50 research outputs found

    Asymptotically MDS Array BP-XOR Codes

    Get PDF
    Belief propagation or message passing on binary erasure channels (BEC) is a low complexity decoding algorithm that allows the recovery of message symbols based on bipartite graph prunning process. Recently, array XOR codes have attracted attention for storage systems due to their burst error recovery performance and easy arithmetic based on Exclusive OR (XOR)-only logic operations. Array BP-XOR codes are a subclass of array XOR codes that can be decoded using BP under BEC. Requiring the capability of BP-decodability in addition to Maximum Distance Separability (MDS) constraint on the code construction process is observed to put an upper bound on the maximum achievable code block length, which leads to the code construction process to become a harder problem. In this study, we introduce asymptotically MDS array BP-XOR codes that are alternative to exact MDS array BP-XOR codes to pave the way for easier code constructions while keeping the decoding complexity low with an asymptotically vanishing coding overhead. We finally provide and analyze a simple code construction method that is based on discrete geometry to fulfill the requirements of the class of asymptotically MDS array BP-XOR codes.Comment: 8 pages, 4 figures, to be submitte

    Asymptotically MDS Array BP-XOR Codes

    Get PDF
    Belief propagation or message passing on binary erasure channels (BEC) is a low complexity decoding algorithm that allows the recovery of message symbols based on bipartite graph prunning process. Recently, array XOR codes have attracted attention for storage systems due to their burst error recovery performance and easy arithmetic based on Exclusive OR (XOR)-only logic operations. Array BP-XOR codes are a subclass of array XOR codes that can be decoded using BP under BEC. Requiring the capability of BP-decodability in addition to Maximum Distance Separability (MDS) constraint on the code construction process is observed to put an upper bound on the maximum achievable code block length, which leads to the code construction process to become a harder problem. In this study, we introduce asymptotically MDS array BP-XOR codes that are alternative to exact MDS array BP-XOR codes to pave the way for easier code constructions while keeping the decoding complexity low with an asymptotically vanishing coding overhead. We finally provide and analyze a simple code construction method that is based on discrete geometry to fulfill the requirements of the class of asymptotically MDS array BP-XOR codes.Comment: 8 pages, 4 figures, to be submitte

    On encoding symbol degrees of array BP-XOR codes

    Get PDF
    Low density parity check (LDPC) codes, LT codes and digital fountain techniques have received significant attention from both academics and industry in the past few years. By employing the underlying ideas of efficient Belief Propagation (BP) decoding process (also called iterative message passing decoding process) on binary erasure channels (BEC) in LDPC codes, Wang has recently introduced the concept of array BP-XOR codes and showed the necessary and sufficient conditions for MDS [k + 2,k] and [n,2] array BP-XOR codes. In this paper, we analyze the encoding symbol degree requirements for array BP-XOR codes and present new necessary conditions for array BP-XOR codes. These new necessary conditions are used as a guideline for constructing several array BP-XOR codes and for presenting a complete characterization (necessary and sufficient conditions) of degree two array BP-XOR codes and for designing new edge-colored graphs. Meanwhile, these new necessary conditions are used to show that the codes by Feng, Deng, Bao, and Shen in IEEE Transactions on Computers are incorrect

    EVENODD: An Efficient Scheme for Tolerating Double Disk Failures in RAID Architectures

    Get PDF
    We present a novel method, that we call EVENODD, for tolerating up to two disk failures in RAID architectures. EVENODD employs the addition of only two redundant disks and consists of simple exclusive-OR computations. This redundant storage is optimal, in the sense that two failed disks cannot be retrieved with less than two redundant disks. A major advantage of EVENODD is that it only requires parity hardware, which is typically present in standard RAID-5 controllers. Hence, EVENODD can be implemented on standard RAID-5 controllers without any hardware changes. The most commonly used scheme that employes optimal redundant storage (i.e., two extra disks) is based on Reed-Solomon (RS) error-correcting codes. This scheme requires computation over finite fields and results in a more complex implementation. For example, we show that the complexity of implementing EVENODD in a disk array with 15 disks is about 50% of the one required when using the RS scheme. The new scheme is not limited to RAID architectures: it can be used in any system requiring large symbols and relatively short codes, for instance, in multitrack magnetic recording. To this end, we also present a decoding algorithm for one column (track) in error

    Efficient and Effective Schemes for Streaming Media Delivery

    Get PDF
    The rapid expansion of the Internet and the increasingly wide deployment of wireless networks provide opportunities to deliver streaming media content to users at anywhere, anytime. To ensure good user experience, it is important to battle adversary effects, such as delay, loss and jitter. In this thesis, we first study efficient loss recovery schemes, which require pure XOR operations. In particular, we propose a novel scheme capable of recovering up to 3 packet losses, and it has the lowest complexity among all known schemes. We also propose an efficient algorithm for array codes decoding, which achieves significant throughput gain and energy savings over conventional codes. We believe these schemes are applicable to streaming applications, especially in wireless environments. We then study quality adaptation schemes for client buffer management. Our control-theoretic approach results in an efficient online rate control algorithm with analytically tractable performance. Extensive experimental results show that three goals are achieved: fast startup, continuous playback in the face of severe congestion, and maximal quality and smoothness over the entire streaming session. The scheme is later extended to streaming with limited quality levels, which is then directly applicable to existing systems

    Rebuilding for Array Codes in Distributed Storage Systems

    Get PDF
    In distributed storage systems that use coding, the issue of minimizing the communication required to rebuild a storage node after a failure arises. We consider the problem of repairing an erased node in a distributed storage system that uses an EVENODD code. EVENODD codes are maximum distance separable (MDS) array codes that are used to protect against erasures, and only require XOR operations for encoding and decoding. We show that when there are two redundancy nodes, to rebuild one erased systematic node, only 3/4 of the information needs to be transmitted. Interestingly, in many cases, the required disk I/O is also minimized

    Fault-Tolerant Strassen-Like Matrix Multiplication

    Full text link
    In this study, we propose a simple method for fault-tolerant Strassen-like matrix multiplications. The proposed method is based on using two distinct Strassen-like algorithms instead of replicating a given one. We have realized that using two different algorithms, new check relations arise resulting in more local computations. These local computations are found using computer aided search. To improve performance, special parity (extra) sub-matrix multiplications (PSMMs) are generated (two of them) at the expense of increasing communication/computation cost of the system. Our preliminary results demonstrate that the proposed method outperforms a Strassen-like algorithm with two copies and secures a very close performance to three copy version using only 2 PSMMs, reducing the total number of compute nodes by around 24\% i.e., from 21 to 16.Comment: 6 pages, 2 figure

    A reliability model for dependent and distributed MDS disk array units

    Get PDF
    Archiving and systematic backup of large digital data generates a quick demand for multi-petabyte scale storage systems. As drive capacities continue to grow beyond the few terabytes range to address the demands of today’s cloud, the likelihood of having multiple/simultaneous disk failures became a reality. Among the main factors causing catastrophic system failures, correlated disk failures and the network bandwidth are reported to be the two common source of performance degradation. The emerging trend is to use efficient/sophisticated erasure codes (EC) equipped with multiple parities and efficient repairs in order to meet the reliability/bandwidth requirements. It is known that mean time to failure and repair rates reported by the disk manufacturers cannot capture life-cycle patterns of distributed storage systems. In this study, we develop failure models based on generalized Markov chains that can accurately capture correlated performance degradations with multiparity protection schemes based on modern maximum distance separable EC. Furthermore, we use the proposed model in a distributed storage scenario to quantify two example use cases: Primarily, the common sense that adding more parity disks are only meaningful if we have a decent decorrelation between the failure domains of storage systems and the reliability of generic multiple single-dimensional EC protected storage systems.WOS:000460728600008Scopus - Affiliation ID: 60105072Science Citation Index ExpandedQ1 - Q2ArticleUluslararası işbirliği ile yapılmayan - HAYIRMart2019YÖK - 2018-1
    corecore