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Abstract—Belief propagation (BP) on binary erasure channels
(BEC) is a low complexity decoding algorithm that allows the
recovery of message symbols based on bipartite graph pruning
process. Recently, array XOR codes have attracted attention for
storage systems due to their burst error recovery performance
and easy arithmetic based on Exclusive OR (XOR)-only logic
operations. Array BP-XOR codes are a subclass of array XOR
codes that can be decoded using BP under BEC. Requiring the
capability of BP-decodability in addition to Maximum Distance
Separability (MDS) constraint on the code construction process
is observed to put an upper bound on the achievable code block-
length, which leads to the code construction process to become a
hard problem. In this study, we introduce asymptotically MDS
array BP-XOR codes that are alternative to exact MDS array BP-
XOR codes to allow for easier code constructions while keeping
the decoding complexity low with an asymptotically vanishing
coding overhead. We finally provide a code construction method
that is based on discrete geometry to fulfill the requirements of
the class of asymptotically MDS array BP-XOR codes.

A full version of this paper is accessible at: https://arxiv.
org/abs/1709.07949

I. INTRODUCTION

Array codes are linear codes defined for two dimensional
data structures in which both data and parity values organized
in a matrix form. These codes are quite attractive candidates
for burst error recovery in communication and distributed
storage systems [1] and provide data reliability with optimal
time/space consumption while maintaining Maximum Dis-
tance Separability (MDS) constraint in the code construction
process. Moreover, a great deal of work has been done for
these codes [2], [3] to secure simpler and low-complexity math
quite desirable from the implementation point of view.

Typically, any linear code can be represented using a
bipartite graph either using the parity check matrix or the
generator matrix of the code [4]. Using the generator matrix
representation, the corresponding bipartite graph has two types
of nodes: Nodes that are used to decode (check or coded
nodes) and nodes that are decoded (information nodes). Nodes
in bipartite graph representation are connected with edges to
represent node adjacency. The neighbors of node j (neighbor
set), denoted by Nj , is the set of all nodes connected to
node j. The cardinality of the neighbour set is called the
degree of node j. The Belief Propagation (BP) algorithm a.k.a.
message passing algorithm is an iterative process (updating
nodes and edges) to decode data from coded nodes over
symmetric erasure channels using the bipartite representation
of the code. At the onset of the BP algorithm, we begin by
setting all the contents of information nodes to NULL that

need to be decoded. Then, we look for a degree-one coded
node and copy the content to its neighbor information node
by replacing NULL. Next, we update all the coded nodes that
are connected to the this neighbor and eliminate the edges that
established neighborhood relationship. This completes the first
step, and in the next iteration we continue applying the same
methodology until there remains no information node with
NULL content. If algorithm stops prematurely during iteration,
we claim a decoding failure, otherwise we report a decoding
success.

Array codes have recently been studied under BP decoding
[5] and useful upper bounds are derived in [6] that theo-
retically establishes the relationship between the blocklength
(and hence the rate of the code), decodability and sparsity
of the generator matrix which is directly related to the en-
coding/decoding computation complexity of the code. In this
study, we shall demonstrate by relaxing the MDS constraint on
the code construction process, we shall be able to dramatically
relax the previously found bounds on the code blocklength
[6] while keeping low complexity BP algorithm successfully
decode the whole data block. Such an observation shall yield
easier and more powerful code constructions. For instance,
we shall consider one of the discrete geometry based code
constructions based on Mojette transform [7] that are recently
studied within the context of low density parity check codes
and are shown to reduce the node repair complexity [8].

The rest of the paper is organized as follows. In Section II,
we provide the basics of array MDS BP-XOR codes and give
some known results as well as state the main result of the pa-
per. In Section III, we provide a discrete geometry construction
of an asymptotically-MDS array BP-XOR codes. In Section
IV, we validate our theoretical results by numerically plotting
rate and code blocklength for discrete geometry construction.
Finally, we conclude our paper in Section V.

II. ASYMPTOTICALLY MDS ARRAY BP-XOR CODES

Before defining the class of Asymptotically MDS (AMDS)
array BP-XOR codes, let us provide the conventional definition
of MDS BP-XOR codes using the notation of reference [6].

A. Background

Let l be the symbol size in bits and M = {0, 1}l be the
symbol set from which we select our information as well
as coded symbols. The fundamental operation we use is the
Exclusive OR (XOR) which helps add symbols logically bit
by bit in binary domain. In our study, nodes represent blocks
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of data that contains one or more symbols in it. Symbols are
the smallest data unit over which XOR operations are defined.

An [n, k, t, b] array BP-XOR code is a b×n two dimensional
rate r = k/n binary linear code C = [ai,j ]1≤i≤b,1≤j≤n in
which the coding symbol ai,j ∈ M is the XOR of a subset
of source symbols I = {v1, . . . , vbk}, typically structured as
a b × k data matrix, and I can be reconstructed from any
n − t columns of the linear code C using BP algorithm for
an appropriate integer t ≤ n − k. The degree of a coded
symbol ai,j , denoted as σi,j , is the number of information
symbols that participate in logical XOR operation i.e., ai,j =
vz1⊕· · ·⊕vzσi,j such that vzs ∈ I for all s ∈ {1, . . . , σi,j}. A
t-erasure correcting array BP-XOR code is MDS if the source
symbols can be reconstructed from k = n− t columns of C.

For a given positive number b′ satisfying b′ > b, a
[n, k, t, b, b′] AMDS array BP-XOR code Ca is a linear code
with i-th column (yi,1, . . . , yi,bi) = (x1, . . . , xbk)Gi for a
bk × bi generator matrix Gi, i ∈ {1, . . . , n} such that b′ =
(1/n)

∑
i bi. Therefore, the generator matrix for Ca is given

by the following matrix of size bk ×
∑
i bi,

GCa = [G1|G2| . . . |Gn]. (1)

What makes this code asymptotically MDS is that it is
possible to perfectly reconstruct user data matrix I from any k
column combinations of Ca using BP decoding and as b→∞
we have b′ → b. Note that the raw source data needs not to be
in standard b×k form. For any positive integer g satisfying b|g
and k|g, the matrix GCa will still be a valid generator matrix
for different arrangements of the data block such as b/g×kg.
We finally note that the code Ca is not in two dimensional
standard rectangle form as in C. However, we introduced
parameter b′ to be able to make AMDS array BP-XOR codes
analogous to standard MDS array code representations through
regular binary matrices. For a given fixed code rate r and n,
let us define ε(b, n) to be the maximum coding overhead1 of
Ca satisfying b′ = (1 + ε(b, n))b. The asymptotically optimal
overhead property implies that as b→∞ we have ε(b, n)→ 0.

Letting σ denote the maximum check node degree of a given
array BP-XOR code, we note from [6] that if k = σ it is not
hard to show that

n ≤ kb+ 1 +max{k − 3, 0} (2)

where the upper bound can be arbitrarily large (i.e., for b� 1)
which in turn allows any arbitrarily small r to be a practical
choice. However, for k > σ it is observed that the array code
blocklength n is upper bounded based on a specific choice of k
[6]. In addition, we observe from the same study that for b� 1
and large enough k i.e., k > σ2 we have n ≤ k+ σ− 1. This
also implies that for large enough information blocklength k,
the achievable rate will be close to 1, putting a constraint on
the code design rate.

1Since columns of Ca may have different sizes, the coding overhead
depends on which k columns are used for reconstruction. Also note that the
coding overhead also depends on the number of columns n in the code, so
called array code blocklength.

B. Main Result

We begin with providing the following theorem that sets the
necessary condition/s on the code parameters for the existence
of AMDS array BP-XOR codes.

Theorem 2.1. Let Ca be a [n, k, t, b, b′] AMDS array BP-
XOR code such that the maximum coded node degree satisfies
2 < σ < (bk − 1)/(b′ − 1). Then, we have

n ≤ k + σ − 1 + (3)⌊
b(k(σ′ − σ) + (σ − 1)σ′)− (σ − 1)(3σ/2− 1)

b(k − σ′) + σ − 1

⌋
where σ′ = σ(1+ ε(b, n)) and ε(b, n) is the coding overhead.

Proof. The proof can be found in the full version [9]. �

Note that if b→∞ we will have σ′ → σ and hence equation
(3) becomes identical to equation (2) of [6] except the term
(σ− 1)(σ/2− 1) that appears when we set σ′ = σ. This term
is essentially what makes the upper bound improved (tighter).

There are two cases that are interesting to consider for
understanding the asymptotical performance. First, if b tends
large we will have σ′ → σ. Hence,

n ≤ k + σ − 1 +

⌊
(σ − 1)σ

k − σ

⌋
− 1(k−σ)|(σ−1)σ

where 1A is logical one if A is true, otherwise it is zero. This
indicator function is used due to the flooring operation and σ
only equals to σ′ in the limit. Thus, if the code becomes array
MDS in the limit, there remains no dependence of n on b. On
the other hand, if we let large but fixed b ≤ k, and if k tends
large, we shall have

n ≤ k + σ′ − 1 = k + σ(1 + ε(b, n))− 1 (4)

which can be made arbitrarily large if we choose ε(b, n)→∞
for a fixed b and large n. This quick observation demonstrates
that as the array BP-XOR code becomes near-optimal in terms
of recovery performance, the upper bound on the number of
columns i.e., the blocklength n can dramatically be improved.

Although desirable properties of the coding overhead are
specified, we still need specific constructions to quantify
tighter bounds on n (and r). Based on this argument, we
shall present a code construction method that uses the result of
Theorem 2.1 and has an appropriate ε(b, n) with the required
properties as summarized below.
(1) For fixed k and rate r, as b → ∞ we have vanishing

coding overhead i.e., ε(b, n)→ 0.
(2) For fixed b and rate r, as k, n→∞ we have a diverging

coding overhead i.e., ε(b, n)→∞.

III. DISCRETE GEOMETRY CONSTRUCTIONS OF
ASYMPTOTICALLY-MDS ARRAY BP-XOR CODES

In this section, we will introduce a particular code construc-
tion method based on discrete geometry [7] and show that they
can be regarded as a special type of AMDS array BP-XOR
codes.
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Fig. 1. A simple illustration of the projection concept and Mojette coding.

The discrete geometry construction is known as Mojette
transform which is based on discrete version of Radon trans-
form [10], and can be used to generate redundancy, not just for
rectangle two dimensional data grid but also for any convex
shape data grid. In our study, we consider matrix (rectangle)
data and let encoder compute a linear set of projections at
angles specified by a couple of coprime integers (p, q) from a
b × k discrete data structure f : (z, l) → N as shown in Fig.
1. Suppose that we generate n projections with parameters
{(pi, qi), 0 ≤ i ≤ n − 1}. The length of the projection i,
denoted by bi, is a function of the number of projections n,
the angle parameters (pi, qi) and the data grid size b × k. It
can be expressed in a closed form as follows [7],

bi = |pi|(k − 1) + |qi|(b− 1) + 1 (5)

Note that in this construction, generated projections can be
treated as the columns of the asymptotically-MDS BP-XOR
code. An example code with parameters k = 3, b = 4 with n =
3 projections with parameters (−1, 1), (1, 0), (1, 1) is shown
in Fig. 1. Each bin or symbol of the i-th projection, based on
(pi, qi), can be computed as given by the following compact
formulation

M(pi,qi)f(m+ (b− 1)qiu(qi) + (k − 1)piu(pi)) (6)

=

b−1⊕
z=0

k−1⊕
l=0

f(z, l)δm+zqi+lpi (7)

for all m values satisfying the inequality,

−(b− 1)qiu(qi)− (k − 1)piu(pi) ≤ m ≤
bi − (b− 1)qiu(qi)− (k − 1)piu(pi)− 1

where
⊕

stands for Boolean XOR operation, u(.) is the
discrete unit function and δi is Kronecker delta function which
are given by

u(s) =

{
1, if s > 0

0, Otherwise
, δi =

{
0, if i 6= 0

1, if i = 0

Mojette transform codes can be decoded using BP algorithm
and the exact reconstruction of user data matrix is possible
if the projection parameters (pi, qi) are selected judiciously
according to the following Katz criterion.

Theorem 3.1. For a given AMDS array BP-XOR code defined
by n projections with parameters (pi, qi) on a b × k data
matrix, exact data reconstruction is possible using iterative
BP if

∑n−1
i=0 |pi| ≥ b or

∑n−1
i=0 |qi| ≥ k.

Proof. The proof can be found in [11]. �

According to Theorem 2.1, the maximum degree of the
coded symbols plays the key role in the attainable blocklength
of the BP-XOR codes. Therefore, next we find the maximum
degree number in the case of Mojette transform codes and
see that this parameter can be adjusted based on the selec-
tion of projection parameters (pi, qi). The following theorem
quantifies this number.

Theorem 3.2. Let us use σi, i ∈ {1, 2, . . . , n} to denote
the maximum degree of the ith projection with parameters
(pi, qi). We have σi = min{db/|pi|e, dk/|qi|e} and hence
σ = maxi{σi}.

Proof. The proof can be found in the full version [9]. �

Next, let us quantify the coding overhead for Mojette
transform based AMDS array BP-XOR codes by considering
k = σ and k > σ cases separately.

A. Case k = σ

First of all, note that depending on the choices of (pi, qi), the
coding overhead as well as the maximum degree of the code
can change. Although, there are multiple choices for k = σ,
we provide the typical choice below that also ensures small
coding overhead.

Construction 3.3. Let us consider the following choice of
coprime integers,

qi = 1, pi ∈ T =

{
−
⌊
n− 1

2

⌋
, . . . ,−1, 0, 1, 2, . . . ,

⌈
n− 1

2

⌉}
(8)

where T is known as canonical enumeration of integers [12]
that goes with the name A007306 and satisfies gcd(pi, qi) = 1
for i = 0, . . . , n− 1.

Note that this construction satisfies the Katz criterion simply
because collecting any k projections will lead us to have∑
|qi| = k. If we use coprime integers as given by the

Construction 3.3, we have qi which never equals to zero and
σi = min{db/d(n − 1)/2e, k}. We note that we have σ = k
for b � 1. We next quantify the coding overhead for this
particular construction and show the asymptotically optimal
property.

Theorem 3.4. For the AMDS BP-XOR code based on Mojette
Transform with parameters as given in Construction 3.3, for
b� 1, we have

ε(b, n) ≈ n(2− r)(nr − 1)

4b
(9)

where r is the fixed rate of the array BP-XOR code.

Proof. The proof can be found in the full version [9]. �
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For fixed r and k (i.e., fixed n), if b → ∞ then it is
clear that ε(b, n) → 0 proving the asymptotical property. On
the other hand, for fixed r and b, if n → ∞ then we have
ε(b, n)→∞. In fact, it is not hard to see that ε(b, n) = O(n2).
Therefore, due to these desirable properties of the overhead
and considering the inequality (4), we can make n arbitrarily
large. Particularly we can find the following lower bound on
n for k = rn = σ and r > 0.5,

n ≤ rn+ rn

(
1 +

n(2− r)(nr − 1)

4b

)
− 1 (10)

which yields the inequality

n− 2nr ≤ n3r2(2− r)
4b

⇒ n ≥

√
4b(1− 2r)

r2(2− r)
(11)

This final lower bound shows that the value for the block-
length n can be arbitrarily large for judiciously selected large
b. Note that the case k = σ has the least constraint on the
code blocklength for any MDS array BP-XOR code. The case
k > σ is more interesting which is considered next.

B. Case k > σ

With classical array BP-XOR codes, the code blocklength
n is constrained by the following upper bound for b� 1,

n ≤ k + σ − 1 +

⌊
σ(σ − 1)

k − σ

⌋
− 1(k−σ)|(σ−1)σ (12)

which is the same for AMDS array BP-XOR codes as men-
tioned in Section II. However, as the blocklength gets large,
we should no longer have constraints on the size of the
blocklength for AMDS array BP-XOR codes which can be
achieved by selecting an appropriate set of parameters.

Let us provide another set of parameters that shall satisfy
k > σ. The possibilities of the pair (pi, qi) selection for
making k > σ is not unique. We will consider the typical
class as given in construction 3.5.

Construction 3.5. Let us consider the following choice of
coprime integers for n projections,

qi = qe > 0,

pi ∈ U = {d−n+ 1eodd , . . . ,−1, 1, 3, . . . , dn− 1eodd}
(13)

where qe is a positive even number, and d.eodd rounds to the
next biggest odd integer of the argument, respectively.

Note that using construction 3.5, it is easy to verify that
we have GCD(pi, qi) = 1. Also, we have k > σ =
maxi{min{db/|pi|e, dk/|qi|e}} = dk/qee. It is of interest to
quantify the coding overhead to be able to find the upper
bounds on the code blocklength.
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Fig. 2. Upper bounds on n as a function of k for b = 10000.

Theorem 3.6. For the AMDS array BP-XOR code based on
Mojette transform with parameters as given in construction
3.5, for b� 1, we have

ε(b, n) ≈ (14)
dk/qee
kb

(
(k − 1)

(
n− dk/qee

2

)
+ (b− 1)qe + 1

)
− 1

where qe is a positive even number, and d.eodd rounds to the
next biggest odd integer of the argument, respectively.

Proof. The proof can be found in the full version [9]. �

Note that as long as qe|k, we have ε(b, n) → 0 for large b
demonstrating the asymptotically optimal overhead property.
Similarly, for fixed r and b, if k, n → ∞ then we have
ε(b, n)→∞ satisfying the second desirable property.

Finally, using equation (4) we can express the upper bound
on n as follows,

n ≤ k+σdk/qee
kb

(
(k − 1)

(
n− dk/qee

2

)
+ (b− 1)qe + 1

)
−1

(15)
Since it might be non-trivial to see with this result that we

dramatically improve the upper bounds on the code block-
length, in the next section, we provide some numerical results
that quantify the upper bounds in order to make numerical
comparisons easier.

IV. NUMERICAL RESULTS

Let us consider qe = 2 and a large b value, such as
b = 10000 (this choice is completely arbitrary) and compare
the upper bounds on n with using classical exact MDS
array BP-XOR codes and their asymptotically optimal version
proposed in our study, abbreviated as AMDS (asym). We
present results in Fig. 2 and Fig. 3 each corresponding to two
different rates 3/4, 1/2, respectively as example use cases.
These results demonstrate that as the code rate decreases,
classical MDS array BP-XOR codes are only possible for very
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small values of k. On the other hand, although the same is true
for AMDS array BP-XOR codes for small k, it is also observed
that for large enough k our bounds are larger than the required
n (fixed by the code rate), allowing possible constructions to
achieve the corresponding rate AMDS array BP-XOR code
such as Mojette construction we have provided in previous
sections. These figures also present the upper bound behavior
for small k on the left corner of each plot. Plots include a
curve “Required n” to specify the required value for n for the
corresponding code rate r = k/n.

In order to see clearly the range of rates that are possible
with both constructions provided in previous sections, Fig. 4
depicts the minimum rate that is possible as a function of
the assumed rate. Note that with asymptotically MDS array
BP-XOR codes, the upper bound on n depends on the coding
overhead which is a function of code rate. Thus, the minimum
code rate changes as the assumed code rate changes. For

each assumed rate, we calculate the upper bound and then
compute the minimum code rate possible. With respect to
classical MDS BP-XOR codes, since the upper bound does not
change with varying assumed rate (since the coding overhead
is always zero), the curves turns out to be flat.

According to Fig. 4, the region that lies above the curves
represent all possible code rates. However, there is no guaran-
tee each assumed rate is achievable. However as k tends large,
it becomes impossible to construct classical MDS array BP-
XOR codes with rate smaller than 1. In contrast, by relaxing
the exact MDS condition (such as adapting asymptotically
MDS constructions), we can improve the the region of possi-
bilities for better achievability. With this study, we have just
provided a simple construction based on discrete geometry
(with judicious selection of parameters) that helps improve the
upper bounds on the code blocklength n. Other constructions
as a future work may prove useful to improve the results
presented in this subsection.

V. CONCLUSION

Array BP-XOR codes are attractive data protection schemes
for low-complexity and optimal reliability. Their finite versions
are shown to have limitations on the maximum blocklength
when the coding symbol degree is particularly lower than the
data size. We have shown in this study, this limitation can
greatly be relaxed by extending the original optimal class to
asymptotically optimal class. We have also have shown one
particular code construction based on discrete geometry that
satisfies all the requirements of being AMDS array BP-XOR
codes. These codes can be encoded and decoded in linear
time with the blocklength and the achievable bound on the
blocklength is far from that of the finite counterpart.
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