221 research outputs found

    Orthogonal Polynomials from Hermitian Matrices II

    Get PDF
    This is the second part of the project `unified theory of classical orthogonal polynomials of a discrete variable derived from the eigenvalue problems of hermitian matrices.' In a previous paper, orthogonal polynomials having Jackson integral measures were not included, since such measures cannot be obtained from single infinite dimensional hermitian matrices. Here we show that Jackson integral measures for the polynomials of the big qq-Jacobi family are the consequence of the recovery of self-adjointness of the unbounded Jacobi matrices governing the difference equations of these polynomials. The recovery of self-adjointness is achieved in an extended 2\ell^2 Hilbert space on which a direct sum of two unbounded Jacobi matrices acts as a Hamiltonian or a difference Schr\"odinger operator for an infinite dimensional eigenvalue problem. The polynomial appearing in the upper/lower end of Jackson integral constitutes the eigenvector of each of the two unbounded Jacobi matrix of the direct sum. We also point out that the orthogonal vectors involving the qq-Meixner (qq-Charlier) polynomials do not form a complete basis of the 2\ell^2 Hilbert space, based on the fact that the dual qq-Meixner polynomials introduced in a previous paper fail to satisfy the orthogonality relation. The complete set of eigenvectors involving the qq-Meixner polynomials is obtained by constructing the duals of the dual qq-Meixner polynomials which require the two component Hamiltonian formulation. An alternative solution method based on the closure relation, the Heisenberg operator solution, is applied to the polynomials of the big qq-Jacobi family and their duals and qq-Meixner (qq-Charlier) polynomials.Comment: 65 pages. Comments, references and table of contents are added. To appear in J.Math.Phy

    Large Deviations for Random Spectral Measures and Sum Rules

    Get PDF
    We prove a Large Deviation Principle for the random spec- tral measure associated to the pair (HN;e)(H_N; e) where HNH_N is sampled in the GUE(N) and e is a fixed unit vector (and more generally in the β\beta- extension of this model). The rate function consists of two parts. The contribution of the absolutely continuous part of the measure is the reversed Kullback information with respect to the semicircle distribution and the contribution of the singular part is connected to the rate function of the extreme eigenvalue in the GUE. This method is also applied to the Laguerre and Jacobi ensembles, but in thoses cases the expression of the rate function is not so explicit

    Fock model and Segal-Bargmann transform for minimal representations of Hermitian Lie groups

    Full text link
    For any Hermitian Lie group G of tube type we construct a Fock model of its minimal representation. The Fock space is defined on the minimal nilpotent K_C-orbit X in p_C and the L^2-inner product involves a K-Bessel function as density. Here K is a maximal compact subgroup of G, and g_C=k_C+p_C is a complexified Cartan decomposition. In this realization the space of k-finite vectors consists of holomorphic polynomials on X. The reproducing kernel of the Fock space is calculated explicitly in terms of an I-Bessel function. We further find an explicit formula of a generalized Segal-Bargmann transform which intertwines the Schroedinger and Fock model. Its kernel involves the same I-Bessel function. Using the Segal--Bargmann transform we also determine the integral kernel of the unitary inversion operator in the Schroedinger model which is given by a J-Bessel function.Comment: 77page

    Ruelle-Pollicott Resonances of Stochastic Systems in Reduced State Space. Part II: Stochastic Hopf Bifurcation

    Get PDF
    The spectrum of the generator (Kolmogorov operator) of a diffusion process, referred to as the Ruelle-Pollicott (RP) spectrum, provides a detailed characterization of correlation functions and power spectra of stochastic systems via decomposition formulas in terms of RP resonances. Stochastic analysis techniques relying on the theory of Markov semigroups for the study of the RP spectrum and a rigorous reduction method is presented in Part I. This framework is here applied to study a stochastic Hopf bifurcation in view of characterizing the statistical properties of nonlinear oscillators perturbed by noise, depending on their stability. In light of the H\"ormander theorem, it is first shown that the geometry of the unperturbed limit cycle, in particular its isochrons, is essential to understand the effect of noise and the phenomenon of phase diffusion. In addition, it is shown that the spectrum has a spectral gap, even at the bifurcation point, and that correlations decay exponentially fast. Explicit small-noise expansions of the RP eigenvalues and eigenfunctions are then obtained, away from the bifurcation point, based on the knowledge of the linearized deterministic dynamics and the characteristics of the noise. These formulas allow one to understand how the interaction of the noise with the deterministic dynamics affect the decay of correlations. Numerical results complement the study of the RP spectrum at the bifurcation, revealing useful scaling laws. The analysis of the Markov semigroup for stochastic bifurcations is thus promising in providing a complementary approach to the more geometric random dynamical system approach. This approach is not limited to low-dimensional systems and the reduction method presented in part I is applied to a stochastic model relevant to climate dynamics in part III

    High-precision computation of uniform asymptotic expansions for special functions

    Get PDF
    In this dissertation, we investigate new methods to obtain uniform asymptotic expansions for the numerical evaluation of special functions to high-precision. We shall first present the theoretical and computational fundamental aspects required for the development and ultimately implementation of such methods. Applying some of these methods, we obtain efficient new convergent and uniform expansions for numerically evaluating the confluent hypergeometric functions and the Lerch transcendent at high-precision. In addition, we also investigate a new scheme of computation for the generalized exponential integral, obtaining on the fastest and most robust implementations in double-precision floating-point arithmetic. In this work, we aim to combine new developments in asymptotic analysis with fast and effective open-source implementations. These implementations are comparable and often faster than current open-source and commercial stateof-the-art software for the evaluation of special functions.Esta tesis presenta nuevos métodos para obtener expansiones uniformes asintóticas, para la evaluación numérica de funciones especiales en alta precisión. En primer lugar, se introducen fundamentos teóricos y de carácter computacional necesarios para el desarrollado y posterior implementación de tales métodos. Aplicando varios de dichos métodos, se obtienen nuevas expansiones uniformes convergentes para la evaluación numérica de las funciones hipergeométricas confluentes y de la función transcendental de Lerch. Por otro lado, se estudian nuevos esquemas de computo para evaluar la integral exponencial generalizada, desarrollando una de las implementaciones más eficientes y robustas en aritmética de punto flotante de doble precisión. En este trabajo, se combinan nuevos desarrollos en análisis asintótico con implementaciones rigurosas, distribuidas en código abierto. Las implementaciones resultantes son comparables, y en ocasiones superiores, a las soluciones comerciales y de código abierto actuales, que representan el estado de la técnica en el campo de la evaluación de funciones especiales
    corecore