1,434 research outputs found

    Numerical approximation of the Euler-Poisson-Boltzmann model in the quasineutral limit

    Get PDF
    This paper analyzes various schemes for the Euler-Poisson-Boltzmann (EPB) model of plasma physics. This model consists of the pressureless gas dynamics equations coupled with the Poisson equation and where the Boltzmann relation relates the potential to the electron density. If the quasi-neutral assumption is made, the Poisson equation is replaced by the constraint of zero local charge and the model reduces to the Isothermal Compressible Euler (ICE) model. We compare a numerical strategy based on the EPB model to a strategy using a reformulation (called REPB formulation). The REPB scheme captures the quasi-neutral limit more accurately

    Pattern formation in Hamiltonian systems with continuous spectra; a normal-form single-wave model

    Full text link
    Pattern formation in biological, chemical and physical problems has received considerable attention, with much attention paid to dissipative systems. For example, the Ginzburg--Landau equation is a normal form that describes pattern formation due to the appearance of a single mode of instability in a wide variety of dissipative problems. In a similar vein, a certain "single-wave model" arises in many physical contexts that share common pattern forming behavior. These systems have Hamiltonian structure, and the single-wave model is a kind of Hamiltonian mean-field theory describing the patterns that form in phase space. The single-wave model was originally derived in the context of nonlinear plasma theory, where it describes the behavior near threshold and subsequent nonlinear evolution of unstable plasma waves. However, the single-wave model also arises in fluid mechanics, specifically shear-flow and vortex dynamics, galactic dynamics, the XY and Potts models of condensed matter physics, and other Hamiltonian theories characterized by mean field interaction. We demonstrate, by a suitable asymptotic analysis, how the single-wave model emerges from a large class of nonlinear advection-transport theories. An essential ingredient for the reduction is that the Hamiltonian system has a continuous spectrum in the linear stability problem, arising not from an infinite spatial domain but from singular resonances along curves in phase space whereat wavespeeds match material speeds (wave-particle resonances in the plasma problem, or critical levels in fluid problems). The dynamics of the continuous spectrum is manifest as the phenomenon of Landau damping when the system is ... Such dynamical phenomena have been rediscovered in different contexts, which is unsurprising in view of the normal-form character of the single-wave model

    Contour Dynamics Methods

    Get PDF
    In an early paper on the stability of fluid layers with uniform vorticity Rayleigh (1880) remarks: "... In such cases, the velocity curve is composed of portions of straight lines which meet each other at finite angles. This state of things may be supposed to be slightly disturbed by bending the surfaces of transition, and the determination of the subsequent motion depends upon that of the form of these surfaces. For co retains its constant value throughout each layer unchanged in the absence of friction, and by a well-known theorem the whole motion depends upon [omega]." We can now recognize this as essentially the principal of contour dynamics (CD), where [omega] is the uniform vorticity. The theorem referred to is the Biot-Savart law. Nearly a century later Zabusky et al (1979) presented numerical CD calculations of nonlinear vortex patch evolution. Subsequently, owing to its compact form conferring a deceptive simplicity, CD has become a widely used method for the investigation of two-dimensional rotational flow of an incompressible inviscid fluid. The aim of this article is to survey the development, technical details, and vortex-dynamic applications of the CD method in an effort to assess its impact on our understanding of the mechanics of rotational flow in two dimensions at ultrahigh Reynolds numbers. The study of the dynamics of two- and three-dimensional vortex mechanics by computational methods has been an active research area for more than two decades. Quite apart from many practical applications in the aerodynamics of separated flows, the theoretical and numerical study of vortices in incompressible fluids has been stimulated by the idea that turbulent fluid motion may be viewed as comprising ensembles of more or less coherent laminar vortex structures that interact via relatively simple dynamics and by the appeal of the vorticity equation, which does not contain the fluid pressure. Two-dimensional vortex interactions have been perceived as supposedly relevant to the origins of coherent structures observed experimentally in mixing layers, jets, and wakes, and for models of large-scale atmospheric and oceanic turbulence. Interest has often focused on the limit of infinite Reynolds number, where in the absence of boundaries, the inviscid Euler equations are assumed to properly describe the flow dynamics. The numerous surveys of progress in the study of vorticity and the use of numerical methods applied to vortex mechanics include articles by Saffman & Baker (1979) and Saffman (1981) on inviscid vortex interactions and Aref (1983) on two-dimensional flows. Numerical methods have been surveyed by Chorin (1980), and Leonard (1980, 1985). Caflisch (1988) describes work on the mathematical aspects of the subject. Zabusky (1981), Aref (1983), and Melander et al (1987b) discuss various aspects of CD. The review of Dritschel (1989) gives emphasis to numerical issues in CD and to recent computations with contour surgery. This article is confined to a discussion of vortices on a two-dimensional surface. We generally follow Saffman & Baker (1979) in matters of definition. In two dimensions a vortex sheet is a line of discontinuity in velocity while a vortex jump is a line of discontinuity in vorticity. We shall, however, use filament to denote a two-dimensional ribbon of vorticity surrounded by fluid with vorticity of different magnitude (which may be zero), rather than the more usual three-dimensional idea of a vortex tube. The ambiguity is unfortunate but is already in the literature. Additionally, a vortex patch is a finite, singly connected area of uniform vorticity while a vortex strip is an infinite strip of uniform vorticity with finite thickness, or equivalently, an infinite filament. Contour Dynamics will refer to the numerical solution of initial value problems for piecewise constant vorticity distributions by the Lagrangian method of calculating the evolution of the vorticity jumps. Such flows are often related to corresponding solutions of the Euler equations that are steady in some translating or rotating frame of reference. These solutions will be called vortex equilibria, and the numerical technique for computing their shapes based on CD is often referred to as contour statics. The mathematical foundation for the study of vorticity was laid primarily by the well-known investigations of Helmholtz, Kelvin, J. J. Thomson, Love, and others. In our century, efforts to produce numerical simulations of flows governed by the Euler equations have utilized a variety of Eulerian, Lagrangian, and hybrid methods. Among the former are the class of spectral methods that now comprise the prevailing tool for large-scale two- and three-dimensional calculations (see Hussaini & Zang 1987). The Lagrangian methods for two-dimensional flows have been predominantly vortex tracking techniques based on the Helmholtz vorticity laws. The first initial value calculations were those of Rosenhead (193l) and Westwater (1935) who attempted to calculate vortex sheet evolution by the motion of O(10) point vortices. Subsequent efforts by Moore (1974) (see also Moore 1983, 1985) and others to produce more refined computations for vortex sheets have failed for reasons related to the tendency for initially smooth vortex sheet data to produce singularities (Moore 1979). Discrete vortex methods used to study the nonlinear dynamics of vortex patches and layers have included the evolution of assemblies of point vortices by direct summation (e.g. Acton 1976) and the cloud in cell method (Roberts & Christiansen 1972, Christiansen & Zabusky 1973, Aref & Siggia 1980, 1981). For reviews see Leonard (1980) and Aref (1983). These techniques have often been criticized for their lack of accuracy and numerical convergence and because they may be subject to grid scale dispersion. However, many qualitative vortex phenomena observed in nature and in experiments, such as amalgamation events and others still under active investigation (e.g. filamentation) were first simulated numerically with discrete vortices. The contour dynamics approach is attractive because it appears to allow direct access, at least for small times, to the inviscid dynamics for vorticity distributions smoother than those of either point vortices or vortex sheets, while at the same time enabling the mapping of the two-dimensional Euler equations to a one-dimensional Lagrangian form. In Section 2 we discuss the formulation and numerical implementation of contour dynamics for the Euler equations in two dimensions. Section 3 is concerned with applications to isolated and multiple vortex systems and to vortex layers. An attempt is made to relate this work to calculations of the relevant vortex equilibria and to results obtained with other methods. Axisymmetric contour dynamics and the treatment of the multi-layer model of quasigeostrophic flows are described in Section 4 while Section 5 is devoted to a discussion of the tendency shown by vorticity jumps to undergo the strange and subtle phenomenon of filamentation

    Travelling waves in two-dimensional plane Poiseuille flow

    Get PDF
    The asymptotic structure of laminar modulated travelling waves in two-dimensional high-Reynolds-number plane Poiseuille flow is investigated on the upper-energy branch. A finite set of independent slowly varying parameters are identified which parameterize the solution of the Navier–Stokes equations in this subset of the phase space. Our parameterization of the weakly stable modes describes an attracting manifold of maximum-entropy configurations. The complementary modes, which have been neglected in this parameterization, are strongly damped. In order to seek a closure, a countably infinite number of modulation equations are derived on the long viscous time scale: a single equation for averaged kinetic energy and momentum; and the remaining equations for averaged powers of vorticity. Only a finite number of these vorticity modulation equations are required to determine the finite number of unknowns. The new results show that the evolution of the slowly varying amplitude parameters is determined by the vorticity field and that the phase velocity responds to these changes in the amplitude in accordance with the kinetic energy and momentum. The new results also show that the most crucial physical mechanism in the production of vorticity is the interaction between vorticity and kinetic energy, this interaction being responsible for the existence of the attractor

    Large time behavior and asymptotic stability of the two-dimensional Euler and linearized Euler equations

    Get PDF
    We study the asymptotic behavior and the asymptotic stability of the two-dimensional Euler equations and of the two-dimensional linearized Euler equations close to parallel flows. We focus on spectrally stable jet profiles U(y)U(y) with stationary streamlines y0y_{0} such that U(y0)=0U'(y_{0})=0, a case that has not been studied previously. We describe a new dynamical phenomenon: the depletion of the vorticity at the stationary streamlines. An unexpected consequence, is that the velocity decays for large times with power laws, similarly to what happens in the case of the Orr mechanism for base flows without stationary streamlines. The asymptotic behaviors of velocity and the asymptotic profiles of vorticity are theoretically predicted and compared with direct numerical simulations. We argue on the asymptotic stability of these flow velocities even in the absence of any dissipative mechanisms.Comment: To be published in Physica D, nonlinear phenomena (accepted January 2010
    corecore