2p): i.e., ‘it is raining in s and,
in all states sufficiently similar to s, it also is raining’. This again is a property
that some states may or may not have: some may have p but not 2p, and others
may have 2p and hence also p, yet others may fail to have p. Let’s consider two
examples.

In (1), a scientist would like to refute the hypothesis p about the objects, for
example, that the object weighs ≥ 21.3 kg. Thus, the scientist is really interested
in the property 2¬p: she wants to find an experiment which shows that, even
when taking the measurement errors into account, the object doesn’t have property
p, i.e., the object stably fails to have property p. The scientist might also fear
that the property p cannot be decided: that it is neither false (otherwise it could
be falsified qua good scientific hypothesis) nor stably true (otherwise it could
be verified by some potential experiment). So the scientist wonders whether
¬¬p ∧ ¬2p is true.

In (4), consider an AI researcher who has built and trained a neural network
to identify stop signs in the camera input of a car. To test the safety of this
piece of technology, she wants to check that no ‘adversarial attacks’ are possible:
We shouldn’t have a camera input s where the AI works correctly, but after a
minuscule alteration—like adding a small sticker to a traffic sign—the AI suddenly
recognizes a ‘Speed Limit 45’ sign (Eykholt et al. 2017). In other words, if we

8.1. Introduction 285

write p for the property of identifying a ‘Speed Limit 45’ sign, the AI researcher
would like that it is not possible that p fails but holds in very similar inputs. More
formally, she is interested in the property ¬(¬p ∧3p) (or, equivalently, p ∨2¬p)
being true at all states.

To summarize (and generalize): In a given phenomenon involving the notion
of stability, we have a state space; and complex properties of states can be
formed from the given atomic ones using the operations and (∧), not (¬), and
stably (2). Moreover, some subset Q of the set P of all properties represents the
properties that are relevant or sensible (those that the researchers are interested
in). Mnemonically, ‘P ’ as in ‘properties’ and ‘Q’ as in ‘questions’. Note that the
properties in Q are not regarded as possible ‘laws’ governing the state space: they
are not hypotheses that are meant to hold at every state. Rather, Q simply is
a collection of properties that are useful to talk about the state space: just like
‘raining’ is a useful property to distinguish different states of the weather, but it
is not intended as a law that it is raining at every state.

We may now consider various general principles about stability and the set
of relevant questions. For now, we’ll only introduce these principles briefly and
informally. In section 8.3, we’ll formulate them precisely and discuss them in
detail.

The first principle simply ensures that stability is a non-trivial notion.

(S1) Non-triviality : Stable truth doesn’t just collapse to simple truth, i.e., there
is at least some property ϕ in Q and some state s such that s has ϕ but not
2ϕ.

The next two principles state two conditions on the properties on Q that
ensure that they are, in a loose sense, ‘accessible’ to us. The first is this:

(S2) Falsifiability : The properties in Q pose good scientific hypotheses, i.e., if
they are false at a state, they are stably false, so we can in principle perform
some experiment or observation which will show that the property indeed
doesn’t hold at the state.

Sometimes, instead of falsifiability as in scientific hypotheses, we may want our
properties in Q to be verifiable. As we’ll see, this is true in the example of neural
networks. Then, instead of (S2), we consider its dual version:

(S2) Verifiability : The properties in Q are verifiable, i.e., if they are true at a
state, they are stably true, so we can in principle perform some experiment
which will show that the property indeed holds at the state.

(In general, we’ll use the ‘bar’ notation to denote dual versions.)
The other principle says that satisfiable properties in Q are stably true at

some state, so we can consider that state as a paradigm (or standard) case that
we can imagine when we imagine a state where the property holds.

286 Chapter 8. Stability: Fitch’s paradox and AI-safety

(S3) Standard model : If ϕ is in Q and satisfiable (i.e., true at some state), then
there is some state where ϕ is stably true.

For example, the property of weighing ≤ 21.3 kg is stably true at the state where
the object weighs 10 kg, even if it can happen that it is not stably true (if the
object happens to weigh exactly 21.3 kg).

Again, if we consider—as in the case of neural networks—verifiability instead
of falsifiability, then we also consider the dual of (S3), namely:

(S3) Standard countermodel : If ϕ is in Q and not valid (i.e., false at some state),
then there is some state where ϕ is stably false.

The last principle is concerned with how we can form new questions from old
ones. Initially, it may seem like the least plausible, but we’ll find that, as in the
above examples of the scientist and the neural network, it is satisfied in many
applications.

(S4) Moore closure: If ϕ is a sensible question, then also ϕ ∧ ¬2ϕ (i.e., ‘ϕ but
not stably so’) is a sensible question.1

(S4) Dual Moore closure: If ϕ is a sensible question, then also ϕ ∨2¬ϕ (i.e., ‘ϕ
is true or stably false’) is a sensible question.

Again, note that these principles are not concerned with the truth of the
properties involved: For example, (S4) does not say that if ϕ is true at a state,
also ϕ ∧ ¬2ϕ is. It merely says that if ϕ is a sensible property to investigate,
also ϕ ∧ ¬2ϕ is. Moreover, this is in no direct tension with falsifiability: if ϕ is
falsifiable, then—under very mild assumptions—also ϕ ∧ ¬2ϕ is falsifiable (we’ll
formally show this in lemma 8.3.10).

However, we’ll show that if taken together, these principles are in (indirect)
tension with each other: we’ll prove the following impossibility result. Here, the
dual version of (S1) is simply (S1) itself, i.e., (S1):=(S1).

8.1.1. Theorem (Impossibility result). The principles (S1)–(S4) together are in-
consistent, i.e., for any state space and any choice of sensible properties Q, at
least one of (S1)–(S4) fails. Moreover, also the dual versions (S1)–(S4) together
are inconsistent.

This impossibility is not intended as a paradox: not all principles are ‘obviously
true’. However, they are compelling in some applications—like the scientific
hypothesis and neural network example—where the inconsistency will then yield
interesting consequences that hence can be obtained ‘just by logic’.

1 The name is due to the fact that the sentence ϕ ∧ ¬2ϕ famously is known as the Moore
sentence in (formal) epistemology.

8.2. Examples of stability 287

The remainder of the chapter is structured as follows. In section 8.2, we
collect a wide range of examples involving stability. In section 8.3, we describe a
formal logic to reason about stability across all these examples. In section 8.4, we
show proof-theoretically—via a novel interpretation of Fitch’s lemma—that they
jointly are inconsistent. In section 8.5, we illustrate the inconsistency semantically
using Kripke semantics and topological semantics. In section 8.6, we apply the
impossibility result to obtain an extension of Fitch’s paradox and a fundamental
limitation for AI-safety. In section 8.7, we conclude. An appendix at the end of
the chapter collects the more technical proofs. In short, we perform one cycle:
from examples, we extract a formalization, for which we obtain formal results,
which we then apply back to the examples.

A last word before we start: This chapter attempts the difficult—but, arguably,
important—task of bridging research in philosophy and artificial intelligence (here
via logic). Recent literature on this broad topic is surprisingly scarce, but see,
e.g., Buckner (2019) for a ‘call to action’ to remedy this and Evans (2020) for a
concrete combination of philosophical thought (Kant) and AI-implementation. It
is our hope that the results here are useful in both directions: for AI researchers
to get some clarity regarding the foundations of central notions like AI-safety;
and for philosophers to see novel applications of known concepts like Fitch’s
paradox or safety conditions of knowledge. Such a cross-disciplinary endeavor
is at risk of being too abstract (in its philosophical generality) to be useful for
AI and too formal (in its attempt at a precise and AI-amenable formulation) to
be philosophically refined enough (for a similar point, see Evans 2020, pp. 18–
19). We hope that the fact that these issues neatly come together under the
concept of stability—generalized from many concrete examples—goes some way
toward alleviating these worries. The aim is to provide a fruitful starting point
for discussion rather than decisive answers claiming to end the debate.

8.2 Examples of stability

We collect a wide range of examples involving stability. This should serve as a
collection of brief summaries of reasons for demanding stability. It is neither in-
tended to be an exhaustive list nor an in-depth philosophical discussion. Moreover,
there are many connections between these ideas, and we attempt to spell out some
along the way.

8.2.1 Verifiability and falsifiability (observation)

Maybe the most common motivation for demanding stability is epistemic: stability
is needed to make sure that, if a property holds, we also can come to know (or
verify) that it holds.

To illustrate this, consider again the example of a chair from the introduction.

288 Chapter 8. Stability: Fitch’s paradox and AI-safety

The reason why we can come to know (or verify) a property p like ‘weighing
> 3.2 kg’ is this: If true—say, because the actual weight-state of the chair is
3.4 kg—, then there is an appropriate measurement that we can perform: e.g.,
weighing with a scale with a margin of error ±0.1 kg. This measurement is
appropriate in that it shows that the actual weight-state of the chair must be in an
area of the state space—say, the interval (3.3, 3.5)—that is completely contained
in the area where p is true. Similarly, we cannot come to know the property q of
‘weighing exactly 3.2 kg’ because this is true only in an area consisting of a single
state while an area determined by a measurement will consist of an interval of
states.

This example is much more general: consider the state space of a dynamical
system like the weather. To make predictions about it, we must know what its
current state is (before we can apply our knowledge about its dynamics). Again,
we can only do so through measurements: observing, e.g., temperature, humidity,
and air pressure at different locations. This will delimit the area of the state
space in which the system currently is. Only then can we calculate (or simulate)
to which areas of the state space the system will evolve from there. As a result,
we can, in general, only predict those properties that are stable: if a state has a
property, we need to verify it by finding, through observation (and calculation or
simulation), an area around that state where the property holds.

Something dual can be said for falsifiability instead of verifiability through
measurements: To falsify (or refute) a property means to verify its negation. For
example, if the property q of ‘weighing exactly 3.2 kg’ is false—say, because the
chair weighs 3.4 kg—, we can falsify q by using the scales to determine that the
actual weight-state of the chair must be in the area (3.3, 3.5) of the state space
which is completely contained in the ¬q area: this verifies ¬q and hence falsifies q.
Good scientific hypothesis are usually required to be falsifiable: if they are false,
there is an experiment or measurement that shows that they are false—so the
negation is stable.2

To summarize, properties that we can come to know whenever they obtain
(verifiability) or that are good scientific hypotheses (falsifiability) naturally are
properties that we’re interested in. However, they need to have a certain stability:
to verify or falsify those properties, we need measurements, and these always have
some margin of error which ultimately requires the properties to have stability. In

2 These ideas figure prominently in the ‘topology via logic’ approach (e.g. Abramsky 1991;
Smyth 1983; Vickers 1989). (Vickers (1989) uses ‘affirmative’ and ‘refutative’ for the above
‘verifiable’ and ‘falsifiable’, respectively.) Here the axioms of topology are (re-) interpreted as
that for a logic of finite observations (or semidecidable properties). As a result, properties that
can be confirmed by possible measurements act like open sets: once a state has such a property,
also all sufficiently similar states have that property. Thus, in the above terminology, these
properties are precisely the stable ones. Dually, properties that can be refuted by measurements
act like closed sets: once a state doesn’t have such a property, also all sufficiently similar states
don’t have it.

8.2. Examples of stability 289

a slogan: verifiability and falsifiability require stability.
This idea is also closely related to discussions of safety in epistemology and

artificial intelligence—as we’ll discuss now.

8.2.2 Safety (epistemology)

In epistemology, there is an extended discussion of so-called safety conditions for
knowledge. (See, e.g., Sosa (1999) or Williamson (2000) and, for an overview,
Ichikawa and Steup (2018) or Rabinowitz (2020).3) The main idea is that knowl-
edge requires safety in the sense that, if we know that p is the case, we still
wouldn’t be wrong in similar cases. A simple example to illustrate the idea is
Bertrand Russell’s famous stopped clock (Russell 1948, pp. 170–171): We look
at a clock with the intention of coming to know what time it is. Incidentally,
at this very moment the clock shows the right time, but, unbeknownst to us, it
actually has stopped exactly 24 hours ago. Intuitively, we wouldn’t consider the
true belief about the current time that we obtained in this way to be knowledge.
And, indeed, in the very similar case where we had looked at the clock just one
minute earlier, we would have been wrong, so the safety condition is violated.4

There is much discussion on how to formulate such conditions precisely (Rabi-
nowitz 2020; Sosa 1999; Williamson 2000). But it usually involves something like
the following:

(SC) If A knows p based on some method M in situation s, then, in all situations
s′ similar to s, if A believes p in s′ based on M , then p is true at s′.

For reasons of space, we won’t enter the discussion of this principle and its
formulation. What we’re concerned with here is to indicate how it may provide
another argument for the stability of those properties that we can come to know
whenever they obtain.

The argument sketch proceeds in two steps. First, we observe that (SC) seems
to imply

(∗) If A knows p in situation s, then p is true in all situations s′ similar to s.

and in fact even the stronger

(∗∗) If A knows p in situation s, then, in all situations s′ similar to s, A correctly
believes p in s′.

Because: If A knows p in s, then A has obtained the belief that p based on some
method M and this belief constitutes knowledge. Hence, in a sufficiently similar

3For a discussion of other stability related notions in epistemology, see Rott (2004).
4Closely related to the safety condition is the idea that knowledge shouldn’t involve epistemic

luck: in the example, we were just lucky that our belief turned out to be correct (Pritchard
2005).

290 Chapter 8. Stability: Fitch’s paradox and AI-safety

situation s′, A arguably would still tend to apply method M and would thus come
to believe p in s′ (otherwise s′ wouldn’t be sufficiently similar to s). But then, by
(SC), p is true in s′, and A correctly believes p in s′.

Second, once we have (∗), we seem to get the desired conclusion: Let p be a
property that we can come to know whenever it obtains. We want to show that p
is stable. Indeed, if p holds at a given state s, then there is something we can do
so that we know that p at s. Once we do, (∗) implies that p needs to be true also
in all similar enough states, whence p is a stable property.5

8.2.3 Safety (artificial intelligence)

Especially recently, safety became a prominent concern in the field of artificial
intelligence: If an artificial intelligence (AI) judges that a given input s (say, a
camera picture of a traffic scene) to be of category c (say, ‘a stop sign is present’),
then we want that this is a safe judgment—which is necessary if we want to
trust the AI. In particular, it shouldn’t be possible to systematically trick the AI
(e.g., by simply placing a sticker on the stop sign) to judge the scene completely
differently (say, that a ‘Speed Limit 45’ sign is present). Such tricks to the AI are
called adversarial attacks . They recently became infamous since they pose serious
problems to neural networks.6 In other words, we want that, on all sufficiently
similar inputs, the AI still yields the same judgment. Thus, this kind of AI-safety
can be formulated as a requirement for ‘state space’ stability:

(AS) The AI is safe only if, when considering the set of all possible inputs to the
AI as state space, the property ‘the AI judges input s to be of category c’ is
stable (for all categories c of the AI).

This, or some form of it, arguably is a necessary feature of AI-safety, but—as we’ll
argue below—there also is more to it, so we don’t take it as a sufficient feature
(hence merely ‘only if’ and not ‘if and only if’).7

How are the notions of this and the preceding section 8.2.2 related? There
seems to be at least a rough analogy between the notion of safety in the sense of

5So we’ve only used the weaker principle (∗). The reason why we’ve also stated (∗∗) is that,
first, we’ll use it below and, second, the straightforward argument for (∗) seems to go via (∗∗).

6The literature on adversarial attacks is growing rapidly: some examples are Brown et al.
(2017), Cisse et al. (2017), Goodfellow, Shlens, and Szegedy (2014), Gowal et al. (2020), Huang
et al. (2017), and Szegedy et al. (2013). The example with the stop sign is from Eykholt et al.
(2017). For a philosophical discussion, see Buckner (2019) and Buckner (2020). For a more
general overview of AI-safety, see Amodei et al. (2016).

7To provide some more background: A crucial part of the engineering of neural networks is
to achieve the kind of stability described in (AS): The network shouldn’t overfit training data,
i.e., fit to the data so well that it represents also their idiosyncrasies at the cost of the general
pattern behind it. Various methods (e.g., dropout) guide the training of the network toward
learning robust general patterns rendering the network more stable and less overfitted. For an
overview, see Buckner (2019, p. 8).

8.2. Examples of stability 291

‘safety conditions for knowledge’ and in the sense of ‘AI-safety’. If an AI judges,
given some camera input, that there is a stop sign, then we may—in analogy to
the epistemological terminology—say that the AI believes that there is a stop
sign (in the real world from which the camera input originates). (This surely is
quite an anthropomorphism, though epistemological principles and terminology
usually are intended to be applicable to all epistemic agents: human and artificial.)
For the AI to be safe, we would like that, if the AI makes such a judgment, it
doesn’t do so carelessly but rather has a high certainty in the judgment, has some
good reasons, or has some other form of justification providing sufficient reliability.
Thus, in analogy to the epistemological terminology, we might say that the AI
knows that there is a stop sign.

Thus, the above stability requirement for AI-safety corresponds, via this
analogy, to safety conditions for knowledge: Assume that on input s the AI judges
c. Then, if the AI is safe, it safely judges c, i.e., according to the analogy, knows c.
Hence, by version (∗∗) of the safety condition above, the AI still correctly believes
c in similar situations. Thus, according to the analogy, the AI judges c in all
similar situations—just as the stability requirement of AI-safety demands. This
provides a potentially fruitful application of the extensive philosophical discussions
of safety conditions for knowledge to AI-safety. (Or, vice versa, this allows to
evaluate safety conditions by AI-safety examples.)

Another application of the analogy may be to better understand the elusive
notion of AI-safety (or safe judgment of an AI). Crudely put, the analogy says
that safe judgment is to judgment what knowledge is to belief. Thus, we should
expect that just as it is notoriously hard (if at all possible) to specify what else is
required to turn (justified) true belief into knowledge, it probably is equally hard
to specify what else is required to turn a judgment of an AI into a safe judgment.
In other words, the analogy casts doubt on the prospect of a fully satisfying
conceptual analysis of AI-safety into crisp and operationalizable sufficient and
necessary conditions—hence the hesitation to phrase (AS) as ‘if and only if’.8

(Besides, there are many more aspects to AI-safety like the avoidance of side
effects (Amodei et al. 2016).)

Surely this analogy needs to be developed more carefully to convincingly
translate insights between AI-safety and epistemology. To that end, we discuss

8The infamous Gettier examples obstruct an analysis of knowledge (see, e.g., Ichikawa and
Steup 2018) and adversarial attacks might be seen as the analogical counterparts: Assume an
AI built with a deep neural network correctly classifies a camera input as containing a stop sign
but could be adversarially attacked. Then the AI has, in the terminology of the analogy, the
true belief that there is a stop sign, and it also has some justification for it: after a long learning
process, it has built up its current weights which yielded the given classification. So the AI
has true justified belief but no knowledge (i.e., safe judgment)—just like a Gettier case. (This
kind of justification could be regarded as ‘internalistic’, and an attempt to explain away Gettier
examples is to demand that justification shouldn’t be internalistic but externalistic (Ichikawa
and Steup 2018); so it would be interesting to consider what the analogical counterpart for
AI-safety is.)

292 Chapter 8. Stability: Fitch’s paradox and AI-safety

two ways of making precise the stability requirement (AS) for AI-safety—the
analogical counterpart to the safety condition for knowledge. More specifically,
we discuss two ranges under which the behavior of the AI should be stable: (i)
under similarity of the input, and (ii) under updating with likely propositions. We
come back to (i) when discussing the consequences of our inconsistency result in
section 8.6.2. Now, we turn to the stability theory of belief which investigates (ii).

8.2.4 Stability of belief (probabilistic reasoning)

We’ll recap the stability theory of belief developed by Leitgeb (2017) and see how
it provides another general kind of stability in our sense. We also briefly sketch
an application to AI-safety.

The stability theory of belief concerns the question of how qualitative belief
(‘all-or-nothing’ belief) and quantitative belief (degrees of belief) relate. For
example, when should we take a probabilistic statement expressing degrees of
belief (like ‘The agent is 70% certain that this is poisonous’) to warrant a definite
statement expressing all-or-nothing beliefs (like ‘The agent believes that this is
poisonous’)?

Various answers have been given. The most straightforward one is the Lockean
thesis: a perfectly rational agent (all-or-nothing) believes a proposition iff her
degree of belief in the proposition is higher than a certain threshold (Foley 1993,
p. 140). This, however, faces serious problems: most notably, the lottery paradox
(for a short overview see Huber 2016, sec. 2.6). These problems (are taken to)
show, for example, that the resulting notion of all-or-nothing belief isn’t necessarily
closed under conjunction and thus violates a logical law that we intuitively would
expect of rational beliefs.

The stability theory of belief (Leitgeb 2017) avoids these problems by opting
for the Humean thesis : a perfectly rational agent believes a proposition p iff she
has a stably high degree of belief in it (Leitgeb 2015).9 Roughly, this means
that for all propositions q of some fixed set Y of propositions that the agent may
suppose or come to learn, if the agent were to update her current degrees of beliefs
with q, her degree of belief in p would still be above some fixed threshold ρ (e.g.,
ρ = 0.9).

These ideas may be formulated in the terminology of stability in state spaces
as follows. The state space is the set of all possible degrees of beliefs that the
agent may have. (Or, to be more precise, the set of all probability measures on
an appropriate underlying measurable space.) For q ∈ Y , we say that the degree
of beliefs µ is q-similar to the degree of beliefs ν if ν is the result of updating
µ with q. (More precisely, ν is the conditional probability measure obtained by
conditioning µ on q.) We say µ is similar to ν if µ is q-similar to ν for some

9See Leitgeb (2017) and Leitgeb (2018) for references to related work.

8.2. Examples of stability 293

q ∈ Y .10 Then it is easy to see that the following are equivalent for all propositions
p and degrees of belief µ:

(a) The agent (all-or-nothing) believes p at µ in the sense of the Humean thesis:
i.e., for all q ∈ Y , if the agent updates µ with q, her degree of belief in p is
> ρ.

(b) The property ‘the agent’s degree of belief in p according to µ is > ρ’ is stably
true at µ: i.e., it holds at all states similar to µ.

Thus, the property ‘the agent’s degree of belief in p according to µ is > ρ’ is
stable iff (all-or-nothing) believing p according to the Lockean thesis implies
(all-or-nothing) believing p according to the Humean thesis.11

Different choices for Y are possible (and thus provide different versions of the
Humean thesis). A salient one is to take Y as the set of propositions that the
agent believes to a degree ≥ ε, for some threshold ε > 0 which needn’t depend on
ρ (e.g., ε = 0.2).12 Choosing Y to be the set of propositions that the agent deems
possible (i.e., doesn’t all-or-nothing believe the negation) turns out to be, in a
precise sense, the unifying choice (Leitgeb 2017, thm. 1, p. 85).

We can apply this to AI-safety. In section 8.2.3, we saw the stability requirement
for AI-safety: the behavior of the AI is stable under sufficiently small variations
of the input. The stability theory of belief—which is encapsulated in the Humean
thesis—suggests another, conceptually equally important stability requirement:
For the judgment of an AI to be safe, we not only want that the AI has high
certainty in its current judgment, but also keeps having high certainty after
updating with propositions from the chosen set of propositions.

8.2.5 Significance (mathematical modeling)

Especially in the context of general relativity, it has been argued that mathematical
models of a real phenomenon need some stability—which we’ll describe now.

The idea of mathematical modeling is to provide mathematical models for a
given real phenomenon with the aim of transferring result from the mathematical
investigation of the models into insights about the phenomenon. However, for
this to work, one needs to know which mathematical properties of the models
are significant—i.e., correspond to properties of the phenomenon—and which
mathematical properties are merely idiosyncrasies of the mathematical models?

10A more general similarity structure on S may be obtained by demanding the Kullback–Leibler
divergence between ν and µ(·|q) to be small (i.e., below a fixed threshold).

11Note that, as arguably should be expected, the notion of stability figuring in the Humean
thesis need not be transitive: If p is (all-or-nothing) believed at µ according to the Humean thesis,
then p is (all-or-nothing) believed at all similar ν according to the Lockean thesis—but in general
not again according to the Humean thesis. (But it also can be transitive: see example 8.5.3.)

12See Leitgeb (2017, p. 82) for this and more salient choices for Y.

294 Chapter 8. Stability: Fitch’s paradox and AI-safety

The idea is that the significant properties are stable (with respect to an appropriate
notion of similarity). Here are three examples, which we’ll revisit later on.

First, in general relativity, the mathematical models are spacetimes (i.e., four-
dimensional, smooth, connected, Lorentzian manifolds). Hawking (1971, p. 395)
argued that if a property of spacetimes is physically significant, it has to be stable in
some appropriate topology: whenever a spacetime has that property, all sufficiently
similar spacetimes have it, too (where ‘sufficiently similar’ is formally specified by
the topology). The argument is that our observations of the physical phenomenon
will always be imprecise due to measurement errors and the uncertainty principle,
so they will never determine a unique mathematical model. Hence, if the obtaining
of a mathematical property is to imply a property of the physical phenomenon,
it has to be stable across the uncertainty of the mapping between models and
reality. (See Fletcher (2016) for an overview and discussion of this idea of physical
significance.)

This argument also seems to apply in many other cases. To illustrate, here are
two more examples.

Second, consider (finite-state and time-homogeneous) Markov chains as mathe-
matical models for any of the real phenomena that have successfully been modeled
by them (e.g., in physics, biology, chemistry, or economics).13 Such a Markov chain
over n states is given by a stochastic n× n matrix A where A(i, j) specifies the
probability of the system moving from state i to state j. Again, our observations
of the real phenomenon will always be imprecise due to measurement errors, so
they will never determine a unique Markov chain (i.e., stochastic matrix). So if we
want to infer something about the real phenomenon from a mathematical property
of the Markov chains, the property has to be stable across the uncertainty of the
mapping between models and reality. So, for a mathematical property p to be
significant, it has to be stable: if a Markov chain has it, also all sufficiently similar
Markov chains have it. (The natural topology to spell this out formally is the
topology on the stochastic matrices given by some matrix norm.)

Third, consider the computer implementation of a mathematical feed-forward
neural network. Such a neural network is mathematically specified by a finite list
(W1, . . . ,Wn) of real-valued matrices (the network has n+ 1 layers and matrix Wi

describes the weight on the connections between neurons from layer i− 1 and i).
Any computer implementation of such a network will represent each weight only to
a finite approximation (e.g., by floating-point reals). Again, many mathematical
models (the network considered as a list of real-valued matrices) will correspond to
the ‘real’ phenomenon (an implementation of the network as a computer program).
So, for a mathematical property of the mathematical networks to be significant,
it has to be stable: if a mathematical network has it, also all sufficiently similar
mathematical networks have it. (Here sufficiently similar means that the difference

13For a reference on (general) Markov chains with an eye toward stability, see Meyn and
Tweedie (2009).

8.2. Examples of stability 295

is beyond what can be expressed in the floating-point reals.)

8.2.6 Further examples

We’ll briefly mention three more examples.
First, a central idea of the theory of conceptual spaces (e.g. Gärdenfors 2004)

is that (possible) objects can be regarded as points in a space whose dimensions
correspond to qualities like weight, color, temperature, size, etc. Concepts then
are regions in that space: for example, the concept red is the set of all red objects.
Similarly, we can think of the possible states of a given object in this way: each
state is given by a vector representing, for example, the weight, color, temperature,
or size of the object in that state. Then properties are concepts, i.e., regions in
the state space. Famously, convexity seems like a natural condition for concepts:
if two objects instantiate a concept, say being red, then any object in between
the two also does so (Gärdenfors 2004). We may also think that openness (and
hence stability) is a natural condition: if a (possible state of the) object is heavy,
red, warm, or large, then also every similarly enough (state of the) object has
this property.14 The motivation for this idea comes from the aforementioned
knowability and safety considerations: For an everyday concept or property to be
useful, we should (a) be able to come to know that it obtains if it obtains and (b) it
should be safe to use, i.e., we cannot be systematically fooled about it. This may be
regarded as a transcendental argument for the stability of concepts: our cognition
is such that it only learns (and keeps) useful—and hence stable—properties.15

Second, there is a wide-spread line of thought that objects are characterized by
the set of transformations under which they are invariant, i.e., stable. Here are some
examples from different disciplines. In cognitive science, invariance is theorized to
play a central role in cognition. For example, it has been argued that we recognize
objects as the things that remain invariant under certain transformation like a
change of perspective (Gibson 1979/2015).16 And it has been argued that we
pick up those patterns or concepts that have few variants (Garner 1974/2014).17

In physics, invariances are known as symmetries and play an important role in
conservation laws (Noether’s theorem). The idea also is ubiquitous in mathematics:

14To the best of our knowledge, this idea doesn’t seem to be prominently discussed in the
theory of conceptual spaces. However, the formalization used by Gärdenfors (2004) is based on
the region connection calculus (Cohn et al. 1997) where not the points of a space are taken as
primitive objects but the regions describing the geometry of the space. (Cf. pointless topology,
as it is also used in the ‘topology via logic’ approach mentioned in footnote 2.) And a standard
interpretation of regions in Rn is as non-empty regular open sets (see e.g. Cohn et al. 1997,
102 f.).

15 One might also explore whether the usefulness of stable properties has to do with their
reduced complexity: see footnote 9 in chapter 7.

16As far as AI counterparts are concerned, this is somewhat reminiscent of the Generative
Query Networks of Eslami et al. (2018).

17Also see Vigo (2009).

296 Chapter 8. Stability: Fitch’s paradox and AI-safety

an early example is the Erlanger program of characterizing different geometries
by the group of transformations preserving their basic notions (length, angle,
parallel, etc.).18 In logic, this also inspired Tarski to identify the logical constants
as those concepts that remain unchanged under all permutations of the domain
of discourse (MacFarlane 2017; Tarski 1986).19 For the role of invariance in
philosophy, see, e.g., Nozick (2001).

Third, counterfactuals are sentences of the form ‘If p were the case, then q
would be the case’. They are important in philosophy: both as an object of study
(aiming to analyze counterfactuals) and as a tool (using counterfactuals to phrase
philosophical theories).20 Famously, Stalnaker (1968), Lewis (1973), and others
provided a semantic analysis of counterfactuals in terms of similarity: the idea
is that a counterfactual ‘if it were that p, then q’ is true at a possible world s iff
in the most similar possible worlds where p is true, also q is true.21 Within this
analysis, the limit assumption (Lewis 1973, pp. 19–20) says that: if ϕ is false at a
given world s, then there is no infinite sequence of ϕ-worlds that become more
and more similar to s. This assumption is usually made since it simplifies the
semantics (Lewis 1973; Starr 2019).22 In terms of state space stability, we can
consider the possible worlds as states and their similarity relation as providing a
notion of similarity between states. Then, intriguingly, the limit assumptions says
that whenever ϕ is false at a state s, then it is stably false: all sufficiently similar
worlds s′ also make false ϕ (i.e., there aren’t arbitrarily close ϕ-worlds).

8.3 Four principles of stability

We describe a formal logic to reason about stability across all the preceding
examples (section 8.3.1). Then we formulate four general principles that we’d
like the general notion of stability to have (section 8.3.2). We also make formal
the duality between falsification and verification (section 8.3.3). And we describe
natural ways of building sets of ‘sensible questions’ (section 8.3.4).

8.3.1 A logic to reason about stability

To describe a logic to reason about stability, we need to: (i) specify a language in
which to formulate claims involving stability, (ii) specify a derivability relation
which describes which sentences follow logically, and (iii) specify a semantics
that assigns meaning to the sentences of the language. Finally, we also need to

18The founding paper of category theory, regards it as a continuation of the Erlanger pro-
gram (Eilenberg and MacLane 1945).

19In set theory, also see the permutation models (Jech 1973, ch. 4).
20For an overview, see Starr (2019).
21See Starr (2019, esp. sec. 2.3) for the history of this idea and a summary.
22Here we won’t go into a discussion of the plausibility of the limit assumption. See Lewis

(1973, p. 20), Stalnaker (1984, pp. 141–142), and Starr (2019, supplem., sec. B.4).

8.3. Four principles of stability 297

introduce a formalization of the ‘sensible questions’. We now do these things in
turn.

Language What is common to the examples in section 8.2 is that we could
formulate the properties of the states using atomic properties (like ‘in state s,
the chair weighs between 5.2 kg and 5.6 kg’) and combining these with Boolean
connectives (¬,∧,∨,→) and the stability operator (2). Intuitively, the stability
operator says that the property in its scope is not only true in the current state
but also in all sufficiently similar states. The importance of adding the stability
operator is that we not only want to reason with the atomic (or Boolean) sentences,
but also with claims about their stability (and nested claims of stability). For
example, the (validity of the) sentence p→ 2p intuitively says that property p
is stable: whenever it is true at a state, it is also true at all sufficiently similar
states.

Moreover, since 2 expresses ‘local truth’ (truth in a small neighborhood around
the current state) it is natural to add a global truth (truth at all states) operator
�. Intuitively, the global truth operator says that the property in its scope is true
at every state. So we can phrase the sentence expressing that property p is stable
also as �(p→ 2p).

Thus, our language is built from a set of atomic sentences L0 using the operators
¬,∧,∨,→,2,�. Formally:

8.3.1. Definition. We fix a nonempty set L0 and call it the set of atomic
sentences, and we use variables p, q, . . . for its elements. The language L is obtained
by freely closing L0 under the operators ¬,∧,2,�.23 We call the elements of L
sentences. As common, we define (for some p ∈ L0)

ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ) ⊥ := p ∧ ¬p
ϕ→ ψ := ¬ϕ ∨ ψ 3ϕ := ¬2¬ϕ
ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ) �ϕ := ¬�¬ϕ.

We neither need further syntactic structure on the atomic properties (as, e.g.,
first-order quantification) nor cardinality assumptions on the atomic properties,
so we only assume that L0 is a nonempty set. The language L is a well-known
bimodal language (Shehtman 1999).

Derivability If we want to reason about stability, we need a logic governing
the L-sentences: we need a derivability relation ` on L.

Since we’re interested in formulating the principles about stability at the most
general level, we won’t explicitly define a single derivability relation. Rather, we’ll

23I.e., L is the smallest set such that, whenever ϕ,ψ ∈ L, also ¬ϕ,ϕ ∧ ψ,2ϕ,�ϕ ∈ L.

298 Chapter 8. Stability: Fitch’s paradox and AI-safety

axiomatically list the minimal assumptions we make about it. Nonetheless, we’ll
define concrete (and semantic) derivability relations below as examples. Moreover,
we’ll only consider whether a sentence is derivable (without premises), and not
whether it is derivable from a set of premises. Hence, we’ll define the derivability
relation ` simply as a subset of L, rather than as a binary relation between subsets
of L and elements from L.

The formal axiomatic definition of a derivability relation is as follows. Below,
we’ll briefly motivate the axioms and provide examples. For background on modal
logic, see Blackburn, Rijke, and Venema (2001).

8.3.2. Definition. A derivability relation on L is a subset ` of L with the
following properties (we write ` ϕ for ϕ ∈ `):

(D1) (a) If ϕ is a classical tautology,24 then ` ϕ. (classical logic)

(b) If ` ϕ and ` ϕ→ ψ, then ` ψ. (modus ponens)

(c) If ` ϕ and ψ is the result of uniformly replacing atomic sentences in ϕ
by arbitrary sentences, then ` ψ. (substitution)

(D2) (a) ` 2(ϕ→ ψ)→ (2ϕ→ 2ψ). (K-axiom for 2)

(b) If ` ϕ, then ` 2ϕ. (necessitation for 2)

(D3) (a) ` �(ϕ→ ψ)→ (�ϕ→ �ψ). (K-axiom for �)

(b) If ` ϕ, then ` �ϕ. (necessitation for �)

(D4) ` 2ϕ→ ϕ. (reflexivity)

(D5) 6` ⊥. (consistency)

We call ` transitive (resp. symmetric) if, additionally, ` 33ϕ → 3ϕ (resp.
` ϕ→ 23ϕ).

In words, axiom (D1) says that we follow the scientific standard of basing our
reasoning on classical logic. Axioms (D2) and (D3) say that 2 and � satisfy the
basic axioms for a (normal) modal operator. Axiom (D4) says that stable truth
implies (simple) truth. Axiom (D5) says that the logic (or derivability relation) is
consistent. For much of our purposes, we could replace axiom (D3) by the weaker
axiom: if ` ¬ϕ, then ` ¬ �ϕ (which is equivalent to necessitation for �). But
adding the K-axiom for � has some ‘structural’ benefits while coming at no cost
for us: With it, the usual tools of modal logic are applicable. And ` is closed
under equivalence: if ` ϕ↔ ψ, then ` χ↔ χ[ϕ/ψ] where χ[ϕ/ψ] is the result of

24I.e., ϕ contains only atomic sentences and Boolean connectives (¬,∧) and is true under any
classical valuation.

8.3. Four principles of stability 299

uniformly replacing the subformula ϕ of χ by ψ.25 Moreover, if � has the intended
interpretation of a global truth operator, it will satisfy much stronger axioms than
just the K-axiom.

Examples for ` can be obtained from consistent and reflexive normal modal
logics Λ (in the bimodal language) by setting ` ϕ iff ϕ ∈ Λ. Examples of such
logics are: S4 ? S5, S4U, S4UC (Shehtman 1999). However, more intuition can
arguably be gained from semantic examples for `, which we’ll now cover.

Semantics There are two well-known semantics for modal languages: the Kripke
(or relational) semantics and the topological semantics. (For a handbook chapter
covering both, see Van Benthem and Bezhanishvili (2007).) For convenience, we
recap these here.

8.3.3. Definition. A Kripke model is a triple M = (S,R, V) where S is a non-
empty set (whose elements are called states), R ⊆ S × S is a binary relation
(called accessibility relation), and V : S → P(L0) is a function (called valuation)
assigning each state a set of atomic sentences (that, intuitively, are taken to be
true at that state). We call M reflexive (resp., transitive, symmetric) if R is a
reflexive (resp., transitive, symmetric) relation.26

We recursively define when an L-sentence ϕ is true at a state s of M , which is
denoted M, s |= ϕ:

• M, s |= p iff p ∈ V (s), for p ∈ L0.

• M, s |= ¬ϕ iff M, s 6|= ϕ.27

• M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ.

• M, s |= 2ϕ iff, for all s′ ∈ S, if sRs′, then M, s′ |= ϕ.

• M, s |= �ϕ iff, for all s′ ∈ S, M, s′ |= ϕ.

If M is clear from context, we often just write s |= ϕ.

8.3.4. Definition. A topological model is a triple M = (S, τ, V) where (S, τ)
is a non-empty topological space (whose points are also called states),28 and

25Proof sketch: By induction on χ. If χ is atomic, this is immediate. If χ is of the form ¬χ1 or
χ1∧χ2, this follows from the induction hypothesis and axiom (D1). If χ is of the form 2χ1 or �χ1,
we have, by induction hypothesis, ` χ1 → χ1[ϕ/ψ], so, by necessitation, ` 2(χ1 → χ1[ϕ/ψ]), so,
by the K-axiom and axiom (D1), ` 2χ1 → 2χ1[ϕ/ψ], i.e., ` χ→ χ[ϕ/ψ]. Similarly for ←. For
� we reason analogously.

26The relation R is reflexive iff, for all s ∈ S, sRs. The relation R is transitive iff, for all
s, s′, s′′ ∈ S, if sRs′ and s′Rs′′, then sRs′′. The relation R is symmetric iff, for all s, s′ ∈ S, if
sRs′, then s′Rs.

27Here M, s 6|= ϕ is an abbreviation for it not being the case that M, s |= ϕ.
28A topological space is a pair (S, τ) where S is a set (whose elements are called points) and τ

is a set of subsets of S (whose elements are called open sets) such that (a) ∅, S ∈ τ and (b) τ is
closed under arbitrary union and under finite intersection.

300 Chapter 8. Stability: Fitch’s paradox and AI-safety

V : S → P(L0) is a function (called valuation) assigning each state a set of atomic
sentences.

We recursively define when an L-sentence ϕ is true at a state s of M , which is
denoted M, s |= ϕ:

• M, s |= p iff p ∈ V (s), for p ∈ L0.

• M, s |= ¬ϕ iff M, s 6|= ϕ.

• M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ.

• M, s |= 2ϕ iff there is U ∈ τ such that s ∈ U and, for all s′ ∈ U , M, s′ |= ϕ.

• M, s |= �ϕ iff, for all s′ ∈ S, M, s′ |= ϕ.

If M is clear from context, we often just write s |= ϕ. We write |=K and |=T ,
respectively, if we want to distinguish the modeling relation of Kripke semantics
from that of topological semantics.

Thus, the main difference between the semantics is their semantic clause for
2. From our stability perspective, this may be regarded as follows. Both clauses
spell out that 2ϕ is true at a state s if ϕ is true at all sufficiently similar states.
In the Kripke semantics, ‘sufficiently similar’ is spelled out via the accessibility
relation: a state s′ is sufficiently similar to s if sRs′. In the topological semantics,
‘sufficiently similar’ is spelled out via the topology: there is an open neighborhood
U of s whose members are considered sufficiently similar to s; so we can think of
U as a degree of similarity. Thus, Kripke semantics can only provide an absolute
notion of similarity: one that is the same for every sentence to which 2 is applied.
While topological semantics provides a relative notion of similarity: the degree
of similarity may differ among the sentences to which 2 is applied. In this light,
Tarski’s theorem is all the more astonishing: it shows that the two semantics have
the same underlying modal logic.29

These semantics provide examples of derivability relations as follows.

8.3.5. Proposition. Let C be a nonempty class of reflexive Kripke models or a
class of topological models. Then the following defines a derivability relation:

` ϕ :⇔ ∀M ∈ C ∀s ∈M : M, s |= ϕ.

We refer to ` as C-validity. In particular, if C = {M} is a singleton, ` ϕ means
that ϕ is true at every state in M . In that case, we refer to ` as M -validity.

29More precisely, reflexive and transitive Kripke models are sound and complete with respect
to the very same modal logic (namely S4) as topological semantics. See Van Benthem and
Bezhanishvili (2007) for a presentation of this result.

8.3. Four principles of stability 301

Proof (sketch). Axiom (D1) holds since on non-modal formulas the states act
like classical valuations. Axioms (D2) and (D3) are the basic axioms for a modal
operator and the two semantics are sound for those. Axiom (D4) holds in Kripke
semantics by the assumption of reflexivity and in the topological semantics by
definition. Axiom (D5) holds since no state can make ⊥ true. 2

Questions Finally, we get to the last ingredient for a formalization of the
discussion of stability: the set of questions Q. As indicated in the introduction
and the examples, not every question (or proposition or hypothesis) is ‘sensible’ in
a given situation: for example, it is a mood point whether a chair weighs exactly
5.3 kg because we can never establish the truth or falsity of this claim since every
measuring devise has some margin of error. Generally speaking, then, discussions
of phenomena involving stability also come with a set Q of sentences that can,
in that situation, sensibly be asked, conjectured, claimed, investigated, etc. For
example, Q could be the set of good scientific hypotheses, i.e., the set of sentences
that, if false, can also be falsified.

However, it is highly debatable what should count as a ‘sensible’ sentence in a
given situation, let alone how this may be defined in general. Thus, we’ll treat
Q as a parameter and only consider principles about Q. For example, one such
principle may be that if a sensible proposition is false, it should be falsifiable.

8.3.6. Definition. By a set of questions we simply mean a subset Q of L-
sentences. We refer to the elements of Q also as (sensible) sentences, questions,
properties, hypotheses, or propositions.

In section 8.3.4, we present important examples of a set of questions: for
example, Q could be the set of good scientific hypotheses {ϕ : ` ¬ϕ→ 2¬ϕ}.

8.3.2 Formalization and motivation of the principles

We now formalize and further motivate the intuitive principles (S1)–(S4) and their
duals (S1)–(S4) from the introduction. We’ll write (Σ1) for the formalization
of (S1), and (Σ1) for the formalization of (S1), etc. A summary of the formal
principles and their duals is given in figure 8.1.

Non-triviality principle The first principle says that ‘stable truth’ doesn’t
trivialize to ‘simple truth’, or—even worse—to ‘possible truth’.

(Σ1) = (Σ1) There is ϕ ∈ Q such that 6` (3ϕ↔ ϕ) ∧ (ϕ↔ 2ϕ).

In other words, this principle demands that there is no modal collapse for
sensible sentences. This way of putting it, provides an interpretation of the

302 Chapter 8. Stability: Fitch’s paradox and AI-safety

(Σ1) ∃ϕ ∈ Q : 6` ϕ↔ 3ϕ↔ 2ϕ.

(Σ2) ∀ϕ ∈ Q : ` ¬ϕ→ 2¬ϕ.

(Σ3) ∀ϕ ∈ Q : ` ϕ→ �2ϕ.

(Σ4) ∀ϕ ∈ Q ∃ψ ∈ Q :` ψ ↔ Mϕ

where Mϕ := ϕ ∧ ¬2ϕ.

(Σ1) ∃ϕ ∈ Q : 6` ϕ↔ 3ϕ↔ 2ϕ.

(Σ2) ∀ϕ ∈ Q : ` ϕ→ 2ϕ.

(Σ3) ∀ϕ ∈ Q : ` ¬ϕ→ �2¬ϕ.

(Σ4) ∀ϕ ∈ Q ∃ψ ∈ Q :` ψ ↔

M

ϕ

where

M

ϕ := ϕ ∨2¬ϕ.

Figure 8.1: The four principles and their duals (formalized).

impossibility result as a modal collapse argument: If we take the other principles
below as compelling premises, then the impossibility will imply the modal collapse
for sensible sentences.30

Also note that the non-triviality principle in particular implies that the set of
sensible questions Q is nonempty.

Falsifiability principle and its dual The next principle demands that the
sensible sentences have the kind of stability that they need: The falsifiability
version demands that the falsity of sensible sentences is stable, and the dual
verifiability version demands that the truth of sensible sentences is stable.

(Σ2) For all ϕ ∈ Q, ` ¬ϕ→ 2¬ϕ.

(Σ2) For all ϕ ∈ Q, ` ϕ→ 2ϕ.

This general motivation becomes more concrete in the various interpretations
of stability discussed in section 8.2. Here are some examples.

Consider the epistemic understanding of stability (section 8.2.1). Here L0 are
the sentences of a basic language to formulate observations and L is the language
obtained by also allowing statements about the stability of the observations. So L
is a ‘language of observation’. Then (Σ2) says that sensible observational sentences
need to satisfy the Popperian idea of falsifiability of scientific hypotheses: If ϕ is
a sensible hypothesis that in fact is false in the actual state of the world, then it
is possible to falsify it by making a fine enough measurement showing that the
actual state lies in a ¬ϕ-area. The dual principle (Σ2) expresses a verificationalist
standpoint: If ϕ is a sensible observational claim that is true in the actual state
of the world, then it is possible to verify it by making a fine enough measurement
showing that the actual state lies in a ϕ-area.

30Cf. the modal collapse argument of Quine (1960, 181f.): substitution salva veritate in
first-order modal logic collapses all modal truths to truth simpliciter. (See Føllesdal (2004) for
discussion.)

8.3. Four principles of stability 303

Consider the significance understanding of stability (section 8.2.5). Then (Σ2)
expresses the idea that the falsity of a sensible proposition is significant: If ϕ is
false at a model s, this is not due to an idiosyncrasy of the mathematical model,
but due to a structural reason, since sufficiently similar models also falsify ϕ.
So from the falsity of sensible propositions in the mathematical models we can
conclude that the corresponding property is also false in the modeled phenomenon
(according to the thesis that significance can be spelled out as stability). The dual
principle (Σ2) says that the truth of sensible propositions is significant.

Similarly, this can be spelled out for other interpretations of stability.

Standard model principle and its dual The next principle demands that
the sensible sentences have a standard (counter) model: If they can be made true
(false) at all, there is a state where they are stably true (false).

(Σ3) For all ϕ ∈ Q, ` ϕ→ �2ϕ.

(Σ3) For all ϕ ∈ Q, ` ¬ϕ→ �2¬ϕ.

To illustrate this, consider again observational verification (section 8.2.1). We
consider the possible weight-states x of a given chair. So the state space is S is
the set of non-negative real numbers (with their usual topology). Consider the
property ϕ = ‘the weight x in kg of the chair is such that 4 < x < 6’. So ϕ is
verifiable (i.e., ` ϕ→ 2ϕ).31 Now, it can happen that ϕ is false but cannot be
falsified: e.g., in the unfortunate case that the actual weight-state x happens to
be x = 4. Then x doesn’t have ϕ but any measurement will be inconclusive since
it will delimit an area containing both ϕ-states and ¬ϕ-states. But the point is
that there is some state in which ϕ is stably false: for example, if x = 3, then x
doesn’t have ϕ and we can falsify ϕ with a measurement with precision ±0.5 kg.
Thus, ϕ satisfies ` ¬ϕ→ �2¬ϕ.

Similarly for other interpretations of stability: For example, on the significance
interpretation, (Σ3) says that for any non-trivial significant property—i.e., one
that is a false at some model—, there should be a model where it is stably false.
Only then, arguably, can we have an idea of what it means that the property
ϕ ‘meaningfully’ fails—which seems like a plausible requirement for ϕ to be
significant.

Moore closure principle and its dual To state the final principle, we first
define the (dual) Moore operator. As noted in footnote 1, the name is due to the
Moore sentence ϕ ∧ ¬2ϕ in (formal) epistemology.

31With the usual argument (e.g. Vickers 1989, ch. 2): If the actual weight-state x of the chair
has property ϕ—i.e., x ∈ (4, 6)—, then there is an ε > 0 such that all weight-states y that are
ε-close to x have property ϕ—i.e., (x− ε, x+ ε) ⊆ (4, 6)—, so a measurement with precision ε
will verify that the current state x has property ϕ.

304 Chapter 8. Stability: Fitch’s paradox and AI-safety

8.3.7. Definition. The Moore operator M and the dual Moore operator

M

are
defined as

Mϕ := ϕ ∧ ¬2ϕ

M

ϕ := ϕ ∨2¬ϕ.

They are dual in the sense that ` Mϕ↔ ¬

M

¬ϕ for any derivability relation.32

Now, the (dual) Moore closure principle demands that sensible sentences should
be closed—up to equivalence—under the (dual) Moore operator.

(Σ4) If ϕ ∈ Q, then there is ψ ∈ Q such that ` ψ ↔ Mϕ.

(Σ4) If ϕ ∈ Q, then there is ψ ∈ Q such that ` ψ ↔

M

ϕ.

In words, if ϕ is a sensible claim, then also the claim ‘ϕ but not stably so’
(respectively, the dual ‘ϕ is false but not stably so’) is sensible. At first sight,
this may be the least plausible principle, so let’s motivate it with some of our
examples.

Consider again observational verifiability. We’ve already seen that the property
ϕ = ‘the weight x of the chair is 4 < x < 6’, which intuitively seems sensible,
is indeed verifiable (` ϕ → 2ϕ) and also satisfies the standard countermodel
principle (` ¬ϕ→ �2¬ϕ). The question that we’re concerned with now is: why
should

M

ϕ = ϕ ∨ 2¬ϕ be sensible again? It makes the hypothesis that (in the
actual weight-state) we can decide the property ϕ by measurement: either ϕ is
true, whence we can verify it by a measurement (since ϕ is verifiable), or ϕ is
stably false, whence there is a measurement that conclusively shows that ϕ is
false. This seems like a sensible hypothesis: after all, if it is true, it can be verified
(since, as just outlined, in either of the two cases ϕ and 2¬ϕ there is a confirming
measurement).33 Note again that the claim is only about the sensibility of

M

ϕ
and not that

M

ϕ is true or valid. Indeed, just like the sensible ϕ can be false, also

M

ϕ can be false, namely at the boundary states x = 4 and x = 6.
Let’s also consider the falsifiability version. Similarly to the reasoning in the

examples above, the property ψ = ‘the weight x of the chair is ≤ 4’ is indeed
falsifiable (if false, it is stably false) and also satisfies the standard model principle
(there is a state, e.g. x = 3 where it stably true). The question that we’re
concerned with now is: given ψ is sensible, why should Mψ = ψ∧¬2ψ be sensible
again? It makes the hypothesis that (in the actual weight-state) we cannot decide
the property ψ by measurement: ψ is not false (otherwise we could falsify it) but

32In ` we have the following equivalences: ¬

M

¬ϕ↔ ¬(¬ϕ ∨2¬¬ϕ)↔ ϕ ∧ ¬2ϕ↔ Mϕ.
33From an intuitionistic point of view, one may regard ϕ ∨2¬ϕ (which implies 2ϕ ∨2¬ϕ if

ϕ is stable) as a (classically formulated) form of excluded middle: it claims that we can ‘prove’
(or know or demonstrate) either ϕ or its negation.

8.3. Four principles of stability 305

it also is not stably true (so we could detect that with some measurement as well).
Again, this seems like a sensible hypothesis: after all, it is falsifiable.34

Consider the AI-safety interpretation of stability (section 8.2.3). Here the state
space is given by the possible inputs to an AI and s |= ϕ is interpreted as the
AI (correctly) judging input s to have property ϕ. Then

M

ϕ says that, on the
current input, the AI cannot be adversarially attacked to judge ϕ: it cannot be
the case that, on the current input, the AI doesn’t judge ϕ (e.g., because it judges
the input to depict a stop sign), but on arbitrarily small alternations of the input
it does judge ϕ (i.e., that the input depicts a ‘Speed Limit 45’ sign). This surely
is a sensible (and relevant) hypothesis.

8.3.3 The duality between falsification and verification

There is a well-known duality between falsifiable sentences (if false, they can be
shown to be false) and verifiable sentences (if true, they can be shown to be true):
ϕ is falsifiable iff ¬ϕ is verifiable (Vickers 1989, ch. 2). In our setting, this duality
can be made formal as follows.

8.3.8. Lemma. For any derivability relation ` and choice of Q, we have, for
k = 1, . . . , 4 (with ¬Q := {¬ϕ : ϕ ∈ Q}):

(a) If principle (Σk) holds for Q, then principle (Σk) holds for ¬Q, and

(a) If principle (Σk) holds for Q, then principle (Σk) holds for ¬Q.

The straightforward proof is moved to the appendix.

8.3.9. Proposition. The following are equivalent:

(a) For any derivability relation ` and choice of Q, at least one of (Σ1)–(Σ4)
fails.

(a) For any derivability relation ` and choice of Q, at least one of (Σ1)–(Σ4)
fails.

Proof. Assume (a). To show (a), assume for contradiction that, for ` and Q,
principles (Σ1)–(Σ4) are satisfied. Then, by lemma 8.3.8 (a), principles (Σ1)–(Σ4)
are satisfied for ` and ¬Q, contradicting (a). The other direction is analogous. 2

Thus, to prove our main result that both (a) and (a) hold, it is enough to
prove (a) (which will be theorem 8.4.2 below).

34If Mψ is false because ψ is false, we can falsify it, and if Mψ is false because ψ is stably true,
there is a measurement showing 2ψ, whence falsifying Mψ.

306 Chapter 8. Stability: Fitch’s paradox and AI-safety

8.3.4 Constructing sets of questions

We provide two important constructions of sets of questions that satisfy princi-
ples (Σ2) and (Σ4) (resp. their duals): Following proposition 8.3.11 below, one
starts with a ‘basic’ set of sentences that are falsifiable (verifiable) and closes it
under a single operation of the (dual) Moore operator. Following proposition 8.3.12
below, one takes all falsifiable (verifiable) sentences. (For this, additional assump-
tions on the derivability relation apply.)

The key to those results is the following lemma which we prove in the appendix.

8.3.10. Lemma. Assume ` is a transitive derivability relation. Then

(a) If ` ¬ϕ→ 2¬ϕ, then ` ¬Mϕ→ 2¬Mϕ.

(b) ` MMϕ↔ Mϕ.

(a) If ` ϕ→ 2ϕ, then `

M

ϕ→ 2

M

ϕ.

(b) `

MM

ϕ↔

M

ϕ.

In (b) and (b) transitivity is not needed.

8.3.11. Proposition. Let ` be a transitive derivability relation. Let Q0 ⊆ L.

(a) If ∀ϕ ∈ Q0 : ` ¬ϕ → 2¬ϕ, then Q :=
{
ϕ,Mϕ : ϕ ∈ Q0

}
satisfies

principles (Σ2) and (Σ4).

(a) If ∀ϕ ∈ Q0 : ` ϕ → 2ϕ, then Q :=
{
ϕ,

M

ϕ : ϕ ∈ Q0

}
satisfies princi-

ples (Σ2) and (Σ4).

Proof. Ad (a). Concerning (Σ2), let χ ∈ Q and show ` ¬χ→ 2¬χ. If χ = ϕ
for some ϕ ∈ Q0, then the claim follows by the assumption. If χ = Mϕ for
some ϕ ∈ Q0, then, by the assumption, ` ¬ϕ → 2¬ϕ, so, by lemma 8.3.10 (a),
` ¬Mϕ→ 2¬Mϕ, as needed.

Concerning (Σ4), let χ ∈ Q and find ψ ∈ Q such that ` ψ ↔ Mχ. If χ = ϕ
for some ϕ ∈ Q0, then ψ := Mχ ∈ Q works. If χ = Mϕ for some ϕ ∈ Q0, then
ψ := χ ∈ Q works since, by lemma 8.3.10 (b), ` ψ = Mϕ↔ MMϕ = Mχ.

For (a) we reason analogously using lemma 8.3.10 (a)–(b). 2

8.3.12. Proposition. Let ` be a transitive derivability relation. Then

(a) Q :=
{
ϕ ∈ L : ` ¬ϕ→ 2¬ϕ

}
satisfies principles (Σ2) and (Σ4).

(a) Q :=
{
ϕ ∈ L : ` ϕ→ 2ϕ

}
satisfies principles (Σ2) and (Σ4).

8.4. Impossibility via a novel interpretation of Fitch’s paradox 307

Proof. Ad (a). Principle (Σ2) holds by definition of Q. Concerning (Σ4), if
ϕ ∈ Q, choose ψ := Mϕ. Then, trivially, ` ψ ↔ Mϕ, and ψ ∈ Q because, by
lemma 8.3.10 (a), ` ¬Mϕ→ 2¬Mϕ.

Ad (a). We reason analogously using lemma 8.3.10 (a). 2

Note that Q :=
{
ϕ ∈ L : ` ¬ϕ→ 2¬ϕ

}
violates principle (Σ1) iff Q is closed

under negation; and similarly for the dual version.35

8.4 Impossibility via a novel interpretation of

Fitch’s paradox

We sketch Fitch’s paradox and our reinterpretation of it in terms of stability
(section 8.4.1). Inspired by this, we prove the main formal result: the inconsistency
of the principles about stability (section 8.4.2).

8.4.1 Reinterpretation of Fitch’s paradox

Fitch’s paradox (or the Church-Fitch paradox or the paradox of knowability)
says, as it is usually stated nowadays, the following: If all truths can be known
(∀p : p → 3Kp), then all truths are already known (∀p : p → Kp). The
contrapositive implication was first published by Fitch (1963) acknowledging
an anonymous referee who, much later, was discovered to be Alonzo Church.
(See Brogaard and Salerno (2019) for a brief history.) Even though Fitch worked
in the context of value concepts, the implication is mostly interpreted in the
above form as an objection to verificationalism, i.e., the view that all truths are
knowable (Brogaard and Salerno 2019).

In more precise words, the formal implication

∀p : p→ 3Kp ⇒ ∀p : p→ Kp,

which is also called Fitch’s lemma, can be established with fairly minimal proof-
theoretic assumptions on the modal operators 3 and K; and it gains philosophical
meaning by interpreting the quantifier as ranging over all declarative statements
and the modal operators as describing metaphysical possibility and knowledge,
respectively.

Here we wish to provide another interpretation in terms of stability: First, we
make explicit the set of sentences Q that we quantify over. We can recover the
original Fitch paradox by choosing Q to be the set of all (declarative) sentences,

35Proof: If Q violates (Σ1) and ϕ ∈ Q, then ` ϕ→ 2ϕ, i.e., ` ¬¬ϕ→ 2¬¬ϕ, whence ¬ϕ ∈ Q.
Conversely, if Q is closed under negation and ϕ ∈ Q, we need to show ` 3ϕ ↔ ϕ ↔ 2ϕ. By
reflexivity, ` 2ϕ → ϕ and ` ϕ → 3ϕ. Since ϕ ∈ Q, ` ¬ϕ → 2¬ϕ, i.e., ` 3ϕ → ϕ. Since
¬ϕ ∈ Q, ` ¬¬ϕ→ 2¬¬ϕ, i.e., ` ϕ→ 2ϕ.

308 Chapter 8. Stability: Fitch’s paradox and AI-safety

but we allow for a more refined analysis of the paradox by restricting the set of
‘allowed’ sentences. For example, this way we could account for the worry that
not all sentences are subject to verificationalism but only those of a certain logical
form. Second, and most importantly, we suggest a different interpretation of the
modal operators. We (re-) interpret the metaphysical possibility operator 3 as
the ‘true in some state’ operator (i.e., global possibility) � and we (re-) interpret
the knowledge operator K as the ‘true in all sufficiently similar states’ operator 2
(i.e., stability).

Inspired by this interpretation, we’ll now prove the impossibility result. But
the interpretation could potentially also find other applications: The research on
Fitch’s paradox of knowability (e.g., ways to avoid it) may yield insights about
stability, and vice versa the interpretation in terms of stability may suggest new
avenues in the case of knowledge—but we leave that to future research.

8.4.2 Impossibility

Reinterpreted in terms of stability, the Fitch’s lemma states: If, for all sentences
of Q, truth implies stable truth somewhere, then, for all sentences of Q, truth
already implies stable truth. Formally:

8.4.1. Lemma (Fitch’s lemma). Let ` be a derivability relation and Q a set of
sentences satisfying (Σ4). Then (i) implies (ii) where

(i) ∀ϕ ∈ Q : ` ϕ→ �2ϕ

(ii) ∀ϕ ∈ Q : ` ϕ→ 2ϕ.

Proof. The proof is a slight adaption of the standard proof of Fitch’s lemma. (See,
e.g., Van Benthem (2004) or Brogaard and Salerno (2019).) Assume (i) and let
ϕ ∈ Q. To show ` ϕ→ 2ϕ, we show ‘by contradiction’ that ` ¬(ϕ→ 2ϕ)→ ⊥
(using that (¬p → ⊥) → p is a classical tautology). By (Σ4), let ψ ∈ Q with
` ψ ↔ Mϕ. Then we can show, in `, the following chain of conditionals:

¬(ϕ→ 2ϕ) → ϕ ∧ ¬2ϕ [classical logic]
→ ψ [` ψ ↔ Mϕ]
→ �2ψ [(i)]
→ �2(ϕ ∧ ¬2ϕ) [` ψ ↔ Mϕ]
→ �(2ϕ ∧2¬2ϕ) [` 2(p ∧ q)→ 2p ∧2q]
→ �(2ϕ ∧ ¬2ϕ) [` 2p→ p]
→ ⊥ [` �⊥ → ⊥36]

36Since ` ¬⊥, necessitation implies ` �¬⊥, so ` ¬ �⊥, so ` �⊥ → ⊥.

8.4. Impossibility via a novel interpretation of Fitch’s paradox 309

where we use the closure under equivalence and the fact that, if ` ψ → χ, then
` �ψ → �χ.37 2

This lemma is the key ingredient to obtain the announced impossibility result:

8.4.2. Theorem. For any choice of derivability relation ` and set of questions
Q, the principles (Σ1)–(Σ4) are inconsistent. By proposition 8.3.9, also principles
(Σ1)–(Σ4) are inconsistent.

Proof. We show that (Σ2)–(Σ4) imply the negation of (Σ1). By (Σ4), lemma 8.4.1
applies, so (Σ3) implies

∀ϕ ∈ Q : ` ϕ→ 2ϕ.

By (Σ2), for all ϕ ∈ Q : ` ¬ϕ→ 2¬ϕ, i.e., ` 3ϕ→ ϕ. By reflexivity, ` proves
2ϕ→ ϕ→ 3ϕ. So

∀ϕ ∈ Q : ` 3ϕ↔ ϕ↔ 2ϕ,

which is the negation of (Σ1). 2

Note that we have made very few assumptions about the modality �. We
didn’t even use that it is reflexive, let alone anything that would suggest that it
has been intuitively introduced as a global truth operator (for which something
like the S5 axioms would be appropriate). By adding the very mild reflexivity
assumption, we can strengthen the inconsistency as follows.

8.4.3. Corollary. Let ` be a derivability relation and Q a set of questions.
Assume ` ϕ→ �ϕ. Then, if principles (Σ2) and (Σ4) are satisfied, exactly one
of (Σ1) and (Σ3) is satisfied. Similarly, for the dual principles.

Proof. Assume (Σ2) and (Σ4) are satisfied. By the inconsistency, it cannot be
that both (Σ1) and (Σ3) are satisfied, so it suffices to show that if (Σ1) is not
satisfied, then (Σ3) is. Indeed, if (Σ1) is false, then ∀ϕ ∈ Q : ` ϕ → 2ϕ. By
reflexivity, ` 2ϕ→ �2ϕ. So (Σ3) holds. Similarly for the dual principles (using
that falsity of (Σ1) implies ∀ϕ ∈ Q : ` ¬ϕ→ 2¬ϕ). 2

Before coming to applications of this inconsistency, we first investigate it
semantically.

37If ` ψ → χ, then ` ¬χ→ ¬ψ, so ` �(¬χ→ ¬ψ), so, by the K-axiom, ` �¬χ→ �¬ψ, so
` ¬ �χ→ ¬ �ψ, so ` �ψ → �χ.

310 Chapter 8. Stability: Fitch’s paradox and AI-safety

8.5 Impossibility via semantics

We can also prove the inconsistency for the ‘semantic’ derivability relations from
proposition 8.3.5 in a semantic way (rather than proof-theoretic as above). This
works both for Kripke semantics and topological semantics.

8.5.1. Theorem. Let C be a class of reflexive Kripke models or a class of topo-
logical models, and let ` be C-validity. Then

(i) If 6` ϕ→ 2ϕ, then 6` Mϕ→ �2Mϕ.

(ii) If Q is a set of sentences, then Q and ` cannot satisfy all of (Σ1)–(Σ4).

Similarly for the dual version.

Proof. Ad (i). By the assumption, there is a model M and a state s such
that M, s |= ϕ ∧ ¬2ϕ = Mϕ. If we had ` Mϕ → �2Mϕ, then M, s |= �2Mϕ.
So there is a state s′ such that M, s′ |= 2Mϕ = 2(ϕ ∧ ¬2ϕ). However, that
is a contradiction: It implies s′ |= 2ϕ ∧ 2¬2ϕ, which implies, by reflexivity,
s′ |= 2ϕ ∧ ¬2ϕ, but s′ cannot make true a contradiction.

Ad (ii). Assume for contradiction that Q and ` satisfy (Σ1)–(Σ4). By (Σ1),
there is ϕ ∈ Q such that 6` ϕ ↔ 3ϕ or 6` ϕ ↔ 2ϕ. By (D4), ` ϕ → 3ϕ and
` 2ϕ → ϕ. By the contraposition of (Σ2), ` 3ϕ → ϕ. Hence 6` ϕ → 2ϕ. So,
by (i), 6` Mϕ → �2Mϕ. Finally, by (Σ4), Mϕ is equivalent to some ψ ∈ Q, so
also 6` ψ → �2ψ, which is a contradiction to (Σ3). 2

In this section, we’ll collect some further corollaries specific to the two types
of semantics and illustrate them by examples.

8.5.1 Kripke semantics

The following is an example of a more concrete form of the impossibility in the
case of Kripke semantics.

8.5.2. Corollary. Let C be a nonempty class of reflexive and transitive Kripke
models, let ` be C-validity, and let Q := {ϕ : ` ϕ → 2ϕ}. Then the following
are equivalent:

(i) Q is closed under negation.

(ii) For all ϕ ∈ Q and models M ∈ C, if ϕ is falsifiable in M , then there is a
state s of M such that s |= 2¬ϕ.

Proof. By proposition 8.3.5, ` is a derivability relation. By proposition 8.3.12,
Q satisfies principles (Σ2) and (Σ4). By the impossibility result (corollary 8.4.3),
exactly one of (Σ1) and (Σ3) hold. Now the claim follows since (i) is equivalent
to the negation of (Σ1) and (ii) is equivalent to (Σ3). 2

8.5. Impossibility via semantics 311

8.5.3. Example. Consider again the stability theory of belief (section 8.2.4). Let
S be the set of probability measures over a nonempty finite set Ω. So the elements
of S are the agent’s possible degrees of belief. Let the set of atomic sentences L0 be
given by the subsets of Ω (the ‘propositions’). Let’s assume for this example that
the set Y of propositions that the agent may suppose is closed under conjunction
and contains the trivial proposition Ω and no propositions with zero probability.
Define µRν iff, for some q ∈ Y , ν is obtained by updating µ with q, i.e., ν = µ(·|q).
Finally, the valuation V is defined by: µ |= p iff p is Locke-believed at µ, i.e.,
µ(p) > ρ (where 1

2
≤ ρ < 1 is some fixed threshold).

As discussed in section 8.2.4, Hume-believing p at µ means µ |= 2p. Naturally,
we’re also interested in nested claims of Locke- and Hume-belief (i.e., sentences
in L and not just L0) and when the two notions (dis)agree: i.e., we want to
understand the set Q := {ϕ ∈ L : ` ϕ→ 2ϕ}.

The corollary helps: The Kripke model (S,R, V) is reflexive (since µ = µ(·|Ω))
and transitive (if µ2 = µ1(·|q) and µ3 = µ2(·|q′), then µ3 = µ1(·|q ∩ q′)). Thus, (i)
and (ii) are equivalent. Here (i) says: for all ϕ ∈ Q, if the agent doesn’t have high
degree of belief in ϕ, then no Y-update will change her mind into a high degree of
belief in ϕ. In contrast, (ii) only says that this can happen (but need not happen
everywhere): for all ϕ ∈ Q, given low degree of belief in ϕ is possible at all, the
agent can have degrees of belief in which she has low belief in ϕ and this doesn’t
change after Y-updates.

8.5.4. Example. Let’s consider a particular instance of stability as invariance
under transformations (section 8.2.6). Let S be a set of models in some given
signature (e.g., the set of all countable rings up to isomorphism) and define A R B
iff there is a surjective homomorphism f : A→ B (so B is a factor of A). Let L0

be the set of first-order sentences and define p ∈ V (A) iff A |= p. We’re interested
in the sentences (or properties) whose truth is invariant under the transformation
of taking factors. For first-order sentences (or formulas), this is a classical question
in model theory whose answer, in our case, is Lyndon’s Positivity Theorem (see
e.g. Rossman 2008). It says that, among the first-order sentences, it is precisely
the positive ones (those without negations) whose truth is invariant under factors.
However, the question naturally extends to nested invariance claims. So we ask:
what is the set Q = {ϕ ∈ L : ` ϕ→ 2ϕ}?

Again the corollary provides a partial answer with the equivalence of (i) and (ii).
Condition (i) fails rather easily: in the case of rings, we have Z R Z/3 via the
natural homomorphism and, for p := ∃x(x(1 + 1) = 1) ∈ Q, we have Z/3 |= p but
Z 6|= p, whence ¬p 6∈ Q. So (ii) fails, too: There is a sentence ϕ which not only is
preserved to factors but locally also its negation is preserved to factors (i.e., there
is a model A such that, for all factors B, B 6|= ϕ).38

38More generally, for combinations of modal logic and set/model theory, see, e.g., Hamkins
and Löwe (2008) and Hamkins and Wo loszyn (2020).

312 Chapter 8. Stability: Fitch’s paradox and AI-safety

In the formulation of the corollary, one could wonder: if the intended inter-
pretation of the accessibility relation of the Kripke models is similarity (so 2

means true in all similar states), then one should rather demand R to be reflexive
and symmetric (instead of transitive). However, we now show that this faces an
arguably even stronger no-go result.

We call a Kripke model (S,R, V) is connected if any two states can be connected
by a path, i.e., for all s, s′ ∈ S, there are s0, s1, . . . , sn ∈ S such that s = s0,
s′ = sn and siRsi+1 for all i = 0, . . . , n − 1. Intuitively, being connected means
that we’re considering a ‘single’ state space and not, really, two or more separate
ones. If a (reflexive and symmetric) Kripke model is not connected, one would
consider its connected components.

The next proposition then provides the no-go result: In connected Kripke
models, the only stable sentences are the trivial ones.

8.5.5. Proposition. If M is a connected Kripke model, then{
ϕ ∈ L : ` ϕ→ 2ϕ

}
=
{
ϕ ∈ L : ` ϕ or ` ¬ϕ

}
,

where ` is M-validity (i.e., truth at all states of M).

Proof. The inclusion ⊇ is immediate. For the other inclusion, let ϕ ∈ L be
such that ` ϕ → 2ϕ. If ϕ weren’t in the set on the right, there is a state
s 6|= ϕ and a state s′ 6|= ¬ϕ, i.e., s′ |= ϕ. Since M is connected, there is a path
s′ = s0Rs1R . . . Rsn = s. Since s′ = s0 |= ϕ and ϕ is stable, also s1 |= ϕ. We
continue inductively and obtain sn |= ϕ, which contradicts sn = s 6|= ϕ. 2

This will become relevant in the discussion of AI-safety below (section 8.6.2).

8.5.2 Topological semantics

The beauty of topological semantics is that it relates concepts of modal logic to
topological ones (Van Benthem and Bezhanishvili 2007). The following proposition
collects some basic such examples: it relates the logical concepts of stability,
falsifiability, stable truth, Moore operator, etc., to respective topological concepts:
openness, closedness, interior operator, boundary operator, etc.

8.5.6. Proposition (Folklore39). Let (S, τ, V) be a topological model. Write
JϕK :=

{
s ∈ S : s |= ϕ

}
. Then

39It is difficult to exactly determine the origins of these results. They include some of the
main conceptual insights of topological semantics (especially (iii) below) going back to Tarski
(and McKinsey), and most are found in standard treatments of the topic (Van Benthem and
Bezhanishvili 2007). Moreover, the idea expressed in (i) and (ii) that open (resp. closed) sets
correspond to verifiable (resp. falsifiable) properties is due to the ‘topology via logic’ approach
(albeit not strictly speaking formulated in the context of topological semantics). If anything, the
specific formulation chosen here with an eye toward stability is new.

8.5. Impossibility via semantics 313

(i) JϕK is open iff ϕ→ 2ϕ is valid on S (i.e., true at every state).

(ii) JϕK is closed iff ¬ϕ→ 2¬ϕ is valid on S.

(iii) J2ϕK = IntJϕK and J3ϕK = ClJϕK.40

(iv) If JϕK is closed, then JMϕK = δJϕK.41

(v) If (S, τ) is connected and ϕ non-trivial (neither ϕ nor ¬ϕ are valid in S),
then (3ϕ↔ ϕ) ∧ (ϕ↔ 2ϕ) is not valid in S.

Proof. Ad (i). JϕK is open iff for all s ∈ S, if s ∈ JϕK, then there is an open set
U such that s ∈ U ⊆ JϕK iff ` ϕ→ 2ϕ is valid.

Ad (ii). JϕK is closed iff J¬ϕK is open iff ` ¬ϕ→ 2¬ϕ is valid.
Ad (iii). J2ϕK =

{
s ∈ S : ∃U ∈ τ . s ∈ U ⊆ JϕK

}
=
⋃{

U ∈ τ : U ⊆ JϕK
}

=
IntJϕK. And J3ϕK = J2¬ϕKc = (IntJϕKc)c = ClJϕK.

Ad (iv). Since JϕK is closed, JMϕK = JϕK ∩ J¬2ϕK = ClJϕK ∩ (IntJϕK)c = δJϕK.
Ad (v). If the formula were valid, JϕK is a closed and open set which is neither

∅ nor S, which contradicts connectedness. 2

Here are but some deep results about the connection between modal logic and
topology relevant to our setting: The global modality increases expressivity (She-
htman 1999): connectedness cannot be defined using only 2, but it can be defined
additionally using � by the C-axiom �(2ϕ ∨2¬ϕ)→ �ϕ ∨�¬ϕ. The natural
‘basic’ logic for the bimodal logic where 2 is interpreted topologically and � as
global truth is S4U (Bennett 1996; Shehtman 1999): S4 for 2, plus S5 for �, plus
the bridge axiom �ϕ→ 2ϕ. S4U +C is the logic of any connected dense-in-itself
separable metric space (Shehtman 1999). It is also the logic of the algebra of
countable unions of convex subsets of the real line (Bezhanishvili and Gehrke
2005). S4U is the logic of the measure algebra of subsets of the Euclidean space
with positive Lebesgue measure (Fernández-Duque 2010), which is a semantics
originally suggested by Dana Scott (also see Lando 2012; Lando 2015). For a
detailed study of expressivity and definiability in modal logics for topology, see
Cate, Gabelaia, and Sustretov (2009). For adding dynamics, see Kremer and
Mints (2007) discussing modal logics for topological dynamical systems.

Using the topological semantics, we can provide yet another, conceptually
different proof of the impossibility.

8.5.7. Theorem. Let M = (S, τ, V) be a topological model and ` M-validity.

(i) If JϕK is closed in S but not open, then 6` Mϕ→ �2Mϕ.

(ii) If Q is a set of sentences, then Q and ` cannot satisfy all of (Σ1)–(Σ4).

40Here Int is the topological interior and Cl is the topological closure.
41Here δ is the topological boundary.

314 Chapter 8. Stability: Fitch’s paradox and AI-safety

Similarly for the dual version.

Proof. Ad (i). Since JϕK is closed and not open, ∅ 6= δJϕK = JMϕK. If we
had ` Mϕ → �2Mϕ, there would be a state s |= �2Mϕ, so ∅ 6= J2MϕK =
IntJMϕK = IntδJϕK = ∅, contradiction.

Ad (ii). Assume for contradiction that Q and ` satisfy (Σ1)–(Σ4). By (Σ1),
there is ϕ ∈ Q such that 6` 2ϕ ↔ ϕ ↔ 3ϕ. So JϕK is either not closed or not
open. Since, by (Σ2), JϕK is closed, it is not open. By (Σ4), Mϕ is equivalent to
some ψ ∈ Q. So, by (i), S 6= JMϕ→ �2MϕK = Jψ → �2ψK, contradicting (Σ3).
2

A more concrete corollary that we’ll use below is the following.

8.5.8. Corollary. Let S be a set of states and let p ⊆ S be a non-trivial subset
(i.e., p 6= ∅ and p 6= S). We identify the set p with the atomic sentence p (i.e., we
choose a valuation V on S with p ∈ V (s) iff s ∈ p). Let τ be a connected topology
on S. If p is open, then it is not entirely but generically true that limits of p-states
are p-states, i.e., the set

J

M

pK =
{
s ∈ S : if s is the limit of states in p, then s ∈ p

}
(8.1)

is not S but generic (i.e., open and dense). Similarly for the dual version.

Proof. Since (S, τ) is connected and ¬p is closed and non-trivial, ¬p cannot
be open. By theorem 8.5.7 (i), 6` M¬p → �2M¬p, so there is a state s with
s |= M¬p and s |= ¬ �2M¬p. The former implies s 6∈ J¬M¬pK = J

M

pK and the
latter implies S = J3¬M¬pK = ClJ

M

pK. Hence J

M

pK is dense. It also is open:
J

M

pK = Jp ∨ 2¬pK = p ∪ Int(pc). So it remains to show equation (8.1). The set
on the right can be written as {s ∈ S : s 6∈ Clp or s ∈ p} which further equals
(ClJpK)c ∪ JpK = J¬3p ∨ pK = J

M

pK as needed. 2

We’ll use the corollary in the discussion of AI-safety below (section 8.6.2).
But, for now, we end this section by applying it to the example of Markov chains
mentioned in the context of significance in mathematical models (section 8.2.5).

8.5.9. Example. Recall that (finite-state and time-homogeneous) Markov chains
correspond to stochastic matrices (the transition matrices of Markov chains). So,
as state space, we consider the set S := Ms

n of stochastic n × n matrices (i.e.,
n× n matrices with real non-negative entries such that each row sums up to 1).
The natural topology on Ms

n is the subspace topology inherited from the space
Mn of all real-valued n× n matrices with the topology induced by any matrix
norm.

As property p, we’ll consider ergodicity: the property that, roughly, we can
investigate the system (modeled by the Markov chain) through sampling: we

8.6. Applications 315

can come to know the average value of a measurement performed on the system
repeatedly over time (‘time average’) though the stochastically expected value of
single performance of the measurement (‘space average’). In the case of Markov
chains, this property fortunately is equivalent to a simpler one: a Markov chain
is ergodic iff its transition matrix A is irreducible, i.e., for all 1 ≤ i, j ≤ n there
is k ≥ 1 such that Ak(i, j) > 0 (Petersen 1983, p. 53). So we consider the set
p :=Mirr

n of irreducible stochastic matrices.

In the appendix (lemma 8.7.1), we show that (a) S = Ms
n is a connected

topological space, (b) p =Mirr
n is an open subset ofMs

n, and (c) p is a non-trivial
subset of S (assuming n ≥ 2). Thus, the property of being ergodic is not only
significant (p→ 2p is valid) but it also is a generic truth that every Markov chain
either is ergodic or ‘significantly non-ergodic’ (p∨2¬p is valid). So, generically, if
during a modeling process we refine our ergodic Markov chain model of a given
real phenomenon ever more finely, the limit of the modeling process will again be
an ergodic Markov chain.

Another example in section 8.2.5 was provided by general relativity. Here
the discussion of Fletcher (2016) is a good illustration of the advantage of using
topology to describe stability (as opposed to a binary relation). Its more sophisti-
cated structure allows for a more careful analysis: for example, why to favor one
topology (as a description of stability) over another.

8.6 Applications

Among the many examples of stability from section 8.2, we’ll restrict us to
applying the impossibility result to two of them: In section 8.6.1, we consider
verifiability and falsifiability (or knowability and scientific hypotheses) and obtain
an extension of Fitch’s paradox. In section 8.6.2, we consider AI-safety and find
some fundamental limitations.

8.6.1 An extension of Fitch’s paradox

Fitch’s paradox is much discussed (Brogaard and Salerno 2019), but one commonly
drawn lesson is that we cannot come to know every true sentence. As a response
to this, we may ask: What, then, is the set of sentences Q such that, whenever
they are true in a situation, we can come to know that they are true? In this
subsection, we use the impossibility to find limitations on this set Q of knowable
sentences—and thus, in a sense, obtain an extension of Fitch’s paradox. After
that, we’ll also discuss the dual case of scientific hypotheses: What is the set
Q of good scientific hypotheses? Again, the impossibility result implies some
limitations on Q.

316 Chapter 8. Stability: Fitch’s paradox and AI-safety

Knowability In a sense, Fitch’s paradox of knowability is most striking when
applied to the most basic instances of knowablility: obtaining knowledge about
objects through observation. In other words, if we talk about very complicated
and hard to grasp topics, it may be less surprising that there are sentences which
we cannot come to know. But if we only consider sentences of a basic observational
language, this is much more worrying. For this reason—and for concreteness—,
we’ll take our atomic sentences (i.e., the set L0) to be observational statements
(like ‘object a is red’ or ‘object b weighs 5 kg’). Thus, the language L is obtained
from the basic observational statements using logical connectives, the stability
operator, and the global truth operator.

In the face of Fitch’s paradox (and also for independent reasons), we may then
wonder which sentences are knowable: what are the observational sentences that
have a logical form that ensures that, if true, we can come to know their truth
through observation or measurement. As we’ll argue now, the impossibility result
shows that we have to give up at least one of the following:

(1) The safety condition for knowledge: if we know ϕ, then ϕ is stably true.

(2) Stability ensures knowability: if ϕ is stably true, there is some measurement
that will yield knowledge that ϕ.

(3) Non-triviality: for some knowable sentence ϕ, we can continuously transform
a ϕ-state into a ¬ϕ state. For example, if an object is red in a state, we can
‘imagine’ to continuously change the color of the object until it is blue, i.e.,
we’re in a non-red state. We phrase this more precisely below.

(4) Standard countermodel: if a knowable sentence is false, there is some state
in which we can come to know its falsity.

Thus, for example, given (1)–(3), we can conclude that there are knowable sentences
that can be false in some states, yet we will never come to know their falsity. We
may regard this as an extension of (the common conclusion of) Fitch’s paradox:
Not only are there true sentences that we cannot come to know, but also, even
among the sentences that we can come to know whenever they are true, there are
sentences that can be false while we cannot come to know their falsity.

We’ll now discuss (1)–(4) and their joint inconsistency in more detail. We
write Q for the set of knowable sentences (i.e., if true, we can come to know it) in
our ‘observation language’ L.

Regarding (1), we’ve already discussed the safety condition for knowledge in
section 8.2.2. It says that if we know ϕ in situation s, then ϕ is not only true in s
but also in all sufficiently similar situations s′. The point of (1) is that it implies
that all sentences ϕ in Q are stable: If ϕ is true at a state s, we can come to know
it (by definition of being in Q), so, since knowledge implies stability, ϕ is also true
in all sufficiently similar states, so 2ϕ is true at s.

8.6. Applications 317

The idea behind (2) is that the similarity structure on the state space (which
determines the notion of stability) ‘reflects’ observability. For example, in the
‘topology via logic’ approach mentioned in footnote 2, the similarity structure is
given by a topology (as in topological semantics) and the (basic) open sets in the
topology precisely correspond to the possible observations. Thus, if ϕ is stably
true at a state s, then s is in the open set J2ϕK, so there is a possible measurement
confirming this (i.e., a basic open set U such that s ∈ U ⊆ JϕK). The point of (2)
is that it implies that all stable sentences ϕ are in Q: If ϕ is true at a state s,
it is, by stability, also stably true, so there is some measurement that will yield
knowledge that ϕ. So ϕ ∈ Q: if true, we can come to know it.

To summarize, if (1) and (2) are correct, then the set Q of knowable sentences
is precisely the set of sentences that are stable: Q = {ϕ : ` ϕ→ 2ϕ} where ` is
the ‘true at all states’ relation. In other words, the stability operator 2 coincides
with the ‘can come to know’ operator. (This is different to the original Fitch
paradox where ‘can come to know’ is expressed as 3K.)

Next, we argue that ` 2ϕ→ 22ϕ, i.e., if ϕ is stably true, also the claim “ϕ
is stably true” is stably true. We’ve seen (the) two ways to describe a similarity
structure on the state space which determines the notion of stability: either
absolutely via a binary relation (Kripke semantics) or in degrees via a topology
(topological semantics). In the former case, if the binary relation describes a
similarity relation, it is natural to assume that it is reflexive (any state is similar
to itself) and symmetric (if s is similar to s′, also s′ is similar to s). But then,
given the plausible assumption of connectedness (cf. (3) above), proposition 8.5.5
implies that the only stable—i.e., knowable—sentences are the trivial ones.42 To
avoid this triviality conclusion about the knowable sentences, we better use the
topological semantics. But on this semantics, ` 2ϕ → 22ϕ is true no matter
which topology we choose to spell out similarity.43

Now, by proposition 8.3.12, Q and ` satisfy principles (Σ2) and (Σ4). By
corollary 8.4.3, exactly one of (Σ1) and (Σ3) holds, i.e., exactly one of the following
two options holds:

(a) The state space is ‘disconnected’ with respect to every possible observation
ϕ ∈ Q: Whenever a state s has arbitrarily similar states s′ making true
ϕ, then s already makes true ϕ. Intuitively, it hence is never possible to
start in a state s making true ϕ and ‘continuously’ transform it into a state
making false ϕ: the first state along this transformation making false ϕ has
arbitrarily close ϕ-states.

42Without the connectedness assumption, knowable sentences are trivial on each connected
component. Arguably, this already is bad enough.

43And the reason is intuitive enough: If 2ϕ is true at a state s, then ϕ is true at all sufficiently
similar states s′. To show that s makes true 22ϕ, we now ‘double’ the demand for being
sufficiently similar; call this sufficiently∗ similar. Then all states s′ that are sufficiently∗ similar
to s, make true 2ϕ, because any state s′′ that is sufficiently∗ similar to s′ is in total sufficiently
similar to s and hence makes true ϕ.

318 Chapter 8. Stability: Fitch’s paradox and AI-safety

(b) There are sentences ϕ in Q which can be false at some state s but in no
state can we come to know that they are false (because they nowhere are
stably false).

Since (a) is the negation of (3) above and (b) is the negation of (4) above, we
have argued, using the impossibility result, that (1)–(4) are jointly inconsistent.
This inconsistency can be used to obtain various more concrete arguments.

We’ve already mentioned the ‘extension of Fitch’s paradox’: that (1)–(3) imply
the failure of (4). Another example is the following. Assume we take (2)–(4) for
granted: Regarding (2), we take it, by definition, that similarity and stability on
the state space is given by observability. Regarding (3) and (4), we think that
to understand an observable property, we not only need to be able to ‘imagine’
what it takes to fail, there also should be a state where we can observe that it
fails. But then we must conclude that (1) fails: the safety condition for knowledge
fails when stability is understood as coming from observability.

Scientific hypotheses The dual argument can be made for good scientific
hypotheses. (Since it is dual, we’ll be more brief.) Assume again that the similarity
structure on the state space is given by a topology that reflects observability (as,
e.g., in the ‘topology via logic’ approach). Let Q be the set of those sentences of
our observation language L that are good scientific hypotheses. Then we have to
give up at least one of the following:

(1) Scientific hypotheses are falsifiable: if false, they can be falsified by some
measurement or observation, and hence are stably false.

(2) Falsifiability also is sufficient to be a scientific hypothesis: if ϕ is a sentence
such that, whenever it is false, it is stably false (so the falsity can be
observed), then ϕ is a scientific hypothesis.

(3) Non-triviality: for some scientific hypothesis ϕ, we can continuously trans-
form a ¬ϕ-state into a ϕ-state.

(4) Standard model: if a scientific hypothesis is true, there is some state in
which we can observe that it is true.

Again, (1)–(2) implies Q = {ϕ : ` ¬ϕ → 2¬ϕ}, whence the impossibility
result implies that (3) or (4) fails.

If we take (1)–(3) for granted, we must conclude that (4) fails: there are good
scientific hypotheses that are true in some states, but we can never observe this.
Similarly, if we take (1), (3), and (4) for granted, we must conclude that (2)
fails: there must be more to being a good scientific hypothesis than merely being
observationally falsifiable. Arguments for (1) are given by the Popperian idea that
scientific hypotheses are falsifiable; and (2) takes this as their defining feature.
Arguments for (3) and (4) may proceed as above: to understand a scientific

8.6. Applications 319

hypothesis, we must be able to imagine a situation in which (we can observe that)
the hypothesis is true. Another argument for (3) is that the topology should be
connected (e.g., because it is similar to the topology of the observed physical
phenomenon), so any non-trivial scientific hypothesis will satisfy (3).

8.6.2 A limitation for AI-safety

We discuss AI-safety: the idea that for an AI to be safe, its behavior should be
stable under small variations of the input. We consider two ways of concretely
spelling out this stability. The first results in triviality and the second comes with
limitations.

Let’s consider the paradigm case where the AI should perform a desired
mapping from a continuous input space to a discrete output space: The AI gets
‘continuous’ inputs, like images or sound recordings, and should produce a discrete
output, like a classification label (‘this is a cat’) or symbolic representation (the
transcribed speech). As discussed in section 8.2.3, for such an AI to be safe—e.g.,
to avoid adversarial attacks—the judgments of the AI should be stable: if it
(correctly) judges an input s to have property ϕ (e.g., depicting a stop sign), then
it still does so on sufficiently similar inputs s′ (and, e.g., doesn’t suddenly judge
there to be a ‘Speed Limit 45’ sign). Naturally, we want to understand which ϕ
have this property. For simplicity, let’s call those that have it the ‘safe’ judgments.

To spell this out more concretely, let S be the input space (i.e., the inputs
are the states). The atomic sentences p ∈ L0 correspond to the classification
labels of the AI, so the valuation V is given by: s |= p iff the AI judges input s
to be of category p. To interpret the stability operator 2, we need to describe
the intended similarity relation on the input space. We’ll consider two ways of
doing that: first, via a similarity relation (Kripke semantics) and second via an
appropriate topology (topological semantics). The first way arguably is the most
straightforward one but results in triviality. The second way provides a general
structure to avoid the triviality, but each instance of this structure has its own
limitations.

Stability via a similarity relation The input space is usually (mathematically
modeled as) something like the Rn: for example, the space of images with n pixels
each of which can a have real value describing its color. We’ll capture this more
generally by assuming that the input space S = (X, d) is a path-connected metric
space: The metric allows speaking of closeness between inputs (as, e.g., the usual
Euclidean distance between two images). The path-connectedness intuitively
means that we can continuously transform each input into another one—e.g.,
continuously change the pixel values of one image into another.

Maybe the most straightforward way to spell out ‘sufficiently similar’ on this
input space S = (X, d) is to pick a ‘safety threshold’ ε > 0 and call two inputs s
and s′ sufficiently similar if they are ε-close (i.e., d(s, s′) < ε). For example, ε could

320 Chapter 8. Stability: Fitch’s paradox and AI-safety

be the minimal distance between two pixel images that is detectable to the human
eye. Then, for an AI to be safe with respect to that notion of similarity means
that if the AI judges input s to have property ϕ, it also judges all ε-close inputs
s′ to have property ϕ. In that sense, ε is a ‘safety threshold’ since within ε-range
the AI cannot be adversarially attacked (i.e., it doesn’t retract its judgment ϕ).

However, this approach trivializes the safe judgments to the trivial ones: We
have the Kripke model (S,R, V) where sRs′ iff d(s, s′) < ε. Since (X, d) is path-
connected, it follows, by a standard topological argument (which we prove in the
appendix: lemma 8.7.2), that (S,R, V) is a connected. Hence proposition 8.5.5
implies that the only stable sentences are the trivial ones.

One might object the use of the underlying (Euclidean) metric d on the input
space to provide a notion of similarity: We can have two images that are, to the
human eye, rather different even though, in terms of pixel similarity, are rather
close (e.g., a tiny, but important detail missing)—and also vice versa (e.g., added
noise). In short: low-level (pixel) similarity need not coincide with high-level
(human) similarity. Note, however, that the triviality argument is not restricted
to the Euclidean metric but works for any path-connected metric on the input
space—which could also attempt to describe high-level closeness of inputs.

Nonetheless, if spelling out AI-safety via a safety threshold trivializes the safe
judgments, we need to rethink the assumptions.

Stability via an appropriate topology In addition to objecting the use of a
metric, another objection is to not formalize ‘sufficiently similar’ binarily via a
threshold. Rather—as the qualifier ‘sufficiently’ suggests—we describe ‘sufficiently
similar’ as a matter of degree: that there is some degree of similarity.

What we’re left with, then, is that ‘sufficiently similar’ is made concrete by
some topology on the input space. There may be many such topologies, and they
don’t need to be the natural ‘low-level’ topology of the input space. For example,
the appropriate topology that captures similarity between images according to the
high-level human cognition may be—as just indicated—different to the ‘low-level’
Euclidean topology on Rn describing the pixel values of an image.

One assumption, though, remains plausible: whatever the appropriate topology
on the input space, it should be connected. Intuitively, this means that we’re
dealing with a single input space which cannot be split up into two or more
separate spaces (which we could study separately). Here are two considerations
that imply connectedness. First, similarly to (3) and (3) in section 8.6.1, we
may think that we should be able to continuously transform each input into
another one (by continuously changing the parameters determining the input).
This path-connectedness and implies connectedness. Second, we may think that
high-level similarity ‘supervenes’ on low-level similarity: if a set of inputs describes
a high-level similarity range (i.e., is an open set of the high-level topology), then
it can be described as a union of low-level similarity ranges (i.e., as a union of

8.6. Applications 321

opens of the low-level topology). So the high-level topology is coarser than the
low-level topology, whence, since the latter is connected, also the former is.

By now, one might object that we gave up too many assumptions to still have
something that can reasonably be said to formalize similarity and stability. For
one, only demanding that there is some degree of similarity within which the
judgment of the AI is stable may not be practically useful: it may be that this
stability range only ensures stability within a distance of 2−1000 in the input space
Rn. To remedy this—i.e., to get a practically meaningful notion of stability—we
may resort to a finite topology, or, at least, an Alexandroff topology (i.e., every
point has a least open neighborhood).44

These considerations indicate that there is a real issue in concretely spelling
out the kind of stability required for AI-safety: On the one hand, it needs to avoid
triviality, which seems to exclude relational approaches and favors topological ones.
On the other hand, it should be meaningful and useful, which puts quite some
demands on a topology to be ‘appropriate’—i.e., to reasonably capture the notion
of similarity and stability intended in AI-safety. However, besides connectedness,
we won’t discuss further assumptions on the topology to be ‘appropriate’. Our
point here is that the impossibility result yields some general limitations for any
connected topology—regardless of whether it really is appropriate or eventually
turns out not to be appropriate.

In this general case, then, we’re given a connected topology τ on the input
space S (which attempts to provide a notion of similarity capturing AI-safety).
Thus, the atomic sentences p ∈ L0 are still interpreted by the valuation V and
the stability operator 2 is interpreted topologically. Now, what can we say about
the set of safe judgments Q =

{
ϕ ∈ L : ` ϕ→ 2ϕ

}
?

As already discussed, for ϕ ∈ Q, we can interpret

M

ϕ = ϕ ∨2¬ϕ roughly as
‘the AI cannot be ϕ-adversarially attacked’: it is not the case that ϕ is false (e.g.,
the AI doesn’t judge there to be a speed limit sign) but ϕ is true on arbitrarily
close states (so, on some small alternations of the input, the AI judges there to be
a speed limit sign). From the impossibility result (corollary 8.5.8), we know:

For every non-trivial safe sentence ϕ, the AI can be ϕ-adversarially attacked
(

M

ϕ is false on some inputs) but for generic inputs it cannot (

M

ϕ is generically
true).

This is good and bad news. The good news is that we can avoid the no-go
result of the ‘safety threshold approach’: Any non-trivial open set of the topology τ
provides, when interpreted as a property ϕ, a non-trivial safe judgment. Moreover,
for any safe judgment, the claim

M

ϕ that the AI cannot be ϕ-adversarially attacked
is again a safe judgment and it is generically true: the set of inputs where

M

ϕ fails

44Here it is interesting to note that, by taking the specialization ordering, Alexandroff spaces
are in correspondence with S4-frames, i.e., reflexive and transitive Kripke models without the
valuation (Van Benthem and Bezhanishvili 2007, sec. 2.4.1). So this would allow a treatment of
stability in AI-safety also with Kripke semantics.

322 Chapter 8. Stability: Fitch’s paradox and AI-safety

is topologically negligible (closed and nowhere dense).45 The bad news is that, if
ϕ is non-trivial, there always are some inputs where the AI can be ϕ-adversarially
attacked. Moreover, the AI can also never (i.e., on no input) safely make the
‘meta-judgment’ that it currently can be ϕ-adversarially attacked: Otherwise,

M

ϕ had to be stably false, so the set where

M

ϕ fails wouldn’t be topologically
negligible. Thus, in a sense, the possibility of an adversarial attack cannot safely
be detected.

To summarize, even for safe judgments, adversarial attacks can only generically
but not absolutely be excluded, and the AI cannot safely make the meta-statement
that it cannot be adversarially attacked.

8.7 Conclusion

We end with a brief summary and some open questions. We saw a wide range
of examples involving stability and formally described them using modal logic.
We formulated four desirable principles about stability and proved them incon-
sistent: both proof-theoretically (via a novel interpretation of Fitch’s paradox)
and semantically (via Kripke semantics and topological semantics). We explored
two consequences. First, we extended Fitch’s paradox: both the set of verifiable
sentences (if true, we can come to know them) and the set of falsifiable sentences
(scientific hypotheses) are restricted by impossibilities—which could be interpreted,
e.g., as there being false verifiable sentences whose falsity we cannot come to
know. Second, modeling the stability aspect of AI-safety faces some fundamental
difficulties: the straightforward ‘safety threshold’ approach is likely to trivialize
and the topological approach (no matter how it is spelled out in detail) restricts
the safe judgments that we can expect.

Regarding open questions, future work should further analyze these difficulties
in modeling AI-safety and explore yet other modeling approaches. One might
consider neighborhood semantics (Pacuit 2017) or a domain-theoretic semantics as
in (Hornischer 2021) and in this thesis. What consequences does the impossibility
result have for the other examples of stability from section 8.2? (We’ve already
sketched several in section 8.5.) What implications does this understanding of
stability have for the question of how stability allows a symbolic understanding of
non-symbolic computation (chapter 7)? More generally, the nexus of philosophy,
AI-safety, and logic seems worth exploring: connections between Fitch’s paradox,

45Note, though, that for concrete topologies τ , one not only needs to check that it provides
the intended notion of the stability figuring in AI-safety. One also needs to check that its
notion of topological negligibility matches the intended notion of ‘negligible’. In particular, the
topological sense of negligible and the probabilistic (or measure-theoretic) sense of negligible
can come apart (Oxtoby 1980). This becomes particularly relevant if we want to understand
‘generic’ probabilistically: as almost surely with respect to some probability measure—which
might represent random noise present in capturing and processing (image) data.

8.7. Conclusion 323

safety conditions for knowledge (and epistemology more broadly), AI-safety, modal
logic, and topology—coming together under the concept of stability.

Appendix

Two proof-theoretic lemmas First, we prove lemma 8.3.8: For any derivabil-
ity relation ` and choice of Q, we have, for k = 1, . . . , 4:

(a) If principle (Σk) holds for Q, then principle (Σk) holds for ¬Q, and

(a) If principle (Σk) holds for Q, then principle (Σk) holds for ¬Q.

Proof of lemma 8.3.8. Ad (a). For k = 1, if ϕ ∈ Q with 6` ϕ↔ 3ϕ↔ 2ϕ,
then ¬ϕ ∈ ¬Q and 6` ¬ϕ ↔ 3¬ϕ ↔ 2¬ϕ (otherwise, by applying ¬ to all
formulas, ` ϕ↔ 2ϕ↔ 3ϕ).

For k = 2, let ϕ′ ∈ ¬Q and show ` ϕ′ → 2ϕ′. Since ϕ′ ∈ ¬Q, ϕ′ = ¬ϕ for
some ϕ ∈ Q. So, by assumption, ` ¬ϕ→ 2¬ϕ, i.e., ` ϕ′ → 2ϕ′, as needed.

For k = 3, let ϕ′ ∈ ¬Q and show ` ¬ϕ′ → �2¬ϕ′. Since ϕ′ ∈ ¬Q, ϕ′ = ¬ϕ
for some ϕ ∈ Q. So, by assumption, ` ϕ→ �2ϕ. Since ` ϕ↔ ¬¬ϕ, we have, by
closure under equivalence, ` ¬¬ϕ→ �2¬¬ϕ, i.e., ` ¬ϕ′ → �2¬ϕ′, as needed.

For k = 4, let ϕ′ ∈ ¬Q and find ψ′ ∈ ¬Q such that ` ψ′ ↔

M

ϕ′. Since
ϕ′ ∈ ¬Q, ϕ′ = ¬ϕ for some ϕ ∈ Q. So, by assumption, there is ψ ∈ Q such that
` ψ ↔ Mϕ. Now consider ψ′ := ¬ψ ∈ ¬Q. By adding a negation to both sides, `
proves ψ′ = ¬ψ ↔ ¬Mϕ↔

M

¬ϕ =

M

ϕ′, as needed.
Ad (a), we reason analogously. 2

Second, we prove lemma 8.3.10: If ` is a transitive derivability relation, then,
without using transitivity in (b) and (b):

(a) If ` ¬ϕ→ 2¬ϕ, then ` ¬Mϕ→ 2¬Mϕ.

(b) ` MMϕ↔ Mϕ.

(a) If ` ϕ→ 2ϕ, then `

M

ϕ→ 2

M

ϕ.

(b) `

MM

ϕ↔

M

ϕ.

Proof of lemma 8.3.10. Ad (a). Since ` ¬Mϕ↔ (¬ϕ∨2ϕ), we need to show

` (¬ϕ ∨2ϕ)→ 2(¬ϕ ∨2ϕ)

By assumption, we have ` ¬ϕ→ 2¬ϕ. And by transitivity, we have ` 2ϕ→ 22ϕ.
Since ` 2p→ 2(p ∨ q), we have

`
(
¬ϕ→ 2¬ϕ

)
∧
(
2¬ϕ→ 2(¬ϕ ∨2ϕ)

)
`
(
2ϕ→ 22ϕ

)
∧
(
22ϕ→ 2(¬ϕ ∨2ϕ)

)
.

324 Chapter 8. Stability: Fitch’s paradox and AI-safety

This implies the claim: Informally, both ¬ϕ and 2ϕ imply 2(¬ϕ ∨2ϕ).
Ad (b). Note that in ` we can show the following chain of implications

Mϕ = ϕ ∧ ¬2ϕ → ¬2ϕ → 3¬ϕ → 3(¬ϕ ∨2ϕ)

→ 3¬(ϕ ∧ ¬2ϕ) → ¬2(ϕ ∧ ¬2ϕ) = ¬2Mϕ.

Hence we can show in ` that MMϕ =
(
Mϕ ∧ ¬2Mϕ

)
↔ Mϕ.

Ad (a). If ` ϕ → 2ϕ, then, for ψ := ¬ϕ, we have ` ¬ψ → 2¬ψ. By (a),
` ¬Mψ → 2¬Mψ. Since `

M

ϕ↔ ¬M¬ϕ, we have `

M

ϕ→ 2

M

ϕ.
Ad (b). Since `

M

ϕ↔ ¬M¬ϕ, we can, by (b), show in ` that

MM

ϕ↔ ¬MM¬ϕ↔ ¬M¬ϕ↔

M

ϕ,

as needed. 2

Two topological lemmas For the first lemma, recall that we write Ms
n for

the set of stochastic n× n matrices with the topology inherited from the space
Mn of all real-valued n× n matrices with the topology induced by any matrix
norm. Let Mirr

n be the irreducible stochastic matrices.

8.7.1. Lemma. (a) Ms
n is a connected topological space.

(b) Mirr
n is an open subset of Ms

n.

(c) If n ≥ 2, Mirr
n a non-trivial subset of Ms

n (neither empty nor the whole set).

Proof. Ad (a). We show that Ms
n is a convex subset of the real vector space

Mn (which implies that it is connected). For t ∈ [0, 1], we need to show that
C := tA+ (1− t)B is a stochastic matrix. It again has non-negative entries and,
for 1 ≤ i ≤ n, the sum of the i-th row is:

n∑
j=1

C(i, j) =
n∑
j=1

tA(i, j) + (1− t)B(i, j) = t1 + (1− t)1 = 1.46

Ad (b). We’ll use the max-norm on Mn, i.e., ‖A‖ := maxi,j |A(i, j)|. Note

Mirr
n =

⋂
1≤i,j≤n

⋃
k≥1

Nk
i,j with Nk

i,j :=
{
A ∈Ms

n : Ak(i, j) > 0
}
.

So it suffices to show that Nk
i,j ⊆Ms

n is open. We do this by induction on k. For
k = 1, we show that, for any A ∈ N1

i,j, there is ε > 0 such that, for any B ∈Ms
n,

46This is a common argument. For much more context, see Brualdi (2006), in particular p. 19.

8.7. Conclusion 325

if ‖A−B‖ < ε, then B ∈ N1
i,j . Indeed, choose ε := 1

2
A(i, j) > 0. Then for such B

we must have B(i, j) > 0, since otherwise B(i, j) = 0 and we get the contradiction

ε > max
i,j
|A(i, j)−B(i, j)| ≥ |A(i, j)−B(i, j)| = A(i, j).

Now, assume that Nk
i,j is open and show that Nk+1

i,j is open. Indeed, we have

A ∈ Nk+1
i,j ⇔ 0 < Ak+1(i, j) = AkA(i, j) =

n∑
l=1

Ak(i, l)A(l, j)

⇔ ∃l ∈ {1, . . . , n} : Ak(i, l) > 0 and A(l, j) > 0

⇔ ∃l ∈ {1, . . . , n} : A ∈ Nk
i,l ∩N1

l,j.

Hence Nk+1
i,j =

⋃n
l=1

(
Nk
i,l ∩ N1

l,j

)
, whence, by the induction hypothesis and the

induction base, Nk+1
i,j is open.

Ad (c). The n × n matrix where every entry is 1
n

is in Mirr
n . And, if n ≥ 2,

the identity matrix I is inMs
n but not inMirr

n (for i := 1 and j := 2, we have, for
any k ≥ 1, that Ik(i, j) = I(i, j) = 0). 2

The second lemma is that, in a path-connected metric space, any two points
can also be ‘connected’ by a finite sequence of states where the distance between
neighboring elements can be chosen arbitrarily small.

8.7.2. Lemma. Let (X, d) be a path-connected metric space and ε > 0. For all
x, y ∈ X, there is x = x0, x1, . . . , xn = y in X such that d(xi, xi+1) < ε for all
i = 0, . . . , n− 1.

Proof. Since X is path connected, there is a continuous f : [0, 1] → X with
f(0) = x and f(1) = y. Since f is a continuous function from a compact metric
space into a metric space, it is uniformly continuous (Heine–Cantor theorem). So
there is δ > 0 such that, for all t, t′ ∈ [0, 1], if |t−t′| < δ, then d(f(t), f(t′)) < ε. Let
n ≥ 1 be big enough such that 1

n
< δ. For i = 0, . . . , n, set ti := i

n
and xi := f(ti).

Then x0 = f(t0) = f(0) = x and xn = f(tn) = f(1) = y and, for i ∈ {0, . . . , n−1},
d(xi, xi+1) = d(f(ti), f(ti+1)) < ε since |ti − ti+1| = | i+1

n
− i

n
| = 1

n
< δ. 2

Chapter 9

Conclusion

We end with a brief summary of the main formal and conceptual results, and
we mention some of the central open questions. The numbers indicate the
corresponding chapters of the listed items.

Results

1. Just like symbolic computation, also non-symbolic computation needs a
(denotational) semantics to achieve ‘(structural) understanding’. Domain
theory provided a denotational semantics to symbolic computation. This
suggests extending it to non-symbolic computation.

1. Albeit known, it deserves more appreciation that symbolic and non-symbolic
computation can be described in a unified framework as state-discrete and
state-continuous dynamical systems, respectively. This turns the task into
providing a domain-theoretic semantics to dynamical systems.

2. The symbolic or state-discrete case is given by labeled transition systems
(LTS). A more detailed description of their behavior is provided by the
notion of a behavioral transition system (BTS) which we motivated and
axiomatized.

2. The trajectory domain construction provides a denotational description of
the behavior of a BTS.

3. In fact, it constitutes a functor. This is a form of compositionality of the
semantics.

3. After appropriate formulation, the trajectory domain construction can be
extended to an adjunction showing that the computational model of ω-
algebraic domains can be abstracted from the computational model of BTSs.

327

328 Chapter 9. Conclusion

3. The trajectory domain construction also leads to a new interpretation of
relevance logic in terms of LTSs.

4. Turning to non-continuous computation, we constructed, for every (typically
state-continuous) dynamical system, the observation domain. It provides
a denotational description of the system’s behavior in terms of possible
observations of the system.

4. The observation domain is a computational model of the dynamical system
in the sense that its compact elements (representing finite observations)
approximate the maximal elements which, in turn, are isomorphic to the
original system.

4. The observation domain is in the category of dynamical domains which we
defined in a purely domain-theoretic way via certain limits of certain finite
domains.

5. The observation domain construction constitutes a functor. Again, this is a
form of compositionality of the semantics.

5. It is adjoint to the functor which maps a dynamical domain to the dynamical
system that it models. This adjunction even is an equivalence of categories
after adding the simple domain-theoretic property of being max-reflective.

5. The category of (measure-theoretic) dynamical systems is a localization of
the category of not necessarily compact topological systems. These systems,
in turn, can be compactified in two equivalent ways: logically (via Stone
duality) or computationally (via the observation domain).

5. This establishes a precise correspondence between dynamical systems and
dynamical domains.

6. The important system-theoretic concepts of metric and topological entropy
have domain-theoretic counterparts: domain-entropy and max-entropy, re-
spectively.

7. We suggested the thesis that non-symbolic computation is profinite symbolic
computation.

7. Conversely, having a fairly stable behavior seems crucial for a dynamical
system (or non-symbolic computation) to have a symbolic approximation.
Ergodicity and (algorithmic) randomness help to use and achieve this stabil-
ity.

8. However, the general concept of stability is tricky: a reinterpretation of
Fitch’s paradox shows that it cannot jointly have four desirable properties.

329

8. In particular, this poses fundamental difficulties to modeling and specifying
AI-safety.

8. Established philosophical tools (mostly from epistemology) promise fruitful
applications to foundational issues of modern AI.

Questions

2,3. Explore the nexus of BTSs, the generalization of Scott information systems,
substructural logics, relevance logic, game semantics, and full abstraction.

2. Investigate the links to Leavitt path algebras and Bratteli–Vershik diagrams.

3. Further develop the categorical properties of BTSs and trajectory domains:
extend the adjunction and establish (the preservation of) categorical con-
structions.

4. Develop a unified computability theory for symbolic and non-symbolic
computation via effective enumerations of the bases of the semantic domains
(trajectory domains and observation domains).

4. Extend observations to real-valued observations and use the tools of the
operator-theoretic approach to ergodic theory—in particular, in the case of
learning dynamics.

4,5. Further develop the domain theory: domain constructions, order-theoretic
characterizations of dynamical domains, universal dynamical domains, and
how they provide a ‘type structure’ for non-symbolic computation.

5. Characterize the domain-theoretic counterpart of metric isomorphism and
explore whether this (and the localization) is the start of a ‘homotopy
structure’.

6. Use the domain-theoretic description of metric and topological entropy to find
new formulations of known results (e.g., variational principle, isomophism
invariant).

7. Explore in detail the role of (algorithmic) randomness and the (analogue
of the) ergodic hypothesis for non-symbolic computation and its symbolic
realization.

8. What does the no-go result about stability mean for symbolically describing
stable enough dynamical systems?

8. Further investigate specifying the stability aspect of AI-safety in light of the
foundational limitations.

Appendix A

Systems as a category of fractions

As motivated in chapter 5 (sections 5.1 and 5.3.1), we show that the category of
(measure-theoretic) dynamical systems DS can be regarded as a localization—or,
more precisely, as a category of fractions—of the category of topological systems
bTS0:

DS bTS0
Loc

and similarly for the standard case. The idea was this: Localizing a category
means keeping the same objects but adding inverses to a collection of morphisms.
On the object level, the two categories DS and bTS0 are ‘essentially the same’
since dynamical systems can be realized as topological ones. On the morphism
level, however, morphisms in bTS0 that are injective on an invariant set of full
measure become isomorphisms in DS. So it stands to reason that DS is obtained
by turning precisely those morphisms into isomorphisms.

A.1 Statement of the theorem

To state the result formally, let’s start by giving a name to those morphisms
ϕ that have an invariant domain of injectivity with full measure. In the spirit
of zero-dimensional topology, we’ll additionally demand that their domain of
injectivity is a clopen set.

A.1.1. Definition. A morphism ϕ : (X, τ, µ, T) → (Y, σ, ν, S) between zero-
dimensional measured topological systems is called injective clop 0 if there is
a clopen set A ⊆ X such that µ(A) = 1 and T (A) ⊆ A, and, for all x, x′ ∈ A,
if x 6= x′, then ϕ(x) 6= ϕ(x′).1 A morphism ϕ : (X,BX) → (Y,BY) in bTS0 is
injective clop 0 if ϕ : X→ Y is injective clop 0.

1The name is mnemonic for ‘injective mod 0’—i.e., injective on a (T -invariant) domain of
full measure—with the additional demand that this domain also is clopen.

331

332 Appendix A. Systems as a category of fractions

V Z

X Y

w

g

v

f

(a) Right Ore condition

V X Y Zw

g

f
v

(b) Right cancellation condition

Figure A.1: Calculus of fractions.

Next, we need to define the localization of a category or, more specifically, the
concept of a calculus of fractions. The classic reference is Gabriel and Zisman
(1967), and modern treatments—which we use for the presentation here—are
found in Borceux (1994, ch. 5), Kashiwara and Schapira (2006, ch. 7), Fritz
(2011), Yekutieli (2020, ch. 6), and in the nlab entries ‘localization’ and ‘calculus
of fractions’.2

As mentioned, the idea of a localization is that, given a category C and
a collection of morphisms W , we find a new category C[W−1] such that the
morphisms in W are isomorphisms in C[W−1], i.e., have inverses. (The name
comes from the localization of a ring where one, roughly, also adds inverses to a set
of elements of the original ring.) More precisely, there is a functor Q : C→ C[W−1]
that sends morphisms from W to isomorphisms in C[W−1] and the pair (C[W−1],Q)
is ‘universal’ with this property. One can define this notion of localization formally
and show that such localizations exist, but, at that generality, these often are too
abstract to be useful. A more concrete description of a localization in this general
sense is available if W admits a calculus of fractions. Since this is all we need
here, we only define this special case and not the general one.

A.1.2. Definition. Let C be a category and W a collection of morphisms in C.
We say W admits a calculus of fractions if

1. for all X in C, idX ∈ W .

2. if v : X → Y and w : Y → Z are in W , then w ◦ v is in W .

3. As in figure A.1a, if f : X → Y is in C and v : Z → Y in W , then there is
g : V → Z in C and w : V → X in W such that f ◦ w = v ◦ g.

4. As in figureA.1b, if f, g : X → Y are in C and v : Y → Z is in W with
v ◦ f = v ◦ g, then there is w : V → X in W such that f ◦ w = g ◦ w.

Then one defines the category of fractions C[W−1] by having the same objects as

C and a morphism X → Y is an equivalence class [v, Z, f] of a span X
v←− Z

f−→ Y
with v in W and f in C, where the equivalence of two such spans is defined as:

2See https://ncatlab.org/nlab/show/localization and https://ncatlab.org/nlab/

show/calculus+of+fractions, respectively (accessed 9 Feb 2021).

https://ncatlab.org/nlab/show/localization
https://ncatlab.org/nlab/show/calculus+of+fractions
https://ncatlab.org/nlab/show/calculus+of+fractions

A.1. Statement of the theorem 333

Z

X V Y

Z ′

v f
g

g′

v′ f ′

Figure A.2: Equivalence of spans.

X
[v,A,f]−−−→ Y

[w,B,g]−−−−→ Z︸ ︷︷ ︸
=[w,B,g]◦[v,A,f]

‘=’

C

A B

X Y Z

w′ f ′

v f w g

‘=’ X
[v◦w′,C,g◦f ′]−−−−−−−→ Z

Figure A.3: Composition of spans.

X
v←− Z

f−→ Y and X
v′←− Z ′

f ′−→ Y are equivalent iff, as in figure A.2, there
is an object V and morphisms g : V → Z and g′ : V → Z ′ in C such that
f ◦ g = f ′ ◦ g′ and v ◦ g = v′ ◦ g′ ∈ W .

Composition of these equivalence classes is, as shown in figure A.3, done using (3),
and the identity equivalence class is [idX , X, idX]. The localization functor Q :
C→ C[W−1] is the identity on objects and maps f : X → Y to [idX , X, f].

Comments: First, to be more precise, we should say that W admits a calculus
of right fractions, because we could dually define that W admits a calculus of left
fractions by reversing all arrows. (Though, as the nlab entry notes, there is no
agreement in the literature which of these two definitions is ‘left’ and which is
‘right’.) In any case, we’ll only need the above.

Second, note that (1) and (2) are essentially equivalent to saying that W is a
wide subcategory of C (i.e., a subcategory with the same objects).

Third, the intuition behind using spans is this: Assume we have a span

X
v←− Z

f−→ Y in the category C with v ∈ W . If we aim to build a category
D = C[W−1] with the same objects as C but with an inverse for every element of

W , then D has to have the ‘new’ morphism X
v−1

−−→ Z
f−→ Y induced by the span.

Moreover, we can also regard any ‘old’ morphism f : X → Y in C as the trivial

span X
idX←−− X

f−→ Y . This suggests to simply take the new morphisms to be
spans of the old morphisms with one leg in W . This goes a long way, but we still
rely on a specific choice of C in the composition of spans (figure A.3). A clever
observation is that, by moving to the equivalence classes, this can be avoided by

334 Appendix A. Systems as a category of fractions

X

X X

X Y X

idX idX

idX v v idX

(a) [v,X, idX]◦[idX , X, v] = [idX , X, idX] =
idX

X

X X

Y X Y

Y

idX idX

v

idX idX

v

v

idX

idY idY

(b) [idX , X, v] ◦ [v,X, idX] = [v,X, v] =
[idY , Y, idY] = idY

Figure A.4: For v : X → Y in W , the morphism Q(v) = [idX , X, v] : X → Y has
the inverse Q(v)−1 = [v,X, idX] : Y → X.

making any such choice equivalent. Formally: the defined equivalence of spans is
indeed an equivalence relation and the definition of composition is independent of
the representative. (For a proof see, e.g., Yekutieli (2020, ch. 6).)

Fourth, and further, one can show that C[W−1] does indeed form a category
that, together with the localization functor Q, is a localization in the general sense:
Yekutieli (2020, ch. 6) does this by showing that (i) as just mentioned, the above
construction of C[W−1] is a well-defined category, (ii) Q is a well-defined functor,
and (iii) the pair (C[W−1],Q) is a right Ore localization of C with respect to W ,
which is a special case of the general sense of a localization.

Fifth, another advantage of moving to equivalence classes, is that, if v : X → Y
is in W , then Q(v) = [idX , X, v] : X → Y does indeed have an inverse in C[W−1],
namely Q(v)−1 = [v,X, idX] : Y → X, as shown in figure A.4.

Sixth, the dual concept of spans is used—in enriched form, as either structured
cospans or decorated cospans—in the modeling of open systems (see, e.g., Baez,
Courser, and Vasilakopoulou (2021) and the references therein).

Now, we can state the informally promised results formally. We write F :
bTS0 → TS0 for the forgetful functor sending (X,B) to X and which is the identity
on morphisms.

A.1.3. Theorem. Let W be the class of morphisms in bTS0 (resp., in bTS0s)
that are injective clop 0. Then W admits a right calculus of fractions and the
category of fractions bTS0[W

−1] (resp., bTS0s[W
−1]) is equivalent to DS (resp.,

sDS) via a functor that is like J ◦ F (resp. J ◦ F) on objects.

Comments: First, here is how this formalizes the informal statement: On the
object level, this shows that every dynamical system X in DS is isomorphic to

A.2. Topological realizations of systems 335

an object J ◦ F(X′,B′) = J(X′) for an object (X′,B′) of the localization and hence
of bTS0. Thus, the topological system X′ is the topological realization of the
dynamical system X. On the morphism level, this shows that once we turn into
isomorphisms the morphisms in bTS0 that are injective on a (clopen) invariant set
of full measure—i.e., once we form the localization bTS0[W

−1]—, we essentially
obtain the morphisms of DS.

Second, the reason that, on the side of topological systems, we are working in
bTS0 rather than the simpler TS0 is that, for the domain construction, we need
to work with bTS0. However, conceptually this is not too much of a difference.

Third, taking equivalence classes mod 0 of structure-preserving partial functions
between dynamical systems (when defining system morphisms) now corresponds
precisely to taking equivalence classes of spans (when constructing the localization).

A.2 Topological realizations of systems

A measured topological dynamical system X is a topological realization (or topo-
logical model) of a (measure-theoretic) dynamical system Y if Y is isomorphic to
J(X). Similarly, if both X and Y are standard, we require that Y is isomorphic
to J(X). (For this concept, in the more specific setting of ergodic dynamics and
with different notation, see Petersen (1983, sec. 4.4) or Glasner and Weiss (2006,
sec. 8).)

As discussed in chapter 4, the main result on topological realization in ergodic
dynamics is the Jewett–Krieger theorem every ergodic measure-preserving trans-
formation on a Lebesgue space has a topological realization as a minimal, uniquely
ergodic homeomorphism on a compact zero-dimensional metric space (see, e.g.,
Petersen 1983, sec. 4.4).

Our results from chapter 4 provide a topological realization result in our more
general setting: Every (standard) dynamical system has a topological realization
as a (standard) compact zero-dimensional measured topological system.

In the standard case, this is precisely what we’ll need in the remainder, but, in
the general case, we also need the option to make (cl)open any countable collection
of Borel sets in the topological realization (and we don’t need compactness). So
we state and prove this as a result on its own.

A.2.1. Proposition. Let X = (X,A, µ, T) be in DS and B ⊆ A a countable
subset. Then there is a zero-dimensional Polish topology τ on X such that (a)
A = B(τ), (b) B ⊆ Clp(τ), and (c) T : X → X is τ -continuous. In particular,
X′ = (X, τ, µ, T) is in TS0. Moreover, if T is injective, we can choose τ such that
T : X → X is τ -open.

Comments: First, if we only consider the state space, i.e., the standard Borel
space (X,A), such a topological realization simply means that (by definition)
there is a Polish topology τ on X such that A = B(τ).

336 Appendix A. Systems as a category of fractions

Second, if we also take the dynamics T into account, the more general context
of results of this kind is the intersection of descriptive set theory and dynamical
systems (Becker and Kechris 1996; Foreman et al. 2000). There, one finds results
on topologically realizing (universal) Borel actions of a Polish group on a standard
Borel space. However, in our setting, we only have a semi-group since T is not
assumed to be invertible, and we also have measures. (On the other hand, we
only look at the significantly simpler case of a countable semi-group.) To avoid
both these complications and additional ‘group action’ terminology, we provide a
rather elementary proof.

Third, as mentioned, the Jewett–Krieger theorem is not applicable as we, in
general, are far from standard—let alone ergodic. (And we also don’t need that
strong of a conclusion.)

Fourth, this doesn’t just provide a topological realization ‘up to isomorphism’
but up to identity.

Proof. Since (X,A) is a standard Borel space, there is, by (an equivalent)
definition (Kechris 1995, def. 12.5), a Polish topology on τ on X with A = B(τ).
We construct a finer zero-dimensional Polish topology τB on X with the required
properties as a ‘limit’ of a chain of Polish topologies (τn). (So τB will be the
required τ from the proposition.)

The key tool is the following fundamental fact about Polish spaces (Kechris
1995, ex. 13.5):

(∗) If (X, τ) is a Polish space and B ⊆ B(τ) countable, there is a zero-dimensional
Polish topology τ ′ on X such that τ ⊆ τ ′, B(τ) = B(τ ′), and B ⊆ Clp(τ ′).

Since our (X, τ) is Polish with B ⊆ A = B(τ) countable, we use (∗) to find
a zero-dimensional Polish topology τ0 on X with τ ⊆ τ0, B(τ) = B(τ0), and
B ⊆ Clp(τ0). Note that, since B(τ0) = A, the function T : (X, τ0) → (X, τ0) is
Borel-measurable.

Given a Polish topology τn on X such that T : (X, τn) → (X, τn) is Borel-
measurable, we use (∗) to construct τn+1 like this (cf. Kechris 1995, thm. 13.11):
Let (Bk)k≥0 be a countable basis for (X, τn) and set C := {T−1(Bk) : k ≥ 0} which
is a countable subset of B(τn). [If T also is injective, it is a Borel-measurable
injection (X,B(τn)) → (X,B(τn)) between standard Borel spaces, so preserves
Borel-measurability, whence we can add the sets T (Bk) to C.] By (∗), there is a
zero-dimensional Polish topology τn+1 such that (i) τn ⊆ τn+1, (ii) B(τn) = B(τn+1),
(iii) T : (X, τn+1)→ (X, τn) is continuous (the T -preimage of the basic open Bk

is T−1(Bk) ∈ τn+1), and (iv) T : (X, τn+1) → (X, τn+1) is measurable (since
B(τn+1) = B(τn)). [(v) if T also is injective, T : (X, τn)→ (X, τn+1) is open (the
T -image of the basic open Bk is T (Bk) ∈ τn+1).]

Now consider the sequence (τn)n≥0 of refining zero-dimensional Polish spaces.
We have, for any x 6= y in X, that there are, since (X, τ) is Hausdorff, two
disjoint open sets U, V ∈ τ ⊆ τ0 ⊆

⋂
n≥0 τn such that x ∈ U and y ∈ V . It

A.2. Topological realizations of systems 337

follows (Srivastava 1998, Obs. 2, p. 93) that the topology τB generated by
⋃
n≥0 τn

is Polish.
So it remains to show that (a) τB is zero-dimensional, (b) A = B(τB), (c)

B ⊆ Clp(τB), and (d) T : X → X is τB-continuous [and, if T additionally is
injective, then (e) T is τB-open.]

Concerning (a), We claim that S :=
⋃
n≥0 Clp(τn) is a subbase of clopens for τB.

Since clopens are closed under finite intersection, this implies that τB has a basis of
clopens and hence is zero-dimensional. If U is clopen in τn, then U,U c ∈ τn ⊆ τB,
so U is clopen in τB, whence S ⊆ Clp(τB), and it remains to show that S is a
subbase, i.e., writing τ ′ for the topology generated by S, we need to show τ ′ = τB.
Since S ⊆ Clp(τB) ⊆ τB, we have τ ′ ⊆ τB. For the other direction, it suffices to
show that τ ′ ⊇

⋃
n≥0 τn (since τB is generated by the latter). Indeed, if U ∈ τn

(for some n ≥ 0), then, since τn is zero-dimensional, Clp(τn) is a basis for τn, so U
can be written as union of elements from Clp(τn) ⊆ S, whence U ∈ τ ′.

Concerning (b), since A = B(τ) = B(τ0), it is enough to show B(τ0) = B(τB).
Since τ0 ⊆ τB, we have ⊆. For the other direction, note that S ⊆ B(τ0): if
U ∈ Clp(τn) for some n ≥ 0, then U ∈ B(τn) = B(τ0). So σ(S) ⊆ B(τ0) (where
σ(S) is the smallest σ-algebra containing S). As a general fact, the σ-algebra
generated by a subbase of a second-countable space is the Borel σ-algebra of the
space.3 So B(τB) = σ(S) ⊆ B(τ0).

Concerning (c), we have B ⊆ Clp(τ0) ⊆ S ⊆ Clp(τB).
Concerning (d), since D :=

⋃
n≥0 τn is a subbase for τB, it suffices to show that,

for U ∈ D, we have T−1(U) ∈ τB. Indeed, given such U , we have U ∈ τn for some
n, so, since T : (X, τn+1)→ (X, τn) is continuous, T−1(U) ∈ τn+1 ⊆ τB, as needed.

[Concerning (e), the set of finite intersections of sets from D forms a basis for
τB. So it suffices that for U = U1 ∩ . . . ∩ Um with Ui ∈ D (for i = 1, . . . ,m) we
have T (U) ∈ τB. Since T is injective, we have T (U) = T (U1)∩ . . .∩T (Um).4 And,
for each Ui, we have Ui ∈ τn for some n, so, since T : (X, τn)→ (X, τn+1) is open,
T (Ui) ∈ τn+1 ⊆ τB. Hence T (U) = T (U1) ∩ . . . ∩ T (Um) ∈ τB.] 2

We can also state a similar proposition in the setting of TS0:

A.2.2. Corollary. Let X = (X, τ, µ, T) be in TS0 and E ⊆ B(τ) countable.
Then there is a zero-dimensional Polish topology τ ′ ⊇ τ on X such that (X, τ ′, µ, T)
is in TS0 and E ⊆ Clp(τ ′); in particular, T is τ ′-continuous and B(τ ′) = B(τ).5

3Proof: Let S be a subbasis for the second-countable space (X, τ). Since S ⊆ τ , we have
σ(S) ⊆ B(τ). For the other direction, it suffices to show τ ⊆ σ(S). Let U ∈ τ . So U =

⋃
i∈I Ui

where Ui are finite intersections of elements from S, whence Ui ∈ σ(S). Since τ is second-
countable, we can assume I to be countable. So U ∈ σ(S) qua countable union of elements from
σ(S).

4If T is an injective function and U, V sets, then T (U ∩V) = T (U)∩T (V): The ⊆-inclusion is
trivial, and for the other assume y ∈ T (U) ∩ T (V). Then y = T (x) for x ∈ U and y = T (x′) for
x′ ∈ V . So T (x) = T (x′), whence, by injectivity, x = x′. So x ∈ U ∩V and y = T (x) ∈ T (U ∩V).

5The latter is because µ is a measure on B(τ) and must be a measure on B(τ ′).

338 Appendix A. Systems as a category of fractions

Proof. Let BX be a countable basis for (X, τ). So B′ := BX ∪ E ⊆ B(τ) is
countable. Since (X,B(τ), µ, T) is in DS, we can apply proposition A.2.1 to
obtain a zero-dimensional Polish topology τ ′ on X such that (a) B(τ) = B(τ ′),
(b) B′ ⊆ Clp(τ ′), and (c) T : X → X is τ ′-continuous. By (b), BX ⊆ τ ′, so τ ′

is a finer topology than τ . By (a), B(τ) = B(τ ′), so µ is a probability measure
on B(τ ′). By (c), T is τ ′-continuous. Hence (X, τ ′, µ, T) is in TS0. And, by (b),
E ⊆ B′ ⊆ Clp(τ ′). 2

As mentioned, in the standard case, the topological realization that we get
from chapter 4 will be enough. We also only aim for realization up to isomorphism
and not up to identity anymore: the underlying probability space of X in sDS is
isomorphic only mod 0 (but, in general, not strictly) to the completion of a Polish
space with a probability measure.

A.2.3. Proposition. Let X be in sDS. Then X is isomorphic to J(Y) for some
Y in TS0s.

Proof. Corollary from chapter 4. 2

A.3 The key lemma

The key lemma is the following one on topologically realizing system homomor-
phisms. It is visualized in figure A.5 and should be familiar from the right Ore
condition (figure A.1a). Again, we first deal with the general case and then with
the standard case.

A.3.1. Lemma (general). Let (X,B), (Y, C), (Z,D) be in bTS0. Let A,B,C be
invariant and of full measure in X,Y,Z, respectively. Let v : (Z,D)→ (Y, C) be
in W . Let ϕ : J(X)→ J(Y) be in DS. Then there is ψ : (V, E)→ (X,B) in bTS0

and w : (V, E)→ (X,B) in W such that ϕ ◦w = v ◦ψ and, writing V for the state
space of V, ψ(V) ⊆ C, w(V) ⊆ A, and ϕ ◦ w(V) = v ◦ ψ(V) ⊆ B. Moreover, if
ϕ : X → Y is injective on an invariant set of full measure, then ψ can be chosen
in W .

Proof. Write X = (X, τ, µ, T), Y = (Y, σ, ν, S), and Z = (Z, ρ, λ,R). Since
v ∈ W , let C ′ be clopen in Z with λ(C ′) = 1, R(C ′) ⊆ C ′ and v injective on
C ′. So C and C ′ are invariant sets of full measure, whence C := C ∩ C ′ is, too.
Since ϕ ∈ DS, it is a partial function with domain M ⊆ X such that M ∈ B(τ),
T (M) ⊆M , and µ(M) = 1. [If ϕ is injective on an invariant set of full measure,
choose M as that set.]

We first construct V. Note that v : Z → Y is a measurable function between
two standard Borel spaces, C ⊆ Z is Borel, and v � C is injective. So v(C∩D) ⊆ Y

A.3. The key lemma 339

(V, E) (Z,D) C

A (X,B) (Y, C) B

ψ

w v

‘ϕ’

Figure A.5: Visualization of lemma A.3.1. The quotation marks around ϕ indicate
that, in the lemma, ϕ is only assumed to be a morphism J(X)→ J(Y).

is Borel for every D ∈ D (Kechris 1995, cor. 15.2). Since ϕ : X → Y is measurable
(qua morphism in DS), ϕ−1(v(C ∩ D)) ∈ B(τ) for every D ∈ D. In particular,
A′ := ϕ−1(v(C)) ∈ B(τ).

Now, define E0 := B ∪ {ϕ−1(v(C ∩ D)) : D ∈ D} ∪ {ϕ−1(B), A,A′}. Hence
E0 ⊆ B(τ) is countable. Since (X, τ, µ, T) is in TS0, there is, by corollary A.2.2,
a zero-dimensional Polish topology τ ′ ⊇ τ on X such that (a) B(τ) = B(τ ′), (b)
E0 ⊆ Clp(τ ′), (c) T : X → X is τ ′-continuous. Let E be a countable clopen basis
for τ ′ that includes E0 and is closed under finite intersection.6

Now, define V := A′ ∩ ϕ−1(B) ∩ A. Then we have

• V ⊆ X is τ ′-clopen: It is a finite intersection of elements in E0 ⊆ Clp(τ ′)
and hence in Clp(τ ′).

So (V, τ ′ � V) is a zero-dimensional Polish space. And E � V still is a
countable clopen basis for τ ′ closed under finite intersection.

• And µ(V) = 1 because: Since µ(ϕ−1(B)) = ν(B) = 1 and µ(A) = 1, we
have µ(V) = µ(A′) = ν(v(C)) = λ(v−1v(C)) ≥ λ(C) = 1, so µ(V) = 1.

So µ is a probability measure on B(τ ′ � V).

• V is T -invariant: Let x ∈ V , and show Tx ∈ V . We have x ∈ ϕ−1(B) ⊆M
(the domain of ϕ), so T (x) ∈ M and ϕ(Tx) = S(ϕ(x)) with ϕ(x) ∈ B.
Since x ∈ A′, we have ϕ(x) ∈ v(C). Moreover, v(C) is S-invariant (whence
Sϕ(x) ∈ v(C)): if y ∈ v(C), then y = v(z) for z ∈ C, so S(y) = S(v(z)) =
v(R(z)) ∈ v(C) since R(z) ∈ C because C is R-invariant. To summarize,
Tx ∈ A (since A is T -invariant), Tx ∈ ϕ−1(B) (since ϕ(Tx) = S(ϕ(x)) ∈ B
because ϕ(x) ∈ B and B is S-invariant), and Tx ∈ A′ (since ϕ(Tx) =
S(ϕ(x)) ∈ v(C)). Hence Tx ∈ V .

6This exists: Since τ ′ is second-countable and zero-dimensional, it is not hard to show that
τ ′ has a countable clopen basis E1. (Sketch: τ ′ has a countable basis B and a zero-dimensional
basis B0. So each U ∈ B can be written as a union of B0-opens, hence also as a countable
union because second-countable spaces are hereditarily Lindelöf. So the collection B1 of finite
intersections of the B0-opens occurring in these unions form a countable clopen basis of τ ′.) Let
E be the smallest sub-Boolean algebra of Clp(τ ′) generated by E0 ∪ E1 ⊆ Clp(τ ′). This has the
required properties.

340 Appendix A. Systems as a category of fractions

So Q := T � V : V → V is well-defined and continuous (qua restriction of a
continuous function to a subspace: If U ∩V is open in V , then Q−1(U ∩V) =
T−1(U) ∩ V which is open in V).

So we define V := (V, τ ′ � V, µ,Q), whence (V, E � V) is in bTS0.
Next, we define w : V → X as the inclusion V → X. Let’s see that w

is in W . Base-preserving (and hence continuous): If U ∈ B, then w−1(U) =
U ∩ V ∈ E � V . Measure-preserving: For C ∈ B(τ), we have, since µ(V) = 1,
that µ(w−1(C)) = µ(C ∩ V) = µ(C), as needed. Equivariant: If x ∈ V , then
w(Q(x)) = w(T (x)) = T (x) = T (w(x)). And w is injective clop 0 since it is
injective on the whole domain.

Next, we define ψ : V→ Z. Write v−1 for the function v(C)→ C that assigns
each y ∈ v(C) the unique z ∈ C such that v(z) = y (existence follows since
y ∈ v(C) and uniqueness follows since v is injective on C ′ ⊇ C). Note that, if
x ∈ V , then w(x) = x ∈ V ⊆ A′, so ϕ(w(x)) ∈ v(C). So v−1(ϕ(w(x))) is defined.
Thus, we define ψ := v−1 ◦ ϕ ◦ w : V → Z. We show that ψ is in bTS0.

First note that, for any U ⊆ Z, we have ψ−1(U) = w−1
(
ϕ−1(v(U ∩ C))

)
.

Indeed, we have x ∈ ψ−1(U) iff v−1
(
ϕ(w(x))

)
∈ U iff the unique v-preimage of

ϕ(w(x)) in C is in U iff ϕ(w(x)) ∈ v(C ∩ U) iff x ∈ w−1
(
ϕ−1(v(U ∩ C))

)
.

Base-preserving (and hence continuous): For D ∈ D, we have

ψ−1(D) = w−1ϕ−1(v(D ∩ C)) = ϕ−1(v(D ∩ C)) ∩ V

which is in E0 � V ⊆ E � V .
Measure-preserving: For D ∈ B(ρ), we have

µ
(
ψ−1(D)

)
= µ

(
w−1ϕ−1(v(D ∩ C))

)
= µ

(
ϕ−1(v(D ∩ C))

)
= ν

(
v(D ∩ C)

)
= λ

(
v−1v(D ∩ C)

)
= λ

(
v−1v(D ∩ C) ∩ C

)
= λ

(
D ∩ C

)
= λ

(
D
)
,

where v−1v(D ∩ C) ∩ C = D ∩ C holds since v is injective on C.
Equivariant: For x ∈ V , we have ψ(Q(x)) = v−1 ◦ ϕ ◦ w(Q(x)). So we need to

show that R(ψ(x)) is the v-preimage of ϕ ◦ w(Q(x)) in C. Indeed, R(ψ(x)) is in
C (since ψ(x) is and C is R-invariant) and

v
(
Rψ(x)

)
= S

(
v(ψ(x))

)
= S

(
ϕ(w(x))

)
= ϕ

(
T (w(x))

)
= ϕ

(
w(Q(x))

)
.

It remains to check that w and ψ have the required properties. By construction,
v ◦ ψ = ϕ ◦ w. Further, ψ maps into C, so ψ(V) ⊆ C ⊆ C. And w maps into V ,
so w(V) ⊆ V ⊆ A. Finally, since w maps into V ⊆ ϕ−1(B), ϕ ◦ w(V) ⊆ B. Since
ϕ ◦ w = v ◦ ψ, also v ◦ ψ(V) ⊆ B.

Concerning the ‘moreover’ claim, assume ϕ is injective on an invariant set of
full measure. As indicated in square brackets above, we do the same construction
where M now is the domain of injectivity of ϕ. We need to show that ψ then is
in W . We already know that it is in bTS0, so we need to show that it is injective

A.3. The key lemma 341

clop 0, for which it suffices to show that ψ is injective on the whole domain V :
Let x 6= x′ in V and show ψ(x) 6= ψ(x′). We have w(x) = x 6= x′ = w(x′), which
are in V ⊆ M (since V ⊆ ϕ−1(B) ⊆ M because M is the domain of ϕ). Since
ϕ is injective on M , ϕ(w(x)) 6= ϕ(w(x′)). Hence, the v-preimages of these two
elements have to be distinct, since otherwise v wouldn’t be a function. Hence
ψ(x) = v−1(ϕ(w(x))) 6= v−1(ϕ(w(x′))) = ψ(x′), as needed. 2

For the standard case, we first make a small observation: Let X = (X, τ, µ, T)
be in TS0s. So J(X) = (X,B(τ)µ, µ, T). Now, if M ∈ B(τ)µ has full measure, then
there also is M ′ ∈ B(τ) with M ′ ⊆M , µ(M ′) = 1, and T (M ′) = M ′.7

A.3.2. Lemma (standard). Let (X,B), (Y, C), (Z,D) be in bTS0s. Let A,B,C be
invariant and of full measure in X,Y,Z, respectively. Let v : (Z,D)→ (Y, C) be
in W . Let ϕ : J(X)→ J(Y) be in sDS. Then there is ψ : (V, E)→ (X,B) in bTS0s

and w : (V, E)→ (X,B) in W such that ϕ ◦w = v ◦ψ and, writing V for the state
space of V, ψ(V) ⊆ C, w(V) ⊆ A, and ϕ ◦ w(V) = v ◦ ψ(V) ⊆ B. Moreover, if
ϕ : X → Y is injective on an invariant set of full measure, then ψ can be chosen
in W .

Proof. Write X = (X, τ, µ, T), Y = (Y, σ, ν, S), and Z = (Z, ρ, λ,R). Since
v ∈ W , let C ′ be clopen in Z with λ(C ′) = 1, R(C ′) ⊆ C ′ and v injective on C ′.
So C and C ′ are invariant sets of full measure, whence C := C ∩ C ′ is, too. Since
ϕ ∈ sDS, it is a partial function with invariant domain M ⊆ X of full measure.
[If ϕ is injective on an invariant set of full measure, choose M as this set.]

As before, v(C ∩D) ⊆ Y is Borel for every D ∈ D. For D = {D0, D1, D2, . . .}
with D0 = Y , we have ϕ−1(v(C ∩ Dn)) = An ∪ Nn with An ∈ B(τ) and Nn

a µ-nullset. Since M \
⋃
nNn ∈ B(τ)µ has full measure, there also is, by the

observation, M ′ ∈ B(τ) with M ′ ⊆ M \
⋃
nNn, µ(M ′) = 1, and T (M ′) = M ′.

Moreover, ϕ−1(B) = A′ ∪N ′ for A′ ∈ B(τ) and N ′ a µ-nullset.
We construct V. Define E0 := B∪{An : n ∈ ω}∪{A′, A,M ′}. Hence E0 ⊆ B(τ)

is countable. Since (X, τ, µ, T) in particular is in TS0, there is, by corollary A.2.2,
a zero-dimensional Polish topology τ ′ ⊇ τ on X such that (a) B(τ) = B(τ ′), (b)
E0 ⊆ Clp(τ ′), (c) T : X → X is τ ′-continuous. Let E be a countable clopen basis
for τ ′ that includes E0 and is closed under finite intersection.

Now, define V0 := A′ ∩A0 ∩A∩M ′. As before, V0 ⊆ X is τ ′-clopen. And V0 is
of full measure: Since µ(A′) = µ(ϕ−1(B)) = ν(B) = 1, µ(A) = 1, and µ(M ′) = 1,

7Proof: We have M = M0∪N for M0 ∈ B(τ) and a µ-nullset N . Set M ′ :=
⋂
k∈Z T

−k(M0) ⊆
M0 ⊆ M . Borel: Since T : X → X is continuous, T is Borel-measurable. And since T :
(X,B(τ))→ (X,B(τ)) is a a Borel-measurable injective function between standard Borel spaces,
also T -images of Borel sets are Borel. So, since M0 is Borel, M ′ is Borel qua countable intersection
of Borel sets. Full measure: Since T is measure-preserving and bijective, µ(T−k(M0)) = µ(M0) =
1 (for all k ∈ Z), so M ′ is a countable intersection of sets of full measure, whence has full measure.
‘Two-sided’ invariant: We have x ∈M ′ iff ∀k ∈ Z : T kx ∈M0 iff ∀k ∈ Z : T k+1x = T kTx ∈M0

iff Tx ∈M ′.

342 Appendix A. Systems as a category of fractions

we have µ(V) = µ(A0) = µ(ϕ−1(v(C)) = ν(v(C)) = λ(v−1v(C)) ≥ λ(C) = 1, so
µ(V) = 1. As in the observation, we define V :=

⋂
k∈Z T

−k(V0), which is Borel,
has full measure, and T (V) = V . In fact, since T is a homeomorphism, each
T−k(V0) is clopen, so V is closed. Then we have

• (V, τ ′ � V) is a zero-dimensional Polish space qua closed subset of a Polish
space. So E � V still is a countable clopen basis for τ ′.

• As noted, µ(V) = 1. So µ is a probability measure on B(τ ′ � V).

• Q := T � V : V → V is well-defined, injective (since T is), surjective (since
T (V) = V), and continuous (qua restriction of a continuous function) and
open (if U ∩ V is open in V , then, by injectivity, Q(U ∩ V) = T (U ∩ V) =
T (U) ∩ T (V) = T (U) ∩ V which is open since T is open). So Q is a
homeomorphism. Also, Q is measure-preserving: If U ∩V is open in V , then
µ(Q−1(U ∩ V)) = µ(T−1(U) ∩ V) = µ(T−1(U)) = µ(U) = µ(U ∩ V), so the
probability measure µ and µQ−1 agree on the open sets of τ ′ � V , whence
they are identical on B(τ ′ � V).

So we define V := (V, τ ′ � V, µ,Q), whence (V, E � V) is in bTS0s.

As before, we define w : V→ X as the inclusion V → X, and see, verbatim as
before, that it is in W .

We define ψ : V→ Z as before, too: Write v−1 for the function v(C)→ C that
assigns each y ∈ v(C) the unique z ∈ C such that v(z) = y. Note that, if x ∈ V ,
then w(x) = x ∈ V ⊆ V0 ⊆ A0 = ϕ−1(v(C)), so ϕ(w(x)) ∈ v(C). So v−1(ϕ(w(x)))
is defined. Thus, we define ψ := v−1 ◦ ϕ ◦ w : V → Z. We see that ψ is in bTS0s.

Again, for any U ⊆ Z, we have ψ−1(U) = w−1
(
ϕ−1(v(U ∩ C))

)
. So ψ is

base-preserving (and hence continuous): For Dn in D, we have

ψ−1(Dn) = w−1ϕ−1(v(Dn ∩ C)) = ϕ−1(v(Dn ∩ C)) ∩ V = An ∩ V, 8

which is in E0 � V ⊆ E � V . Measure-preservation and equivariance are seen
verbatim as before.

It remains to check that w and ψ have the required properties. By construction,
v ◦ ψ = ϕ ◦ w. Further, ψ maps into C, so ψ(V) ⊆ C ⊆ C. And w maps into V ,
so w(V) ⊆ V ⊆ V0 ⊆ A. Finally, since w maps into V ⊆ V0 ⊆ A′ ⊆ ϕ−1(B), we
have ϕ ◦ w(V) ⊆ B. Since ϕ ◦ w = v ◦ ψ, also v ◦ ψ(V) ⊆ B.

The ‘moreover’ claim follows verbatim as before. 2

8For the last equation, we have ⊇ since ϕ−1(v(Dn ∩ C)) = An ∪Nn ⊇ An. And to show ⊆,
let x ∈ ϕ−1(v(Dn ∩ C)) ∩ V = (An ∪Nn) ∩ V . So x ∈ M ′ ⊆ M \

⋃
nNn. So x 6∈ Nn, whence

x ∈ An, so x ∈ An ∩ V .

A.4. Calculus of fractions 343

A.4 Calculus of fractions

A.4.1. Proposition (general). The class W of bTS0-morphisms that are injec-
tive clop 0 admits a calculus of fractions.

Proof. We fix the notation X = (X, τ, µ, T), Y = (Y, σ, ν, S), and Z = (Z, ρ, λ,R).
We need to check properties (1)–(4) from definition A.1.2.

Ad (1). For (X,B) in bTS0, the morphism id(X,B) is the identity function
idX : X → X, which is injective on the whole domain, so in W .

Ad (2). Assume v : (X,B) → (Y, C) and w : (Y, C) → (Z,D) are in W ,
and show w ◦ v ∈ W . Since v is injective clop 0, there is a clopen A ⊆ X
such that µ(A) = 1, T (A) ⊆ A, and, for x 6= x′ in A, v(x) 6= v(x′). Since w
is injective clop 0, there is a clopen B ⊆ Y such that ν(B) = 1, S(B) ⊆ B,
and, for y 6= y′ in B, w(y) 6= w(y′). Set A′ := A ∩ v−1(B). We show that A′

witnesses that w ◦ v is injective clop 0, and hence in W . Since v is continuous,
also v−1(B) is clopen, so A′ is clopen qua finite union of clopen sets. Since v is
measure-preserving, µ(v−1(B)) = ν(B) = 1, so A′ is an intersection of sets of
full measure, hence µ(A′) = 1. Since v is equivariant, if v(x) ∈ B, then, since B
is S-invariant, v(T (x)) = S(v(x)) ∈ B, hence, since A is T -invariant, also A′ is
T -invariant. Finally, if x, x′ ∈ A′ with x 6= x′, then x, x′ ∈ A and v(x), v(x′) ∈ B,
so v(x) 6= v(x′), whence w ◦ v(x) 6= w ◦ v(x′).

Ad (3). Assume ϕ : (X,B)→ (Y, C) is in bTS0 and v : (Z,D)→ (Y, C) is in
W . In particular, ϕ, regarded as partial function with total domain X and total
codomain Y , is a system homomorphism from (X,B(τ), µ, T) to (Y,B(σ), ν, S). So
lemma A.3.1 applies (choosing X, Y, Z as A,B,C, respectively), whence there is
ψ : (V, E)→ (Z,D) in bTS0 and w : (V, E)→ (X,B) in W such that ϕ◦w = v ◦ψ.

Ad (4). Assume ϕ, ψ : (X,B)→ (Y, C) are in bTS0 and v : (Y, C)→ (Z,D) is
in W with v ◦ ϕ = v ◦ ψ. Find w : (V, E)→ (X,B) in W such that ϕ ◦w = ψ ◦w.

Since v ∈ W , let B be clopen in Y with ν(B) = 1, S(B) ⊆ B, and v
injective on B. We construct the required V = (V, π, κ,Q) as follows. Let
V := ϕ−1(B)∩ψ−1(B) ⊆ X. Since ϕ and ψ are continuous, V ⊆ X is closed. Let
π be the subspace topology on V . Since V ⊆ X is closed, this is again Polish.
Since (X, τ) is zero-dimensional, also the subspace (V, π) is zero-dimensional. Since
B(π) ⊆ B(τ), we can define κ(A) := µ(A). This is a probability measure since
µ(ϕ−1B) = ν(B) = 1 and µ(ψ−1B) = ν(B) = 1 so κ(V) = µ(V) = µ

(
ϕ−1(B) ∩

ψ(B))
)

= 1 qua intersection of sets of full measure. Finally, Q : V → V is defined
as T � V . Note that this is well-defined since, if x ∈ V , then Tx ∈ V : Since
ϕ(x) ∈ B and ψ(x) ∈ B, also ϕ(Tx) = S(ϕ(x)) ∈ B and ψ(Tx) = S(ψ(x)) ∈ B.
Further, Q is continuous since T is continuous and π is the relative topology.
Hence V is in TS0. Next, let E := {U ∩V : U ∈ B}. Since B is a countable clopen
basis for (X, τ) and (V, π) is the subspace, E is a countable clopen basis for (V, π).
So (V, E) is in bTS0.

We define w : (V, E)→ (X,B) as the inclusion. This is base-preserving, and

344 Appendix A. Systems as a category of fractions

hence continuous (if U ∈ B, then w−1(U) = U ∩ V ∈ E), measure-preserving (if
A ∈ B(τ), then κ(w−1(A)) = κ(A ∩ V) = µ(A ∩ V) = µ(A)), equivariant (for
x ∈ V , w(Q(x)) = T (x) = T (w(x))), and injective, whence injective clop 0. So
w ∈ W .

Finally, we show ϕ ◦ w = ψ ◦ w: If x ∈ V , then ϕ(x) ∈ B and ψ(x) ∈ B.
Since v ◦ ϕ = v ◦ ψ by assumption, v(ϕ(x)) = v(ψ(x)). Since v is injective on B,
ϕ ◦ w(x) = ϕ(x) = ψ(x) = ψ ◦ w(x), as needed. 2

A.4.2. Proposition (standard). The class W of bTS0s-morphisms that are in-
jective clop 0 admits a calculus of fractions.

Proof. We fix the notation X = (X, τ, µ, T), Y = (Y, σ, ν, S), and Z = (Z, ρ, λ,R).
We need to check properties (1)–(4) from definition A.1.2.

Ad (1). As before, for (X,B) in bTS0s, the morphism id(X,B) is in W .
Ad (2). Again as before, if v : (X,B)→ (Y, C) and w : (Y, C)→ (Z,D) are in

W , then w ◦ v ∈ W .
Ad (3). This again is done as before, now using lemma A.3.2.
Ad (4). Assume ϕ, ψ : (X,B)→ (Y, C) are in bTS0s and v : (Y, C)→ (Z,D) is

in W with v ◦ ϕ = v ◦ ψ. Find w : (V, E)→ (X,B) in W such that ϕ ◦w = ψ ◦w.
Since v ∈ W , let B be clopen in Y with ν(B) = 1, S(B) ⊆ B, and v

injective on B. We construct the required V = (V, π, κ,Q) as follows. Let
V0 := ϕ−1(B) ∩ ψ−1(B) ⊆ X. Since ϕ and ψ are continuous and measure-
preserving, V0 ⊆ X is closed and of full measure. Set V :=

⋂
k∈Z T

−k(V0), whence
V ⊆ V0 and T (V) = V . Since T is a homeomorphism and V0 closed, V is closed
and of full measure (qua countable intersection of closed sets of full measure). So V
with the subspace topology π is again zero-dimensional Polish. And κ := µ � B(π)
is a probability measure on B(π) ⊆ B(τ) since µ(V) = 1. Finally, since T (V) = V ,
we have that Q := T � V : V → V is a well-defined homeomorphism that is
measure-preserving (as in the third bullet point of the proof of lemma A.3.2).
Next, let E := {U ∩ V : U ∈ B}. So (V, E) is in bTS0s.

We define w : (V, E)→ (X,B) as the inclusion. As before, this is in W .
Finally, we show ϕ ◦ w = ψ ◦ w: If x ∈ V ⊆ V0, then ϕ(x) ∈ B and ψ(x) ∈ B.

Since v ◦ ϕ = v ◦ ψ by assumption, v(ϕ(x)) = v(ψ(x)). Since v is injective on B,
ϕ ◦ w(x) = ϕ(x) = ψ(x) = ψ ◦ w(x), as needed. 2

A.5 Equivalence

Recall that F : bTS0 → TS0 is the forgetful functor that sends (X,B) to X
and is the identity on morphisms. Also recall that the functor J : TS0 → DS
sends a topological system (X, τ, µ, T) to the naturally induced dynamical system
(X,B(τ), µ, T) and is the identity on morphisms.

A.5. Equivalence 345

A.5.1. Proposition (general). We define a functor G : bTS0[W
−1]→ DS by

• For an object (X,B) ∈ bTS0[W
−1], define G(X,B) := J ◦ F(X,B).

• For a morphism [v,Z, ϕ] in bTS0[W
−1], define G([v,Z, ϕ]) := ϕ◦v−1 regarded

as partial function with domain M := v(C) ⊆ X (where C is a clopen domain
of injectivity of v) and codomain ϕ(C) ⊆ Y .

It is essentially surjective, full, and faithful, whence bTS0[W
−1] and DS are

equivalent categories.

Proof. Functor. We have the functor J ◦ F : bTS0 → DS, and, for v ∈ W ,
J ◦ F(v) = v is an isomorphism in DS by lemma 5.2.4 from chapter 5 (it is
injective on an invariant set of full measure). Now, by the universal property of
the localization bTS0[W

−1] (see, e.g., Yekutieli 2020, def. 6.1.2), there is a unique
factoring functor G such that

bTS0 DS

bTS0[W
−1]

J◦F

Q
G

commutes. This G has to be given by

• for (X,B) in bTS0[W
−1], G(X,B) = G ◦ Q(X,B) = J ◦ F(X,B), and

• for [v,Z, ϕ] in bTS0[W
−1], G([v,Z, ϕ]) = (J ◦ F)(ϕ) ◦ (J ◦ F)(v)−1 = ϕ ◦ v−1.9

This is precisely the functor described in the proposition.
Essentially surjective. Let X = (X,A, µ, T) be in DS. By proposition A.2.1

(choosing ∅ as the subset of A), there is a zero-dimensional Polish topology τ on X
with A = B(τ) and T : X → X is τ -continuous. Let B be a countable clopen basis
for (X, τ) that is closed under intersection. Then (X′,B) with X′ := (X, τ, µ, T)
is in bTS0 and G(X′,B) = (X,B(τ), µ, T) = (X,A, µ, T) = X (which implies
isomorphism) in DS.

Full. Let (X,B) and (Y, C) be in bTS0[W
−1]. Let ϕ : J(X) = G(X,B) →

G(Y, C) = J(Y) be a morphism in DS. We need to find a morphism [v, (Z,D), ψ] :
(X,B)→ (Y, C) in bTS0[W

−1] such that G([v, (Z,D), ψ]) = ϕ.
Let id(Y,C) = idY : (Y, C)→ (Y, C) be the identity function, which is in W . By

lemma A.3.1,

(Z,D) (Y, C)

(X,B) (Y, C)

ψ

v idY

‘ϕ’

9Since [v,Z, ϕ] = [idZ ,Z, ϕ] ◦ [v,Z, idZ] = Q(ϕ) ◦ Q(v)−1, we have G([v,Z, ϕ]) = GQ(ϕ) ◦
GQ(v)−1 = JF(ϕ) ◦ JF(v)−1.

346 Appendix A. Systems as a category of fractions

i.e., there is (Z,D) in bTS0 and v : (Z,D)→ (X,B) in W and ψ : (Z,D)→ (Y, C)
in bTS0 with ϕ ◦ v = idY ◦ ψ = ψ. (The quotation marks again indicate that ϕ is
only assumed to be a morphism J(X)→ J(Y).) Hence

(X,B)
v←− (Z,D)

ψ−→ (Y, C)

is a span in bTS0, so [v, (Z,D), ψ] : (X,B) → (Y, C) is in bTS0[W
−1]. And

G([v, (Z,D), ψ]) = ψ ◦ v−1 = ϕ, where the last equation follows from ϕ ◦ v = ψ.
Faithful. Let (X,B) and (Y, C) be objects in bTS0[W

−1]. Let

[v, (Z,D), ϕ], [v′, (Z′,D′), ϕ′] : (X,B)→ (Y, C)

be two morphisms in bTS0[W
−1]. Assume G([v, (Z,D), ϕ]) = G([v′, (Z′,D′), ϕ′]) in

DS and show [v, (Z,D), ϕ] = [v′, (Z′,D′), ϕ′].
Write X = (X, τ, µ, T), Y = (Y, σ, ν, S), Z = (Z, ρ, λ,R), Z′ = (Z ′, ρ′, λ′, R′).

By the assumption, there is a T -invariant set A ⊆ X of full µ-measure such that
the partial functions G([v, (Z,D), ϕ]) = ϕ ◦ v−1 and G([v′, (Z′,D′), ϕ′]) = ϕ′ ◦ v′−1
are defined and identical on A. Since v−1 is the inverse of v in DS, there is an
R-invariant set C ⊆ Z of full λ-measure such that v−1 ◦ v = idZ on C. Similarly,
there is an R′-invariant set C ′ ⊆ Z ′ of full λ′-measure such that v′−1 ◦ v′ = idZ′ on
C ′. By lemma A.3.1,

(V, E) (Z′,D′) C ′

C (Z,D) (X,B) A

ψ=w′

w v′

v

i.e., there is w : (V, E)→ (Z,D) and w′ := ψ : (V, E)→ (Z′,D′) in W such that
v ◦ w = v′ ◦ w′, w(V) ⊆ C, w′(V) ⊆ C ′, and v ◦ w(V) = v′ ◦ w′(V) ⊆ A.

It suffices to show that ϕ ◦ w = ϕ′ ◦ w′. Because, since we already have
v ◦ w = v′ ◦ w′ ∈ W , the diagram

(Z,D)

(X,B) (V, E) (Y, C)

(Z′,D′)

v ϕ
w

w′
v′ ϕ′

then shows that the spans (v, (Z,D), ϕ) and (v′, (Z′,D′), ϕ′) are equivalent.
Indeed, let y ∈ V , and show ϕ ◦ w(y) = ϕ′ ◦ w′(y). We have v ◦ w(y) =

v′ ◦ w′(y) ∈ A. Since the partial functions ϕ ◦ v−1 and ϕ′ ◦ v′−1 are defined and
agree on A, we hence have

ϕ ◦ v−1(v ◦ w(y)) = ϕ′ ◦ v′−1(v′ ◦ w′(y)).

A.5. Equivalence 347

Since w(y) ∈ C, we have v−1(v ◦ w(y)) = v−1 ◦ v(w(y)) = w(y). Similarly,
v′−1(v′◦w′(y)) = w′(y). Hence the above equation simplifies to ϕ◦w(y) = ϕ′◦w′(y),
as needed. 2

The standard case is very similar due to our preparation. Recall that the functor
J : TS0s → sDS sends a topological system (X, τ, µ, T) to the naturally induced
standard dynamical system (X,B(τ)µ, µ, T) and is the identity on morphisms.

A.5.2. Proposition (standard). We define a functor G : bTS0s[W
−1]→ sDS by

• For an object (X,B) ∈ bTS0[W
−1], define G(X,B) := J ◦ F(X,B).

• For a morphism [v,Z, ϕ] in bTS0s[W
−1], define G([v,Z, ϕ]) := ϕ◦v−1 regarded

as partial function with domain M := v(C) ⊆ X (where C is a clopen domain
of injectivity of v) and codomain ϕ(C) ⊆ Y .

It is essentially surjective, full, and faithful, whence bTS0s[W
−1] and sDS are

equivalent categories.

Proof. Functor. The functor J ◦ F : bTS0 → DS sends elements from W to
isomorphisms in sDS by lemma 5.2.4 from chapter 5 (each v is injective on an
invariant set of full measure). By the universal property of the localization
bTS0s[W

−1], there is G such that

bTS0s sDS

bTS0s[W
−1]

J◦F

Q
G

commutes, and, as before, this G has to be the one stated in the proposition.
Essentially surjective. Let X be in sDS. By proposition A.2.3, there is Y =

(Y, σ, ν, S) in TS0s such that J(Y) is isomorphic to X. Let B be a countable clopen
basis for (Y, σ) that is closed under intersection and S-image (their existence was
shown in corollary 4.6.7 of chapter 4). Then (Y,B) is in bTS0s and G(Y,B) =
J ◦ F(Y,B) = J(Y) is isomorphic to X in sDS.

Full. Let (X,B) and (Y, C) be in bTS0s[W
−1]. Let ϕ : G(X,B)→ G(Y, C) be

a morphism in sDS. We need to find a morphism [v, (Z,D), ψ] : (X,B)→ (Y, C)
in bTS0s[W

−1] such that G([v, (Z,D), ψ]) = ϕ. Indeed, by lemma A.3.2,

(Z,D) (Y, C)

(X,B) (Y, C)

ψ

v idY

‘ϕ’

348 Appendix A. Systems as a category of fractions

so [v, (Z,D), ψ] : (X,B) → (Y, C) is in bTS0s[W
−1]. And G([v, (Z,D), ψ]) =

ψ ◦ v−1 = ϕ, where the last equation follows from ϕ ◦ v = ψ.
Faithful. Let (X,B) and (Y, C) be objects in bTS0s[W

−1]. Let

[v, (Z,D), ϕ], [v′, (Z′,D′), ϕ′] : (X,B)→ (Y, C)

be two morphisms in bTS0s[W
−1] with identical G-image, and show that they are

identical. We can reason verbatim as before except for now referring to lemma A.3.2
and writing bTS0s[W

−1] and sDS. 2

Thus, we’ve proven theorem A.1.3: In the general case, let W be the class of
morphisms in bTS0 that are injective clop 0. Then W admits a right calculus of
fractions (proposition A.4.1) and the category of fractions bTS0[W

−1] is equivalent
to DS via a functor that is like J◦F on objects (proposition A.5.1). In the standard
case, let W be the class of morphisms in bTS0s that are injective clop 0. Then
W admits a right calculus of fractions (proposition A.4.2) and the category of
fractions bTS0s[W

−1] is equivalent to sDS via a functor that is like J ◦F on objects
(proposition A.5.2).

Appendix B

Dynamical domain example

The purpose of this appendix is to discuss in detail a non-trivial but elementary
example of a dynamical domain. This domain-theoretic structure was introduced
and discussed in part 2. We’ve seen that every dynamical system induces a
dynamical domain (namely its observation domain). This provides a wealth of
examples of dynamical domains. In fact, when restricting to the max-reflective
ones, all of them are obtained in this way. To also illustrate the other direction,
we construct here a non-max-reflective dynamical domain in a ‘purely domain-
theoretic’ way, i.e., not via dynamical systems.

In section B.1, we construct the example dynamical domain D. (This essentially
only requires the definition of a dynamical domain from chapter 4.) In section B.2,
we note that the topological dynamical system S(D) that D models is a Cantor
dynamics—i.e., a topological system with state space 2ω—which is not expansive,
so it is not isomorphic to a subshift. (The idea that a dynamical domain models
a system also is found in chapter 4.) In sections B.3 and B.4, we determine
the max-entropy of D as m(D) = ∞, which also is the topological entropy of
S(D). (This requires chapter 6.) We end with some further questions relating to
algorithmic randomness.

B.1 A dynamical domain of binary sequences

Our example dynamical domain will be the following constructed around the
well-known Scott domain of finite and infinite binary sequences.

B.1.1. Proposition. Let D = (D, v, f) be defined as follows:

• D := 2≤ω is the set of finite and infinite (i.e., ω-long) binary sequences
ordered by extension (denoted ≤).1

1A binary sequence is a sequence of 0’s and 1’s, e.g., x = 0100111010 Formally, they are
partial functions ω → 2 whose domain is of the form {n : 0 ≤ n ≤ l} for l ∈ ω ∪ {ω} the length
of the sequence.

349

350 Appendix B. Dynamical domain example

• v : Σ(D)→ [0, 1] is the ‘Lebesgue’ valuation: v(U) := λ(maxU) where λ is
the Lebesgue measure on Cantor space 2ω.2

• f : D → D is defined by

f(x)(n) :=

{
x(n) + x(2n) if x(2n) is defined

undefined otherwise,

where ‘+’ is addition modulo 2.3

Then D is a dynamical domain (i.e., in dDOM).

Before we prove this, let’s gather some intuition for the components D, v, and
f of D.

Concerning the domain D: This is a standard example of a Scott domain.
Its compact elements are precisely the finite binary sequences.4 So the non-
compact elements hence are precisely the maximal ones: maxD = 2ω. The Scott
topology on D has the basis {↑a : a ∈ D finite}, so the relative Scott topology
on maxD = 2ω is the usual topology of Cantor space given by the cylinder sets
JaK = {x ∈ 2ω : a ≤ x} = ↑a ∩maxD.

Concerning the valuation v: We see that this is a valuation as follows. It
is strict: v(∅) = λ(∅) = 0. It is monotone: if U ⊆ V are Scott-open, then
maxU ⊆ maxV , so v(U) = λ(maxU) ≤ λ(maxV) = v(V). It is modular: if U
and V are Scott-open, then

v(U ∪ V) + v(U ∩ V) = λ(max(U ∪ V)) + λ(max(U ∩ V))

= λ(maxU ∪maxV) + λ(maxU ∩maxV)

= λ(maxU) + λ(maxV) = v(U) + v(V).

It also is continuous: if (Uj)j∈J is a directed family in Σ(D), then (maxUj)j∈J is
a directed family in the lattice Ω(2ω) of opens of the Cantor space 2ω, so, since 2ω

2Recall that the Lebesgue measure is the ‘uniform’ measure on 2ω: it is determined by
assigning a ‘cylinder set’ JaK := {x ∈ 2ω : a ≤ x} (for a finite binary string a) the measure
2−|a| (see, e.g., Downey and Hirschfeldt 2010, sec. 1.2).

3This is well-defined, i.e., f(x) is in D. Indeed, f(x) : ω → 2 is a partial function and if
n ∈ ω is such that f(x)(n) is not defined, then, for all m ≥ n, also f(x)(m) is not defined: Since
f(x)(n) is not defined, x(2n) is not defined, so, since 2n ≤ 2m, also x(2m) is not defined, so
f(x)(m) is not defined.

4An infinite sequence x ∈ 2ω cannot be compact: x =
∨
n x � n but, for no n, do we have

x � n ≥ x. And conversely, if c ∈ 2<ω and A ⊆ D is directed with
∨
A ≥ c, then A is a chain (if

a, a′ ∈ A, there is, by directedness, a, a′ ≤ b ∈ A, so a and a′ are initial segments of b, whence
a ≤ a′ or a′ ≤ a), and

∨
A is the least binary sequence x extending all a ∈ A, so x ≥ c implies,

since c is finite, that already some a ∈ A extends c (otherwise, all a ∈ A are, qua initial segments
of x ≥ c, also initial segments of c, so c is an upper bound of A, so x ≤ c, whence x = c is finite,
so x =

∨
A simply is the maximal element of A, whence x ∈ A with x ≥ c, contradiction).

B.1. A dynamical domain of binary sequences 351

is a second-countable space,

v
(⋃

J

Uj
)

= λ
(

max
⋃
J

Uj
)

= λ
(⋃

J

maxUj
)

= sup
J

(
λ(maxUj)

)
= sup

J

(
v(Uj)

)
.5

It is normalized: v(D) = λ(maxD) = λ(2ω) = 1. And it is max-normalized:
we can write maxD as the intersection

⋂
n Un of opens Un =

⋃
a∈2n ↑a with

v(Un) = λ(maxUn) = λ(2ω) = 1.
Concerning the dynamics f : Here are two examples of how to compute f(x)

x = 01100 y = 100011

f(x) = (0+0)(1+1)(1+0) = 001 f(y) = (1+1)(0+0)(0+1) = 001.

In particular, f is not injective, and it also is not surjective: For any x ∈ D,
f(x)(0) = x(0) + x(0) = 0, so the string y = 〈1〉 doesn’t have an f -preimage.
Moreover, x = 000 . . . is a fixpoint of f and f(111 . . .) = 000 In fact, there
are infinitely many fixpoints: If x ∈ 2ω is such that, for all even n ∈ ω, x(n) = 0,
then f(x) = x. (Proof: For n ∈ ω, 2n is even, so x(2n) = 0, whence f(x)(n) =
x(n) + x(2n) = x(n).) Here are some more structural facts about f , that we’ll
also use in the proof of the proposition.

B.1.2. Lemma. 1. If x ≤ y in D, then f(x) ≤ f(y).

2. f : D → D is Scott-continuous.

3. f : D → D is max-preserving.

4. For finite x ∈ D, |f(x)| = b1
2
|x|c where b·c is the floor function.6

5. For i ≤ ω and x ∈ D, we have f(x) � i ≥ f(x � i).

Proof. Ad (1). Let x ≤ y. For n ∈ ω, we need to show that if f(x)(n) is defined,
also f(y)(n) is defined and has the same value. If f(x)(n) is defined, then x(2n)
is defined, so y(2n) is defined, so f(y)(n) is defined. Moreover, x(n) = y(n) and
x(2n) = y(2n), so f(x)(n) = x(n) + x(2n) = y(n) + y(2n) = f(y)(n).

Ad (2). Let A ⊆ D be directed, and show f(
∨
A) =

∨
f(A). As noted

above, A is a chain. And if A has a greatest element, the claim is immediate by
monotonicity. So assume A doesn’t have a greatest element. So A is infinite and

5Claim: If (Uj)J is a directed family of opens of the second-countable space X and µ a
measure on B(X), then µ(

⋃
J Uj) = supJ(µ(Uj)). Proof: Since X is second-countable, there is

a countable J0 = {j0, j1, . . .} ⊆ J with
⋃
J Uj =

⋃
J0
Uj . Define Vn :=

⋃n
k=0 Ujk . So (Vn) is an

increasing sequence of opens with
⋃
n Vn =

⋃
J Uj . So, by continuity from below (of measures),

µ(
⋃
J Uj) = µ(

⋃
n Vn) = supn µ(Vn). And we have supn µ(Vn) = supJ µ(Uj) because: (≤) Given

Vn = Uj0∪. . .∪Ujn , consider, by directedness, Uj ⊇ Uj0 , . . . , Ujn , so µ(Vn) ≤ µ(Uj) ≤ supJ µ(Uj).
(≥) Given Uj , we have µ(Uj) ≤ µ(

⋃
J Uj) = supn µ(Vn).

6I.e., for a real number r, brc is the biggest integer ≤ r.

352 Appendix B. Dynamical domain example

doesn’t include a maximal element. So A = a0 < a1 < . . . for ak ∈ 2<ω. Thus,
for a :=

∨
A we have a(n) = ak(n) for k big enough such that ak(n) is defined.

Moreover, for b :=
∨
f(A) and ak ∈ A we have f(ak)(n) = b(n) whenever defined.

Thus, for n ∈ ω,

f(
∨

A)(n) = a(n) + a(2n) = ak(n) + ak(2n)

for some big enough k. Further,

ak(n) + ak(2n) = f(ak)(n) = b(n) =
∨

f(A)(n).

Hence f(
∨
A) =

∨
f(A), as needed.

Ad (3). If x ∈ maxD = 2ω, then also f(x) is infinite (since f(x)(n) is defined
for every n ∈ ω because every x(2n) is defined), so f(x) ∈ 2ω = maxD.

Ad (4). The length of f(x) is n where n is maximal such that f(x)(n− 1) is
defined. And f(x)(n− 1) is defined iff x(2(n− 1)) is defined iff 2(n− 1) < |x|. So

|f(x)| = max{n : 2(n− 1) < |x|} = max{n : n ≤ 1

2
|x|} = b1

2
|x|c.

Ad (5). We need to show for all n ∈ ω: If f(x � i)(n) is defined, then f(x) � i(n)
is defined and they have the same value. So assume that f(x � i)(n) is defined.
So x � i(2n) is defined, whence 2n < i. Since x � i ≤ x, also x(2n) is defined, so
f(x)(n) is defined. Since n ≤ 2n < i, f(x)(n) = f(x) � i(n) is defined. Its value is
f(x) � i(n) = f(x)(n) = x(n) + x(2n) = x � i(n) + x � i(2n) = f(x � i)(n). 2

Proof of proposition B.1.1. We need to write D as a restricted limit of a
finitary dynamical expanding system. We do so in a sequence of steps.

Step 1. As index set we choose the even natural numbers I := {2n : n ∈ ω},
which hence is countable. Working with even numbers (as opposed to all naturals)
will make things more convenient later on.

Step 2. The finite domains are Di := (2≤i, vi, f � 2≤i) where 2≤i is the set
of binary strings of length ≤ i (so 2≤0 is the singleton of the empty string) and
vi : Σ(Di)→ [0, 1] is defined by v(Ui) := |Ui ∩ 2i|2−i.

These are indeed finite dynamical Scott domains: First, 2≤i is a nonempty finite
partial order that is bounded complete and hence a finite Scott domain. Second,
vi is a valuation (strictness and monotonicity are immediate and for modularity:
write n := |Ui∩2i|, m := |Vi∩2i|, k := |(Ui∪Vi)∩2i|, and l := |(Ui∩Vi)∩2i|, then
n+m = k+l, so v(Ui∪vi)+v(Ui∩Vi) = k2−i+l2−i = n2−i+m2−i = v(Ui)+v(Vi)).
And it is continuous (since Σ(Di) is finite), normalized (v(Di) = |Di ∩ 2i|2−i =
2i2−i = 1), and max-normalized (since Di is finite). Third, f � 2≤i is well-defined
(if x ∈ 2≤i, then |f(x)| = b1

2
|x|c ≤ |x| ≤ i, so f(x) ∈ 2≤i) and monotone (qua

restriction of a monotone function) and hence Scott-continuous.7

7Note that 2≤i is not max-reflective for 2 ≤ i < ω: It satisfies the first axiom: If a ∈

B.1. A dynamical domain of binary sequences 353

Step 3. The connecting and limiting morphisms will be defined as sequence
restriction. We’ll first collect some facts about it: For 0 ≤ i ≤ j ≤ ω, define
rij : 2≤j → 2≤i by x 7→ x � i. We show that (a) rij is a Scott-continuous projection,
(b) rij is max-preserving, and (c) rij is max-bisimulative.

Concerning (a), rij is monotone: if x ≤ y, then x � i ≤ y � i. As corresponding
embedding e : 2≤i → 2≤j we choose x 7→ x. This is monotone and, for x ∈ 2≤i,
we have rij ◦ e(x) = x � i = x, and, for x ∈ 2≤j, we have e ◦ rij(x) = x � i ≤
x. Finally, rij is Scott-continuous: If A ⊆ 2≤j is directed, we need to show
rij(
∨
A) ≤

∨
rij(A) (the ≥-direction follows from monotonicity). If i = ω, then

rij is the identity function which is Scott-continuous. So let i < ω. Then we
have rij(

∨
A) =

∨
A � i = a � i for some a ∈ A (since

∨
A is above the compact∨

A � i, so there is a ∈ A with a ≥
∨
A � i). And a � i ≤

∨
a∈A a � i =

∨
rij(A).

Concerning (b), if x ∈ max 2≤j, then x � i has length i, so is in max 2≤i.
Concerning (c), let x ∈ 2≤j and x � i ≤ e ∈ max 2≤i, and find d ∈ max 2≤j

with x ≤ d and d � i = e. If |x| < i, then choose d := e0 . . . 0 (with j − i many
0’s at the end), so x ≤ e ≤ d ∈ 2j and d � i = e. If |x| ≥ i, then x � i ∈ 2i is
maximal, so identical to e, so choose d := x00 . . . (with as many 0’s at the end to
have length j). Then x ≤ d ∈ 2j and d � i = x � i = e.

Step 4. The connecting morphisms are pij := rij : 2≤j → 2≤i. As noted
in step 3, these are Scott-continuous projections that are max-preserving and
max-bisimulative. They are valuation-preserving: Let Ui ∈ Σ(Di) and show
vj(p

−1
ij (Ui)) = vi(Ui). If Ui = ∅, both sides equal 0, so let Ui be nonempty and

write Ui∩2i = {a1, . . . , an}. Then p−1ij (Ui)∩2j is the disjoint union
⋃n
k=1 p

−1
ij (ak)∩2j .

Note that |p−1ij (ak) ∩ 2j| = |{b ∈ 2j : b � i = ak}| = 2j−i. So

vj(p
−1
ij (Ui)) = |p−1ij (Ui) ∩ 2j|2−j =

(n∑
k=1

|p−1ij (ak) ∩ 2j|
)
2−j

=
(
n2j−i

)
2−j = n2−i = vi(Ui).

And they are max-semi-equivariant: If x ∈ max 2≤j, then f(x) � i ≥ f(x � i)
by lemma B.1.2 (5). Moreover, they clearly satisfy the compatibility conditions
pii = id2≤i and, for i ≤ j ≤ k, pik = pij ◦ pjk.

Step 5. The diagram is upward deterministic. Let i ∈ I and ai, bi 6= b′i ∈
max 2≤i = 2i with bi, b

′
i ≥ f(ai). Set j := 2i ≥ i. Then, for aj, bj 6= b′j ∈ max 2≤j =

2j, if aj � i = ai, bj � i = bi, and b′j � i = b′i, we cannot have bj, b
′
j ≥ f(aj) since

otherwise bj and b′j agree on the initial segment of length |f(aj)| = 1
2
|aj| = i,

whence bi = bj � i = b′j � i = b′i, contradicting bi 6= b′i.
By now we’ve established that (Di, pij)I is a finitary dynamical expanding

system. Next we construct the limit morphisms pi : D→ Di.

2≤i, then a =
∧
{aσ ∈ 2i : σ ∈ 2i−|a|} =

∧
(↑a ∩ max 2≤i). But it doesn’t satisfy the

second: Let A = {0σ, 1σ} for, say, σ = 0 . . . 0 ∈ 2i−1. Then
∧
A = ε (the empty string), so

(↑
∧
A) ∩max 2≤i = 2i 6= A.

354 Appendix B. Dynamical domain example

Step 6. The limiting morphisms are pi := rωi : 2≤ω → 2≤i. As noted in
step 3, these are Scott-continuous projections that are max-preserving and max-
bisimulative. They are valuation-preserving: For Ui ∈ Σ(Di), show v(p−1i (Ui)) =
vi(Ui). If Ui is empty, this is immediate, so write Ui ∩ 2i = {a1, . . . , an}. Then we
have

v(p−1i (Ui)) = λ(max p−1i (Ui)) = λ({x ∈ 2ω : x � i ∈ Ui}) = λ(
n⋃
k=1

JakK)

=
n∑
k=1

λ(JakK) = n2−i = |Ui ∩ 2i|2−i = vi(Ui).

And they are max-semi-equivariant: If x ∈ max 2≤ω, then f(x) � i ≥ f(x � i) by
lemma B.1.2 (5). Moreover, they clearly satisfy the compatibility condition that,
for i ≤ j, pi = pij ◦ pj.

Step 7. D is a max-preserving max-normalized dynamical Scott domain: As
noted above, D is a Scott domain, v is a max-normalized continuous valuation, and
f is a max-preserving and Scott-continuous function f : D → D by lemma B.1.2.

Step 8. Thus, (D, pij) is a cone to (Di, pij)I in dSCOp
n with D in dSCOp

nm. Write
(E, qi) for the restricted limit constructed in the limit theorem. By its universal
property, there is a unique morphism β : D→ E in dSCOp

n with qi ◦ β = pi (for
all i), and β is given by β(x) = 〈pi(x) : i ∈ I〉. If we can show that β : D → E
is an order isomorphism, then we can conclude that β is an isomorphism (by
proposition 5.2.13 in chapter 5), whence D is, like E, in dDOM.

Step 9. β indeed is an order isomorphism. Since β is monotone, we only need
to show that it is surjective and order-reflecting.

Order-reflecting: Let x, y ∈ D with β(x) ≤ β(y), and show x ≤ y. From the
assumption, we have, for all i ∈ I, x � i ≤ y � i. Thus, for any n ∈ ω, if x(n)
is defined, let i > n in I, so x(n) = x � i(n) = y � i(n) = y(n), whence y(n) is
defined and has the same value as x(n), so x ≤ y.

Surjective: If z ∈ E, then z = 〈zi : i ∈ I〉 is a sequence of extending finite
binary strings.

Case 1: z ∈ maxE. Then each qi(x) = zi is maximal (since the qi are max-
preserving). Let x be the (infinite) sequence extending all zi. Then, for i ∈ I,
x � i = zi since x extends zi and zi is of length i. So β(x) = 〈x � i : i ∈ I〉 = 〈zi :
i ∈ I〉 = z.

Case 2: z 6∈ maxE. Then there is a minimal i ∈ I such that x := zi is not
maximal, and we claim that then zi = zj for all j ≥ i in I: Otherwise there is
j ≥ i with |zj| > |zi|. So, since zi = pij(zj) = zj � i, we get the contradiction

|zi| = |zj � i| = min
(
|zj|︸︷︷︸
>|zi|

, i︸︷︷︸
>|zi|

)
> |zi|.

B.2. More facts about the dynamical domain 355

Now, we have

z = 〈z0, z2, . . . , zi, zi, . . .〉 = 〈x � 0, x � 2, . . . , x � i, x � i+ 1, . . .〉 = β(x),

as needed. 2

B.2 More facts about the dynamical domain

A first indication that the dynamical domain D is more complex than its rather
simple definition may suggest is that the topological system that it models is not
a subshift (which form a particularly well-behaved class of topological systems).

B.2.1. Proposition. The Cantor dynamics (2ω, f � 2ω) modeled by D is not
expansive and hence not isomorphic to a subshift.

Proof. We need to show that f := f � 2ω is not expansive; then Hedlund’s theo-
rem (Hedlund 1969) implies that it cannot be isomorphic to a subshift. Let ε > 0
and show that there are x 6= y in 2ω such that, for all n ∈ ω, d(f

n
(x), f

n
(y)) < ε.

Indeed, let N ∈ ω be big enough such that N is odd and 2−N < ε. Let x := 000 . . .
and let y be like x except that it has a ‘1’ at position N , so x 6= y. Since both x
and y have value ‘0’ for even n, they are, as observed above, fixpoints under f .
So d(f

n
(x), f

n
(y)) = d(x, y) = 2−N < ε. 2

We collect some more facts about the dynamics f that we’ll use below.

B.2.2. Lemma. 1. For n ≥ 0 and i ∈ I, if x ∈ D has length 2ni, then
|fn(x)| = i.

2. For i ≥ 1 and x ∈ D, f(x � 2i) = f(x � 2i+ 1).

3. For i ∈ ω and x ∈ D, we have f(x � 2i) = f(x) � i.

4. For k ∈ ω, i ∈ ω and x ∈ D, we have fk(x � 2ki) = fk(x) � i.

5. For i ∈ ω and x ∈ D, |f(x � 2i)| ≤ i.

Proof. Ad (1). By induction on n. If n = 0, then for x ∈ D with length 2ni = i,
we have |fn(x)| = |x| = i. For n + 1, given i ∈ I and x ∈ D with length 2n+1i,
define y := f(x) which, by lemma B.1.2 (4), has length b1

2
|x|c = 2ni. So, by

induction hypothesis, |fn+1(x)| = |fn(y)| = i.

356 Appendix B. Dynamical domain example

Ad (2). If |x| ≤ 2i, then x � 2i = x � 2i + 1 and the claim is immediate. So
assume |x| ≥ 2i+ 1. Then, by lemma B.1.2 (4),

|f(x � 2i)| = b1
2
|x � 2i|c = b1

2
2ic = i

= bi+
1

2
c = b1

2
(2i+ 1)c = b1

2
|x � 2i+ 1|c = |f(x � 2i+ 1)|.

By monotonicity, f(x � 2i) ≤ f(x � 2i+ 1), so the claim follows.
Ad (3). Case 1: |x| < 2i. Then x = x � 2i and |f(x)| = b1

2
|x|c ≤ b1

2
2ic = i, so

f(x � 2i) = f(x) = f(x) � i.
Case 2: |x| ≥ 2i. We have x � 2i ≤ x, so, by monotonicity, f(x � 2i) ≤ f(x),

whence f(x � 2i) = f(x) � l where l = |f(x � 2i)|. Then the claim follows from
l = |f(x � 2i)| = b1

2
|x � 2i|c = b1

2
2ic = i.

Ad (4). By induction on k. If k = 0, then fk(x � 2ki) = x � i = fk(x) � i. For
k + 1, we have

fk+1(x � 2k+1i) = fk
(
f(x � 2k+1i)

)
.

Define j := 2ki, then, by (3),

f(x � 2k+1i) = f(x � 2j) = f(x) � j = f(x) � 2ki

Hence

fk
(
f(x � 2k+1i)

)
= fk

(
f(x) � 2ki

)
Set y := f(x). Then by the induction hypothesis,

fk
(
f(x) � 2ki

)
= fk

(
y � 2ki

)
= fk(y) � i = fk+1(x) � i,

as needed.
Ad (5). By (3), |f(x � 2i)| = |f(x) � i| ≤ i. 2

B.3 Words on the components

The main task in calculating the max-entropy of D is to determine the cardinality
of the set of ‘words’

W (n, i) =
{
σ ∈ (2i)n : ∃x ∈ 2ω . ∀k = 0, . . . , n− 1 . fk(x) � i = σ(k)

}
(recall pi is the restriction x 7→ x � i). We think of i as block length and n as time
or number of iterations: an example is given in figure B.1.

B.3. Words on the components 357

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .
x 1 1 0 1 0 0 1 0 1 1 1 0 1 1 1 0 . . .

f(x) 0 1 0 0 1 1 0 1 . . .
f 2(x) 0 1 1 0 . . .

Figure B.1: Example of x ∈ 2ω realizing the word σ = (1101, 0100, 0110) ∈ (2i)n

for block length i = 4 and iteration number n = 3.

We’ll show that |W (n, i)| = 2i+
(n−1)i

2 . But let’s first build some intuition for
why to suspect this. We think about it inductively for n ≥ 1. If n = 1, then

W (1, i) =
{
σ ∈ (2i)1 : ∃x ∈ 2ω . f 0(x) � i︸ ︷︷ ︸

=x�i

= σ(0)
}

= 2i,

because every σ = (a) with a ∈ 2i can be realized by, e.g., x = a00 . . . ∈ 2ω—hence
N1 := |W (1, i)| = |2i| = 2i. So given we know the number Nn = |W (n, i)|, what
can we say about Nn+1 = |W (n + 1, i)|? Every element σ of W (n + 1, i) is an
extension of some element, namely σ � n, of W (n, i), so we ask: How many
extensions does a σ ∈ W (n, i) have to an element of W (n+ 1, i)? As an example,
consider σ = (1101, 0100, 0110) ∈ (2i)n from figure B.1: For which a ∈ 2i can σa
be realized by some x ∈ 2ω? The first half of a—i.e., al := a(0)a(1)—is fixed by the
last element b of σ: To satisfy f 3(x) � i = a, we must have a(0) = b(0) + b(0) and
a(1) = b(1)+b(2). But the second half of a—i.e., ar := a(2)a(3)—is unconstrained:
we fill in the dots in line ‘f 2(x)’ with a bit k at position 4 such that b(2)+k = a(2),
and at position 6 with a bit l such that b(3) + l = a(3), and make an arbitrary
choice for positions 5 and 7. Similarly, we fill in the dots in line ‘f(x)’ now with 8
bits to realize the 4 bits we’ve just added. Then we further propagate this to line
‘x’ filling in the dots there now with 16 bits appropriately. This then yields—after
adding, say, infinitely many 0’s—a new x′ ∈ 2ω that realizes σa. Thus, for each
element of W (n, i) we add 2

i
2 many new ones, so Nn+1 = Nn2

i
2 . In closed form:

Nn = 2i+
(n−1)i

2 .
Now for the formal proof. Before making this induction argument, we need

some preparatory lemmas. We start by noting that to compute the output of f
up to a certain length, we only need a certain length of the input (i.e., a precise
version of continuity).

B.3.1. Lemma. For i ∈ I, n ≥ 1, if x ∈ 2ω, then, for x′ := x � 2n−1i, we have,
for k = 0, . . . , n− 1, that fk(x′) � i = fk(x) � i.

Proof. By lemma B.2.2 (4), fk(x) � i = fk(x � 2ki). Note that, since x is infinite,
fk(x) � i has length i. Since k ≤ n−1, we have 2ki ≤ 2n−1i, so x � 2ki ≤ x � 2n−1i.
Since f is monotone, also fk is, so

fk
(
x � 2ki

)
≤ fk

(
x � 2n−1i

)
.

358 Appendix B. Dynamical domain example

Since fk(x) � i = fk(x � 2ki) has length i, we have

fk(x) � i = fk
(
x � 2ki

)
= fk

(
x � 2n−1i

)
� i = fk(x′) � i,

as needed. 2

Next, we show that if we have a block b ∈ 2i which determines the first half of
a block at the next stage, f(b) = dl ∈ 2

i
2 , then, for any desired second half dr to

this next block dldr, we can find a second block c ∈ 2i following b that realizes
this second half, f(bc) = dldr.

B.3.2. Lemma. For i ∈ I, if b ∈ 2i and dl, dr ∈ 2
i
2 with f(b) = dl, then there is

c ∈ 2i such that f(bc) = dldr.

Proof. Define c ∈ 2i by being 0 on odd indices and for indices 0 ≤ 2n′ < i,
let c(2n′) be a bit b such that b(i

2
+ n′) + b = dr(n

′) (which always exists). By
lemma B.2.2 (4), f(bc) and dldr have the same length i. So we need to show, for
n = 0, . . . , i− 1 that f(bc)(n) = dldr(n).

Case 1: n ≤ i
2
− 1 (i.e., in the first half of the block length i). Then 2n < i, so

f(bc)(n) = bc(n) + bc(2n) = b(n) + b(2n) = f(b)(n) = dl(n) = dldr(n).

Case 2: n ≥ i
2

(i.e., in the second half of the block length i). So n = i
2

+ n′ for
some 0 ≤ n′ < i

2
. Hence

f(bc)(n) = bc(n) + bc(2n) = b(n) + c(2n− i) = b(
i

2
+ n′) + c(2n′)

= dr(n
′) = dldr(

i

2
+ n′) = dldr(n),

as needed. 2

Next, we boost this observation inductively:

B.3.3. Lemma. For all n ≥ 1 and i ∈ I, if b ∈ 22n−1i and dl, dr ∈ 2
i
2 with

fn(b) = dl, then there is c ∈ 22n−1i such that fn(bc) = dldr.

Proof. By induction on n. If n = 1, the claim is given by lemma B.3.2. So
assume the claim holds for n and show it for n + 1. Let i ∈ I, b ∈ 22ni, and
dl, dr ∈ 2

i
2 with fn+1(b) = dl.

We have, by lemma B.2.2 (1), b′ := fn(b) ∈ 2i, and we have f(b′) = fn+1(b) =

dl ∈ 2
i
2 . So, by lemma B.3.2, there is c′ ∈ 2i such that f(b′c′) = dldr.

We apply the induction hypothesis to b′c′: Set j := 2i. Then b ∈ 22
ni = 22n−1j

and b′, c′ ∈ 2i = 2
j
2 with fn(b) = b′. So the induction hypothesis yields that there

is c ∈ 22n−1j = 22ni such that fn(bc) = b′c′, so

fn+1(bc) = ffn(bc) = f(b′c′) = dldr,

B.3. Words on the components 359

as needed. 2

Now we can characterize the elements of W (n+ 1, i) in terms of W (n, i). We
write last(σ) to denote the last element of a nonempty finite sequence σ.

B.3.4. Lemma. Let i ∈ I, n ≥ 1 and σ ∈ (2i)n+1. Then

1. If σ ∈ W (n+ 1, i), then σ � n ∈ W (n, i) and σ(n) = blbr with f(σ(n− 1)) =

bl ∈ 2
i
2 and br ∈ 2

i
2 .

2. If σ′ ∈ W (n, i) and bl, br ∈ 2
i
2 such that f(last(σ′)) = bl, then σ := σ′blbr ∈

W (n+ 1, i).

Proof. Ad (1). Since σ ∈ W (n+ 1, i), there is x ∈ 2ω such that, for k = 0, . . . , n,
fk(x) � i = σ(k). So, in particular, this is true for k = 0, . . . , n − 1. Hence
σ � n ∈ W (n, i). Since σ(n) ∈ 2i and i is even, we can write σ(n) = blbr for

bl, br ∈ 2
i
2 . So it remains to show that f(σ(n − 1)) = bl. Indeed, we have,

σ(n− 1) = fn−1(x) � i and σ(n) = fn(x) � i, so, by lemma B.2.2 (3),

f
(
σ(n− 1)

)
= f

(
fn−1(x) � i

)
= f

(
fn−1(x)

)
�
i

2
= fn(x) �

i

2
= σ(n) �

i

2
= bl.

Ad (2). To show that σ ∈ W (n+ 1, i), we need to find y ∈ 2ω such that, for
k = 0, . . . , n, we have fk(y) � i = σ(k).

Since σ′ ∈ Wi(n), there is x ∈ 2ω such that, for k = 0, . . . , n − 1, we have
fk(x) � i = σ′(k). By lemma B.2.2 (1) and lemma B.3.1, we have, for x′ := x �
2n−1i, that |fn−1(x′)| = i and

fn−1(x′) = fn−1(x′) � i = fn−1(x) � i = σ′(n− 1) =: b.

So

fn(x′) = ffn−1(x′) = f(b) = f(last(σ′)) = bl.

By lemma B.3.3 (choosing b := x′ ∈ 22n−1i, dl := bl ∈ 2
i
2 , dr := br ∈ 2

i
2), there is

y′ ∈ 22n−1i such that fn(x′y′) = blbr.
Let y be any element of 2ω extending x′y′. Then we have, for k = 0, . . . , n− 1,

that 2ki ≤ 2n−1i, so y � 2ki = x′ � 2ki = x � 2ki, so, using lemma B.2.2 (4),

fk(y) � i = fk(y � 2ki) = fk(x � 2ki) = fk(x) � i = σ′(k) = σ(k).

For k = n, we have, using lemma B.2.2 (4),

fn(y) � i = fn(y � 2ni) = fn(x′y′) = blbr = σ(n),

as needed. 2

Now, we can prove the announced result.

360 Appendix B. Dynamical domain example

B.3.5. Proposition. For i ∈ I and n ≥ 1, we have |W (n, i)| = 2i+
(n−1)i

2 .

Proof. By induction on n. If n = 1, then, as noted at the beginning of this

subsection, W (1, i) = |2i| = 2i+
(n−1)i

2 . So assume the claim for n and show it for
n+ 1. Using lemma B.3.4, we show that the following function is a well-defined
bijection:

b : W (n+ 1, i)→ W (n, i)× 2
i
2

σ 7→
(
σ � n , σ(n)

[i
2
, . . . , i− 1

])
,

where, for a finite sequence a, we write a[n,m] := a(n)a(n+ 1) . . . a(m).
Well-defined: Given such σ, we know, by lemma B.3.4 (1), that σ � n ∈ W (n, i)

and σ(n)[i, . . . , 2i− 1] ∈ 2
i
2 .

Injective: If σ 6= σ′, there is a least 0 ≤ k ≤ n such that σ(k) 6= σ′(k). If k < n,
then σ � n(k) 6= σ′ � n(k), so b(σ) 6= b(σ′). If k = n, then σ(n − 1) = σ′(n − 1)
and σ(n) 6= σ′(n). Note that

f
(
σ(n− 1)

)
= f

(
σ(n− 1) � i

)
= f

(
σ(n− 1)

)
�
i

2
= σ(n) �

i

2
,

and similarly for σ′. Hence

σ(n) �
i

2
= f

(
σ(n− 1)

)
= f

(
σ′(n− 1)

)
= σ′(n) �

i

2
,

so, since σ(n) 6= σ′(n), σ(n)[i
2
, . . . , i− 1] 6= σ′(n)[i

2
, . . . , i− 1], so b(σ) 6= b(σ′).

Surjective: Given
(
σ′, br

)
∈ W (n, i) × 2

i
2 , define bl := f(last(σ′)) and σ :=

σ′blbr. Then, by lemma B.3.4 (2), σ ∈ W (n + 1, i) and by construction, b(σ) =(
σ′, br

)
.

Hence, using the induction hypothesis, we have∣∣W (n+ 1, i)
∣∣ =

∣∣W (n, i)× 2
i
2

∣∣ =
∣∣W (n, i)

∣∣∣∣2 i
2

∣∣
= 2i+

(n−1)i
2 2

i
2 = 2i+

(n−1)i
2

+ i
2 = 2i+

((n+1)−1)i
2 ,

as needed. 2

B.4 Computing max-entropy

Now we can easily compute the max-entropy m(D) of the dynamical domain D.

B.4.1. Proposition. m(D) =∞.

B.4. Computing max-entropy 361

Proof. By definition, m(D) = supI
(

limn
1
n

log |W (n, i)|
)
. We have, for i ∈ I,

lim
n

1

n
log |W (n, i)| = lim

n≥1

1

n
log 2i+

(n−1)i
2

= lim
n≥1

1

n

((
i+

(n− 1)i

2

)
log(2)

)
= lim

n≥1

1

n
i log(2) + lim

n≥1

1

n

(n− 1)i

2
log(2)

= i
log(2)

2
lim
n≥1

n− 1

n

= i
log(2)

2
,

where the last step follows since lim n−1
n

= lim
n(1− 1

n
)

n
= lim(1 − 1

n
) = 1. Hence

m(D) = sup
(
i log(2)

2
: i ∈ I

)
=∞. 2

Note that, by theorem 6.4.2 (5), this also means that the modeled Cantor
dynamics (2ω, f � 2ω) has infinite topological entropy.

Further questions The next step would be to construct and study a preserved
valuation. Going further, one may explore the connections to algorithmic random-
ness theory (Downey and Hirschfeldt 2010). This is usually formulated in Cantor
space, and an important source of intuition is the idea of randomly sampling a
subsequence (Van Lambalgen 1987). For example, given a sequence x ∈ 2ω keep
tossing a coin (thus constructing a sequence y ∈ 2ω) and build the subsequence
z ∈ 2ω by adding the n-th element of x iff the n-th coin toss landed heads (i.e.,
if y(n) = 1). The guiding intuition behind the function f : 2ω → 2ω is similar,
although the original sequence x and the sampling sequence y are now ‘jumbled
together’: given a sequence x ∈ 2ω build the sequence z = f(x) by choosing x(n)
if y(n) = x(2n) = 0 and choosing the dual otherwise.

Bibliography

Abbes, S. and K. Keimel (2006). “Projective topology on bifinite domains and
applications”. In: Theoretical Computer Science 365.3, pp. 171–183.

Abrams, G., P. Ara, and M. Siles Molina (2017). Leavitt Path Algebras. Vol. 2191.
Lecture Notes in Mathematics. Springer.

Abramsky, S. (1991). “Domain theory in logical form”. In: Annals of pure and
applied logic 51.1-2, pp. 1–77.

Abramsky, S. and A. Brandenburger (11/2011). “The sheaf-theoretic structure of
non-locality and contextuality”. In: New Journal of Physics 13.11, p. 113036.

Abramsky, S. and R. Jagadeesan (1994). “Games and Full Completeness for
Multiplicative Linear Logic”. In: The Journal of Symbolic Logic 59.2, pp. 543–
574.

Abramsky, S. and A. Jung (1994). “Domain Theory”. In: Handbook of Logic
in Computer Science. Ed. by S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum. Corrected and expanded version available at http://www.cs.

bham.ac.uk/~axj/pub/papers/handy1.pdf (accessed 24 January 2018).
Oxford: Oxford University Press.

Abramsky, S. and G. McCusker (1999). “Game Semantics”. In: Computational
Logic. Ed. by U. Berger and H. Schwichtenberg. Vol. 165. NATO ASI Series.
Proceedings of the NATO Advanced Study Institute on Computational Logic,
held in Marktoberdorf, Germany, July 29-August 10, 1997. Berlin, Heidelberg:
Springer, pp. 1–55.

Abramsky, S., R. Soares Barbosa, K. Kishida, R. Lal, and S. Mansfield (2015).
“Contextuality, Cohomology and Paradox”. In: 24th EACSL Annual Confer-
ence on Computer Science Logic (CSL 2015). Ed. by S. Kreutzer. Vol. 41.

363

http://www.cs.bham.ac.uk/~axj/pub/papers/handy1.pdf
http://www.cs.bham.ac.uk/~axj/pub/papers/handy1.pdf

364 Bibliography

Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 211–228.

Abramsky, S. and S. Vickers (1993). “Quantales, observational logic and process
semantics”. In: Mathematical Structures in Computer Science 3.2, pp. 161–
227.

Adadi, A. and M. Berrada (2018). “Peeking Inside the Black-Box: A Survey on
Explainable Artificial Intelligence (XAI)”. In: IEEE Access 6, pp. 52138–
52160.

Adler, R. L., A. G. Konheim, and M. H. McAndrew (1965). “Topological Entropy”.
In: Transactions of the American Mathematical Society 114.2, pp. 309–319.

Alvarez-Manilla, M., A. Edalat, and N. Saheb-Djahromi (2000). “An extension
result for continuous valuations”. In: Journal of the London Mathematical
Society 61.2, pp. 629–640.

Amodei, D., C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané
(2016). Concrete Problems in AI Safety. arXiv: 1606.06565.

An, G. (1996). “The Effects of Adding Noise During Backpropagation Training
on a Generalization Performance”. In: Neural Computation 8.3, pp. 643–674.

Anderson, J. R. (2015). Cognitive Psychology and Its Implications. 8th ed. New
York, NY: Worth Publishers.

Baez, J. C., K. Courser, and C. Vasilakopoulou (2021). Structured versus Decorated
Cospans. arXiv: 2101.09363.

Bahri, Y., J. Kadmon, J. Pennington, S. S. Schoenholz, J. Sohl-Dickstein, and
S. Ganguli (2020). “Statistical Mechanics of Deep Learning”. In: Annual
review of condensed matter physics 11.1, pp. 501–528.

Baier, C. and J.-P. Katoen (2008). Principles of Model Checking. Cambridge,
Massachusetts: The MIT Press.

Bauer, A. (09/2000). “The Realizability Approach to Computable Analysis
and Topology”. PhD thesis. School of Computer Science , Carnegie Mellon
University.

Beall, J., R. Brady, J. M. Dunn, A. P. Hazen, E. Mares, R. K. Meyer, G. Priest, G.
Restall, R. Ripley, J. Slaney, and R. Sylvan (2012). “On the Ternary Relation
and Conditionality”. In: Journal of Philosophical Logic 41, pp. 595–612.

https://arxiv.org/abs/1606.06565
https://arxiv.org/abs/2101.09363

Bibliography 365

Becker, H. and A. S. Kechris (1996). The Descriptive Set Theory of Polish Group
Actions. London Mathematical Society Lecture Note Series 232. Cambridge:
Cambridge University Press.

Beer, G. (1993). Topologies on Closed and Closed Convex Sets. Vol. 268. Mathe-
matics and Its Applications. Dordrecht: Kluwer Academic Publishers.

Behrisch, M., S. Kerkhoff, R. Pöschel, F. M. Schneider, and S. Siegmund (2017).
“Dynamical Systems in Categories”. In: Applied Categorical Structures 25,
pp. 29–57.

Bennett, B. (1996). “Modal logics for qualitative spatial reasoning”. In: Logic
Journal of the IGPL 4.1, pp. 23–45.

Benthem, J. van (2004). “What One May Come to Know”. In: Analysis 64.2,
pp. 95–105.

— (2014). Logic in Games. Cambridge, Massachusetts: The MIT Press.

Benthem, J. van and G. Bezhanishvili (2007). “Modal Logics of Space”. In:
Handbook of Spatial Logics. Ed. by M. Aiello, I. Pratt-Hartmann, and J. van
Benthem. Dordrecht: Springer, pp. 217–298.

Berger, A. and S. Siegmund (2003). “On the Gap Between Random Dynamical
Systems and Continuous Skew Products”. In: Journal of Dynamics and
Differential Equations 15, pp. 237–279.

Besold, T. R., A. d’Avila Garcez, S. Bader, H. Bowman, P. Domingos, P. Hitzler,
K.-U. Kuehnberger, L. C. Lamb, D. Lowd, P. Machado Vieira Lima, L. de
Penning, G. Pinkas, H. Poon, and G. Zaverucha (2017). Neural-Symbolic
Learning and Reasoning: A Survey and Interpretation. arXiv: 1711.03902.

Bezhanishvili, G. and M. Gehrke (2005). “Completeness of S4 with respect to the
real line: revisited”. In: Annals of Pure and Applied Logic 131, pp. 287–301.

Birkhoff, G. (1973). Lattice Theory. Third Edition, Second Printing. Vol. XXV.
Colloquium Publications. First Edition, 1940. Providence, Rhode Island:
American Mathematical Society.

Blackburn, P., M. Rijke, and Y. Venema (2001). Modal Logic. Cambridge Tracts
in Theoretical Computer Science. Cambridge: Cambridge University Press.

Blum, L., F. Cucker, M. Shub, and S. Smale (1998). Complexity and Real
Computation. New York: Springer.

https://arxiv.org/abs/1711.03902

366 Bibliography

Blum, L., M. Shub, and S. Smale (1989). “On a Theory of Computation and
Complexity over the Real Numbers: NP-completeness, Recursive Functions
and Universal Machines”. In: Bulletin of the American Mathematical Society
21.1, pp. 1–46.

Bogachev, V. I. (2007b). Measure Theory. Vol. 1. Berlin, Heidelberg: Springer.

— (2007a). Measure Theory. Vol. 2. Berlin, Heidelberg: Springer.

Borceux, F. (1994). Handbook of Categorical Algebra 1: Basic Category Theory.
Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge
University Press.

Borceux, F. and G. Janelidze (2001). Galois Theories. Vol. 72. Cambridge studies
in advanced mathematics. Cambridge: Cambridge University Press.

Bottou, L. (1998). “Online Algorithms and Stochastic Approximations”. In:
Online Learning and Neural Networks. Ed. by D. Saad. Cambridge, UK:
Cambridge University Press.

Bournez, O. and M. L. Campagnolo (2008). “A Survey on Continuous Time
Computations”. In: New Computational Paradigms: Changing Conceptions
of What is Computable. Ed. by S. B. Cooper, B. Löwe, and A. Sorbi. New
York, NY: Springer, pp. 383–423.

Bracho, F. and M. Droste (1994). “Labelled domains and automata with concur-
rency”. In: Theoretical Computer Science 135.2, pp. 289 –318.

Brogaard, B. and J. Salerno (2019). “Fitch’s Paradox of Knowability”. In:
The Stanford Encyclopedia of Philosophy. Ed. by E. N. Zalta. Fall 2019.
Metaphysics Research Lab, Stanford University.

Brown, T. B., D. Mané, A. Roy, M. Abadi, and J. Gilmer (2017). Adversarial
Patch. arXiv: 1712.09665.

Brualdi, R. A. (2006). Combinatorial matrix classes. Encyclopedia of Mathematics
and Its Applications 108. Cambridge: Cambridge University Press.

Buckner, C. (2019). “Deep learning: A philosophical introduction”. In: Philosophy
Compass 14.10, e12625.

— (2020). “Understanding adversarial examples requires a theory of artefacts
for deep learning”. In: Nature Machine Intelligence 2, pp. 731–736.

https://arxiv.org/abs/1712.09665

Bibliography 367

Cardone, F. (2021). “Games, Full Abstraction and Full Completeness”. In:
The Stanford Encyclopedia of Philosophy. Ed. by E. N. Zalta. Spring 2021.
Metaphysics Research Lab, Stanford University.

Carmantini, G. S. (03/2017). “Dynamical Systems Theory for Transparent Sym-
bolic Computation in Neuronal Networks”. PhD thesis. University of Ply-
mouth, Centre for Robotics and Neural Systems.

Cate, B. t., D. Gabelaia, and D. Sustretov (2009). “Modal languages for topology:
Expressivity and definability”. In: Annals of Pure and Applied Logic 159.1,
pp. 146–170.

Chalmers, D. J. (2011). “A Computational Foundation for the Study of Cognition”.
In: Journal of Cognitive Science 12.4, pp. 323–357.

Cheung, S., V. Darvariu, D. R. Ghica, K. Muroya, and R. N. S. Rowe (2018). “A
Functional Perspective on Machine Learning via Programmable Induction and
Abduction”. In: Functional and Logic Programming. FLOPS 2018. Ed. by
J. Gallagher and M. Sulzmann. Vol. 10818. Lecture Notes in Computer
Science. Cham: Springer, pp. 84–98.

Cisse, M., P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier (2017). “Parseval
Networks: Improving Robustness to Adversarial Examples”. In: Proceedings
of the 34th International Conference on Machine Learning, pp. 854–863.

Clerc, F., V. Danos, F. Dahlqvist, and I. Garnier (2017). “Pointless learning”.
In: Foundations of Software Science and Computation Structures (FoSSaCS
2017). Ed. by J. Esparza and A. Murawski. Vol. 10203. Lecture Notes
in Computer Science. Long version available at https://hal.archives-

ouvertes.fr/hal-01429663v2/document (accessed 5 Feb 2021). Berlin,
Heidelberg: Springer, pp. 355–369.

Cohn, A. G., B. Bennett, J. Gooday, and N. M. Gotts (1997). “Representing and
reasoning with qualitative spatial relations about regions”. In: Temporal and
Spatial Reasoning. Ed. by O. Stock. Dordrecht: Kluwer, pp. 97–134.

Cybenko, G. (1989). “Approximations by superpositions of sigmoidal functions”.
In: Mathematics of Control, Signals, and Systems 2.4, pp. 303–314.

Dahlqvist, F., V. Danos, and I. Garnier (2016). “Giry and the Machine”. In:
Electronic Notes in Theoretical Computer Science 325. The Thirty-second
Conference on the Mathematical Foundations of Programming Semantics
(MFPS XXXII), pp. 85–110.

https://hal.archives-ouvertes.fr/hal-01429663v2/document
https://hal.archives-ouvertes.fr/hal-01429663v2/document

368 Bibliography

Danos, V. and I. Garnier (2015). “Dirichlet is Natural”. In: Electronic Notes in
Theoretical Computer Science 319. The 31st Conference on the Mathematical
Foundations of Programming Semantics (MFPS XXXI), pp. 137–164.

D’Avila Garcez, A. S., L. C. Lamb, and D. M. Gabbay (2009). Neural-Symbolic
Cognitive Reasoning. Cognitive Technologies. Berlin, Heidelberg: Springer.

Dewhurst, J. (2016). “Computing Mechanisms and Autopoietic Systems”. In:
Computing and Philosophy: Selected Papers from IACAP 2014. Ed. by V. C.
Müller. Vol. 375. Studies in Epistemology, Logic, Methodology, and Philosophy
of Science. Cham: Springer, pp. 17–26.

Doran, D., S. Schulz, and T. R. Besold (2017). What Does Explainable AI Really
Mean? A New Conceptualization of Perspectives. arXiv: 1710.00794.

Downarowicz, T. (2011). Entropy in Dynamical Systems. Cambridge: Cambridge
University Press.

Downarowicz, T. and O. Karpel (2016). Dynamics in dimension zero: A survey.
arXiv: 1610.02727.

Downey, R. G. and D. R. Hirschfeldt (2010). Algorithmic Randomness and
Complexity. New York: Springer.

Droste, M. (1990). “Concurrency, automata and domains”. In: Automata, Lan-
guages and Programming. Ed. by M. S. Paterson. Berlin, Heidelberg: Springer,
pp. 195–208.

Eberlein, E. (1974). “A generator theorem for flows”. In: Boletim da Sociedade
Brasileira de Matemática 5, pp. 45–50.

Edalat, A. (1995a). “Domain theory and intergration”. In: Theoretical Computer
Science 151, pp. 163–193.

— (1995b). “Dynamical Systems, Measures, and Fractals via Domain Theory”.
In: Information and Computation 120.1, pp. 32–48.

— (1997). “Domains for Computation in Mathematics, Physics and Exact Real
Arithmetic”. In: The Bulletin of Symbolic Logic 3.4, pp. 401–452.

Edalat, A. and R. Heckmann (1998). “A computational model for metric spaces”.
In: Theoretical Computer Science 193, pp. 55–73.

Edalat, A. and M. B. Smyth (1993). “I-Categories as a framework for solving
domain equations”. In: Theoretical Computer Science 115, pp. 77–106.

https://arxiv.org/abs/1710.00794
https://arxiv.org/abs/1610.02727

Bibliography 369

Eilenberg, S. and S. MacLane (1945). “A general theory of natural equivalences”.
In: Trans. Amer. Math. Soc. 58, pp. 231–294.

Eisner, T., B. Farkas, M. Haase, and R. Nagel (2015). Operator Theoretic Aspects
of Ergodic Theory. Graduate Texts in Mathematics 272. Cham: Springer.

Engelking, R. (1989). General Topology. Revised and completed edition. Vol. 6.
Sigma Series in Pure Mathematics. Berlin: Heldermann Verlag.

Eslami, S. M. A., D. Jimenez Rezende, F. Besse, F. Viola, A. S. Morcos, M.
Garnelo, A. Ruderman, A. A. Rusu, I. Danihelka, K. Gregor, D. P. Reichert,
L. Buesing, T. Weber, O. Vinyals, D. Rosenbaum, N. Rabinowitz, H. King,
C. Hillier, M. Botvinick, D. Wierstra, K. Kavukcuoglu, and D. Hassabis
(2018). “Neural scene representation and rendering”. In: Science 360.6394,
pp. 1204–1210.

Evans, R. (03/2020). “Kant’s Cognitive Architecture”. PhD thesis. Imperial
College London , Department of Computing.

Evans, R. and E. Grefenstette (2018). “Learning Explanatory Rules from Noisy
Data”. In: Journal of Artificial Intelligence Research 61, pp. 1–64.

Eykholt, K., I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,
T. Kohno, and D. Song (2017). Robust Physical-World Attacks on Deep
Learning Models. arXiv: 1707.08945.

Fajstrup, L., M. Raußen, and E. Goubault (2006). “Algebraic topology and
concurrency”. In: Theoretical Computer Science 357.1-3, pp. 241–278.

Fernández-Duque, D. (2010). “Absolute completeness of S4u for its measure-
theoretic semantics”. In: Advances in modal logic. Ed. by L. Beklemishev,
V. Goranko, and V. Shehtman. Vol. 8. London: College Publications, pp. 100–
119.

Fitch, F. B. (1963). “A Logical Analysis of Some Value Concepts”. In: The
Journal of Symbolic Logic 28.2, pp. 135–142.

Flagg, B. and R. Kopperman (1997). “Computational Models for Ultrametric
Spaces”. In: Electronic Notes in Theoretical Computer Science 6, pp. 151–159.

Fletcher, S. C. (2016). “Similarity, Topology, and Physical Significance in Relativity
Theory”. In: The British Journal for the Philosophy of Science 67.2, pp. 365–
389.

Foley, R. (1993). Working without a Net. Oxford: Oxford University Press.

https://arxiv.org/abs/1707.08945

370 Bibliography

Føllesdal, D. (2004). Referential opacity and modal logic. Reprint of the 1961 PhD
thesis. New York: Routledge.

Fong, B., D. Spivak, and R. Tuyeras (2019). “Backprop as Functor: A compositional
perspective on supervised learning”. In: 34th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS).

Foreman, M., A. S. Kechris, A. Louveau, and B. Weiss, eds. (2000). Descriptive
Set Theory and Dynamical System. London Mathematical Society Lecture
Note Series 277. Cambridge: Cambridge University Press.

Franek, P., S. Ratschan, and P. Zgliczynski (2016). “Quasi-decidability of a
Fragment of the First-Order Theory of Real Numbers”. In: Journal of
Automated Reasoning 57.2, pp. 157–185.

Franklin, J. N. and H. Towsner (2014). “Randomness and Non-Ergodic Systems”.
In: Moscow Mathematical Journal 14.4. Also see https://arxiv.org/abs/

1206.2682 (last checked 2 July 2021), pp. 711–744.

Fredkin, E. and T. Toffoli (1982). “Conservative logic”. In: International Journal
of Theoretical Physics 21, pp. 219–253.

Fritz, T. (2011). “Categories of fractions revisited”. In: Morfismos, 15.2. Also see
https://arxiv.org/abs/0803.2587v2 (accessed 9 Feb 2021), pp. 19–38.

Gabriel, P. and M. Zisman (1967). Calculus of Fractions and Homotopy Theory.
Vol. 35. Ergebnisse der Mathematik und ihrer Grenzgebiete. New York:
Springer-Verlag.

Gács, P., M. Hoyrup, and C. Rojas (2011). “Randomness on Computable Proba-
bility Spaces—A Dynamical Point of View”. In: Theory of Computing Systens
48, pp. 465–485.

Gagné, N. and P. Panangaden (2018). “A Categorical Characterization of Relative
Entropy on Standard Borel Spaces”. In: Electronic Notes in Theoretical
Computer Science 336. The Thirty-third Conference on the Mathematical
Foundations of Programming Semantics (MFPS XXXIII), pp. 135–153.

Galatolo, S., M. Hoyrup, and C. Rojas (2010). “Effective symbolic dynamics,
random points, statistical behavior, complexity and entropy”. In: Information
and Computation 208.1, pp. 23–41.

Gambaudo, J.-M. and M. Martens (2006). “Algebraic Topology for Minimal
Cantor Sets”. In: Annales Henri Poincaré 7, pp. 423–446.

https://arxiv.org/abs/1206.2682
https://arxiv.org/abs/1206.2682
https://arxiv.org/abs/0803.2587v2

Bibliography 371

Gandy, R. (1980). “Church’s Thesis and Principles for Mechanisms”. In: The
Kleene Symposium. Ed. by J. Barwise, H. J. Keisler, and K. Kunen. Amster-
dam: North-Holland Publishing Company, pp. 123–148.

Gärdenfors, P. (2004). Conceptual Spaces: The Geometry of Thought. A Bradford
book. MIT Press.

Garner, W. R. (1974/2014). The Processing of Information and Structure. New
York, NY: Psychology Press.

Gelder, T. van (1998). “The dynamical hypothesis in cognitive science”. In:
Behavioral and Brain Sciences 21.5, pp. 615–628.

Gibson, J. J. (1979/2015). The Ecological Approach to Visual Perception. Classic
Edition. New York, NY: Psychology Press.

Gierz, G., K. H. Hoffman, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott
(2003). Continuous Lattices and Domains. Cambridge: Cambridge University
Press.

Giunti, M. (1997). Computation, Dynamics, and Cognition. New York, Oxford:
Oxford University Press.

Glabbeek, R. van and P. Höfner (2018). “Progress, Justness and Fairness”. In:
arXiv: 1810.07414v1.

Glasner, E. and B. Weiss (2006). “On the Interplay between Measurable and
Topological Dynamics”. In: Handbook of Dynamical Systems. Ed. by B.
Hasselblatt and A. Katok. Vol. 1. B. Elsevier. Chap. 10, pp. 597–648.

Goebel, R., A. Chander, K. Holzinger, F. Lecue, Z. Akata, S. Stumpf, P. Kieseberg,
and A. Holzinger (2018). “Explainable AI: The New 42?” In: Machine
Learning and Knowledge Extraction. CD-MAKE 2018. Ed. by A. Holzinger,
P. Kieseberg, A. Tjoa, and E. Weippl. Vol. 11015. Lecture Notes in Computer
Science. Cham: Springer, pp. 295–303.

Gogioso, S., M. E. Stasinou, and B. Coecke (2020). Functorial evolution of quantum
fields. arXiv: 2003.13271.

Gold, E. M. (1967). “Language identification in the limit”. In: Information and
Control 10.5, pp. 447 –474.

Goodfellow, I. J., J. Shlens, and C. Szegedy (2014). Explaining and Harnessing
Adversarial Examples. arXiv: 1412.6572.

https://arxiv.org/abs/1810.07414v1
https://arxiv.org/abs/2003.13271
https://arxiv.org/abs/1412.6572

372 Bibliography

Goubault, E. and T. P. Jensen (1992). “Homology of higher dimensional automata”.
In: CONCUR ’92. Ed. by W. Cleaveland. Berlin, Heidelberg: Springer,
pp. 254–268.

Goubault-Larrecq, J. (2018). Products and Projective Limits of Continuous
Valuations on T0 Spaces. arXiv: 1803.05259.

Gowal, S., C. Qin, J. Uesato, T. Mann, and P. Kohli (2020). Uncovering the
Limits of Adversarial Training against Norm-Bounded Adversarial Examples.
arXiv: 2010.03593.

Graben, P. beim (2004). “Incompatible Implementations of Physical Symbol
Systems”. In: Mind and Matter 2.2, pp. 29–51.

Hamkins, J. D. and B. Löwe (2008). “The modal logic of forcing”. In: Transactions
of the American Mathematical Society 360.4, pp. 1793–1817.

Hamkins, J. D. and W. A. Wo loszyn (2020). Modal model theory. arXiv: 2009.
09394.

Hawking, S. W. (1971). “Stable and Generic Properties in General Relativity”.
In: General Relativity and Gravitation 1.4, pp. 393–400.

Hedlund, G. A. (1969). “Endomorphisms and automorphisms of the shift dynamical
system.” In: Math. Systems Theory 3, pp. 320–375.

Hilbert, D. (1926). “Über das Unendliche”. In: Mathematische Annalen 95,
pp. 161–190.

Hildebrandt, T. and V. Sassone (1997). “Transition Systems with Independence
and Multi-Arcs”. In: BRICS Report Series 4.10.

Hjorth, G. and M. Molberg (2006). “Free continuous actions on zero-dimensional
spaces”. In: Topology and its Applications 153, pp. 1116–1131.

Hodges, W. and J. Väänänen (2019). “Logic and Games”. In: The Stanford
Encyclopedia of Philosophy. Ed. by E. N. Zalta. Fall 2019. Metaphysics
Research Lab, Stanford University.

Hoppensteadt, F. (2006). “Predator-prey model”. In: Scholarpedia 1.10, p. 1563.

Hornik, K., M. Stinchcombe, and H. White (1989). “Multilayer feedforward
networks are universal approximators”. In: Neural Networks 2.5, pp. 359–366.

https://arxiv.org/abs/1803.05259
https://arxiv.org/abs/2010.03593
https://arxiv.org/abs/2009.09394
https://arxiv.org/abs/2009.09394

Bibliography 373

Hornischer, L. (2019). “Toward a Logic for Neural Networks”. In: The Logica
Yearbook 2018. Ed. by I. Sedlár and M. Blicha. London: College Publications,
pp. 133–148.

— (2020). “Logics of Synonymy”. In: Journal of Philosophical Logic 49, pp. 767–
805.

— (2021). “The Logic of Information in State Spaces”. In: The Review of
Symbolic Logic 14.1, pp. 155–186.

Hoyrup, M. and C. Rojas (2009). “Computability of probability measures and
Martin-Löf randomness over metric spaces”. In: Information and Computation
207.7, pp. 830–847.

Huang, X., M. Kwiatkowska, S. Wang, and M. Wu (2017). “Safety Verification
of Deep Neural Networks”. In: Computer Aided Verification (CAV 2017).
Ed. by R. Majumdar and V. Kunčak. Vol. 10426. Lecture Notes in Computer
Science. Cham: Springer.

Huber, F. (2016). “Formal Representations of Belief”. In: The Stanford Encyclo-
pedia of Philosophy. Ed. by E. N. Zalta. Spring 2016. Metaphysics Research
Lab, Stanford University.

Ichikawa, J. J. and M. Steup (2018). “The Analysis of Knowledge”. In: The
Stanford Encyclopedia of Philosophy. Ed. by E. N. Zalta. Summer 2018.
Metaphysics Research Lab, Stanford University.

Izhikevich, E. M. and R. FitzHugh (2006). “FitzHugh-Nagumo model”. In:
Scholarpedia 1.9, p. 1349.

Jacobs, B. and D. Sprunger (2019). “Neural Nets via Forward State Transformation
and Backward Loss Transformation”. In: Electronic Notes in Theoretical
Computer Science 347. Proceedings of the Thirty-Fifth Conference on the
Mathematical Foundations of Programming Semantics, pp. 161–177.

Jech, T. J. (1973). The Axiom of Choice. Amsterdam: North-Holland Publishing
Company.

Johnstone, P. T. (1982). Stone Spaces. Cambrdige studies in advanced mathematics
3. Cambridge: Cambridge University Press.

Jones, C. and G. D. Plotkin (1989). “A probabilistic powerdomain of evaluations”.
In: Proceedings. Fourth Annual Symposium on Logic in Computer Science.
IEEE Computer Society, pp. 186–195.

374 Bibliography

Joyal, A., M. Nielsen, and G. Winskel (1996). “Bisimulation from Open Maps”.
In: Information and Computation 127.2, pp. 164–185.

Kashiwara, M. and P. Schapira (2006). Categories and Sheaves. Vol. 332.
Grundlehren der mathematischen Wissenschaften. Berlin, Heidelberg: Springer-
Verlag.

Katz, S. and D. Peled (1992). “Defining conditional independence using collapses”.
In: Theoretical Computer Science 101.2, pp. 337–359.

Kechris, A. S. (1995). Classical Descriptive Set Theory. New York: Springer.

Keimel, K. and J. D. Lawson (2005). “Measure extension theorems for T0-spaces”.
In: Topology and its Applications 149.1, pp. 57–83.

Kratsios, A. (2020). Characterizing the Universal Approximation Property. arXiv:
1910.03344.

Kremer, P. and G. Mints (2007). “Dynamic Topological Logic”. In: Handbook of
Spatial Logics. Ed. by M. Aiello, I. Pratt-Hartmann, and J. van Benthem.
Dordrecht: Springer, pp. 565–606.

Kucharski, P. (2020). Graph covers of higher dimensional dynamical systems.
arXiv: 2011.07299.

Kuper, L., G. Katz, J. Gottschlich, K. Julian, C. Barrett, and M. Kochenderfer
(2018). Toward Scalable Verification for Safety-Critical Deep Networks. arXiv:
1801.05950.

Kurz, A. and J. Velebil (2016). “Relation lifting, a survey”. In: Journal of Logical
and Algebraic Methods in Programming 85.4, pp. 475 –499.

Lambalgen, M. van (1987). “Random Sequences”. PhD thesis. Amsterdam:
University of Amsterdam.

Lamport, L. (2015). “The Computer Science of Concurrency: The Early Years”.
In: Communications of the ACM 58.6, pp. 71–76.

Lando, T. (2012). “Completeness of S4 for the Lebesgue Measure Algebra”. In:
Journal of Philosophical Logic 41, pp. 287–316.

— (2015). “First order S4 and its measure-theoretic semantics”. In: Annals of
Pure and Applied Logic 166.2, pp. 187–218.

https://arxiv.org/abs/1910.03344
https://arxiv.org/abs/2011.07299
https://arxiv.org/abs/1801.05950

Bibliography 375

Lawson, J. D. (1982). “Valuations on continuous lattices”. In: Continuous
Lattices and Related Topics. Ed. by R.-E. Hoffmann. Vol. 27. Mathematik-
Arbeitspapiere. Universität Bremen, pp. 204–225.

Lawson, J. (1997). “Spaces of maximal points”. In: Math. Struct. in Comp.
Science 7, pp. 543–555.

Lawvere, F. W. (1969). “Adjointness in foundations”. In: Dialectica 23. Repub-
lished in: Reprints in Theory and Applications of Categories, No. 16 (2006)
pp. 1–16, pp. 281–296.

— (1986). “Taking categories seriously”. In: Revista Colombiana de Matematicas
XX. Republished in: Reprints in Theory and Applications of Categories, No.
8 (2005) pp. 1–24, pp. 147–178.

Leinster, T. (2014). Basic Category Theory. Vol. 143. Cambridge Studies in
Advanced Mathematics. Cambridge: Cambridge University Press.

Leitgeb, H. (2005). “Interpreted Dynamical Systems and Qualitative Laws: from
Neural Networks to Evolutionary Systems”. In: Synthese 146.1, pp. 189–202.

— (2015). “The Humean Thesis on Belief”. In: Proceedings of the Aristotelian
Society 89.1, pp. 143–185.

— (2017). The Stability of Belief: How Rational Belief Coheres with Probability.
Oxford: Oxford University Press.

— (2018). “Stability and the Lottery Paradox”. Retrived from https://

www.researchgate.net/publication/331533002_Stability_and_the_

Lottery_Paradox (last checked 2 July 2021).

Lewis, D. K. (1973). Counterfactuals. Cambridge, Mass.: Harvard University
Press.

Lind, D. and B. Marcus (1995). An Introduction to Symbolic Dynamics and
Coding. Cambridge: Cambridge University Press.

Lloyd, S. (2000). “Ultimate physical limits to computation”. In: Nature 406,
pp. 1047–1054.

Mac Lane, S. (1998). Categories for the Working Mathematician. 2nd ed. First
edition from 1971. New York: Springer-Verlag.

https://www.researchgate.net/publication/331533002_Stability_and_the_Lottery_Paradox
https://www.researchgate.net/publication/331533002_Stability_and_the_Lottery_Paradox
https://www.researchgate.net/publication/331533002_Stability_and_the_Lottery_Paradox

376 Bibliography

MacFarlane, J. (2017). “Logical Constants”. In: The Stanford Encyclopedia of
Philosophy. Ed. by E. N. Zalta. Winter 2017. Metaphysics Research Lab,
Stanford University.

Mackey, G. W. (1957). “Borel structure in groups and their duals”. In: Transactions
of the American Mathematical Society 85, pp. 134–165.

MacLennan, B. J. (2009). “Analog Computation”. In: Encyclopedia of Complexity
and Systems Science. Ed. by R. A. Meyers. New York, NY: Springer, pp. 271–
294.

Manna, Z. and A. Pnueli (1991). The Temporal Logic of Reactive and Concurrent
Systems: Specification. New York: Springer-Verlag.

Mares, E. (2020). “Relevance Logic”. In: The Stanford Encyclopedia of Philosophy.
Ed. by E. N. Zalta. Winter 2020. Metaphysics Research Lab, Stanford
University.

Marr, D. (1982/2010). Vision. First published in 1982. Cambridge, Massachusetts:
The MIT Press.

Martin, K. and P. Panangaden (2011). “Domain Theory and General Relativity”.
In: New Structures for Physics. Ed. by B. Coecke. Vol. 813. Lecture Notes
in Physics. Berlin, Heidelberg: Springer, pp. 687–703.

Martin, K. (1998). “Domain theoretic models of topological spaces”. In: Electronic
Notes in Theoretical Computer Science 13. Comprox III, Third Workshop on
Computation and Approximation, pp. 173 –181.

Meyn, S. and R. L. Tweedie (2009). Markov Chains and Stochastic Stability.
2nd ed. Cambridge: Cambridge University Press.

Milne, T. (2019). Piecewise Strong Convexity of Neural Networks. arXiv: 1810.
12805.

Munkres, J. R. (2000). Topology. 2nd ed. Upper Saddle River, NJ: Prentice Hall.

Murdoch, W. J., C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu (2019). “Def-
initions, methods, and applications in interpretable machine learning”. In:
Proceedings of the National Academy of Sciences of the United States of
America 116.44, pp. 22071–22080.

Naitzat, G., A. Zhitnikov, and L.-H. Lim (2020). “Topology of Deep Neural
Networks”. In: Journal of Machine Learning Research 21.184, pp. 1–40.

https://arxiv.org/abs/1810.12805
https://arxiv.org/abs/1810.12805

Bibliography 377

Neelakantan, A., L. Vilnis, Q. V. Le, I. Sutskever, L. Kaiser, K. Kurach, and
J. Martens (2015). Adding Gradient Noise Improves Learning for Very Deep
Networks. arXiv: 1511.06807.

Nguyen, L. M., P. H. Nguyen, P. Richtárik, K. Scheinberg, M. Takáč, and M. van
Dijk (2019). “New Convergence Aspects of Stochastic Gradient Algorithms”.
In: Journal of Machine Learning Research 20.176, pp. 1–49.

Niefield, S. B. (1996). “An Algebraic Approach to Chaos”. In: Applied Categorical
Structures 4, pp. 423–441.

Nozick, R. (2001). Invariances: The Structure of the Objective World. Cambridge,
Massachusetts: Harvard University Press.

Ong, C.-H. L. (1995). “Correspondence between operational and denotational
semantics: the full abstraction problem for PCF”. In: Handbook of Logic
in Computer Science. Ed. by S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum. Vol. 4. Oxford: Clarendon Press, pp. 269–356.

Orponen, P. (1997). “A Survey of Continuous-Time Computation Theory”. In:
Advances in Algorithms, Languages, and Complexity. Ed. by D.-Z. Du and
K.-I. Ko. Boston, MA.: Springer.

Osherson, D. and S. Weinstein (2008). “Recognizing Strong Random Reals”. In:
The Review of Symbolic Logic 1.1, pp. 56–63.

Oxtoby, J. C. (1980). Measure and Category: A Survey of the Analogies between
Topological and Measure Spaces. 2nd ed. New-York: Springer-Verlag.

Pacuit, E. (2017). Neighborhood Semantics for Modal Logic. Cham: Springer.

Penkov, S. and S. Ramamoorthy (2017). Using Program Induction to Interpret
Transition System Dynamics. arXiv: 1708.00376.

Petersen, K. (1983). Ergodic theory. Cambridge Studies in Advanced Mathematics
2. Cambridge University Press.

Piccinini, G. (2015). Physical Computation: A Mechanistic Account. Oxford:
Oxford University Press.

— (2017). “Computation in Physical Systems”. In: The Stanford Encyclopedia
of Philosophy. Ed. by E. N. Zalta. Summer 2017. Metaphysics Research Lab,
Stanford University.

https://arxiv.org/abs/1511.06807
https://arxiv.org/abs/1708.00376

378 Bibliography

Pin, J.-E. (2009). “Profinite Methods in Automata Theory”. In: 26th Interna-
tional Symposium on Theoretical Aspects of Computer Science, STACS 2009,
February 26-28, 2009, Freiburg, Germany, Proceedings. Ed. by S. Albers
and J. Marion. Vol. 3. LIPIcs. Freiburg, Germany: Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany, pp. 31–50.

Pitowsky, I. (1990). “The Physical Church Thesis and Physical Computational
Complexity”. In: The Jerusalem Philosophical Quarterly 39, pp. 81–99.

— (2002). “Quantum speed-up of computations”. In: Philosophy of Science
69.S3, S168–S177.

Plotkin, G. D. (1976). “A Powerdomain Construction”. In: SIAM Journal on
Computing 5, pp. 452–487.

— (1981/2004). “A structural approach to operational semantics”. In: The
Journal of Logic and Algebraic Programming 60–61. First published in 1981
and known as the ‘Aarhus Notes’., pp. 17–139.

Porter, T. (1994). “Categorical shape theory as a formal language for pattern
recognition?” In: Annals of Mathematics and Artificial Intelligence 10, pp. 25–
54.

Pour-El, M. B. and J. I. Richards (1989). Computability in Analysis and Physics.
Perspectives in Mathematical Logic. Berlin, Heidelberg: Springer.

Pour-El, M. B. and I. Richards (1981). “The wave equation with computable
initial data such that its unique solution is not computable”. In: Advances in
Mathematics 39.3, pp. 215–239.

Pratt, V. (1991). “Modeling Concurrency with Geometry”. In: Proceedings of the
18th ACM Symposium on Principles of Programming Languages. POPL ’91.
New York, NY: Association for Computing Machinery, pp. 311–322.

Priest, G. and R. Sylvan (1992). “Simplified Semantics for Basic Relevant Logics”.
In: Journal of Philosophical Logic 21, pp. 217–232.

Pritchard, D. (2005). Epistemic Luck. Oxford: Oxford University Press.

Quine, W. V. O. (1960). Word and Object. Cambridge, Mass.: MIT Press.

Rabinowitz, D. (2020). “The Safety Condition for Knowledge”. In: The Internet
Encyclopedia of Philosophy. Available at https://www.iep.utm.edu/

safety-c/ (accessed 27 January 2020).

https://www.iep.utm.edu/safety-c/
https://www.iep.utm.edu/safety-c/

Bibliography 379

Ratschan, S. (2010). “Safety Verification of Non-linear Hybrid Systems Is Quasi-
Semidecidable”. In: Theory and Applications of Models of Computation.
TAMC 2010. Ed. by J. Kratochv́ıl, A. Li, J. Fiala, and P. Kolman. Vol. 6108.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, pp. 397–
408.

Rédei, M. and C. Werndl (2012). “On the history of the isomorphism problem of
dynamical systems with special regard to von Neumann’s contribution”. In:
Archive for history of exact sciences 66.1, pp. 71–93.

Reimann, M. W., M. Nolte, M. Scolamiero, K. Turner, R. Perin, G. Chindemi,
P. D lotko, R. Levi, K. Hess, and H. Markram (2017). “Cliques of Neurons
Bound into Cavities Provide a Missing Link between Structure and Function”.
In: Frontiers in Computational Neuroscience 11, p. 48.

Restall, G. (1993). “Simplified semantics for relevant logics (and some of their
rivals)”. In: Journal of Philosophical Logic 22, pp. 481–511.

Restall, G. and R. Tony (2009). “On Permutation in Simplified Semantics”. In:
Journal of Philosophical Logic 38.3, pp. 333–341.

Ribes, L. (2017). Profinite Graphs and Groups. Vol. 66. Ergebnisse der Mathematik
und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics.
Cham: Springer.

Rossman, B. (2008). “Homomorphism Preservation Theorems”. In: Journal of
the ACM 55.3.

Rott, H. (2004). “Stability, Strength and Sensitivity: Converting Belief into
Knowledge”. In: Erkenntnis 61, pp. 469–493.

Rowland, E. and R. Yassawi (2017). “Profinite automata”. In: Advances in Applied
Mathematics 85, pp. 60–83.

Rue, T. de la (1993). “Espaces de Lebesgue”. In: Séminaire de Probabilités XXVII.
Ed. by J. Azéma, P. A. Meyer, and M. Yor. Vol. 1557. Lecture Notes in
Mathematics. Berlin, Heidelberg: Springer-Verlag, pp. 15–21.

Russell, B. (1919). Introduction to Mathematical Philosophy. London: Routledge.

— (1948). Human Knowledge: Its Scope and its Limits. London: Allen & Unwin.

Saad, D. and S. A. Solla (1996). “Dynamics of on-line gradient descent learning for
multilayer neural networks”. In: Advances in neural information processing
systems 8 (NIPS 1995), pp. 302–308.

380 Bibliography

Samek, W., G. Montavon, A. Vedaldi, L. K. Hansen, and K.-R. Müller, eds.
(2019). Explainable AI: Interpreting, Explaining and Visualizing Deep Learn-
ing. Cham.

Sangiorgi, D. (2012). Introduction to Bisimulation and Coinduction. Cambridge:
Cambrdige University Press.

Sassone, V., M. Nielsen, and G. Winskel (1996). “Models for concurrency: towards
a classification”. In: Theoretical Computer Science 170.1-2, pp. 297–348.

Saxe, A. M., J. L. McClelland, and S. Ganguli (2014). Exact solutions to the
nonlinear dynamics of learning in deep linear neural networks. arXiv: 1312.
6120.

Schultz, P., D. I. Spivak, and C. Vasilakopoulou (2020). “Dynamical Systems and
Sheaves”. In: Applied Categorical Structures 28, pp. 1–57.

Schweber, N. (2016). Existence of a cofinal sequence in a countable directed set.
Mathematics Stack Exchange. URL: https://math.stackexchange.com/
q/1915655 (version: 2016-09-05).

Scott, B. M. (2013). Cardinality of the set of clopen subsets of a topological
space. Mathematics Stack Exchange. https://math.stackexchange.com/

q/290890 (version: 2013-01-30).

Scott, D. S. (1970). Outline of a Mathematical Theory of Computation. Tech. rep.
PRG02. Available at https://www.cs.ox.ac.uk/files/3222/PRG02.pdf

(last checked 24 January 2018). Oxford University Computing Laboratory.

— (1982). “Domains for denotational semantics”. In: Automata, Languages and
Programming. ICALP 1982. Ed. by M. Nielsen and E. M. Schmidt. Vol. 140.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer.

Shehtman, V. (1999). ““Everywhere” and “here””. In: Journal of Applied Non-
Classical Logics 9.2-3, pp. 369–379.

Shimomura, T. (2014). “Special homeomorphisms and approximation for Cantor
systems”. In: Topology and its Applications 161, pp. 178–195.

— (2020). “Bratteli–Vershik models and graph covering models”. In: Advances
in Mathematics 367, p. 107127.

Sieg, W. (2002). “Calculations by man and machine: conceptual analysis”. In:
Reflections on the foundations of mathematics: Essays in honor of Solomon

https://arxiv.org/abs/1312.6120
https://arxiv.org/abs/1312.6120
https://math.stackexchange.com/q/1915655
https://math.stackexchange.com/q/1915655
https://math.stackexchange.com/q/290890
https://math.stackexchange.com/q/290890
https://www.cs.ox.ac.uk/files/3222/PRG02.pdf

Bibliography 381

Feferman. Ed. by W. Sieg, R. Sommer, and C. Talcott. Vol. 15. Lecture Notes
in Logic. Natick, Massachusetts: Association for Symbolic Logic, pp. 390–409.

Siegelmann, H. T. and S. Fishman (1998). “Analog computation with dynamical
systems”. In: Physica D: Nonlinear Phenomena 120.1-2, pp. 214–235.

Š́ıma, J. and P. Orponen (2003). “General-Purpose Computation with Neural Net-
works: A Survey of Complexity Theoretic Results”. In: Neural Computation
15, pp. 2727–2778.

Smith, P. (Unpublished). The Galois Connection between Syntax and Semantics.
Available at https://www.logicmatters.net/resources/pdfs/Galois.

pdf (last checked 1 May 2021).

Smolensky, P. (1988). “On the proper treatment of connectionism”. In: Behavioral
and brain sciences 11.1, pp. 1–74.

Smyth, M. B. (1983). “Powerdomains and predicate transformers: A topological
view”. In: LNCS 154, pp. 662–675.

Sosa, E. (1999). “How to Defeat Opposition to Moore”. In: Philosophical Perspec-
tives 13, p. 141.

Speaks, J. (2021). “Theories of Meaning”. In: The Stanford Encyclopedia of
Philosophy. Ed. by E. N. Zalta. Spring 2021. Metaphysics Research Lab,
Stanford University.

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov (2014).
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. In:
Journal of Machine Learning Research 15.56, pp. 1929–1958.

Srivastava, S. M. (1998). A Course on Borel Sets. New York: Springer-Verlag.

Stalnaker, R. (1968). “A Theory of Conditionals”. In: Studies in Logical Theory.
Ed. by N. Rescher. Oxford: Blackwell, pp. 98–112.

— (1984). Inquiry. Cambridge, MA: MIT Press.

Stark, E. W. (1989). “Concurrent transition systems”. In: Theoretical Computer
Science 64.3, pp. 221–269.

— (1990). “Connections between a concrete and an abstract model of concurrent
systems”. In: Mathematical Foundations of Programming Semantics. Ed. by
M. Main, A. Melton, M. Mislove, and D. Schmidt. New York, NY: Springer,
pp. 53–79.

https://www.logicmatters.net/resources/pdfs/Galois.pdf
https://www.logicmatters.net/resources/pdfs/Galois.pdf

382 Bibliography

Starr, W. (2019). “Counterfactuals”. In: The Stanford Encyclopedia of Philosophy.
Ed. by E. N. Zalta. Spring 2019. Metaphysics Research Lab, Stanford
University.

Stoltenberg-Hansen, V., I. Lindström, and E. R. Griffor (1994). Mathematical
Theory of Domains. Cambridge: Cambrdige University Press.

Szegedy, C., W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus (2013). Intriguing properties of neural networks. arXiv: 1312.6199.

Tabor, W. (2009). “A dynamical systems perspective on the relationship between
symbolic and non-symbolic computation”. In: Cogn Neurodyn 3, pp. 415–427.

Tarski, A. (1986). “What are logical notions?” In: History and Philosophy of
Logic 7.2. Edited by John Corcoran based on a lecture of Tarski from 16 May
1966., pp. 143–154.

Turing, A. M. (1936-7). “On Computable Numbers, with an Application to the
Entscheidungsproblem”. In: Proceedings of the London Mathematical Society
42.1, pp. 230–265.

Van Gelder, T. (1995). “What Might Cognition Be, If Not Computation?” In:
The Journal of Philosophy 92.7, pp. 345–381.

Vapnik, V. N. (2000). The Nature of Statistical Learning Theory. 2nd ed. New
York: Springer.

Vengertsev, D. and E. Sherman (2020). “Recurrent Neural Network Properties
and Their Verification with Monte Carlo Techniques”. In: CEUR Workshop
Proceedings. Vol. 2560, pp. 178–185.

Viana, M. and K. Oliveira (2016). Foundations of Ergodic Theory. Vol. 151. Cam-
bridge studies in advanced mathematics. Cambridge: Cambrdige University
Press.

Vickers, S. (1989). Topology via Logic. Cambridge: Cambridge University Press.

Vigo, R. (2009). “Categorical invariance and structural complexity in human
concept learning”. In: Journal of Mathematical Psychology 53.4, pp. 203–221.

V’yugin, V. V. (1998). “Effective convergence in probability and an ergodic
theorem for individual random sequences”. In: Theory of Probability & Its
Applications 42.1, pp. 39–50.

https://arxiv.org/abs/1312.6199

Bibliography 383

Walker, R. C. (1974). The Stone-Čech Compactification. Vol. 83. Ergebnisse
der Mathematik und ihrer Grenzgebiete. Berlin, Heidelberg, New York:
Springer-Verlag.

Walters, P. (1982). An Introduction to Ergodic Theory. New York: Springer.

Warrington, E. K. and A. M. Taylor (1973). “The Contribution of the Right
Parietal Lobe to Object Recognition”. In: Cortex 9.2, pp. 152–164.

Weihrauch, K. (2000). Computable Analysis: An Introduction. Berlin, Heidelberg:
Springer.

Weiss, B. (1984). “Measurable dynamics”. In: Conference in Modern Analysis
and Probability. Vol. 26. Contemporary Mathematics, pp. 395–421.

— (1989). “Countable Generators in Dynamics: Universal Minimal Models”. In:
Measure and Measurable Dynamics: Proceedings of a Conference in Honor of
Dorothy Maharam Stone held September 17–19, 1987. Ed. by R. D. Mauldin,
R. M. Shortt, and C. E. Silva. Vol. 94. Contemporary Mathematics. Provi-
dence, Rhode Island: American Mathematical Society, pp. 321–326.

Williamson, T. (2000). Knowledge and its Limits. Oxford: Oxford University
Press.

Winskel, G. (1993). The Formal Semantics of Programming Languages: An
Introduction. Cambridge, Massachusetts: The MIT Press.

Winskel, G. and M. Nielsen (1995). “Models for concurrency”. In: Handbook
of Logic in Computer Science. Ed. by S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum. Vol. 4. Oxford: Clarendon Press.

Yekutieli, A. (2020). Derived Categories. Cambridge: Cambridge University Press.

Zaffora Blando, F. (2019). “A learning-theoretic characterization of Martin-Löf
randomness and Schnorr randomness”. In: The Review of Symbolic Logic,
pp. 1–19.

Index

adjunction, 76
co-reflective, 76
reflective, 76

adversarial attack, 290
approximable, 38
approximation, 38
asynchronous transition systems, 29
automaton with concurrency, 30

basis, 127
backward closed, 127
countable, 127
forward closed, 127
measurable, 127
separating, 127
topological, 127

behavioral transition system (BTS),
50, 76

antisymmetric, 79
approximable, 79
countable, 50
extensional, 79
full, 79
reflexive, 79
unlabeled, 79

bisimulation, 53
Bratteli–Vershik diagram, 63
BTS-morphism, 78

calculus of fractions, 332
canonical embedding, 162
category, 76

category of fractions, 332
compact element, 19
compactification, 202

computational, 203
functor, 208
logical, 203
Stone–Čech, 202
Wallman, 203

computation
non-symbolic, 1
symbolic, 1

computational model, 68
concurrency, 28
cover, 128

finite, 128
finite open, 246

dcpo, 19
algebraic, 19
bounded complete, 119
max-reflective, 198

derivability relation, 298
directed, 19
domain

ω-algebraic, 20
bifinite, 144
flat, 98
initialized, 94
marked, 98
observation, 162
power, 121
Scott, 119

385

386 Index

SFP, 144
domain functor, 216
domain theory, 3, 119
domain-entropy, 248
dynamical dcpo, 141

dynamical Scott domain, 141
finite, 141
max-normalized, 141
max-preserving, 141
surjective, 141
valuation-preserving, 141

dynamical domain, 160
max-reflective, 199
standard, 160

dynamical morphism, 142
dynamical Scott domain, 141
dynamical system, 5, 124, 183

abstract, 124
deterministic, 6
ergodic, 274
general, 124
homomorphism, 182
modeled by a dynamical domain,

161
non-deterministic, 6
standard, 124
state-continuous, 6
state-discrete, 6
time-continuous, 6
time-discrete, 6

embedding, 121
entropy

domain-, 248
max-, 258
metric, 245
topological, 246

equivalence
extensional, 37
intensional, 37
temporal, 37

equivariant, 125, 126
ergodic decomposition, 275

ergodic hypothesis, 273
expanding system of dynamical dcpos,

146
downward deterministic, 146
eventually valuation-preserving, 147
upward deterministic, 146

factor, 182
falsifiable, 288
finitary dynamical expanding system,

147
standard, 147

Fitch’s paradox, 307
follows, 130
full abstraction, 16, 63
functor, 76

game semantics, 62
Giry functor, 172

Humean thesis, 292

ideal, 20
completion, 20

index set
induced by a basis, 129

information containment, 50
initial element, 94
injective clop 0, 331

Jewett–Krieger theorem, 115, 335

Krylov–Bogolioubov theory, 172, 275

labeled transition system (LTS), 18,
72

countable, 18
with independence, 30

language (modal logic), 297
Lawson topology, 121
least element, 19
least upper bound, 19
Leavitt path algebra, 63
Lebesgue space, 123
limit

Index 387

restricted, 146
limit assumption, 296
linear temporal logic, 63
localization, 202, 333
Lockean thesis, 292
LTS-morphism, 72

marked domain morphism, 99
max-entropy, 258
max-preserving function, 140
maximal element, 120

set of, 140
Mazurkiewicz trace language, 29
measure-preserving, 125, 126
measured topological system, 125, 187

based, 196
compact, 125
general, 125
modeled by a dynamical domain,

161
morphism, 126
standard, 125
zero-dimensional, 125

metric isomorphism, 125

observation domain, 162
observation history, 130
observational equivalence, 132

partial order, 19
partition, finite measurable, 245

generate, 245
poset (= partial order), 119
powerdomain, 121
pre-behavioral transition system (pre-

BTS), 33
bisimulative, 51
countable, 34
extendable, 51
extensional, 51
full, 51
fullε, 51
limit-respecting, 40
restrictable, 51

preorder, 19
principle

dual Moore closure, 304
falsifiability, 302
Moore closure, 304
non-triviality, 301
standard countermodel, 303
standard model, 303
verifiability, 302

probability space, 123
Borel, 123
completion, 123
Lebesgue, 123

projection, 121

questions, 301

randomness, 277
algorithmic, 277, 361

refines, 128
accurately, 128
open covers, 246
partitions, 245

relevance logic, 100

safety conditions for knowledge, 289
Scott information system, 57
Scott topology, 121
Scott-continuous function, 20
semantics, 3

denotational, 3
Kripke, 299
operational, 3
topological, 299

significance, 293
Smyth powerdomain, 122
stability theory of belief, 292
standard Borel space, 123
Stone duality, 23
supremum, 19
system functor, 215

time function, 252
topological realization, 335

388 Index

topology via logic, 288
trajectory, 5, 19
trajectory domain, 56

functor, 86

upset, 120

valuation, 122
continuous, 122
max-normalized, 141
normalized, 122

verifiable, 288

List of symbols

LTS Labeled transition system 18
ε Empty trajectory 18
ω First infinite ordinal 18
last Last state of a finite nonempty trajectory 19, 72
s State sequence 19
l Label sequence 19
(P ,≤) Partial order induced by the preorder (P,≤) 19
Idl Ideal completion 20
Spec Spectrum (set of ultrafilters) 23, 208
pre-BTS Pre-behavioral transition system 33
T Quotient of trajectories 38
Tfin Quotient of finite trajectories 38
∀ Universal approximation containment 39
∃ Existential approximation containment 39
v∀ Universal information containment 39
v∃ Existential information containment 39
vdom Domination information containment 39
I�([t]) The �-ideal induced by [t] 42

Idl Ideal completion with top 42
BTS Behavioral transition system 50
T Trajectory domain functor 56, 86
Con Consistent sets of information system 57
` [In information systems] Entailment relation 57
DS(I) Domain induced by information system I 58
MI BTS induced by information system I 59
LTS Category of LTSs 72
id Identity function 72, 121
ωALG Category of ω-algebraic dcpos 75
I Inclusion functor 76

389

390 List of symbols

BTS Category of BTSs 79
BTSs Category of BTSs with only synchronous mor-

phisms
79

ωBTS Category of countable BTSs 79
BTSa Category of approximable BTS 80
ωBTSa Category of countable approximable BTS 80
ωBTSs Full subcategory of countable objects in BTSs 80
ωBTSs

a Full subcategory of approximable objects in
ωBTSs

80

ωBTSs
fey A subcategory of ωBTSs 80

ωBTSs
feyur A subcategory of ωBTSs 80

G Forgetting behavioral structure 82
F Freely adding behavioral structure 82
A Removing non-approximable behavior functor 83
E Extensionalizing functor 88
U Unlabeling functor 92
iALG Category of initialized domains 94
Gi Forgetting initialized structure 94
Ti Initialized trajectory domain functor 94
B Right adjoint to Ti 95
mALG Category of marked domains 99
B(X) The Borel σ-algebra of the topological space X 112
P Smyth powerdomain 122
J Dynamical system induced by topological system 126, 188

J Completed dynamical system induced by topo-
logical system

126, 188

I(B) Index set induced by basis B 129
H Observation history 130
maxD Set of maximal element of the dcpo D 140
dDCP Category of dynamical dcpos 143
dDCPp Category of dynamical dcpos where morphisms

also are projections
143

dSCO Category of dynamical Scott domains where mor-
phisms also are projections

143

dSCOp Category of dynamical Scott domains where mor-
phisms also are projections

143

dSCOp
nf Subcategory of dSCOp 143

dSCOnm Subcategory of dSCO 143
dSCOp

nm Subcategory of dSCOp 143
dSCOn Subcategory of dSCO 143
dSCOp

n Subcategory of dSCOp 143
dDOM Category of dynamical domains 160

List of symbols 391

dDOMs Category of standard dynamical domain 160
S System functor 161, 215
` [In category theory] Adjunction 174
|∼ Adjoint equivalence 174
Clp Set of clopens 176
aDS Category of abstract dynamical systems 183
DS Category of general dynamical systems 183
sDS Category of standard dynamical systems 183
TS(s) Category of (standard) topological systems 187
TS0(s) Category of zero-dimensional (standard) topolog-

ical systems
187

TS0c(s) Category of zero-dimensional compact (standard)
topological systems

187

bTS0(s) Category of based zero-dimensional (standard)
topological systems

196

bTS0(s) Category of closed-based zero-dimensional (stan-
dard) topological systems

196

dDOMr Category of max-reflective dynamical domains 201
dDOMrs Category of max-reflective standard dynamical

domains
201

Loc Localization functor 201, 331
IB The ‘inclusion’ TS0c → bTS0 203, 204
C Logical compactification functor 204

C Closing and compactification functor 204
B Closure of the Boolean algebra B 205

Ŝ Extended systems functor 215
D Domain functor 221

D̂ Restricted domain functor 222
TS0cm Category of measure-preserving compact zero-

dimensional topological systems
244

dDOMv Category of dynamical domains with eventually
valuation-preserving diagram

244

H Metric entropy of a partition 245
h Metric entropy 245
σ(·) Smallest σ-algebra containing · 245
Htop Topological entropy of a cover 246
htop Topological entropy 246
E Domain-entropy of an index 248
e Domain-entropy 248
dDOMrv Full subcategory of dDOMv consisting of max-

reflective dynamical domains
252

M Max-entropy of an index 258

392 List of symbols

m Max-entropy 258
L The (bi)modal language 297
2 Stability operator 297
� Global necessity operator 297
3 Dual stability operator 297

� Global possibility operator 297
` [In modal logic] Derivability relation 298
M Moore operator 304

M

Dual Moore operator 304
Int Topological interior 313
Cl Topological closure 313
δ Topological boundary 313
F Forgetting the base functor 334

Samenvatting

Dynamische systemen via domeinen: naar een universele grondslag
voor symbolische en niet-symbolische informatieverwerking

Niet-symbolische informatieverwerking (zoals voorkomend in b.v. biologische
en kunstmatige neurale netwerken) is verbazend krachtig in het leren en verwerken
van data waarin ruis aanwezig is. Echter, niet-symbolische informatieverwerking
ontbeert een theoretische grondslag zoals die bestaat voor symbolische informatie-
verwerking (b.v. zoals vastgelegd door programmeertalen). Dit heeft tot gevolg,
dat ook indien een systeem voor niet-symbolische informatieverwerking succesvol
is, er nog geen garantie is dat we begrijpen waarom en onder welke voorwaarden
het succesvol is. Om een dergelijk structureel begrip te bereiken, heeft niet-
symbolische informatieverwerking, net als symbolische informatieverwerking, een
semantiek—of gedragsbeschrijving—nodig. Domeintheorie levert een algemene
semantiek voor symbolische informatieverwerking en dit proefschrift gaat over het
uitbreiden daarvan naar niet-symbolische informatieverwerking.

Symbolische en niet-symbolische informatieverwerking kunnen opgevat worden
als uitgevoerd door dynamische systemen, waarbij in het eerste geval de verza-
meling toestanden discreet genomen kan worden, terwijl in het tweede geval ook
continue verzamelingen toestanden een rol spelen. Om de gevraagde semantiek
te construeren, volstaat het dus een semantiek voor dynamische systemen te
geven; wij zullen dat doen middels een constructie die aan een dynamisch systeem
een ‘domein’ toekent dat het gedrag van het systeem beschrijft. Een domein is
een verzameling van elementen, geordend volgens een abstracte relatie ‘ bevat
minstens zoveel informatie als ’. In ons geval zijn de elementen observeerbare
gedragingen x, y, We zeggen dat ‘x bevat minstens zoveel informatie als y’
indien alles wat over het systeem geleerd kan worden uit x ook geleerd kan worden
uit y. Eindig-observeerbare gedragingen zijn dan ‘compacte’ of ‘direct bereikbare’
elementen die de oneindige limiet-gedragingen benaderen.

In deel 1 van dit proefschrift beschrijven we zo een domein-theoretische se-

393

394 Samenvatting

mantiek voor de ‘symbolische’ dynamische systemen met discrete toestanden (de
z.g. gelabelde transitiesystemen). In deel 2 doen we dit voor de ‘niet-symbolische’
dynamische systemen met continue toestanden; deze zijn bekend uit ergoden-
theorie. Dit is echt een semantiek in de zin dat de gedefinieerde constructies
functoren zijn in de zin van categorietheorie en zelfs adjuncties vormen. Sterker
nog, we krijgen een categoriale equivalentie in het continue geval: een volledige
vertaalbaarheid tussen systemen en domeinen.

In deel 3 verkennen we hoe deze semantiek de twee vormen van informatie-
verwerking aan elkaar relateert. De semantiek suggereert dat in het algemeen niet-
symbolische informatieverwerking de limiet van symbolische informatieverwerking
is. Het begrip ‘limiet’ wordt hier gebruikt in ‘pro-eindige’ zin, wat betekent dat
een stabiel resultaat pas na een proces van ‘trial and error’ bereikt wordt. In het
speciale geval dat het gedrag van het system relatief stabiel is, kan het beschreven
worden in termen van berekenbaarheid. Verrassend genoeg zijn het juist de begrip-
pen van ergodiciteit en (algoritmische) willekeurigheid die cruciaal zijn voor het
gebruikmaken en bereiken van deze stabiliteit. In het laatste hoofdstuk bestuderen
we tenslotte het algemene begrip van stabiliteit: een nieuwe interpretatie van
Fitch’s paradox laat zien dat stabiliteit niet tegelijk vier wenselijke eigenschappen
kan hebben. Dit heeft gevolgen voor de veiligheid (‘safety’) van kunstmatige
intelligentie (KI), het uitsluiten van onbedoelde schadelijke consequenties van
in KI gebruikte technologie, zoals neurale netwerken. Immers, wil een neuraal
netwerk veilig zijn, dan moeten we aannemen dat het netwerk stabiel is in de
zin dat voldoende gelijksoortige invoer leidt tot identieke uitvoer. Het centrale
thema in dit hoofdstuk is het verkennen van nieuwe toepassingen van bestaand
filosofische gedachtegoed (voornamelijk uit de kentheorie) in de niet-symbolische
informatieverwerking binnen kunstmatige intelligentie.

Summary

Dynamical Systems via Domains: Toward a Unified Foundation of Sym-
bolic and Non-symbolic Computation

Non-symbolic computation (as, e.g., in biological and artificial neural networks) is
astonishingly good at learning and processing noisy real-world data. However, it
lacks the kind of understanding we have of symbolic computation (as, e.g., specified
by programming languages). Just like symbolic computation, also non-symbolic
computation needs a semantics—or behavior description—to achieve structural
understanding. Domain theory has provided this for symbolic computation, and
this thesis is about extending it to non-symbolic computation.

Symbolic and non-symbolic computation can be described in a unified frame-
work as state-discrete and state-continuous dynamical systems, respectively. So
we need a semantics for dynamical systems: assigning to a dynamical system a
‘domain’ which describes the system’s behavior. A domain is a set of elements
ordered by information containment. In our case, the elements are observable
behaviors of the system, and one behavior x is informationally contained in another
y if what can be learned about the system from x can also be learned from y.
Finitely observable behaviors then are ‘compact’ or ‘directly accessible’ elements
that can approximate the infinite limit behaviors of the system.

In part 1 of the thesis, we provide this domain-theoretic semantics for the
‘symbolic’ state-discrete systems (i.e., labeled transition systems). And in part 2,
we do this for the ‘non-symbolic’ state-continuous systems (known from ergodic
theory). This is a proper semantics in that the constructions form functors (in the
sense of category theory) and, once appropriately formulated, even adjunctions.
Stronger yet, we obtain a categorical equivalence in the continuous case: a complete
intertranslatability between systems and domains.

In part 3, we explore how this semantics relates the two types of computation.
It suggests that non-symbolic computation is the limit of symbolic computation (in
the ‘profinite’ sense). Conversely, if the system’s behavior is fairly stable, it may

395

396 Summary

be described as realizing symbolic computation. The concepts of ergodicity and
(algorithmic) randomness help to use and achieve this stability. In the last chapter,
we then study the general concept of stability: A novel interpretation of Fitch’s
paradox reveals that stability cannot jointly have four desirable properties. This
has implications for AI-safety: After all, for a neural network to be safe, we expect
it to be stable in the sense of computing the same output on sufficiently similar
inputs. The theme here is to explore new applications of established philosophical
tools (mostly from epistemology) in the non-symbolic computation of modern AI.

Titles in the ILLC Dissertation Series:

ILLC DS-2016-01: Ivano A. Ciardelli
Questions in Logic

ILLC DS-2016-02: Zoé Christoff
Dynamic Logics of Networks: Information Flow and the Spread of Opinion

ILLC DS-2016-03: Fleur Leonie Bouwer
What do we need to hear a beat? The influence of attention, musical abilities,
and accents on the perception of metrical rhythm

ILLC DS-2016-04: Johannes Marti
Interpreting Linguistic Behavior with Possible World Models

ILLC DS-2016-05: Phong Lê
Learning Vector Representations for Sentences - The Recursive Deep Learning
Approach

ILLC DS-2016-06: Gideon Maillette de Buy Wenniger
Aligning the Foundations of Hierarchical Statistical Machine Translation

ILLC DS-2016-07: Andreas van Cranenburgh
Rich Statistical Parsing and Literary Language

ILLC DS-2016-08: Florian Speelman
Position-based Quantum Cryptography and Catalytic Computation

ILLC DS-2016-09: Teresa Piovesan
Quantum entanglement: insights via graph parameters and conic optimization

ILLC DS-2016-10: Paula Henk
Nonstandard Provability for Peano Arithmetic. A Modal Perspective

ILLC DS-2017-01: Paolo Galeazzi
Play Without Regret

ILLC DS-2017-02: Riccardo Pinosio
The Logic of Kant’s Temporal Continuum

ILLC DS-2017-03: Matthijs Westera
Exhaustivity and intonation: a unified theory

ILLC DS-2017-04: Giovanni Cinà
Categories for the working modal logician

ILLC DS-2017-05: Shane Noah Steinert-Threlkeld
Communication and Computation: New Questions About Compositionality

ILLC DS-2017-06: Peter Hawke
The Problem of Epistemic Relevance

ILLC DS-2017-07: Aybüke Özgün
Evidence in Epistemic Logic: A Topological Perspective

ILLC DS-2017-08: Raquel Garrido Alhama
Computational Modelling of Artificial Language Learning: Retention, Recogni-
tion & Recurrence

ILLC DS-2017-09: Miloš Stanojević
Permutation Forests for Modeling Word Order in Machine Translation

ILLC DS-2018-01: Berit Janssen
Retained or Lost in Transmission? Analyzing and Predicting Stability in Dutch
Folk Songs

ILLC DS-2018-02: Hugo Huurdeman
Supporting the Complex Dynamics of the Information Seeking Process

ILLC DS-2018-03: Corina Koolen
Reading beyond the female: The relationship between perception of author
gender and literary quality

ILLC DS-2018-04: Jelle Bruineberg
Anticipating Affordances: Intentionality in self-organizing brain-body-environment
systems

ILLC DS-2018-05: Joachim Daiber
Typologically Robust Statistical Machine Translation: Understanding and Ex-
ploiting Differences and Similarities Between Languages in Machine Transla-
tion

ILLC DS-2018-06: Thomas Brochhagen
Signaling under Uncertainty

ILLC DS-2018-07: Julian Schlöder
Assertion and Rejection

ILLC DS-2018-08: Srinivasan Arunachalam
Quantum Algorithms and Learning Theory

ILLC DS-2018-09: Hugo de Holanda Cunha Nobrega
Games for functions: Baire classes, Weihrauch degrees, transfinite computa-
tions, and ranks

ILLC DS-2018-10: Chenwei Shi
Reason to Believe

ILLC DS-2018-11: Malvin Gattinger
New Directions in Model Checking Dynamic Epistemic Logic

ILLC DS-2018-12: Julia Ilin
Filtration Revisited: Lattices of Stable Non-Classical Logics

ILLC DS-2018-13: Jeroen Zuiddam
Algebraic complexity, asymptotic spectra and entanglement polytopes

ILLC DS-2019-01: Carlos Vaquero
What Makes A Performer Unique? Idiosyncrasies and commonalities in ex-
pressive music performance

ILLC DS-2019-02: Jort Bergfeld
Quantum logics for expressing and proving the correctness of quantum programs

ILLC DS-2019-03: András Gilyén
Quantum Singular Value Transformation & Its Algorithmic Applications

ILLC DS-2019-04: Lorenzo Galeotti
The theory of the generalised real numbers and other topics in logic

ILLC DS-2019-05: Nadine Theiler
Taking a unified perspective: Resolutions and highlighting in the semantics of
attitudes and particles

ILLC DS-2019-06: Peter T.S. van der Gulik
Considerations in Evolutionary Biochemistry

ILLC DS-2019-07: Frederik Möllerström Lauridsen
Cuts and Completions: Algebraic aspects of structural proof theory

ILLC DS-2020-01: Mostafa Dehghani
Learning with Imperfect Supervision for Language Understanding

ILLC DS-2020-02: Koen Groenland
Quantum protocols for few-qubit devices

ILLC DS-2020-03: Jouke Witteveen
Parameterized Analysis of Complexity

ILLC DS-2020-04: Joran van Apeldoorn
A Quantum View on Convex Optimization

ILLC DS-2020-05: Tom Bannink
Quantum and stochastic processes

ILLC DS-2020-06: Dieuwke Hupkes
Hierarchy and interpretability in neural models of language processing

ILLC DS-2020-07: Ana Lucia Vargas Sandoval
On the Path to the Truth: Logical & Computational Aspects of Learning

ILLC DS-2020-08: Philip Schulz
Latent Variable Models for Machine Translation and How to Learn Them

ILLC DS-2020-09: Jasmijn Bastings
A Tale of Two Sequences: Interpretable and Linguistically-Informed Deep
Learning for Natural Language Processing

ILLC DS-2020-10: Arnold Kochari
Perceiving and communicating magnitudes: Behavioral and electrophysiological
studies

ILLC DS-2020-11: Marco Del Tredici
Linguistic Variation in Online Communities: A Computational Perspective

ILLC DS-2020-12: Bastiaan van der Weij
Experienced listeners: Modeling the influence of long-term musical exposure
on rhythm perception

ILLC DS-2020-13: Thom van Gessel
Questions in Context

ILLC DS-2020-14: Gianluca Grilletti
Questions & Quantification: A study of first order inquisitive logic

ILLC DS-2020-15: Tom Schoonen
Tales of Similarity and Imagination. A modest epistemology of possibility

ILLC DS-2020-16: Ilaria Canavotto
Where Responsibility Takes You: Logics of Agency, Counterfactuals and Norms

	Contents
	Acknowledgments
	Introduction
	Motivation
	Outline

	Part One: Symbolic computation
	Trajectory domains 1: Construction
	Introduction
	Background
	Labeled transition systems
	Domain and order theory

	Two guiding examples
	Observing a black box system
	Concurrent computation
	Summary and outlook

	Pre-behavioral transition systems
	Definition
	Comments
	Example constructions

	Information containment of behaviors
	Three definitions of information containment …
	… and how they are united

	The characterization theorem
	Statement
	Proof

	Behavioral transition systems
	Definition
	Simplifying assumptions
	Examples

	Trajectory domains
	Generalizations of information systems
	Scott information systems …
	… and their generalizations as BTSs

	Conclusion

	Trajectory domains 2: Category
	Introduction
	Background
	Category of labeled transition systems
	Domain theory
	Category theory
	Recap from the previous chapter

	Category of behavioral transition systems
	Definition
	Basic properties
	Embedding labeled transition systems
	Removing non-approximable behavior

	Trajectory domain functor
	Adjunction between systems and domains
	Extensionalizing
	Unlabeling and reflexing
	Adjunction to domains

	Toward incorporating labels on domains
	Marked domains
	An interpretation of relevance logic

	Conclusion

	Part Two: Non-symbolic computation
	Systems and domains 1: Model
	Introduction
	Background
	Domain theory
	Dynamical and topological systems

	Observing dynamical systems
	Basis or `set of possible observations'
	The index set or `set of observation parameters'
	Observed system
	Refining observations
	Observation probabilities
	Summary

	Dynamical domains
	Dynamical dcpo's
	Dynamical expanding systems
	The limit theorem
	Definition of dynamical domains

	The system modeled by a dynamical domain
	Dynamical domain models for systems
	For dynamical systems
	For topological systems

	Conclusion

	Systems and domains 2: Category
	Introduction
	The categories
	Background
	Categories of dynamical systems
	Categories of measured topological systems
	Categories of dynamical domains
	Recap from chapter 4
	Categories of based measured topological systems
	Categories of max-reflective dynamical domains

	The bottom layer of the main diagram
	Dynamical systems as category of fractions
	Compactification of a system: informally
	Compactification of a system: formally

	The system and domain functors
	The system functor
	The domain functor
	Computational and logical compactification coincide

	The systems-domains adjunction
	The counit and unit
	Triangle identities

	Analyzing the systems-domains adjunction
	Restricting to equivalence
	Max-reflecting a dynamical domain

	Conclusion

	Systems and domains 3: Application
	Introduction
	Background
	Recap dynamical systems and dynamical domains
	Metric entropy
	Topological entropy

	Domain-entropy
	Definition of domain-entropy
	Main theorem on domain-entropy
	Normal form for domain-entropy

	Max-entropy
	Definition of max-entropy
	Main theorem on max-entropy

	Conclusion

	Part Three: Stability
	Interlude: symbolic vs. non-symbolic
	Non-symbolic computation as limit of symbolic computation
	Non-symbolic realization of symbolic computation
	Symbolic approximation
	Ergodicity
	Randomness
	Stability

	Stability: Fitch's paradox and AI-safety
	Introduction
	Examples of stability
	Verifiability and falsifiability (observation)
	Safety (epistemology)
	Safety (artificial intelligence)
	Stability of belief (probabilistic reasoning)
	Significance (mathematical modeling)
	Further examples

	Four principles of stability
	A logic to reason about stability
	Formalization and motivation of the principles
	The duality between falsification and verification
	Constructing sets of questions

	Impossibility via a novel interpretation of Fitch's paradox
	Reinterpretation of Fitch's paradox
	Impossibility

	Impossibility via semantics
	Kripke semantics
	Topological semantics

	Applications
	An extension of Fitch's paradox
	A limitation for AI-safety

	Conclusion

	Conclusion
	Systems as a category of fractions
	Statement of the theorem
	Topological realizations of systems
	The key lemma
	Calculus of fractions
	Equivalence

	Dynamical domain example
	A dynamical domain of binary sequences
	More facts about the dynamical domain
	Words on the components
	Computing max-entropy

	Bibliography
	Index
	List of symbols
	Samenvatting
	Summary

