11,908 research outputs found

    Subcritical graph classes containing all planar graphs

    Get PDF
    We construct minor-closed addable families of graphs that are subcritical and contain all planar graphs. This contradicts (one direction of) a well-known conjecture of Noy

    Logical limit laws for minor-closed classes of graphs

    Get PDF
    Let G\mathcal G be an addable, minor-closed class of graphs. We prove that the zero-one law holds in monadic second-order logic (MSO) for the random graph drawn uniformly at random from all {\em connected} graphs in G\mathcal G on nn vertices, and the convergence law in MSO holds if we draw uniformly at random from all graphs in G\mathcal G on nn vertices. We also prove analogues of these results for the class of graphs embeddable on a fixed surface, provided we restrict attention to first order logic (FO). Moreover, the limiting probability that a given FO sentence is satisfied is independent of the surface SS. We also prove that the closure of the set of limiting probabilities is always the finite union of at least two disjoint intervals, and that it is the same for FO and MSO. For the classes of forests and planar graphs we are able to determine the closure of the set of limiting probabilities precisely. For planar graphs it consists of exactly 108 intervals, each of length 5106\approx 5\cdot 10^{-6}. Finally, we analyse examples of non-addable classes where the behaviour is quite different. For instance, the zero-one law does not hold for the random caterpillar on nn vertices, even in FO.Comment: minor changes; accepted for publication by JCT

    Random graphs from a weighted minor-closed class

    Full text link
    There has been much recent interest in random graphs sampled uniformly from the n-vertex graphs in a suitable minor-closed class, such as the class of all planar graphs. Here we use combinatorial and probabilistic methods to investigate a more general model. We consider random graphs from a `well-behaved' class of graphs: examples of such classes include all minor-closed classes of graphs with 2-connected excluded minors (such as forests, series-parallel graphs and planar graphs), the class of graphs embeddable on any given surface, and the class of graphs with at most k vertex-disjoint cycles. Also, we give weights to edges and components to specify probabilities, so that our random graphs correspond to the random cluster model, appropriately conditioned. We find that earlier results extend naturally in both directions, to general well-behaved classes of graphs, and to the weighted framework, for example results concerning the probability of a random graph being connected; and we also give results on the 2-core which are new even for the uniform (unweighted) case.Comment: 46 page

    Random graphs from a block-stable class

    Full text link
    A class of graphs is called block-stable when a graph is in the class if and only if each of its blocks is. We show that, as for trees, for most nn-vertex graphs in such a class, each vertex is in at most (1+o(1))logn/loglogn(1+o(1)) \log n / \log\log n blocks, and each path passes through at most 5(nlogn)1/25 (n \log n)^{1/2} blocks. These results extend to `weakly block-stable' classes of graphs

    Connectivity for bridge-addable monotone graph classes

    Full text link
    A class A of labelled graphs is bridge-addable if for all graphs G in A and all vertices u and v in distinct connected components of G, the graph obtained by adding an edge between u and u is also in A; the class A is monotone if for all G in A and all subgraphs H of G, H is also in A. We show that for any bridge-addable, monotone class A whose elements have vertex set 1,...,n, the probability that a uniformly random element of A is connected is at least (1-o_n(1)) e^{-1/2}, where o_n(1) tends to zero as n tends to infinity. This establishes the special case of a conjecture of McDiarmid, Steger and Welsh when the condition of monotonicity is added. This result has also been obtained independently by Kang and Panagiotiou (2011).Comment: 11 page

    On the probability of planarity of a random graph near the critical point

    Get PDF
    Consider the uniform random graph G(n,M)G(n,M) with nn vertices and MM edges. Erd\H{o}s and R\'enyi (1960) conjectured that the limit \lim_{n \to \infty} \Pr\{G(n,\textstyle{n\over 2}) is planar}} exists and is a constant strictly between 0 and 1. \L uczak, Pittel and Wierman (1994) proved this conjecture and Janson, \L uczak, Knuth and Pittel (1993) gave lower and upper bounds for this probability. In this paper we determine the exact probability of a random graph being planar near the critical point M=n/2M=n/2. For each λ\lambda, we find an exact analytic expression for p(λ)=limnPrG(n,n2(1+λn1/3))isplanar. p(\lambda) = \lim_{n \to \infty} \Pr{G(n,\textstyle{n\over 2}(1+\lambda n^{-1/3})) is planar}. In particular, we obtain p(0)0.99780p(0) \approx 0.99780. We extend these results to classes of graphs closed under taking minors. As an example, we show that the probability of G(n,n2)G(n,\textstyle{n\over 2}) being series-parallel converges to 0.98003. For the sake of completeness and exposition we reprove in a concise way several basic properties we need of a random graph near the critical point.Comment: 10 pages, 1 figur
    corecore