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Abstract
The spectrum of the generator (Kolmogorov operator) of a diffusion process, referred to
as the Ruelle-Pollicott (RP) spectrum, provides a detailed characterization of correlation
functions and power spectra of stochastic systems via decomposition formulas in terms of
RP resonances; see Part I of this contribution (Chekroun et al. in Theory J Stat. https://
doi.org/10.1007/s10955-020-02535-x, 2020). Stochastic analysis techniques relying on the
theory of Markov semigroups for the study of the RP spectrum and a rigorous reduction
method is presented in Part I Chekroun et al. (2020). This framework is here applied to study
a stochastic Hopf bifurcation in view of characterizing the statistical properties of nonlinear
oscillators perturbed by noise, depending on their stability. In light of theHörmander theorem,
it is first shown that the geometry of the unperturbed limit cycle, in particular its isochrons,
i.e., the leaves of the stable manifold of the limit cycle generalizing the notion of phase,
is essential to understand the effect of the noise and the phenomenon of phase diffusion.
In addition, it is shown that the RP spectrum has a spectral gap, even at the bifurcation
point, and that correlations decay exponentially fast. Explicit small-noise expansions of
the RP eigenvalues and eigenfunctions are then obtained, away from the bifurcation point,
based on the knowledge of the linearized deterministic dynamics and the characteristics of
the noise. These formulas allow one to understand how the interaction of the noise with
the deterministic dynamics affect the decay of correlations. Numerical results complement
the study of the RP spectrum at the bifurcation point, revealing useful scaling laws. The
analysis of the Markov semigroup for stochastic bifurcations is thus promising in providing
a complementary approach to themore geometric randomdynamical system (RDS) approach.
This approach is not limited to low-dimensional systems and the reduction method presented
in Chekroun et al. (2020) is applied to a stochastic model relevant to climate dynamics in the
third part of this contribution (Tantet et al. in J Stat Phys. https://doi.org/10.1007/s10955-
019-02444-8, 2019).
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1 Introduction

Complex and unpredictable behavior of trajectories is observed in many physical systems. A
possible source of such an unpredictable behavior is tied to the interactions between a large
number of degrees of freedom, which may be either modeled by the addition of a stochastic
forcing, or by nonlinear coupling terms resulting into chaotic trajectories. As a result, predic-
tion beyond a certain horizon is hopeless and one focuses instead on a statistical description
of the system’s evolution. The theory presented in the first part of this contribution [26]
is concerned with the characterization of statistical features such as the return to (a statis-
tical) equilibrium, or the description of correlation functions and power spectra—in both,
the reduced and original state spaces—for nonlinear systems subject to noise disturbances,
extending thus the approach of [22] to the stochastic framework. This second part of our
three-part article is focused on stochastic perturbations of dynamical systems undergoing a
Hopf bifurcation in which a stable steady state loses its stability to give rise to a limit cycle.
It relies on the elements of stochastic analysis and the spectral decomposition of Markov
semigroups such as framed in Part I [26], while the results regarding the notion of reduced
RP resonances from Part I are applied to the third part [87] of this contribution. The latter
part relies thus on the preceding two parts to analyze the response to noise of a low-frequency
mode of climate variability, El Niño-Southern Oscillation.

Following [26], the evolution of trajectories is modeled by an Itô Stochastic Differential
Equation (SDE),

dx = F(x) dt + D(x) dWt , (1.1)

on the N -dimensional Euclidean space H = R
N with Wt = (W 1

t , . . . ,WM
t ) an R

M -valued
Wiener process with measure P and realizations ω in Ω . In what follows we assume that the
vector field F and the matrix-valued function D : H → MatR(N × M), satisfy regularity
conditions that guarantee the existence and the uniqueness of mild solutions, as well as the
continuity of the trajectories; e.g. [15,37] for such conditions in the case of locally Lipschitz
coefficients. The process X(t, ω) generated by the SDE (1.1) is thus a continuous Markov
process.

As discussed in [26, Appendix A.1], while the sample paths generated by the SDE (1.1)
may be complicated, the evolution of observables, averaged over the noise realizations, may
be more regular and more amenable to analysis [66]. The evolution of an observable u in
Cb(H), the space of bounded continuous functions, is governed by the Markov semigroup
Pt , t ≥ 0, according to

Ptu(x) = E [u(S(t, ·)x)] =
∫

Ω

u(S(t, ω)x) dP(ω),

where S(t, ω) : H → H is the stochastic flow giving the solution at any time t ≥ 0 to the SDE
(1.1) for an initial condition inH and any noise realization ω in Ω . This Markov semigroup
can be extended to a strongly continuous semigroup on L2

μ(H), the space of square-integrable
functions with respect to an invariant measure μ of the system; e.g. [26, Theorem 4]. In the
remaining, we always work in L2

μ(R2), for some invariant measure μ which happens to
be unique for the particular two-dimensional system studied here, as shown in Sect. 2.2. In
some cases, the generator K of thisMarkov semigroup can be identifiedwith the second-order
differential operator K of the (backward) Kolmogorov equation [26, Remark 1.(iii)],
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∂t u =
2∑

i=1

Fi (x)∂i u + 1

2

2∑
i, j=1

�i j (x)∂i j u, (1.2)

= Ku, (1.3)

where �i j (x) =∑M
k=1 Dik(x)Djk(x) is the diffusion tensor. In turn, the Kolmogorov equa-

tion is dual to the Fokker–Planck equation governing the evolution of probability densities;
see e.g. [26, Sect. 2] and [72].

One possible manifestation of unpredictability in chaotic or stochastic systems is the loss
of memory of ensembles on their initial state as they converge to the statistical equilibrium
of the system. In other words, mixing [58, Chap. 4] occurs when densities propagated by the
transfer semigroup dual to theMarkov semigroup converge to a unique statistical equilibrium,
or invariant measure, in e.g. the total variation norm. Conditions ensuring a Markov process
to be mixing in the total variation norm have been recalled in [26, Theorem 4] and rely
on the strong Feller and irreducibility properties of the Markov semigroup. Moreover, as
discussed in e.g. [26, Remark 1-(i)], a Markov process that is mixing with respect to an
invariant measure μ has its correlation function

C f ,g(t) =
∫

f · Pt g dμ −
∫

f dμ
∫

g dμ, t ≥ 0, (1.4)

that decays asymptotically to zero in time, for any observables f and g lying in L2
μ(R2).

Together with their Fourier transform, the power spectra, sample estimates of correlation
functions are often used in physics, to study the variability of the system. It is thus important
to relate such evolution of the statistics to the dynamics of the system.

The essential point here is that, as shown in [26, Theorem 1], the spectrum of the generator
K of the Markov semigroup Pt in L2

μ(R2) associated with (1.2), referred to as the Ruelle-
Pollicott (RP) spectrum, gives a complete characterization of the evolution of observables.
In particular, it allows one to decompose the correlation functions into several components
with different decay rates directly related to the RP eigenvalues; see [26, Corollary 1]. For
example, if the spectrum of the generator is only composed of eigenvalues λ j , j ≥ 0 (as
in the case of the stochastic Hopf, Sect. 2.2) and if these eigenvalues are simple, then the
correlation function can be decomposed into the weighted sum of complex exponentials [26,
Eq. (2.13)]

C f ,g(t) =
∞∑
j=1

eλ j tw j ( f , g), f , g ∈ L2
μ(R2), (1.5)

with weights given by

w j ( f , g) = 〈 f , ψ j
〉
μ

〈
ψ∗

j , g
〉
μ

, (1.6)

whereψ j denotes the L2
μ-eigenfunction associatedwith the eigenvalueλ j of the L2

μ-generator
K of Pt andψ∗

j is the eigenfunction of the adjoint operator K
∗ of K . A similar decomposition

in terms of Lorentzian functions also holds for the power spectrum S f ,g [26, Sec. 2.3]:

S f ,g(z) = − 1

π

∞∑
j=1

w j ( f , g)
�(λ j )

(z − �(λ j ))2 + �(λ j )2
. (1.7)

The decompositions (1.5) and (1.7) may then be used to reconstruct any correlation function
or power spectrum from the RP spectrum. In addition, [26, Theorems 5 and 6] allow one to
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analyze the the rate of return to the equilibrium μ (mixing) and the spectral gap in the RP
spectrum from properties of Lyapunov functions and ultimate bounds. In the following, we
refer to the eigenvalues in the RP spectrum, whether simple or not, as the RP resonances.

The RP spectrum thus provides a particularly useful description of nonlinear dynamics
subject to noise disturbances. In light of these results, the overarching goal of the present
article is to illustrate the usefulness of stochastic analysis techniques discussed in [26], for
the study of stochastic bifurcations. Indeed, while the bifurcation theory of deterministic sys-
tems is fairly complete [40,56,74,85], nonautonomous [67–69,94] and stochastic [3, Chap. 9]
bifurcation theory is much less mature. In particular, the derivation of normal forms, i.e. find-
ing an equivalent representation of a system “as simple as possible,” can be very tedious in
the stochastic case within the framework of random dynamical systems (RDSs) [3, Chap. 8]
(see [16,83], for the normal form of the stochastic Hopf bifurcation in particular) and may
require the introduction of anticipative terms. Such anticipative terms may be avoided in cer-
tain cases, by the appropriate use of approximation techniques of local stochastic invariant
manifolds [20], or the use of parameterizing manifolds [21], in more general situations.

It is however important to mention that the RDS theory has allowed to give useful
insights regarding another manifestation of the unpredictability stochastic systems, namely
the divergence of stochastic trajectories characterized by Lyapunov exponents [3,7,23,65]. In
particular, the Lyapunov exponents have been used to provide a dynamical characterization of
stochastic pitchfork [17], transcritical [18] and Hopf bifurcations [1,2,6,9,10,33,35,78,79].
Recently, another approach based on the dichotomy spectrum for random dynamical sys-
tems [5,54,70,71,80,84] has been proposed to characterize stochastic bifurcations [25].

In this study, the focus is on the description of the change of statistical properties arising at a
bifurcation in the presence of noise and as associated with theMarkov semigroup, in the spirit
of [43,90], rather than those occurring by adopting a pullback approach [3,24,25,68]. It is thus
“phenomenological” rather than “dynamical” in the terminology of L. Arnold [3, Chap. 9],
although new ingredients are brought to describe the phenomenological picture, namely the
RP resonances. To be more specific, our study is concerned with the changes occurring in the
RP spectrum as the control parameter varies, in the case of aHopf bifurcation subject to noise.
An example of a three-dimensional stochastic slow-fast systemundergoing aHopf bifurcation
perturbed by noise and arising in fluid mechanics is given in [26, Sec. 4], while the third part
([87]) relies on both the reduction method from [26] and the results of this paper to analyze
the response to noise of a low-frequency mode of climate variability, El Niño-Southern
Oscillation, in a high-dimensional geophysical model of intermediate complexity. In this
article, particular attention is paid to the identification of the key properties of the underlying
deterministic dynamical system that determine the response to stochastic perturbations. Our
main conclusion is that the geometry of the underlying deterministic dynamics is essential
to understand the mixing properties of the stochastic Hopf bifurcation system.

The system considered here consists of the normal form of the Hopf bifurcation to which
white noise is added to the Cartesian coordinates; see Eq. (2.6). In Sect. 2, we report on
geometric features of the underlying deterministic dynamics that play a key role in the
response to stochastic perturbations here: the isochrons that generalize a notion of phase.
In Sect. 3, the interaction of the stochastic forcing with the drift term are assessed in terms
of Lie brackets as arising in the so-called Hörmander’s condition pertaining to the elements
of stochastic analysis briefly surveyed in [26, Appendix A] for the unfamiliar reader. As a
result for two-dimensional deterministic systems exhibiting a hyperbolic limit cycle, when
perturbed by noise, new geometric insights describing the interactions with nonlinear effects,
are provided. In that respect, Theorem 1 shows that phase diffusion, responsible for mixing
on the limit cycle, occurs when the forcing is transverse to the isochrons. In addition, we
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prove with Proposition 3 that the RP spectrum has a spectral gap and that correlations decay
exponentially fast, even at the bifurcation point where the deterministic Hopf bifurcation
occurs and at which correlations decay at a slower, algebraic rate (i.e. as a polynomial of
time or as a fractional power of time), in absence of noise. In Sect. 4, we provide analytic
elements describing the RP spectrum. More precisely, by relying on small-noise expansions,
wederive analytic formulas of the eigenvalues and eigenfunctions of theKolmogorovoperator
associated with the Markov semigroup before (Proposition 4) and after (Proposition 5) the
bifurcation point when the noise is relatively weak. As a byproduct, these formulas show for
the stochastic Hopf equation considered here, that when the noise is sufficiently small, the
isochrons still coincide with the isoline of phase of the eigenfunctions of the Kolmogorov
operator; see Fig. 4 below for a schematic. This is confirmed numerically in Sect. 5 when
the RP spectrum is approximated from finite-difference approximation of the Kolmogorov
operator; see e.g. Fig. 6 below. Thus, the numerical results of Sect. 5 allow us to analyze in
greater details, the transition from a noisy steady state to a noisy limit cycle. In particular,
a transition from a triangular structure of RP eigenvalues to a parabolic one in the left half
complex plane, is observed as the bifurcation point is crossed. Finally, Sect. 6 summarizes
the insights gained from these numerical results and this article in its whole. We build on
these insights and results in the third part of this contribution to analyze the emergence of
noise-induced oscillations in the Cane-Zebiak model of El Niño-Southern Oscillation [87].
The programs used for this analysis are available as an open-source C++ library at https://
github.com/atantet/ergoPack/ together with a link to its documentation.

2 A Stochastically Perturbed Nonlinear Oscillator

Nonlinear oscillators are found in many different applications of physics and engineering.
Particularly important is to understand the statistical properties of such systems in response
to noise. For example, Hopf bifurcations resulting in the emergence of a stable limit cycle
are found in several climate models, such as in quasi-geostrophic models of the midlatitude
ocean circulation [27,76], while fast atmospheric processes forcing the ocean are sometimes
modeled by a stochastic process [28,39,73,75,77,81].

Thus, as a first step towards understanding more complex stochastically perturbed nonlin-
ear oscillators, the RP spectrum of a simple form of stochastic Hopf bifurcation is analyzed.
In this section, we recall some known results regarding the Hopf bifurcation and its stochastic
counterpart. In particular, we stress the role played in the phenomenon of phase diffusion
by relying on the concept of isochrons associated with the underlying deterministic limit
cycle. This approach provides new geometric insights concerning the response of nonlinear
oscillators to noise on one hand—see Sect. 3—and concerning the associated RP spectrum,
on the other; see Sects. 4 and 5.

2.1 RP Spectrum of the Deterministic Hopf Normal Form

Nonlinear systems with a fixed point losing stability to a limit cycle as a parameter is changed
are prominent in physics and engineering; see e.g. [85]. For instance, this kind of bifurcation,
namely the Hopf bifurcation, is found in the climate models of El Niño-Southern Oscillation
analyzed in the third part of this contribution [87]. The genericity of the reduced dynam-
ics close to a Hopf bifurcation is captured by the following normal form [4,40], in polar
coordinates (r , θ),
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dr = (δr − κr3
)
dt

dθ = (γ − βr2
)
dt, (2.1)

where we assume that κ > 0, so that only the case of the supercritical Hopf bifurcation is
considered here. The parameter δ controls the stability of the fixed point x∗ (for δ < 0) or
of the limit cycle Γ (for δ > 0). The parameter γ controls the period of the oscillations,
while β regulates their dependence on the radius. Such a dependance may for example arise
in systems conserving angular momentum [4]. As a result, the limit cycle Γ has a radius

R(δ, κ) = √δ/κ,

and a period T (γ, β, δ, κ) = 2π/ω f (γ, β, δ, κ), where ω f is the angular frequency

ω f (γ, β, δ, κ) = γ − βδ/κ,

simply noted R, T and ω f , respectively, in the following. Denoting by (St )t∈R the determin-
istic flow generated by (2.1), one has that ST p = p for any point p on the limit cycle Γ .
For reasons that become apparent below, we refer to the adimensional parameter β/κ , noted
β̃(β, κ) or simply β̃, as the twist factor. In Sect. 4 we show that while the nature and stability
of the solutions is controlled by δ, the geometry of both the locations of the RP eigenvalues
and their corresponding eigenfunctions, is strongly dependent on β̃.

The RP resonances of system (2.1) obtained as the eigenvalues in of the corresponding
(backward) Liouville eigenvalue problem

(δr − r3)∂rΨ (r , θ) + (γ − βr2)∂θΨ (r , θ) = λΨ (r , θ), (2.2)

have been calculated analytically in [44] using trace formulas; for comparison, we give a
brief summary of the results in [44] below. To do so, care is given to the functional setting,
since, due to the deterministic dissipative dynamics and in order to capture the decay of
correlations, eigenfunctions should be sought as distributions acting on observables given by
smooth enough test functions (see [44, Sect. B] and [42]). The authors of [44] found that below
the bifurcation point, i.e., for δ smaller than its critical value 0, the RP resonances λk, k ≥ 0
are given by integer linear combinations of the complex pair of eigenvalues λ± = δ ± iγ
of the tangent map of the vector field at the fixed point. As a result, the RP resonances are
organized in a triangular array of eigenvalues [44, Eq. (43)]

λln = (l + n)δ + i(n − l)γ, l, n ∈ N. (2.3)

Above the bifurcation point, i.e., for δ > 0, the RP resonances are composed of two families
of eigenvalues associated with the limit cycle and the unstable fixed point respectively. The
family associated with the limit cycle is organized in an array of equally spaced eigenval-
ues [44, Eq. (44)]

λln = −2lδ + in ω f , l ∈ N, n ∈ Z. (2.4)

These eigenvalues have their real parts spaced by a gap corresponding to the characteristic
exponent of a linearizedPoincarémap for the limit cycleΓ and their imaginaryparts spacedby
a gap given by the angular frequencyω f . Eachmultiple of the angular frequency corresponds
to a harmonic which may be excited for certain nonlinear observables. We refer to Sect. 5
below for such nonlinear observables.

The spectrum given by (2.4) contains pure imaginary eigenvalues λ0n, n in Z, showing in
particular that the deterministic system (2.1) is not mixing. This can be intuitively understood
by the neutral dynamics alongΓ , i.e the dynamics is neither contractingnor expanding. Indeed
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due to this dynamics, a density with support contained in Γ is simply rotated without mixing
along Γ . On the other hand, there is also a family of eigenvalues [44, Eq. (44)] forming a
triangular array

λln = −(l + n + 2)δ − i(l − n)γ, l, n ∈ N, (2.5)

associated with the unstable fixed point. All these eigenvalues are located to the left of the
imaginary axis, in agreement with the fact that the unstable fixed point is a repeller. To this
repeller can then be associated an escape rate of densities given by the real part |�(λ00)| = 2δ
of the leading eigenvalue. Finally, exactly at the critical value 0, the spectrum is continuous,
resulting in an algebraic decay of correlations, at a rate t−1/2 ([44], Eq. (82)), known as
critical slowing down.

As shown hereafter, when subject to the appropriate noise perturbations, the critical slow-
ing down disappears and the system becomes mixing at the criticality and after; see Sect. 3.2.

2.2 Stochastic Hopf equation

As a minimal model of nonlinear oscillator perturbed by noise, we are thus led naturally to
analyze the Hopf normal form (2.1) subject to white noise disturbances added to its Cartesian
coordinates, as in [33]. This stochastic process is thus governed by the SDE

dx = [(δ − κ
(
x2 + y2

))
x − (γ − β

(
x2 + y2

))
y
]

︸ ︷︷ ︸
Fx (x,y)

dt + ε dWx

dy = [(γ − β
(
x2 + y2

))
x + (δ − κ

(
x2 + y2

))
y
]

︸ ︷︷ ︸
Fy(x,y)

dt + ε dWy, (2.6)

whereWx andWy are two independent Wiener processes with differentials interpreted in the
Itô sense [49] and ε is a parameter controlling the level of noise. In the following, Eq. (2.6)
will be referred to as the Stochastic Hopf Equation (SHE) in Cartesian coordinates. The
Kolmogorov equation corresponding to (2.6) is then given by

∂t u = Fx∂xu + Fy∂yu + ε2

2
∂2xxu + ε2

2
∂2yyu. (2.7)

As recalled in Introduction, the solutions to the Kolmogorov equation have a natural proba-
bilistic interpretation in terms of expectation, i.e. u(t, (x, y)) = E [u(S(t, ω)(x, y))], where,
loosely speaking, the stochastic flow S(t, ω) applied to (x, y) yields to the solution at time
t to Eq. (2.6) that emanates from (x, y), when driven by the noise realization ω. Here and
below,E[·] = ∫

Ω
· dP denotes the expected value with respect to such noise realizations. The

diffusion in (2.7) is elliptic by construction, a condition that is relaxed in Sect. 3.
The Kolmogorov equation (2.7) in Cartesian coordinates will be useful to perform expan-

sions about the stable fixed point for δ < 0 in Sect. 4.1. For δ > 0, however, deterministic
solutions converge (i.e. when ε = 0) to the limit cycle Γ with radius R so that it is some-
times more convenient to work in polar coordinates (r , θ) with x = r cos θ and y = r sin θ .
Applying Itô’s formula [49, Theorem 5.1], the SHE (2.6) transforms to polar coordinates as
follows,

dr =
(

δr − κr3 + ε2

2r

)
dt + ε dWr

dθ = (γ − βr2
)
dt + ε

r
dWθ , (2.8)
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1410 A. Tantet et al.

where Wr and Wθ are two Wiener processes satisfying the SDE system

dWr = cos θ dWx + sin θ dWy,

dWθ = − sin θ dWx + cos θ dWy,

and with r > 0 and θ in [−π, π], i.e. the largest domain on which the change of variables
to polar coordinates is defined (and twice continuously differentiable). The Kolmogorov
equation in polar coordinates corresponding to the SDE (2.8) has a diffusion matrix

D = ε2
(
1 0
0 1/r2

)
,

and is thus given by

∂t u =
(

δr − κr3 + ε2

2r

)
∂r u + (γ − βr2

)
∂θu + ε2

2
∂2rr u + ε2

2r2
∂2θθu

= Ku. (2.9)

We refer to the second-order differential operator K of the right-hand side of (2.9) as the
Kolmogorov operator of the SHE; see also [26, Eq. (2.16)]. One observes that the nonlinear
drift term γ −βr2 in the θ -direction hinders the separation of the Kolmogorov equation (2.9)
in r and θ . However, this difficulty is partially overcome in the following Sect. 2.3 by the
introduction of coordinates adapted to the geometry of the deterministic flow about the limit
cycle.

Due to the rotational symmetry of the SHE (2.8), a stationary density ρ∞1 for the Fokker-
Planck equation dual to the Kolmogorov equation (2.9) has to be independent of θ . On the
other hand, the radial component of the drift is gradient with potential

U (r) = −δr2/2 + κr4/4 − ε2 log r/2, r > 0. (2.10)

From the classical results relating the stationary density ρ∞ of a gradient SDE to its potential
(see e.g. [66, Chap. 2.4]) one has, for ε > 0 and any δ, κ, γ and β in R, that

ρ∞(r) = N

2π
e
− 2U (r)

ε2 = N

2π
re

δ

ε2
r2− κ

2ε2
r4

, (2.11)

with N = (
∫∞
0 e

− 2U (r)
ε2 dr)−1 a normalization constant. This density does not depend on the

parameters γ and β defining the azimuthal component of the deterministic vector field. As
expected from the rotational symmetry, equal weights are given to any set of points on a
circle when calculating long-term averages.

The following Proposition 1 ensures the existence of a unique invariant measure μ and
the discreetness of the RP spectrum. Its proof, below, is a straightforward application of
e.g. Theorem 4 recalled in [26]. In the remaining, this invariant measure μ defines the space
L2

μ(R2) from which all functional-analytic results from the present work are derived.

Proposition 1 For any δ, κ, γ and β inR, and ε > 0, the Markov semigroup associated with
the Kolmogorov equation (2.7)

1. has a unique invariant measure μ and it is strongly mixing,
2. is compact on L2

μ(R2),

3. has a discrete (RP) spectrum of finite multiplicity on L2
μ(R2).

1 Recall that a density ρ is a stationary solution if K∗ρ = 0, where K∗ denotes the (formal) adjoint of the
Kolmogorov operator K; see e.g. [26, Sect. 2].

123



Ruelle-Pollicott Resonances of Stochastic Systems… 1411

Remark 1 From Proposition (1), it follows that the unique invariant measure μ is neces-
sarily associated with the stationary density ρ∞ given by (2.11). This formula is given for
completeness, but none of the results of this article rely on the knowledge of ρ∞.

Remark 2 The additional drift term ε2/(2r) in (2.8) can be understood by visualizing a circle
of radius r centered at the origin in the Oxy plane and figuring the impact of the noise on a
state lying on this circle. On average, tangential perturbations will push the state away from
the centre, with an intensity increasing with the noise level ε and with the curvature 1/r2 of
the circle.

Remark 3 One observes in the Kolmogorov equation (2.9) written in polar coordinates that
the diffusion in the azimuthal direction is inversely proportional to the square of the radius
r . Indeed, for larger r , the effect on the angle θ of a noisy perturbation on the Cartesian
coordinates will be weaker.

Proof We first show that the conditions of Theorem 4 recalled in [26] are verified, that is,
that the Markov semigroup associated with (2.7) is strong Feller and irreducible. To do so,
we follow the approach recalled in [26, Appendix A.2].

The diffusion operator,

D = ε2(∂2xx + ∂2yy),

in Cartesian coordinates in the right-hand side of (2.7), is uniformly elliptic. In other words,
there exists α > 0 such that,

〈ξ, Dξ 〉 ≥ α‖ξ‖2, ∀ξ ∈ R
2,

so that the noise is nondegenerate and the strong Feller property holds by Weyl’s lemma [66,
Chap. 4].

Moreover, D is constant and the deterministic vector field F given by (2.6) in Cartesian
coordinates is polynomial of degree 3. The result by [50] then ensures that the associated
control system

{
ẋ(t) = Fx (x, y) + εu1(t)

ẏ(t) = Fy(x, y) + εu2(t),
(2.12)

is controllable and the irreducibility of theMarkov semigroup follows from the result by [86].
Thus, the invariant measure μ is unique and strongly mixing; see e.g. [26, Theorem 4].
To prove the compactness of the Markov semigroup on L2

μ(R2), we note that the potential
U in (2.10) can be written in Cartesian coordinates as a fourth-order polynomial with the
appropriate growth conditions to apply Theorem 8.5.3 in [57] and recalled in [26, Remark 2-
(ii)]. In particular, lim|x |→+∞ |U ′(x)| = +∞. The Markov semigroup on L2

μ(R2) generated
by the generator associatedwith theKolmogorov equation (2.7) is thus compact as long as ε >

0. The RP spectrum for (2.7) is then discrete and of finite multiplicity [52, Theorem III.6.26]
for any values of the parameters δ, κ, γ and β and for ε > 0. ��

2.3 Isochrons and Phase Diffusion, for ı > 0

When the twist factor β̃ = β/κ in the SHE (2.8) is nonzero the evolution of the radial and
azimuthal coordinates is coupled, resulting in a non-trivial response to perturbation of the
system in the azimuthal direction. We now identify the geometric structures, the isochrons,
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that help better understand this response when the underlying deterministic dynamics are
hyperbolic about a limit cycle, i.e. for δ > 0 in our case. While the relationship between
isochrons and the phenomenon of phase diffusion has been discussed in previous works [11,
29,55,92], the main contribution of our approach is to relate these structures to the regularity
of the Markov semigroup in Sect. 3 and to the RP spectrum in Sect. 4, thus giving a more
detailed geometric understanding of the stochastic Hopf bifurcation.

The isochrons have been used in [92] to study chemical mixing in perturbed periodic
biochemical systems and a new coordinate system generalizing the notion of phase was
introduced for that purpose namely the asymptotic phase, whose evolution by the autonomous
flow is independent of the distance to the limit cycle. This approach has been used also in [55,
Chap. 3-4] to study the interaction of nonlinear oscillators and has recently been introduced to
the engineering literature by [29] to study the response of nonlinear oscillators to forcing and
the phenomenon of phase diffusion.Moreover, the important role of the twist of the isochrons
regarding the stability of trajectories measured by the Lyapunov exponents in periodically
kicked limit cycles has been shown in [61,93] and corresponding results have been obtained
by [35] for stochastically driven limit cycles (see also [91], for numerical results on coupled
stochastic oscillators). Perhaps the most relevant results to our study are, however, those
of [62,63] where it was shown that, in the deterministic autonomous case, the isochrons
coincide with isolines of phase of the RP eigenfunctions associated with purely imaginary
eigenvalues.

The following definition and proposition from [45] and adapted to (2.6) are used in Sect. 3
within the framework of stochastic analysis to show how and when the interaction of a
stochastic forcing with the autonomous dynamics of the Hopf normal form results in mixing.
Corresponding analytical formulas for the equation of phase derived in the next Sect. 2.3.3
are then applied in Sect. 4 to give a detailed description of mixing via small-noise expansions
of the RP spectrum.

Definition 1 (Isochron [45]) With δ > 0 and ε = 0, let Γ ⊂ R
2 be the hyperbolic limit cycle

of the smooth flow St generated by (2.6) on R
2. The collection of sets I (p) such that

I (p):={q ∈ R
2 : lim

t→∞ ‖Stq − St p‖ = 0}, (2.13)

as p varies on Γ , are the isochrons of Γ .

In other words, given a point p on the limit cycle Γ , the set of points I (p) of R2 is identified
with all points that share the same phase asymptotically on the limit cycle. More specifically,
each isochron I (p) is by definition a leaf Wss(p) of the stable manifold Ws(Γ ) = R

2 \ {0}
of Γ . As a matter of fact, the following result follows from the Invariant Manifold Theorem;
see e.g. [48, Chap. 4].

Proposition 2 ([45]) With δ > 0 and ε = 0, let Γ be the hyperbolic limit cycle of period T
for the smooth flow St generated by (2.6) on R

2. Then:

(i) For each p ∈ Γ , there exists an one-dimensional isochron I (p) = Wss(p) transverse
to Γ at p (and (2.13) holds a fortiori).

(ii) The isochrons commute with the flow, i.e. St I (p) = I (St p), p ∈ Γ , t ≥ 0.
(iii) The tangent map DST at p ∈ Γ leaves invariant the subspace tangent to the isochron

I (p).

These properties are key to understand the role played by the isochrons to analyze the response
of the dynamics to stochastic perturbations. The isochrons for the Hopf normal form are
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illustrated in Fig. 1 based on the calculations of the following Sect. 2.3.2. There, the first
property is used to associate a new coordinate φ playing the role of phase to all points on
the same isochron. The second property guaranties that the points of a same isochron are
all mapped by the flow to another single isochron. In particular, after one period T of the
limit cycle, all these points return to the same isochron, i.e. ST I (p) ⊂ I (p). As a result, the
evolution of their common phase φ by the flow is independent of the transverse coordinates.
The last property relates the isochrons to the tangent map of the Poincaré map, as discussed
in the following Sect. 2.3.1.

2.3.1 Twist Factor ˜̌ and Response to Perturbation

Applying the Floquet theory to (2.6) for δ > 0 and ε = 0, we first show how the twist of
the isochrons in the neighborhood of the limit cycle Γ is controlled by the twist factor β̃

and relates to the nonorthogonality of the eigenspaces associated with the tangent map to the
flow of the Hopf normal form.

One observes from (2.1) and (2.8) that the evolution of the angular position θ is dependent
on the radial position r , when the twist factor β̃ is nonzero. This dependence impacts the
response of the autonomous system (2.1) to perturbations. This can be understood from the
Floquet representation of the fundamental matrix associated with the tangent map of the limit
cycle of the deterministic vector field

F(p) =
(

δr − κr3

γ − βr2

)
. (2.14)

Here, care is taken not to include the drift term ε/(2r) as we focus on the deterministic
dynamics. The application of Floquet theory to the Hopf normal form (2.1) is reviewed in A.
In this case, the Floquet vectors coincide with the eigenvectors of the Jacobian matrix JΓ in
polar coordinates

JΓ (p) =
( −2δ 0

−2βR 0

)
, (2.15)

for some point p on Γ and are rotated along the limit cycle. The Jacobian matrix is diago-
nalizable with right eigenvectors

e1(p) =
(
1
β̃
R

)
and e2(p) =

(
0
1

)
, (2.16)

and left eigenvectors

f1(p) =
(
1
0

)
and f2(p) =

(
− β̃

R
1

)
, (2.17)

respectively associated with the Floquet values

α1 = −2δ and α2 = 0. (2.18)

For all p in Γ , the Floquet vector e2(p) is tangent to Γ , in the direction of the flow, while
e1(p) is transverse to it. The latter is tangent to the isochron I (p) and is associated with the
stability of Γ to small perturbations; see Sect. 2.3.2 and Appendix A. It follows that

〈e1(p), e2(p)〉
‖e1(p)‖‖e2(p)‖ = β̃√

β̃2 + R2
�= 0 if β �= 0,
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where 〈v,w〉 is the inner product in R
2 and ‖v‖ the induced norm.

As a result, when the twist factor is nonzero, the eigenvectors of JΓ are not orthogonal
under the inner product 〈·, ·〉 and the Jacobian matrix is nonnormal by definition; see e.g. [88,
Chap. I.2]. It is known that the nonnormality of a linear evolution operator is associated with
a nontrivial response of the system to forcing. In the particular situation considered here,
the stochastic forcing is responsible for perturbing trajectories away from Γ , making these
trajectories vulnerable to the effect of the twist factor β̃. It is then crucial to take into account
the dependence of the angular frequency on the radius, as controlled by β̃.

2.3.2 Asymptotic Phase and Isochrons

In the case of the Hopf normal form (2.1) considered here, with δ > 0, explicit formulas for
the isochrons can be obtained, allowing us to analyse the twist of the isochrons away from
the limit cycle and to derive a phase diffusion equation in the stochastic case.

From Proposition 2 and the definition of a foliation [82, Chap. 6], there exists a coordinate
system (ν, φ) on R2 \ {0} such that

φ(q) = constant = φ(p) for any point q ∈ I (p), p ∈ Γ .

In other words, the coordinate φ is the same for all points of a same isochron. On the other
hand, thanks to the transversality of the isochrons to Γ (Proposition 2-(i)), one can choose φ

such that for all q ∈ I (p), φ(q) = θ(p), where θ is the angle coordinate of the unique point
p at the intersection of I (p) with Γ . In addition, the second coordinate ν in the direction
transverse to Γ can simply be chosen as the radius r . Last, from the invariance of the stable
foliation by the flow (proposition (2).2), one has that

dφ

dt
(p) = ω f , p ∈ R

2 \ {0}.
In other words, as opposed to θ in (2.1), the evolution of the coordinate φ by the autonomous
flow does not depend on the radius. These properties thus make φ a perfect candidate for
playing the role of phase for points q not necessarily on Γ .

To define the change of coordinates from (r , θ) → (r , φ) for any point q ∈ R
2 \ {0}

explicitly, one can use the rotational symmetry of the vector field (2.14),

F(r , θ1) = F(r , θ2), for any θ1, θ2 ∈ [0, 2π], r > 0,

to look for a constraint [36, Chap. 1.5] of the type

φ(q) = θ + f (r).

Differentiating with respect to time, one finds that

dφ

dt
= ω f = dθ

dt
+ d f

dr

dr

dt
,

Considering autonomous trajectories governed by the normal form (2.1) with vector field F
given in (2.14), one finds that

d f

dr
= − β̃

r
, (2.19)

which does not depend on δ. Finally, integrating with the condition that the phase coincides
with the angle on the limit cycle, i.e. that φ(p) = θ(p) for p ∈ Γ , gives

φ = θ − β̃ log
r

R
for δ > 0. (2.20)
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Fig. 1 Limit cycle Γ (thin black line) and its isochrons (thin red lines) for δ > 0, κ > 0 and β > 0 at p and at
the image of p by the flow at times t1 = T /3 and t2 = 2T /3. Trajectories starting from three points on Iβ(p),
are represented by a dashed line. One of them belongs to Γ and overlaps the thick black line representing
it. The states of the trajectories at times 0, t1 and t2 are represented by black dots. The isochron at p for
vanishing β is also represented in blue. Finally, the vectors e1 associated with the characteristic exponent−2δ
and tangent to the isochrons at p are also plotted for β �= 0 and β = 0 (Color figure online)

We have hence defined a new coordinate system (r , φ), such that all points on the same
isochron have the same asymptotic phase φ. One notes from the constraint (2.20), implicitly
defining the isochrons, that, while the latter are rectilinear for vanishing β̃, they undergo a
nonlinear twist when β̃ �= 0. Moreover, in agreement with Proposition 2-(iii), one can verify
that the eigenvector e1 = (1, β̃/R) of the polar Jacobian JΓ is tangent to the isochron I (St p).
Thus, the nonorthogonality of the eigenvectors of the polar Jacobian JΓ is directly associated
with the twist of the isochrons.

These results are illustrated in Fig. 1, for the particular case of the Hopf normal form
(2.1) considered here, with δ > 0 and β > 0. The limit cycle Γ is the circle of radius R
represented by a thin black line. Three different isochrons I β are represented in red. The first
one is transverse to Γ at p, while the other two are transverse to Γ at the images of p by the
flow at times t1 = T /3 and t2 = 2T /3. Each of these points is marked by a black dot and,
from the invariance of Γ , are also on Γ . In addition, two trajectories starting from distinct
points on the isochron I β(p) are represented by a dashed line. Their states at t1 and t2 are also
marked by black dots and, since the isochrons commute with the flow Proposition 2-(ii), they
also belong to the isochrons I (St1 p) and I (St2 p), respectively, and share the same asymptotic
phase φ given by (2.20). Moreover, from the stability of the foliation, the distance between
the trajectories vanishes as time approaches infinity. To see the effect of the twist factor β̃

on the isochrons, the isochron I 0(p), for β = 0, is represented in blue. In agreement with
(2.20), I 0(p) is rectilinear, while I β(p) is twisted due to the shear in the angular velocities
when β �= 0. It follows that the eigenvector eβ

1 of the polar Jacobian at p, tangent to the
isochron I β(p), is not orthogonal to the eigenvector e2 tangent to Γ , when β �= 0.
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2.3.3 Phase Diffusion Equation

After introducing the change of variable (r , θ) → (r , φ) according to (2.20) and such that
dφ/dt = ω f for a deterministic trajectory of the normal form (2.1), one can now apply Itô’s
formula [49, Theorem 5.1] to derive the SDE corresponding to (2.8) in coordinates (r , φ).
Hence, one finds the following phase diffusion equation

dr =
(

δr − κr3 + ε2

2r

)
dt + ε dWr

dφ = ω f dt + ε
dWθ

r
− β̃ε

dWr

r
. (2.21)

As expected, the φ-component of the drift is now independent of the radius, as in the deter-
ministic case. This is, however, to the expense of the statistical dependence of the noise terms
acting on r and φ. The phase φ thus experiences advection at constant angular velocity ω f

together with nonuniform diffusion. As a consequence, the Kolmogorov equation (2.9) with
u′(r , φ, t) = u(r , θ, t) becomes

∂t u
′ =

(
δr − r3 + ε2

2r

)
∂r u

′ +ω f ∂φu
′ + ε2

2
∂2rr u

′ − β̃ε2

r
∂2rφu

′ + ε2(1 + β̃2)

2r2
∂2φφu

′. (2.22)

Compared to (2.9), the coefficients in front of the first-order differential operators asso-
ciated with the drift in (2.22) are now separated in their arguments, here in their r - and
φ-dependences. This feature is key to the derivation of small-noise expansion of the RP
spectrum in Sect. 4. As a by-product, however, the dependence of the angular frequency on
the radius for β �= 0 is responsible for an effective increase of the phase diffusion by a factor
1 + β̃2; cf. the coefficient in front of ∂2θθ in (2.9). This effect could have been anticipated
from the nonnormality of the polar Jacobian JΓ and is explained in greater detail in light of
the Hörmander theorem in Sect. 3 below.

Remark 4 Equations of the type (2.21) and (2.22) for more general systems with an adiabatic
phase reduction have recently received much attention for the study of the impact of noise
on nonlinear oscillators in physics and engineering; see e.g. [11,12,29,31].

3 Analysis of the Stochastic Hopf Bifurcation

In this section, we apply the stochastic analysis approach as (briefly) surveyed in [26,
Appendix A], to study the general properties of the Markov semigroup of the SHE (2.6)
and its spectrum for any values of the parameters δ, γ and β, and for κ > 0. The material
presented in this section is mostly known by the expert working on the ergodic theory of
stochastic systems but contains also useful insights about the role played by the the geometric
structures organizing the underlying dynamics and their interactions with the noise. In that
respect, Theorem 1 provides interesting relationships between the isochrons of Sect. 2.3 and
the violation of the Hörmander condition, positioning thus the material exposed hereafter to
be also useful for the expert, while having in mind a wider audience in the geosciences and
macroscopic physics.

We start by showing in Sec 3.1 below how the existence of a unique ergodic and smooth
invariant measure to SHE (2.6) as well as its mixing properties, relate directly to the con-
figuration of the stochastic forcing with respect to the isochrons. The existence of a spectral
gap at the bifurcation and the exponential decay of correlations is then proved in Sect. 3.2.
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Existence and smoothness of
at most one ergodic measure µ

Regularity of Pt: Doob theorem

Irreducibility of Pt

Controllability: Stroock-
Varadhan support theorem

Control of polynomial systems ...

Pt is Strong Feller

Hypoellipticity of the generator of Pt

Hörmander bracket condition

Fig. 2 Schematic of the strong Feller-irreducibility approach to prove the existence and uniqueness of a smooth
invariant measure for a continuous Markov process

3.1 Smoothing andMixing by the Noise: A Geometric Perspective

We have discussed in Sect. 2 how the tilt of the isochrons, as measured by the twist factor
β̃, is associated with an increase of the diffusion coefficient in the phase in the Kolmogorov
equation (2.22) by a factor 1+ β̃2. This simple result shows the importance of the underlying
geometry of the drift and diffusion operators in the study of the ergodic properties of con-
tinuous Markov processes. The novel approach which is followed in this section is to place
the isochrons in the context of stochastic analysis and to show in Theorem 1 that, for fairly
general nonlinear oscillators with diffusion, the smoothing and mixing effects of the noise
may critically depend on the interaction of the stochastic forcing fields with the isochrons.

Recall that, according to Doob’s theorem [32], the existence of at most one ergodic
invariant measure with a smooth Lebesgue density for a continuous Markov process is a
consequence of the regularity of the Markov semigroup Pt ; see e.g. [34, Chap. 4]. A result,
due to [53], shows that the regularity of the Markov semigroup is in turn ensured from the
irreducibility and the strong Feller property of the Markov semigroup. The irreducibility
and strong Feller properties follow from the controllability of the corresponding control
system [86] the (hypo-)ellipticity of the operators, respectively.

This well-known approach is used in Proposition 4 to show that the measure μ with
density ρ∞ given by (2.11) is the unique invariant measure of the SHE (2.6). It is recalled
in [26, Appendix A.2] for the unfamiliar reader that along with [26, Theorem 4] relating
the smoothness and the strong mixing property of the invariant measure to the strong Feller
and irreducibility properties of Markov semigroup. This approach is summarized here by the
diagram shown in Fig. 2.

Yet, the ellipticity of the Kolmogorov operator (2.7) stems from the fact that noise is
added to both coordinates of the two-dimensional SHE (2.6). To reveal the role played by the
isochrons from a stochastic analysis perspective, we consider next degenerate cases in which
noise is not added to both coordinates and study under which conditions the corresponding
Markov semigroup is still strongly Feller and irreducible, and thus has a smooth density.

To do so, we rely on the Hörmander theorem for hypoelliptic operators [47]. For further
reference, we recall the Hörmander’s bracket condition for an SDE on R

N written in its
Stratonovich interpretation for m independent 1D Wiener process Wi ,
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dx = V0(x)dt +
m∑
i=1

Vi (x) ◦ dWi . (3.1)

One defines the following collection of vector fields Vk by

V0 = {Vi : 1 ≤ i ≤ m}, Vk+1 = Vk ∪ {[U , Vj ] : U ∈ Vk & 0 ≤ j ≤ m}. (3.2)

The main assumption to be checked for application of the Hörmander theorem is then the
following Hörmander bracket condition

∪k≥1span {V (q) : V ∈ Vk} = R
N for every q ∈ R

N , (3.3)

3.1.1 The Case of the SHE (2.6) with Degenerate Noise

Let us consider the following modification of the SHE (2.8) written in Stratonovich form,

dX = V0(X) dt + V1(X) ◦ dW1. (3.4)

In (3.4), V0 denotes the deterministic vector field in (2.8). However, whereas the original
SHE (2.8) is driven by two one-dimensional Wiener processesWr andWθ , (3.4) is driven by
a single one-dimensional Wiener process W1 with an arbitrary smooth vector field V1 of R2.

Using the coordinate-free formalism (see Remark 5 below), the Kolmogorov operator K
associated with (3.4) can be written as

K = V0 + (V1)
2.

Here, as opposed to the original SHE (2.6) we have chosen V1 to be nonconstant and to be
multiplied by a one-dimensionalWiener process, only. Thus, at each point q inR2, the vector
V1(q) alone cannot spanR2 and the Kolmogorov operatorK is no longer elliptic. It may turn
out, however, that the operator is hypoelliptic, ensuring, roughly speaking, to have the noise
to propagate out in the whole space; see next subsection. Our aim is then to check under
which condition on V1 the Kolmogorov operator K is hypoelliptic. For that purpose we need
to verify under which conditions the Hörmander condition (3.3) holds.

We thus calculate the Lie bracket of V1 with V0. The vector fields V0 and V1 are given in
polar coordinates by

V0(r , θ) = F(r , θ) = (δr − κr3) ∂r + (γ − βr2) ∂θ

V1(r , θ) = V r
1 (r , θ) ∂r + V θ

1 (r , θ) ∂θ ,

where V r
1 and V θ

1 are the (smooth) components of V1. Let us first consider the simple yet
instructive case when

V r
1 = εr , and V θ

1 = 0,

for some constant εr > 0. Then the Lie bracket [V0, V1] yields
[V0, V1] = −εr (δ − 3κr2) ∂r − 2εrβr ∂θ . (3.5)

Observe that span V1 = span {V1, [V0, V1]} = R
2 if and only if β, or equivalently the twist

factor β̃, is nonzero. This is also true when further iterating the Lie brackets.
Thus, even in the case of a purely radial stochastic forcing, the twist of the isochron

controlled by β̃ allows for the noise to be injected in the azimuthal direction and for the
Markov semigroup to be strongly Feller. This also explains the increase by a factor 1 +
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δt

δt δt

δt

δt

δt
δt

δt

Fig. 3 Left: Illustration of the action of the Lie bracket [V0, V1] (red arrow) at a point p between the vector
field V0 generating the autonomous flow St , t ≥ 0 with the forcing field V1 (blue arrow at p) generating the

flow S
V1
t , t ≥ 0 in the radial direction for β = 0 (upper panels) and β �= 0 (lower panels). The thick black

curve represents the composition of the two flows for a short time δt and then back. The isochrons passing
through the different images of the initial point p by the flow are represented by a thin red line, while the
integral curves of the forcing field V1 are represented by dashed blue lines. Right: Sample time series of the
phase φ corresponding to the left panels when the forcing field V1 acts on a Wiener process as in the SDE
(3.4) (Color figure online)

β̃2 of the diffusion coefficient in the Kolmogorov equation (2.22) written in the phase-
coordinate, compared to that of (2.9) written in polar coordinates. It will have also important
consequences on the RP eigenfunctions in Sect. 4. On the other hand, if β = 0 and V1 is
radial, the noise is not felt in the azimuthal direction and no phase diffusion may occur.

This result is illustrated in Fig. 3 for the SHE (2.6) with δ = κ = 1 and β = 0 (upper
panels) andβ = 0.8 (lower panels). On the left panels, the Lie bracket [V0, V1], for V1 = εr ∂r

(blue vector), is applied to a point p. There, St and SV1t are the flows generated by V0 and
V1, respectively, and δt is a small time. The Lie bracket (red vector in Fig. 3) is given by
the tangent vector to the curve obtained by successively applying Sδt and SV1δt forward and
then backward in the limit when δt → 0. On the right panels, samples of simulated time
series of the asymptotic phase φ given by (2.20) are represented. One observes that when
β = 0 (upper panels of Fig. 3), the integral curves of the forcing field V1 (dashed blue lines
in Fig. 3) coincide with the isochrons (red lines in Fig. 3) and the resulting Lie bracket is
collinear to V1, in agreement with (3.5). As a result, no phase diffusion is observed on the
corresponding upper right panel of Fig. 3.

On the other hand, when β is nonzero (lower panels), the forcing field V1 is not tangent
to the isochrons anymore and the resulting Lie bracket is not collinear to V1. This allows for
the noise to be injected in the azimuthal direction, as can be seen from the phase diffusion
occurring in the lower right panel of Fig. 3. This figure reveals that the dependence of the
Lie bracket (3.5) on the twist factor β̃ is directly related to the orientation of the forcing field
V1 with respect to the isochrons. This observation will now be made rigorous for the more
general case of a dynamical system with a hyperbolic limit cycle.
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Remark 5 In the coordinate-free framework of differential geometry, a vector field V defined
on the plane R

2 and decomposed in Cartesian coordinates as V (x, y) = V 1(x, y)e1 +
V 2(x, y)e2, is identified (by isomorphism) with the first-order differential operator

V = V 1(x, y) ∂x + V 2(x, y) ∂y .

See e.g. [36] for an introduction to differential geometry.

3.1.2 Hörmander Bracket Condition for a General Hyperbolic Limit Cycle

For more generality, let us consider a dynamical system with flow St , t ≥ 0, generated by
the smooth vector field V0 on the N -dimensional Euclidean space RN . Assume that the flow
has a hyperbolic limit cycle Γ with basin of attraction UΓ ⊆ R

N , so that the isochrons
Wss(p) at any point p on Γ can be defined as the stable foliation of Γ ; see Sect. 2. Consider
then the SDE (3.1) in which the deterministic field V0 is perturbed by m smooth vector
fields {Vi , 1 ≤ i ≤ m} each multiplied by independent one-dimensional Wiener processes.
We would like to know when the interaction of this stochastic forcing with the isochrons
allows for the parabolic Hörmander condition (3.3) in UΓ to be fulfilled. The following
Theorem 1 is proved in Appendix B.1, as a direct consequence of the definition of the Lie
derivative in terms of pullback of a vector field by a diffeomorphism.

Theorem 1 If, for some point q in UΓ , the vector fields {Vi , 1 ≤ i ≤ m} of the stochastic
forcing in (3.4) are all tangent to the isochron Wss(p) passing through q, then the vector
space

∪k≥1span {V (q) : V ∈ Vk},
generated by the vector fields V0 and {Vi , 1 ≤ i ≤ m} according to (3.2) is also tangent at q
to the isochron Wss(p).

Keeping the same notations, the contraposition of Theorem 1 yields the following corollary.

Corollary 1 For the parabolic Hörmander condition (3.3) to be fulfilled, it is necessary that,
for each point q in UΓ , at least one of the vector fields in {Vi , 1 ≤ i ≤ m} is transverse to
the isochron passing through this point.

The dependence of the Lie bracket [V0, V1] on the twist factor β̃ in Fig. 3 is nowunderstood
thanks to Theorem 1 in terms of orientation of the forcing vector field V1 with respect to the
isochrons. There, V1 acts on the radial direction only. For β = 0 (upper panels), the isochrons
are rectilinear and coincide with the integral curves of V1. In agreement with Theorem 1, the
Lie bracket [V0, V1] is also tangent to the isochrons. Thus,

∪k≥1span {V (q) : V ∈ Vk} = TWss(p) �= R
2,

and the Kolmogorov operator K is not hypoelliptic, which explains the absence of phase
diffusion on the upper right panel. For β �= 0 (lower panels), however, the stochastic field V1
is not tangent to the isochrons anymore. As a consequence and in agreement with (3.5), the
Lie bracket [V0, V1] is able to span the azimuthal direction, so that the Hörmander condition
(3.3) is fulfilled. It follows that the Kolmogorov operator K is hypoelliptic, by Hörmander’s
theorem, which is manifested by the occurrence of phase diffusion in the lower right panel
of Fig. 3.
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3.2 Spectral Gap Property of the SHE (2.6)

We now turn to the spectral properties of the Markov semigroup of the SHE (2.6) and to the
nature of the decay of correlations depending on the control parameter δ and κ and for ε > 0.
In this case, recall that the diffusion operator,

D = ε2(∂2xx + ∂2yy),

in Cartesian coordinates in the right-hand side of (2.7), is uniformly elliptic, in the sense that
there exists α > 0 such that,

〈ξ, Dξ 〉 ≥ α‖ξ‖2, ∀ξ ∈ R
2.

In addition exponential decay of correlation is expected below the bifurcation point, for
δ < 0, since, for the deterministic case, the RP spectrum in spaces of distributions has
a spectral gap [44]. However, this is not the case above the bifurcation for which some
resonances are on the imaginary axis and prevent mixing, nor is it the case exactly at the
bifurcation point where the RP spectrum is continuous and responsible for an algebraic
decay of correlations. The latter is not possible here, since we know that the spectrum of
the SHE (2.6) is discrete (see Sect. 2.2). We also know from the previous Sect. 3.1 that
purely imaginary are not to be expected since the invariant measure is strongly mixing. Yet
an accumulation point at 0 in the complex plain could still prevent the existence of a spectral
gap.

The following proposition states that, for all values of the control parameter δ, a spectral
gap in fact exists in L2

μ(R2), where μ is the invariant measure associated with the density
ρ∞ (Eq. (2.11)). The proof is given in Appendix B.2 and relies on the theory of Lyapunov
functions and ultimate bounds reviewed in [26, Appendix A.5].

Proposition 3 For any δ in R, β in R, κ > 0 and ε > 0, the SHE (2.6) has a spectral gap
and correlations decay exponentially in L2

μ(R2).

This result is thus just a consequence of stochastic analysis techniques as reviewed in [26],
without explicit calculations of the RP spectrum. In Sect. 4 below,we provide however amore
precise description of the latter by using small-noise expansion techniques; see Propositions 4
and 5.

Remark 6 Note that for δ < 0, the rate 2δ of the exponential bound in (B.4) is given by the
real part of the second eigenvalue of the Kolmogorov operator of the linearized system at the
origin, i.e. the leading eigenvalue associated with an eigenfunction on which the projection
of ϕ(r , θ) = r2 is nonzero; see Sect. 4.1.

Remark 7 Interestingly, for δ = 0 and ε = 0, the ultimate bound is, however, not verified.
This is not surprising, since we know from [44] that the decay of correlation is in this case
only algebraic. On the other hand, for δ �= 0 but ε = 0, the ultimate bound still holds but
one cannot apply Theorem 6 from [26] anymore, since the system is no longer stochastic.
However, the existence of a spectral gap and the exponential decay of correlations in this
deterministic case may be inferred from [44].
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4 Small-Noise Approximation of the RP Resonances, ı �= 0

In this section, we look for expansions of the RP eigenvalues and eigenfunctions for relatively
low values of the noise level ε > 0 and away from the bifurcation as singular perturbations
of the deterministic case.

General small-noise expansion formulas for the RP resonances have been derived by [38]
using a WKB approximation and his results have been discussed for a form of the SHE (2.6)
considered here by [8]. However, to learn more about the geometrical properties of the
stochastic system and to be able to calculate power spectra between any pair of observables
according to the spectral decomposition (1.7), we derive analytic approximations of the
eigenfunctions of the Kolmogorov operator K as well as of those of its adjoint, K∗.

To do so, we rely on a rescaling of the coordinates depending both on the noise level ε and
on the parameter δ controlling the stability of the solutions to adimensionalize the SHE (2.6).
A natural time scale is given by δ−1, while a spatial scale Lε(δ) capturing the effect of the
noise with respect to the stability of the deterministic solutions is given by ε/

√−δ if δ < 0
or by ε/

√
δ if δ > 0. Applying Itô’s formula, the change of variable r → r ′ = r/Lε(δ),

θ → θ ′ = θ or φ → φ′ = φ, and t → t ′ = δt yields for the SHE (2.6),

dr ′ = r ′
(

δ

|δ| − r ′2

r2ε
+ 1

2r ′2

)
dt ′ + dWr

dθ ′ =
(

γ̃ − β̃
r ′2

r2ε

)
dt ′ + dW ′

θ

r ′

or dφ′ =
(
γ̃ − β̃

)
dt ′ − β̃

dWr

r ′ + dWθ

r ′ , (4.1)

where δ/|δ| = −1 if δ < 0, 1 if δ > 0. In addition to the twist factor β̃ = β/κ , we
have introduced the adimensional parameters γ̃ (γ, δ) = γ /δ and rε(δ, κ) = δ/(

√
κε),

simply noted γ̃ and rε , respectively, in the remaining. Defining R by
√−δ/κ for δ < 0,

the adimensional parameter is such that rε = R/Lε(δ). Thus the effect of the noise on the
adimensional dynamics (4.1) is bound to that of the parameters δ and κ in a single coefficient
rε . For a fixed R, this effect increases with the noise-level ε and decreases with the square
root of δ. Since all coefficients in (4.1) involving the noise level ε enter as σε = 1/rε , we are
led to expand the eigenvalues and eigenfunctions of the Kolmogorov operator as,

λ = λ(0) + σελ
(1) + σ 2

ε λ(2) + . . .

ψ ′ = ψ(0) + σεψ
(1) + σ 2

ε ψ(2) + . . . .

Since, the deterministic solutions and the change of variables differ for δ < 0 and δ > 0,
each case is treated separately in the next Sects. 4.1 and 4.2, respectively. From the definition
of the small parameter σε , whether for δ < 0 or for δ > 0, the small-noise expansions will
be more precise when the noise level ε is small with respect to δ, for a fixed κ .

4.1 Below the Bifurcation (ı < 0)

All deterministic solutions converge to the steady state x∗ at the origin. An example of
stochastic trajectory is represented in blue in Fig. 4a for δ = −1, κ = 1, γ = 4, β = 0.5
and ε = 0.4 on top of the corresponding stationary density given by (2.11). As expected,
the process meanders near, x∗, although the maximum in density is slightly away from x∗,
due to the additional drift term ε/(2r) in (2.8). The following proposition yields the small-
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noise expansion of the leading part of the spectrum of the SHE (2.6) for δ < 0. The proof
is given in Appendix C.1 and relies on known results for the complex Ornstein-Uhlenbeck
process [19,64].

Proposition 4 For δ < 0 and ε
√

κ/δ << 1 the approximation of the leading eigenvalues
and eigenfunctions associated with the SHE (2.6) are given by:

– Eigenvalues associated with the stable steady state:

λln = (l + n)δ + i(n − l)γ + Oβ̃

⎛
⎝
(

ε/
√

δ√
δ/κ

)2
⎞
⎠ , l, n ∈ N. (4.2)

– Eigenfunctions associated with the stable steady state:

ψln(r , θ) ≈

⎧⎪⎨
⎪⎩
ei(n−l)θ

√
l!
n!
(√

− δ
ε2
r
)n−l

Ln−l
l

(
− δr2

ε2

)
, n ≥ l

ei(l−n)θ
√

n!
l!
(√

− δ
ε2
r
)l−n

Ll−n
n

(
− δr2

ε2

)
, n < l,

(4.3)

where Lα
l (r) = r−α

l! er dl

drl
(e−r r l+α) denotes the Laguerre polynomial of degree l [59,

p. 76] in the radius r .
– Adjoint eigenfunctions associated with the stable steady state:

ψ∗
ln ≈ ψln ρx∗ . (4.4)

– Decorrelation time:

τ = −1

δ
+ Oβ̃

⎛
⎝
(

ε/
√

δ√
δ/κ

)2
⎞
⎠ . (4.5)

In (4.2) and (4.5), Oβ̃ (ε
√

κ/δ) is the usual asymptotic notation for the small parameter

ε
√

κ/δ but with an indication that the remaining terms in the expansions actually depend on
the twist factor β̃.

The RP resonances (4.2) are represented in Fig. 4c for fixed values of the parameters.
A typical triangular structure is observed, as a result of the aforementioned integer linear
combination of complex conjugate eigenvalues λ± = δ ± iγ of the tangent map Jx∗ . In the
direction of the real axis, these eigenvalues are separated by a gap of δ given by the real part of
the eigenvalues of the tangent map. Thus, as the control parameter δ is increased to its critical
value, the decorrelation time τ ≈ −1/δ in (4.5) increases, indicative of the weaker stability of
the steady state of the deterministic system.Moreover, the eigenvalue λln, n > l is associated
with an eigenfunction that is approximated by the product of a polynomial of degree n + l
and the (n − l)th harmonic function exp i(n − l)θ . Thus, eigenfunctions associated with
eigenvalues further away from the real axis (resp. imaginary axis) exhibit a higher degree of
nonlinearity in the radial (resp. azimuthal) direction, as measured by their number of sign
changes. As an example, the eigenfunction ψ01 associated with the eigenvalue λ01 ≈ δ + iγ
closest to the imaginary axis is represented in Fig. 4e. Its phase argψ01 = θ is represented by
filled contours, while its amplitudeψ01e−i argψ01 = r is represented by dashed contour lines.
The amplitude and phase of the leading secondary eigenfunction is thus the components of
the stochastic process in polar coordinates. This is not surprising, since the eigenfunctions
are approximated by those of the (linear) Ornstein-Uhlenbeck process with drift given by the
tangent map Jx∗ , as explained above.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 Schematic of the approximated RP spectrum of the SHE (2.6), for κ = 1, γ = 4, β = 0.5 and ε = 0.4,
and with δ = −1 < 0 (left) or δ = 1.5 (right). The top panels (a, b) represent the stationary density (2.11) as
red filled contours, together with an example of trajectory in blue and the steady state x∗ at the origin. The RP
resonances in the complex plane are represented in the central panels (c, d), with their real parts as abscissa
and their imaginary parts as ordinates. The bottom panels (e, f) represent the second eigenfunction ψ01, with
its phase as filled contours and its amplitude as thin line contours (for δ < 0). For δ > 0, the deterministic
limit cycle Γ is also represented as a thick dashed line, together with the isochron Ix0 of some point x0 on Γ

as a thick blue line and the eigenvectors e0 and e1 of the tangent map at this point (Color figure online)
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Remark 8 In the expansion (4.2), we do not control for changes in the weights in front of
the O(ε2) for different eigenvalues. Thus, high-order terms may have a larger impact for
some eigenvalues than for other, a phenomenon that we describe in the numerical results of
Sect. 5.2.1.

4.2 Above the Bifurcation (ı > 0)

After the deterministic Hopf bifurcation, two limit sets coexist, the unstable steady state x∗
at the origin and the stable limit cycle Γ of radius R. An example of stochastic trajectory
is represented in blue in Fig. 4b for δ = 1.5, κ = 1, γ = 4, β = 0.5 and ε = 0.4 on top
of the corresponding stationary density given by (2.11), while the orbit Γ is represented by
the dashed line. Here small-noise expansions are also illuminating to obtain approximation
formulas when applied separately about the unstable steady state and the limit cycle.

4.2.1 Small-Noise Expansions About the Unstable Steady State x∗

Repeating similar arguments than in the case δ < 0, the RP resonances associated with the
unstable steady state are here given for δ > 0, by

λln = −(l + n + 2)δ − i(l − n)γ + Oβ̃

((
ε
√

κ/δ
)2)

, l, n ∈ N. (4.6)

These eigenvalues are represented for fixed values of the parameters as blue triangles in
Fig. 4d. A triangular array of eigenvalues is found, as for δ < 0 in panel (c) of the same
figure. However, the real part of these eigenvalues satisfies �(λln) ≤ −2δ. The latter bound
actually characterizes the rate of expansion of volumes near the unstable steady state x∗ (and
away from the limit cycle Γ ). The latter decreases with increasing δ, i.e. as the instability of
x∗ increases.

4.2.2 Small-Noise Expansions About the Limit Cycle 0

On the other hand, another family of eigenvalues associated with the limit cycle can be
identified. In order to study small-noise perturbations of the system away from the limit cycle,
we work in Appendix C.2 from the adimensional version of the Kolmogorov equation (2.22)
associated with the radial r and asymptotic phase φ, variables. Compared to the original
Kolmogorov equation (2.9) written in polar coordinates, the Kolmogorov equation (2.22)
— formulated in Sect. 2.3.3 with the help of isochrons — helps us separate the drift term
into two contributions, one in the r -coordinate alone, and the other in the φ-coordinate. In
the unperturbed case, this separation of variables shows that the isochrons can be identified
with isolines of phase of the eigenfunctions associated with purely imaginary eigenvalues.
As a result, Fourier averages related to these eigenfunctions have been proposed to estimate
the isochrons [62,63]. The following proposition, proved in Appendix C.2, shows for the
SHE (2.8) that, when the noise is asymptotically small, the isochrons still coincide with the
isoline of phase of the eigenfunctions.

Proposition 5 For δ > 0 and ε
√

κ/δ << 1 the approximation of the leading eigenvalues
and eigenfunctions associated with the limit cycle Γ of the SHE (2.6) are given by:
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– Eigenvalues associated with the stable limit cycle:

λln =
⎧⎨
⎩

− n2ε2(1+β̃2)

2R2 + inω f + O
((

ε/
√

δ√
δ/κ

)
3
)

, l = 0, n ∈ Z

−2lδ + inω f + O
(

ε/
√

δ√
δ/κ

)
, l �= 0.

(4.7)

– Eigenfunctions associated with the stable limit cycle:

ψln ≈
(
2kk!

)− 1
2

e
in
(
θ−β̃ log r

R

)
Hl

(√
2δ

ε
(r − R)

)
, l = 0. (4.8)

– Adjoint Eigenfunctions of the stable limit cycle:

ψ∗
ln ≈

(
2kk!

)− 1
2

e
in
(
θ+β̃ log r

R

)
Hl

(√
2δ

ε
(r − R)

)
ρx∗(r), l = 0. (4.9)

– Decorrelation time:

τ = 2R2

ε2(1 + β̃2)
+ O (1) . (4.10)

To help interpret these formulas, the RP resonances for fixed values of the parameters are
represented in Fig. 4d togetherwith the eigenfunctionψ01 = exp i(θ − β̃ log r/R) associated
with the second eigenvalueλ01 = −ε2(1+β̃2)/(2R2)+inω f in Fig. 4f. One can first observe
in panel (d) a typical array of parabolas of eigenvalues. The latter are separated by a spectral
gap of −2δ (see Remark 6) given by the characteristic exponent associated with the Floquet
vector transverse to the flow and accounting for the stability of the limit cycle Γ ; see also A.
One the other hand, the imaginary part inω f , for each harmonic, is associatedwith the neutral
dynamics of advection along the limit cycle. These two contributions jointly coincide with
the eigenvalues for the deterministic case found in spaces of distributions by [44].

However, the diffusion along the limit cycle, is responsible for an additional real con-
tribution −n2ε2(1 + β̃2)/(2R2), which is not found in the deterministic case and which is
responsible for the parabolic shape of the array of eigenvalues. As a result, λ00 = 0 (repre-
sented as a green star in Fig. 4d) is the only eigenvalue on the imaginary axis. The presence
of noise therefore enforces the system to be mixing, in agreement with the spectral gap result
of Sect. 3.2. This “loss of memory” is captured by the finiteness of the decorrelation time
τ ≈ 2R2/(ε2(1 + β̃2)), which decreases as the noise level ε and the curvature 1/R of Γ

strengthen.
In addition, the phase diffusion becomes stronger with increasing magnitude of the twist

factor β̃ aswell. As discussed in Sect. 3.1, a nonvanishing twist factor β̃ allows for a fraction of
the noise in the radial direction to be transmitted to the azimuthal direction by the deterministic
vector field F . As depicted in panel (f) of Fig. 4, the eigenvector e2 of the tangent map to F
is tangent to Γ , while e1 is tangent to the isochron. Thus, when β �= 0, the vector e1 projects
both on the radial and on the azimuthal parts of the stochastic forcing. Moreover, since
argψ01 = φ = θ − β̃ log(r/R), the phase of the second eigenfunction follows the isochrons,
so that the radial dependence of the phase diffusion results in the characteristic twisting of
the eigenfunctions when β �= 0. As a result, the eigenfunctions are not orthogonal when β

is nonzero and the Kolmogorov operator K inherits from the nonnormality of the Jacobian
JΓ . Finally, (C.6) and (4.8) show that the eigenfunctions associated with eigenvalues further
from the real axis (imaginary axis) have a higher degree of nonlinearity in the radius (resp.
the phase).
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To conclude, let us emphasize the difference in structure between the RP spectrum asso-
ciated with the stable steady state for δ < 0 and the one associated with the limit cycle
for δ > 0. While the eigenvalues have nonvanishing imaginary parts in both cases (4.2) and
(4.7), whichmust result in peaks in the power spectrum, the triangular structure for the steady
state and the parabolic structure for the limit cycle, as shown in Figs. 4c and d, allow one to
discriminate between stochastically forced linear oscillations and nonlinear oscillations with
phase diffusion. This is also true regarding the eigenfunctions, given by the formulas (4.3)
and (4.8), which in the case of the steady state (and to zeroth order) are the product of different
polynomials by harmonics with a different sensitivity to the twist factor β̃ = β/κ . These
effects will be illustrated in the applications of the third part of this contribution [87], with
a discussion of their use to characterize the nature of the dynamics of complex oscillatory
systems. The investigation of the RP spectrum at the bifurcation does not follow the reasoning
above. Instead, we numerically investigate mixing at the bifurcation in the following Sect. 5.

5 Mixing at the Bifurcation Point: Numerical Results

Close to the bifurcation point, the small noise-expansions of the previous Sect. 4 are no longer
valid since the linear term in δ vanishes and the rescaling of time in terms of this parameter is
no longer possible.We thus perform a complementary numerical analysis of the Kolmogorov
equation to study the RP spectrum at the critical point and test the range of validity of the
analytical formulas of the previous Sect. 4.

5.1 A Different Scaling

Let us first note that, even though the limit cycle does not exist, the asymptotic phaseφ for any
point different from the origin can still be defined up to a constant as φ = θ −β̃ log r and such
that the derivative (2.19) exists and the Kolmogorov equation (2.22) in (r , φ) coordinates
holds. Second, contrary to the deterministic case, a new temporal scale can be defined as
(ε

√
κ)−1 when ε > 0. A corresponding spatial scale may then be defined as ε1/2/κ1/4. This

time scale thus depends on the coefficient κ of the cubic term of the radial vector field in (2.8)
rather than on the coefficient δ of the linear term used in Sect. 4 for δ �= 0, and the spatial
scale is now proportional to

√
ε rather than to ε. We thus use the following change of variable

to adimensionalize the SHE (2.6),

r ′ = rκ1/4/ε1/2, φ′ = φ + ω f t s = ε
√

κt .

Indeed, the Kolmogorov equation (2.22) with u′(r ′, φ′) = u(r , φ) then becomes

∂su
′ = (−r ′3 + 1

2r ′ )∂r ′u′ + 1

2
∂2r ′r ′u′ − β̃

r ′ ∂
2
r ′φ′u′ + 1 + β̃2

2r ′2 ∂2φ′φ′u′.

Interestingly, even though the nonlinear coefficients hinder the full resolution of the associated
eigenproblem, this equation shows no dependance on the noise level ε. This is allowed by
the absence of the r term in the drift when δ is zero. As a consequence, each eigenvalue must
have a real part proportional to ε

√
κ , i.e.

�(λk) ∼ ε
√

κ, (5.1)
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and the decorrelation time is proportional to the inverse of ε
√

κ ,

τ ∼ 1

ε
√

κ
.

This simple result is rich in conclusions, as it shows that themore intense the noise level ε, the
larger the spectral gap between the eigenvalues. Thus, the noise has a stabilizing effect on the
statistics, compared to the deterministic case, which can be understood from its smoothing
effect analyzed in Sect. 3.

5.2 Parameter Dependence Close to Bifurcation: Numerical Results

To learn more about the RP spectrum of the SHE (2.6) for δ ≈ 0, we proceed to a numerical
approximation of theKolmogorov operatorK associatedwith theKolmogorov equation (2.7).
Due to its two-dimensional character, this numerical problem is directly tractable, and the RP
resonances are estimated from discretization of the Kolmogorov operator; see [26, Remark 1-
(iii)]. In that respect, the standard finite-difference scheme proposed by [14] is chosen for the
adjoint K∗ in the Fokker-Planck equation, since it satisfies the conservation of probabilities
and of positivity and is straightforward to implement. The numerical approximation of K is
then simply given by the transpose of that ofK∗. Here,we impose no-fluxboundary conditions
for convenience (instead of vanishing at infinity), but with a sufficiently large domain to avoid
boundary effects. The square [−5L̂, 5L̂]2 is discretized into 200-by-200 boxes, where L̂ is
an approximation of the standard deviation of the x and y coordinates. The spectrum of the
finite-difference approximation of the Kolmogorov operatorK is then calculated numerically
using the implicitly restarted Arnoldi iterative algorithm implemented in ARPACK [60]. The
domain and resolution of the grid have been chosen for the approximation of at least the
second eigenvalue to converge (tests for particular cases suggest that a resolution of about
300-by-300 boxes would also allow for the third or forth eigenvalues to converge, but at the
price of a significant increase in the computing time). Different experiments for varying δ, β
and ε will be analyzed, while γ and κ are kept fixed to 1 (i.e. β̃ = β).

5.2.1 Crossing the Bifurcation Point, with a Zero Twist Factor ˜̌

We start by analyzing the numerical results for a fixed value of the noise level ε = 1 and
a vanishing twist factor β̃ = 0, but different values of the control parameter δ. In Fig. 5,
the leading eigenvalues of the finite-difference approximation of the Kolmogorov operator
K are represented as black dots on the left panels for (a) δ = −5, (c) δ = 0, (e) δ = 3 and
(g) δ = 7. In addition, the small noise prediction (4.2), for the RP resonances of the stable
fixed point, is also represented as black crosses in panel Fig. 5a. In Fig. 5g, the small noise
predictions (4.6), (4.7), for the eigenvalues of the unstable fixed point and of the limit cycle
are also represented as blue crosses and black pluses, respectively. On the same panels, to
the right, the power spectra between the three monomials x , x2 and x3 of the x = r cos θ

coordinate are also represented as blue, green and red lines, respectively. According to the
order of the harmonics in the small-noise expansions (4.3) and (4.8) for the eigenfunctions and
adjoint eigenfunctions, the observable x is expected to project mainly on the eigenfunctions
of the first complex pair of eigenvalues, x2 on the eigenfunctions of the second pair and x3 on
the eigenfunctions of both the first and the third pair. These power spectra are calculated from
the numerical approximations of the eigenvalues, eigenfunctions and adjoint eigenfunctions
(i.e. the eigenvectors of the transpose of the finite-difference approximation of K) according
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5 Left: Numerical approximation of the leading eigenvalues (black dots) of the Kolmogorov operatorK
for β = 0, γ = κ = 1 and a δ = −5, δ = 0, δ = 3 and g δ = 7. In addition, the small noise prediction (4.2),
for the RP resonances of the stable fixed point, is also represented as black crosses in a. In g, the small-noise
predictions (4.6, 4.7), for the eigenvalues of the unstable fixed point and of the limit cycle are also represented
as blue crosses and black pluses, respectively. On the same panels, to the right, the power spectra between the
three monomials x , x2 and x3 of the x coordinate are also represented as blue, green and red lines,respectively
(end of caption on next page).Right: Panels b, d, f and h represent the eigenfunction associated with the
second eigenvalue with positive imaginary part in the corresponding spectra plotted in panels a, c, e and g,
respectively. The phase of the eigenfunction is represented by filled contours and its amplitude by contour
lines (0.001, 0.002, …) (Color figure online)
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to the spectral decomposition (1.7). Finally, on the right panels, the corresponding eigenvector
associated with the second eigenvalue with positive imaginary part represented.2 The phase
of the eigenvectors is represented by filled contours and their amplitude by contour lines
(0.001, 0.002, ...).

For a small value of δ, panel (a) of Fig. 5, a triangular structure of eigenvalues is found and,
because of the large gap between the eigenvalues and the imaginary axis, the power spectra
are broad, with no distinct resonance. The leading eigenvalues are in quantitative agreement
with the small-noise expansion (4.2) around the stable fixed point represented in Fig. 4c. The
corresponding second eigenfunction in panel (b) of Fig. 5 also agrees with the expansionψ01

of (4.3) represented in Fig. 4e. On the other hand, the secondary columns of eigenvalues are
farther from the imaginary axis than the small-noise expansions. Since the numerical results
have converged, this must be due to higher-order terms in the expansions which are not taken
into account and which can depend on the noise level ε and be responsible for more mixing.
This points at the fact that, in the expansion (4.2), we do not control the weight of the higher-
order terms in ε2 as we switch from one eigenvalue to the next. One should thus take this
effect into account when the noise level is strong with respect to the contraction measured
by δ. This is particularly important when considering eigenvalues farther from the imaginary
axis. Indeed, the latter typically exhibit more complex nodal properties, as is the case in
the small-noise expansion (4.3) and in general for multi-dimensional Ornstein-Uhlenbeck
processes for which the eigenfunctions are polynomials of increasing degree [64], and are
thus more difficult to approximate [89, see e.g.].

As the control parameter δ is increased (from panel (a) to (c) in Fig. 5) the eigenvalues get
closer to the imaginary axis, as expected from the weaker stability of the limit cycle and as
predicted by the expansion (4.2) for the stable fixed point. One can also see from the larger
gaps between the contour lines in Fig. 5d compared to those of Fig. 5b that the amplitude
of the second eigenvector flattens, in agreement with (4.3). Because of the approach of
the first complex pair of eigenvalues to the imaginary axis, in agreement with the spectral
decomposition (1.7) and the eigenfunction expansions (4.3, 4.8), broad peaks begin to appear
in the power spectra of the observables x and x3 at angular frequencies given by the imaginary
part of the eigenvalues. On the other hand, the second pair is still too far for the observable
x2 to resonate.

As δ is further increased (panels (c–d) to (g–h) of Fig. 5) and the bifurcation point is
crossed, a rather smooth transition from the small-noise expansions for δ > 0 and then δ < 0
occurs, in which the first line of eigenvalues gets closer and closer to the imaginary axis.
As a result, strong resonant behavior occurs for all three observables, as can be seen from
the sharpening of the spectral peaks at the position of the first three harmonics. The peaks
remain finite, however, since, in agreement with the small-noise expansion (4.7), a spectral
gap persists between the eigenvalues and the imaginary axis, due to the noise. Finally, for
δ = 7 inn panel Fig. 5g, one finds the superposition of a family of parabolas and of a
triangular family of eigenvalues, in very good agreement with the small-noise expansions
(4.7) and (4.6) for the limit cycle and for the unstable fixed point, respectively, while the
corresponding eigenvector on panel Fig. 5h has an almost uniform amplitude, in agreement
with (4.8), except at the origin (c.f. Fig. 4d, f).

In agreement with the results of Section 3, the spectrum remains discrete during the
transition, as opposed to the deterministic case (c.f. [44]). On the other hand, precisely how
the transition occurs could not be predicted analytically from the geometric properties of the

2 Recall that the eigenfunction associated with the first eigenvalue is constant [26, Definition 1.(i)], while the
eigenfunction of the adjoint corresponds to the invariant measure.
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deterministic flow. In particular, eigenvalues farther away from the real axis tend to approach
the imaginary axis at a faster rate than the others, resulting in a curving of the triangle
array of eigenvalues, while the second eigenvector continues to flatten away from the origin.
Eventually (from panel Fig. 5e–g), parabolas of eigenvalues detach one after the other, while
other eigenvalues persist as a triangular family.

So far, these numerical experiments have mostly allowed to test the validity of the small-
noise expansions of Section 4 when the twist factor β̃ is vanishing and to reveal unpredicted
phenomena close to the bifurcation point. Next, the role of β̃ is investigated and a more
detailed numerical analysis of the change of the RP spectrum close to the bifurcation point
is given.

5.2.2 Crossing the Bifurcation Point, with a Nonzero Twist Factor

To learn more about the change in the spectrum when the twist factor β̃ is nonzero, the
same set of numerical experiments as in the previous subsection 5.2.1 is performed, but with
β̃ = 0.5 > 0. The results are reported in Fig. 6 in the same way as in Fig. 5. Below the
bifurcation point, the small-noise expansions (4.2) and (4.3) do not depend on β̃, so that
panels (a) and (b) of Fig. 5 and 6 should be identical. As closer inspection shows this is not
exactly the case, so that the noise level is strong enough to excite higher-order terms in ε

which depend on β̃, in agreement with theOβ̃ in the expansions of Proposition 4 and 5. As a
result, the imaginary parts of the eigenvalues are smaller, due the decrease of the frequency
of the fundamental and its harmonics induced by the twist factor β̃. In addition, the isolines
of phase of the second eigenvector (panel (b) of Fig. 6) are slightly tilted. One discerns on
panels (c) and (d) of Fig. 6 that both effects become more prominent closer to the bifurcation
point, i.e. the eigenvalues are even closer to the real axis and the isolines of phase even more
tilted. In particular the fact that the eigenvalues get closer to the real axis, and even cross
it, results in a dramatic change in the power spectra where the resonances are much more
centred, so that no spectral peak is visible away from 0 in Fig. 6c.

On the other hand, one distinguishes on panels (g) and (h) of Fig. 6 that the small-noise
expansions (4.6), (4.7) and (4.8) are in very good agreement with the numerical results far
above the bifurcation point. In particular, the increase of the spectral gap associated with
the increase of the phase diffusion due to the nonzero twist factor β̃ as well as the tilt of the
isolines of phase of the second eigenvectorwith the isochrons are captured. To summarize, the
twist factor β̃ is responsible for increasing themixing, changing the position of the harmonics
and twisting the eigenvectors.

5.2.3 Parameter Dependence Close to Bifurcation

In order to better understand the parameter dependence of the RP spectrum close to bifurca-
tion, we focus nowon the real part of the second eigenvalueλ1. Its numerical approximation is
represented in Fig. 7 for varying δ and ε with fixed β̃ = 0.5. On the left panel, each line corre-
sponds to the numerical approximation of�(λ1) for different values of the noise level ε (color
code in the legend). In addition, the dashed black line �(λ1) = δ corresponds to the small-
noise expansion (4.2) for δ < 0 and the colored dashed lines �(λ1) = −ε2(1 + β̃2)/(2R2)

correspond to the small-noise expansion (4.7) for δ > 0 and different values of ε. As expected,
for smaller values of ε and larger absolute values of δ, the numerical approximations con-
verge to the small-noise expansions. On the other hand, strong deviations occur when the
noise level is increased or when the system is placed closer to the bifurcation point. There,
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6 Same as Fig. 5 but with β̃ = 0.5
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(a) (b)

(c)

Fig. 7 Top left: Real part of the approximated second eigenvalue λ1 versus δ for β̃ = 0.5 (thick lines) and
with γ = κ = 1. Different colors correspond to different values of the noise level ε (see the legend). For
δ < 0, the curve �(λ1) = δ corresponding to the small-noise expansion (4.2) is plotted as a dashed black
line. For δ > 0, the curves �(λ1) = −ε2(1 + β̃2)/(2R2) corresponding to the small-noise expansion (4.7)
are plotted as dashed lines in the color corresponding that of the numerical approximation for a given ε. Top
right: Zoom to δ in the interval [−1, 1]. The numerical approximations are now represented as crosses in the
same color as on the right together with a least-square fit of the line y = a + bδ. Bottom: Real part of the
approximated leading eigenvalues versus he noise level ε for δ = 0 (crosses). The lines represent least square
fits y = a + bε (Color figure online)

the eigenvalue transits smoothly from the small-noise expansions for δ < 0 to δ > 0. Inter-
estingly, this change occurs more slowly when ε is large, so that the noise has a stabilizing
effect on the dependence of the eigenvalue of δ.

On the right panel of Fig. 7, a zoom to δ ∈ [−1, 1] allows for a more detailed analysis
of the changes in the second eigenvalue. There, the numerical approximations of �(λ1) are
represented by crosses in the same colors as the left panel for the same values of ε. On top of
them is plotted their least-square fit of the line y = a+bδ. Interestingly, the linear regressions
performs very well for a range of δ’s values close to 0, the latter increasing with ε. Even more
surprising, the slope of the linear regressions does not seem to depend on the noise level ε. In
other words, the dependence of the minimum decay rate of correlations �(λ1) on the control
parameter δ around 0 is close to linear, on a range which increases with the noise level ε but
with a coefficient which does not depend on ε.

To learn more about the role of the noise for δ = 0, the approximation of the real part of
the leading eigenvalues versus ε are represented on the bottom panel of Fig. 7 by crosses.
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(a) (b)

Fig. 8 Left: Real part of the finite-difference approximation of the second RP resonance λ1 versus δ (thick
lines), for ε = 0.25 (blue), ε = 0.5 (green), ε = 1 (red), ε = 1.5 (cyan), ε = 2 (magenta). For δ > 0, the
small-noise curves �(λ1) = −ε2/(2δ) are plotted as dashed lines in the corresponding color. For δ < 0,
the small noise curve �(λ1) = δ is plotted as a black dashed line. Right: Real part of the finite-difference
approximation of the second RP resonance λ1 versus ε, for δ = 0 (plus) and δ = 5 (cross). For δ = 0, the
least-square linear regression with coefficient −1.18 is also represented as a dashed line. For δ = 0, the curve
�(λ1) = −ε2/(2δ) is also represented as dotted dashed line (Color figure online)

Least square fits y = a + bε are also represented by lines. In agreement with the scaling
relationship (5.1), all real parts depend linearly on ε. Yet, it is interesting to see that the slope
of the lines is steeper for higher-rank eigenvalues, farther from the imaginary axis. In other
words, eigenvalues farther from the imaginary axis are more sensitive to the noise, so that,
as the noise level is increased, they move away from the imaginary axis at a faster rate.

Finally, we investigate the dependence of the RP spectrum on β̃ at the bifurcation point.
In Fig. 8 is represented by crosses the evolution of the real parts (left panel) and imaginary
parts (right panel) of the approximated leading eigenvalues, for δ = 0 and ε = 1. On top of
the real parts on the left are also represented the least square fits y = a + bβ̃2. Their perfect
match reveals the quadratic dependence of the real parts of the leading eigenvalues on β̃, as is
also the case for the small-noise expansions (4.7) for δ > 0. This dependence is, however not
uniform, as the real part of some eigenvalues are more sensitive to β̃ than others. Second, the
perfect match of the least square fits y = a + bε on the imaginary parts (right panel) reveals
their linear dependence on β̃. Moreover, this dependence is much stronger for eigenvalues
initially farther from the real axis when β̃ = 0. This result is in agreement with the strong
folding of the high harmonics from one side of the real axis to the other in Fig. 6c and d.

6 Summary and Discussion

We examined the stochastic Hopf bifurcation from the perspective of the Markov semigroup
and the spectrum of its generator. The latter—the RP spectrum—provides a characterization
of the dynamics, permitting among other things a decomposition of the correlation functions
and related power spectra; see [26, Corollary 1 and Sec. 2.3]. Contrary to the traditional
characterization of a bifurcation in terms of crossing of the imaginary axis by the eigenvalues
of the linearized problem, the RP resonances have real parts that remain negative as one
crosses the criticality. Bifurcations are instead characterized by a change in the geometric
patterns formed by the RP spectrum in the left half complex plane, and in particular the decay
of correlations. The RP spectrum allows for a unifying framework of stochastic analysis
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and Fokker-Planck equations relevant and useful for the study of stochastic bifurcations.
For instance, the stochastic analysis techniques reviewed in [26] and related decomposition
formulas of correlations and power spectra, are applied here to the Hopf bifurcation case and
small-noise expansions are derived for the corresponding eigenvalues and eigenfunctions
in terms of an adimensional small parameter involving the noise level and the coefficients
controlling the stability of the deterministic solutions.

As in the deterministic case, weak values of the parameter δ controlling the distance to
the deterministic bifurcation point are associated with the slowing down of the decay of
correlations, as given by the gap between the leading RP resonances and the imaginary axis;
see Section 4. However, the application, in Section 3, of the theory of Lyapunov functions and
ultimate bounds (see [26, Theorems 5& 6]) allows us to show that noise implies the existence
of a spectral gap that stays away from zero, even at and above the bifurcation point, leading to
correlations that always decay exponentially. In particular, while above the bifurcation point
the neutral deterministic dynamics on the limit cycle is associated with purely imaginary
eigenvalues and is thus non-mixing, phase diffusion due to the noise ensures mixing along
this limit cycle as well as the existence of a stationary density. This phase diffusion results in
the characteristic parabolic structure of theRP resonances above the bifurcation point (4.7), as
opposed to the triangular one below this point (see (4.2)), in the small-noise case considered
in Sect. 4.

To understand this phase diffusion, we use the concept of isochrons provided by the set of
points that share the same asymptotic phase, on the limit cycle. This allows us to derive an
SDE for the phase evolution in which two contributions appear: one coming directly from the
azimuthal direction, and one resulting from the interaction of the deterministic vector field
with the radial noise; see Eq. (2.21). This interaction is quantified thanks to the Hörmander
condition which in terms of isochrons can be summarized as (see Theorem 1 and Fig. 3):

For phase diffusion to occur, it is necessary that at least one component of the noise
acts transverse to the isochrons.

In particular, even if the stochastic vector field is tangent to the radial direction, phase diffusion
can occur as long as the isochrons are transverse to this direction. In the case of the stochastic
Hopf bifurcation considered here, it was shown in Section 2 that the tilt of the isochrons is
controlled by the twist factor β̃ = β/κ measuring the dependence of the frequency of the
oscillations on their amplitude. This effect was directly visible from the isolines of phase of
the RP eigenfunctions obtained in Section 4, in the small-noise case, as well as in the phase
diffusion coefficient ε2(1+ (β/κ)2)/R2 entering the real parts of the small-noise expansion
about the limit cycle of the RP resonances. These formulas for the resonances are particularly
useful, as they allow one to quantitatively relate the phenomenon of phase diffusion to the
broadening of the peaks in the power spectrum.

While, in the general case of a hyperbolic limit cycle in the presence of noise, the tilt
of the isochrons with respect to the stochastic forcing can in principle be measured, no
single parameter playing the role of twist factor can in general be singled out. In addition,
the calculation, even numerical, of the global isochrons of a high-dimensional system is a
difficult task. However, in the small-noise case, only local information on the isochrons about
the limit cycle is necessary. Indeed, it was shown by [38] that the effect of the interaction of
the noise with the deterministic vector field integrated over one period of the limit cycle is
measured by the coefficient

Φ = −ε2ω2
f

T

〈
C(T )f R2 , f R2

〉
〈
eR2 , f R2

〉 , (6.1)
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where ε is the noise level and eR2 and f R2 are respectively the right and left eigenvectors of
the matrix R of the Floquet representation (A.7) of the fundamental matrix M(t) associated
with the eigenvalue 0 (care should be taken to normalize eR2 to the same magnitude of the
vector field for (6.1) to be valid) ; see Section 2.3. The matrix C(t) is given by

C(t) =
∫ t

0
M(t)M(−s)DΓ (s)(M(t)M(−s))∗ds (6.2)

and corresponds to the correlation matrix [30,41] of a periodic Ornstein-Uhlenbeck process
with a drift given by the Jacobianmatrix A(t) (seeAppendix (A.1)) andwith a diffusionmatrix
DΓ (t), both evaluated along the limit cycle. A simple calculation, given in Appendix A.1,
shows that, in the case of the stochastic Hopf bifurcation considered here, the coefficient Φ
correctly coincides with the diffusion coefficient entering the real parts of the small-noise
expansion about the limit cycle of the RP resonances. Thus, in the small-noise case, the phase
diffusion coefficient (6.1) is readily accessible from the local properties of the deterministic
system about the limit cycle.

From the difference in structure of the RP spectrum below and above the bifurcation point
identified in Section 4, one could hope to distinguish the case of a single stable stationary
point perturbed by noise below the bifurcation, from the case of a perturbed limit cycle
above the bifurcation. However, close to the bifurcation point and for a high level of noise,
the small-noise expansions of the eigenvalues are no longer in agreement with the numerical
approximations of Section 5. The stochastic dynamics can no longer be understood in terms of
small perturbations of the deterministic dynamics. The numerical approximations, however,
give evidence that new constraints emerge at the bifurcation point. These results can be
summarized as follows:

– The numerical approximations are in good agreement with the small-noise expansions
of Section 4 far from the bifurcation point and for a small noise-level, even though
eigenvalues farther from the imaginary axis tend to be more sensitive to the truncation.

– As the bifurcation point is crossed, a transition occurs from a triangular structure of
eigenvalues to a parabolic one and the eigenvalues remain discrete.

– For δ ≈ 0, there is a δ-interval over which the real parts of the eigenvalues are to a large
extent linearly dependent on the bifurcation parameter δ. This interval widens with the
noise level, but the slope does not depend on it.

– For δ = 0, the real parts of the eigenvalues depend linearly on the noise, but eigenvalues
farther from the imaginary axis are more sensitive to the noise.

– The effect of the twist factor β̃ = β/κ on the RP eigenfunctions and eigenvalues is
already visible below the bifurcation point.

– For δ = 0, the real parts and the imaginary parts of the leading eigenvalues depend
quadratically and linearly on the twist factor β̃, respectively.

– Eigenvalues that would correspond to higher harmonics for β̃ = 0 can evolve rapidly
with changes in β̃ and δ and need not correspond to integer multiples of a constant
fundamental frequency. This is particularly noticeable near the bifurcation and can have
subtle consequences for the power spectrum.

The geometric characterization of the phenomenon of phase diffusion and the formulas
for the RP eigenvalues and eigenfunctions allow one to gain novel insights on the dependence
of the regularity of nonlinear oscillators forced by noise not only on the noise level, but also
on the stability of the underlying limit cycle and on the twist of its isochrons.

The analysis conducted here on the stochastic Hopf equation points out a rich set of
properties that builds intuition for examination of more complex nonlinear oscillations in
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presence of noise. In the third part of this contribution [87], these results are applied to
models of a leading mode of climate variability, El Niño-Southern Oscillation, for which
understanding the dynamics behind its aperiodicity remains a challenge.
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A Floquet Theory Applied to the Hopf Normal Form

Floquet theory allows one to characterize the local stability properties of deterministic flows
about a periodic orbit. These properties are essential to the response of the system to stochastic
forcing studied in Section 3 and to the small-noise expansions of the RP spectrum obtained
in Section 4. We thus review here standard results from the application of Floquet theory to
the normal form (2.1) of the Hopf bifurcation.

Small deviations x ′(t) from the orbit xΓ (t) associated with the limit cycle Γ , satisfy the
variational equation ([56], Chap. 1.5)

ẋ ′(t) = A(t)x ′(t), x ′(t) ∈ R
2, t ∈ R. (A.1)

Here, A(t) := (DF)xΓ (t) denotes the Jacobian matrix about the orbit xΓ (t), of the vector
field F associated with the Hopf normal form written in Cartesian coordinates, i.e. the RHS
of Eq. (2.6) for ε = 0. In other words, A(t) provides the tangent map of F along xΓ (t). Thus,
A is periodic, i.e., A(t + T ) = A(t), for any t in R. Let M(t) be a fundamental solution
([46], Chap. IV.1) of (A.1), i.e.,

Ṁ(t) = A(t)M(t) and det M(t) �= 0, t ∈ R. (A.2)

Then the Floquet theorem (e.g. [46], Theorem IV.6.1) ensures that M(t) has the following
representation

M(t) = Z(t)et R, where Z(t + T ) = Z(t), t ∈ R, (A.3)

and R is a constant matrix. Imposing, without loss of generality, that M(0) = I yields
Z(T ) = Z(0) = I and M(T ) = eT R .

While determining the Floquet representation of a fundamental matrix is in general a
difficult task, in the case of the Hopf normal form (2.1), it can easily be found from the
linearization of the vector field in polar coordinates. In that respect, we assume furthermore
that δ in Eq. (2.1) is positive. The orbit xΓ (t) writes then (R, θ0 + ω f t), for some initial
phase θ0. The linearization about Γ of the vector field (2.14) in polar coordinates is given by
the matrix

JΓ (t) =
( −2δ 0

−2βR 0

)
(A.4)

and depends implicitely on time only through the evolution of the tangent space on which
it acts with the reference solution xΓ (t), so that the time argument will be dropped in the
sequel.
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To proceed, let us introduce the Jacobian matrix of the transformation (x, y) → (r , θ)

and its inverse, respectively given by

Jpolar(r , θ) =
(

cos θ sin θ

−r−1 sin θ r−1 cos θ

)
= S−1(r)L(−θ), r > 0

J−1
polar(r , θ) =

(
cos θ −r sin θ

sin θ r cos θ

)
= L(θ)S(r),

where we have used the rotation and diagonal matrices

L(θ) =
(
cos θ − sin θ

sin θ cos θ

)
and S(r) =

(
1 0
0 r

)
.

The matrix JΓ is then related to the matrix A(t) of the tangent map (DF)xΓ (t) in Cartesian
coordinates by

A(t) = J−1
polar(R, θ0 + ω f t) JΓ Jpolar(R, θ0) + ω f L

(π

2

)
, t ∈ R. (A.5)

That the conversion of JΓ to Cartesian coordinates coincides with the matrix A(t) of the
tangent map but for the term ω f L(π/2) is due to the rotation of the polar frame along the
limit cycle Γ , which was not taken into account when calculating JΓ .

One can then verify that the matrix

M(t) = J−1
polar(R, θ0 + ω f t) e

t JΓ Jpolar(R, θ0), t ∈ R, (A.6)

is a solution to (A.2), for the reference solution xΓ (t) on Γ . Since

J−1
polar(R, θ0 + ω f t) = L(ω f t) J−1

polar(R, θ0),

it follows that the fundamental matrix M(t) has a Floquet representation

M(t) = Z(t) et R, t ∈ R,

with Z(t) = L(ω f t) and R = J−1
polar(R, θ0) JΓ Jpolar(R, θ0). (A.7)

Applying M(t) to a vector x ′ at time 0 thus corresponds to converting this vector to polar
coordinates, integrating to a time t according to the generator JΓ and converting back from
polar coordinates at time t . In other words, the polar frame at xΓ (t) = (R, θ0 + ω f t)
constitutes a co-moving frame adapted to the Floquet representation of M(t).

Note next that JΓ can be diagonalized as

JΓ = E Λ F∗

with E =
(
1 0
β̃
R 1

)
, Λ =

(−2δ 0
0 0

)
and F∗ = E−1 =

(
1 0

− β̃
R 1

)
, (A.8)

where F∗ denotes the complex conjugate of the matrix F . Then, from the definition (A.7) of
R,

R = ER Λ F∗
R

with ER = J−1
polar(R, θ0) E and F∗

R = E−1
R = F∗ Jpolar(R, θ0). (A.9)

Thus, the eigenvalues of R coincide with those of JΓ and its eigenvectors are given by
converting those of JΓ from polar coordinates.

The eigenvalues α1 and α2 of R are called the characteristic exponents of Γ and the
eigenvalues of eT R its characteristic multipliers ([40], Chap. 1.5). The eigenvector associated
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with α2 is in the direction of the flow, so that eTα2 is always unity. On the other hand, the
other eigenvalue α1 = −2δ determines the stability of the periodic orbit. It is in fact the
eigenvalue of the tangent map DST of the Poincaré map.

A.1 Calculation of the Phase Diffusion Coefficient from the CorrelationMatrix

In the case of the stochasticHopf bifurcation considered here, the diffusionmatrix DΓ in (6.2)
for any point on Γ is given in polar coordinates by

DΓ =
(
1 0
0 1

R2

)
, t ∈ R (A.10)

and is hence constant in time. Since f R2 is a left eigenvector of the matrix M(T ) = eT R with
R given by (A.7), it follows that

Φ = −ε2ω2
f 〈DΓ f2, f2〉 = −ε2

1 + β̃2

R2 = −ε2
1 + β2

δκ
, (A.11)

where f2 = ω−1
f (−β̃/R), 1) is the conversion to polar coordinates of the left eigenvector

f R2 of R and, according to (A.9), coincides with the left eigenvector of the polar Jacobian
matrix JΓ in (2.15) at initial time. The factor ω−1

f in f2 = (−β̃/(ω f R), 1) is due to the

normalization of eR2 to the magnitude of the vector field F on Γ , which is essential for (6.1)
to hold.

B Proofs of the Stochastic Analysis Results of Section 3

B.1 Proof of Theorem 1: Isochrons and Hörmander Condition

For two arbitrary smooth vector fields V andW , recall that the Lie bracket [V ,W ] coincides
with the Lie derivative LVW of W along V . The Lie derivative can be defined in terms of
pullback of a vector field by a diffeomorphism. The pullback, or Lie transport, (SV∗

t W )(q)

at a point q of a vector fieldW by the flow SVt generated by V can be defined as the vector at
q tangent to the image by SV−t of any curve to which W (SVt q) is tangent. The Lie derivative
at a point q is then defined in terms of pullback of a vector field, by

LVW = d

dt

∣∣∣∣
0
SV∗
t W . (B.1)

This expression says thatLVW measures the rate of change ofW due to the Lie transport [36,
Chap. 3-4]. Note that the Lie derivative is well defined because both the vector field at some
point and its pullback at the same point live in the tangent space to the manifold at this
point. The following is derived from the fact that the isochrons are permuted by the flow St
generated by V0 (Proposition 2-(ii)): if a vector field Vi is tangent to an isochronWss(St p) at
some point Stq , i.e. if Vi (Stq) ∈ TWss(St p), where TWss(p) denotes the tangent space to
Wss(p), then its pullback to a pointq inUΓ by St is necessarily tangent to the isochronWss(p),
i.e Vi (q) ∈ TWss(p). Thus, as a linear combination of vectors in the tangent space TWss(p),
the Lie derivative (LV0Vi )(q) = [V0, Vi ](q) is also in TWss(p). The same argument holds
for the Lie derivative LVi Vj between two vector fields tangent to the isochrons everywhere
inUΓ , with the difference that the vector fields are Lie transported along the same isochron,

123



1440 A. Tantet et al.

in this case. Lastly, any iteration of Lie brackets between the family {Vi , 0 ≤ i ≤ m},
where V0 is the vector field of the deterministic system with a hyperbolic limit cycle and the
{Vi , 0 < i ≤ m} are vector fields tangent to the isochrons of the limit cycle, yields the same
outcome. It follows that

∪k≥1span {V (q) : V ∈ Vk} = TWss(p), for any q ∈ UΓ ,

where Wss(p) is the isochron passing through q .

B.2 Proof of Proposition 3: Spectral Gap

Proposition 3 can be obtained as application of [26, Theorem 6] which provides conditions
ensuring existence of a spectral gap and exponential decay of correlations. Since, as shown in
Section 3.1, the Markov semigroup (Pt )t≥0 associated with the SHE (2.6) is irreducible and
strong Feller in it is thus sufficient to check the ultimate bound condition of [26, Theorem 6]
to conlude, which we do hereafter.

More specifically, denoting by Xx
t the stochastic process solving the SHE (2.8) and ema-

nating from x = (r , θ), we show that there exists k, c, d > 0 such that

E|Xx
t |2 = E[r2t ] < kr2e−ct + d, t ≥ 0, r ≥ 0, (B.2)

for any value of the control parameters δ in R, β in R, κ > 0, and ε > 0.
As evolution of the observable ϕ(r , θ) = r2 by the Markov semigroup Pt , note that the

function t → E[r2t ] solves theKolmogorov equation (2.9), which leads here to the differential
equation

d

dt
E[r2t ] = 2ε2 + 2

(
δE[r2t ] − κE[r4t ]) . (B.3)

To derive a bound (B.2), we bound the right-hand side of the ODE (B.3) in E[r2t ] and to
apply comparison results of Gronwall-Bellman-Bihari type; see e.g. [13].

For δ < 0, below the bifurcation, the estimate

d

dt
E[r2t ] ≤ 2ε2 + 2δE[r2t ],

holds, sinceE[r4t ] > 0. It follows from the standardGronwall inequality for linear differential
inequalities (e.g. [13, Chap. 1, Lemma 1.1]) that

E[r2t ] ≤ r2e2δt + ε2

δ
(1 − e2δt ) ≤ r2e2δt + ε2

δ
, t ≥ 0. (B.4)

Thus, one can choose k = 1, c = −2δ and d > −ε2/δ, for the ultimate bound (B.2) to be
satisfied.

Next, for δ ≥ 0, above the bifurcation, (B.3) is equivalent to

d

dt
E[r2t ] = 2ε2 − 2E

[
r2t (κr2t − δ)

]
,

and it follows, by applying Jensen’s inequality (e.g. [51], Lemma 2.5), that

d

dt
E[r2t ] ≤ 2ε2 − 2E[r2t ](κE[r2t ] − δ), t ≥ 0. (B.5)
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A classical comparison theorem on differential inequalities [13, Chap. 2, Theorem 6.3]
ensures that the inequality (B.5) implies boundedness from above of the 2nd moment E[r2t ]
by a maximal solution y of the scalar ODE

y′(t) = 2ε2 − 2y(t)(κ y(t) − δ), y(0) = r2, t ≥ 0.

By solving this equation, one finds the maximal solution

y(t) = Rε(δ, κ)2 − w
√

Δ

w − exp
(
2
√

Δt
) , t ≥ 0,

where w is a constant of integration, Δ = R2 + 4ε2/κ and Rε(δ, κ)2 = (R + √
Δ)/2 is the

equilibrium to which y(t) converges as t goes to infinity. For the initial condition y(0) = r2,
one finds

w = (r2 − Rε(δ, κ)2)(r2 − Rε(δ, κ)2 + √
Δ)−1,

Let us look for exponential bounds on y(t). First,

r ≤ Rε(δ, κ) ⇒ w ≤ 0 ⇒ y(t) ≤ Rε(δ, κ)2, for t ≥ 0,

while

r ≥ Rε(δ, κ) ⇒ 0 ≤ w ≤ 1 ⇒ y(t)

≤ Rε(δ, κ)2 + (r2 − Rε(δ, κ)2) exp
(
−2

√
Δt
)

, for t ≥ 0.

We have thus shown that the second moment E[r2t ] satisfies the inequality
E[r2t ] ≤ y(t) ≤ Rε(δ, κ)2 + r2 exp

(
−2

√
Δt
)

, r ≥ 0, t ≥ 0.

Thus, for δ ≥ 0 and ε > 0, the second moment satisfies the ultimate bound (B.2) with k = 1,
c = 2

√
Δ and d = Rε(δ, κ)2. This estimate is valid even at the critical value 0 of δ, as long

as the noise level ε is nonzero. In this case, the exponential decay rate a = 4ε is proportional
to the noise level.

C Proofs of the Small-Noise Expansions of Section 4

C.1 Proof of Proposition 4: Expansions for ı < 0 About the Stationary Point

We proceed to the small-noise expansion of the Kolmogrov equation corresponding to the
SHE (4.1) in adimensional Cartesian coordinates, x ′ = x/Lε(δ), y′ = y/Lε(δ) and t ′ = δt ,

∂t ′u =
[(−1 − σ 2

ε

(
x ′2 + y′2)) x ′ −

(
γ̃ − β̃σ 2

ε

(
x ′2 + y′2)) y′] ∂x ′u + 1

2
∂2x ′x ′u

+
[(

γ̃ − β̃σ 2
ε

(
x ′2 + y′2)) x ′ + (−1 − σ 2

ε

(
x ′2 + y′2)) y] ∂y′u + 1

2
∂2y′y′u.

Since the small parameter σε = 1/rε appears squared only, we can expand the eigenvalues
and eigenfunctions in σ 2

ε . To zeroth order, we have

λ(0)ψ(0) = K(0)
x∗ ψ(0),

with K(0)
x∗ = (−x ′ − γ̃ y′) ∂x ′ + (γ̃ x ′ − y′) ∂y′ + 1

2
∂x ′x ′ + 1

2
∂y′y′ (C.1)
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This equation yields to the eigenvalue problem of a two-dimensional nonsymmetric Ornstein-
Uhlenbeck process with Kolmogorov operator K(0)

x∗ . Its linear drift and diffusion have the
following matrix representation in adimensional Cartesian coordinates (x ′, y′):

Jx∗ =
(−1 −γ̃

γ̃ −1

)
, and D = 1

2
I .

Here, Jx∗ corresponds also to the tangent map at the origin of the vector field F associated
with the Hopf normal form (2.6) for ε = 0, while I denotes the 2 × 2 identity matrix.
The stationary density of this Ornstein-Uhlenbeck process is given in adimensional polar
coordinates (r ′, θ ′) by

ρx∗(r
′) = 1

π
r ′e−r ′2

. (C.2)

For the weighted inner-product 〈·, ·〉ρx∗ with respect to this density, the Kolmogorov operator
associated with this Ornstein-Uhlenbeck process is asymmetric. This asymmetry comes from
the anti-symmetry of the rotation operator

Ω = −γ̃ y′∂x ′ + γ̃ x ′∂y′ ,

i.e. 〈Ω f , g〉ρx∗ = −〈 f ,Ωg〉ρx∗ , while the operator

−x ′∂x ′ − y′∂y′ + 1

2
∂x ′x ′ + 1

2
∂y′y′ ,

encapsulating the diffusion and contraction effects, is symmetric.
The RP spectrum of one-dimensional Ornstein-Uhlenbeck processes is well studied (see

e.g. [72, Chap. 5]). In several dimensions, the more recent work [64] shows that the spectrum
of an Ornstein-Uhlenbeck process is discrete and composed of eigenvalues —corresponding
here to the set of λ

(0)
k solving (C.1) with the ψ

(0)
k in L2

ρx∗ (R2) — are given by integer linear
combinations of the eigenvalues of the drift matrix Jx∗ , i.e. the complex conjugate pair
−1 ± i γ̃ , in our case. In dimensional terms, the eigenvalues of the SHE (2.6) are thus given
to first order by the combiations (l + n)δ + i(n − l)γ , with n, l ∈ N, which coincides with
the eigenvalues of the deterministic normal form (2.1); c.f. [38].

In addition, it has recently been shown by [19] that the solutions to (C.1) are given by prod-
ucts of Laguerre polynomials with harmonic functions. In adimensional polar coordinates
(r ′, θ ′) this yields in our case,

ψ
(0)
ln (r ′, θ ′) =

⎧⎨
⎩
ei(n−l)θ ′ √ l!

n!
(
r ′)n−l

Ln−l
l

(−r ′2) , n ≥ l

ei(l−n)θ ′ √ n!
l!
(
r ′)l−n

Ll−n
n

(−r ′2) , n < l,

or in dimensional polar coordinates (r , θ),

ψ
(0)
ln (r , θ) =

⎧⎪⎨
⎪⎩
ei(n−l)θ

√
l!
n!
(√

− δ
ε2
r
)n−l

Ln−l
l

(
− δr2

ε2

)
, n ≥ l

ei(l−n)θ
√

n!
l!
(√

− δ
ε2
r
)l−n

Ll−n
n

(
− δr2

ε2

)
, n < l.

From the orthogonality of the Laguerre polynomials [59, p. 84] and of the harmonic
functions, it follows that the appropriately normalised eigenfunctions form a complete
orthonormal family of L2

ρx∗ (R2). The product of these eigenfunctions with the density ρx∗
thus yield the eigenfunctions of the Fokker-Planck equation dual to the Kolmogorov equa-
tion (C.1).
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To first order in σ 2
ε ,

λ(0)ψ(1) + λ(1)ψ(0) =
[
− (x ′2 + y′2) x ′ + β̃

(
x ′2 + y′2) y′] ∂x ′ψ(0)

+
[
−β̃
(
x ′2 + y′2) x ′ − (x ′2 + y′2) y′] ∂y′ψ(0)

+ (−x ′ − γ̃ y′) ∂x ′ψ(1) + (γ̃ x ′ − y′) ∂y′ψ(1) + 1

2
∂x ′x ′ψ(1)

+ 1

2
∂y′y′ψ(1)

Thus the magnitude of this term depends on the twist factor β̃ = β/κ . For this reason, we
use the asymptotic notation Oβ̃ ((ε

√
κ/δ)2) to represent it.

C.2 Proof of Proposition 5: Expansions for ı > 0 About the Limit Cycle 0

We are here interested in the finding the leading eigenvalues and eigenfunctions originating
from the ruins of the deterministic limit cycleΓ when σε = 1

rε
is small.We thus proceed to an

additional change of variables from the adimensional coordinates (r ′, φ′) to a frame centered
on Γ and rotating at the angular frequency ω̃ f = γ̃ − β̃ of the adimensional deterministic
dynamics on Γ ,

r̂ = r ′ − rε = r ′ − σ−1
ε

φ̂ = φ′ + ω̃ f t
′.

The (4.1) then reads in (r̂ , φ̂) coordinates,

dr̂ = (r̂ + σ−1
ε

) (
1 − (σε r̂ + 1

)2 + σ 2
ε

2
(
σε r̂ + 1

)2
)

dt ′ + dWr

or dφ̂ = −β̃
σε(

σε r̂ + 1
) dWr + σε(

σε r̂ + 1
) dWθ , (C.3)

and the corresponding Kolmogorov equation, with û(r̂ , φ̂) = u(r , φ), is,

∂t ′ û = (r̂ + σ−1
ε

) (
1 − (σε r̂ + 1

)2 + σ 2
ε

2
(
σε r̂ + 1

)2
)

∂r̂ û

+ 1

2
∂r̂ r̂ û − β̃

σε(
σε r̂ + 1

)∂r̂ φ̂ û + σ 2
ε (1 + β̃2)

2
(
σε r̂ + 1

)2 ∂
φ̂φ̂

û.

In this case, we have no choice but to expand the eigenvalues and eigenfunctions in σε .
We have that

σε

σε r̂ + 1
= σε − σ 2

ε r̂ + σ 3
ε r̂

2 + O (σ 4
ε

)

σ 2
ε

2
(
σε r̂ + 1

)2 = σ 2
ε

2
− σ 3

ε r + O (σ 4
ε

)
,

and the radial component of the drift expands as

−2r̂ + σε

(
1

2
− 3r̂2

)
− σ 2

ε

(
r̂

2
+ r̂3

)
+ O (σ 3

ε

)
.
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The terms of order 1/σε , which are associated with the deterministic solution on the limit
cycle, vanish.

The eigenvalue equation yields to zeroth order,

λ(0)ψ(0) = −2r̂∂r̂ψ
(0) + 1

2
∂2r̂ r̂ψ

(0) (C.4)

This Hermite equation in the r̂ -coordinate corresponds to the eigenvalue problem of a one-
dimensional stableOrnstein-Uhlenbeck process (see e.g. [66])with damping coefficient given
by the dimensional Floquet exponent −2δ associated with the dimensional Floquet vector
e1 = (1, β̃/R) transverse to Γ ; see Section 2 and Appendix A. The stationary density for
this one-dimensional Ornstein-Uhlenbeck process is given in adimensional polar coordinates
(r ′, θ ′) by

ρΓ (r) = 1

2π

√
2

πε2
e−2(r ′−rε )2 . (C.5)

The solutions to the eigenproblem (C.4) for any λ
(0)
l = −2l, l inN, are given by the rescaled

Hermite polynomials [72, Chap. 5.5]

ψ
(0)
l (r̂ , φ̂) = η(φ̂) Hl(

√
2r̂), (C.6)

where Hl is the lth Hermite polynomial [59, p. 60] and η is some function of φ̂ only.
The function η in (C.6) is determined for l = 0 by solving for the higher-order equations.

In general, the first and second-order terms of the expansion yield,

O(σε) : λ(0)ψ(1) + λ(1)ψ(0) =
(
1

2
− 3r̂2

)
∂r̂ψ

(0) − β̃∂2
r̂ φ̂

ψ(0) − 2r̂∂r̂ψ
(1) + 1

2
∂2r̂ r̂ψ

(1)

O(σ 2
ε ) : λ(0)ψ(2) + λ(1)ψ(1) + λ(2)ψ(0) = −

(
r̂

2
+ r̂3

)
∂r̂ψ

(0) − β̃r̂∂2
r̂ φ̂

ψ(0)

+ 1 + β̃2

2
∂
φ̂φ̂

ψ(0) +
(
1

2
− 3r̂2

)
∂r̂ψ

(1) − β̃∂2
r̂ φ̂

ψ(1) − 2r̂∂r̂ψ
(2) + 1

2
∂2r̂ r̂ψ

(2)

The special caseψ(0) = ψ
(0)
l with l = 0 is such that ∂r̂ψ

(0) = 0. Thus, forψ(1) = ψ(2) = 0,
to first and second order,

O (σε) : λ(1)ψ(0) = 0

O (σ 2
ε

) : λ(2)η = 1 + β̃2

2
∂
φ̂φ̂

η. (C.7)

The first equation in (C.7) implies that λ(1) = 0, while the second equation corresponds to
the eigenproblem for pure diffusion on the circle with diffusion coefficient (1 + β̃2)/2. Its
solutions for λ

(2)
n = −n2(1 + β̃2)/2, n ∈ Z are given by the harmonics η±n = exp (±inφ̂),

such that ψ(0)
l,±n = Hl(

√
2r̂) exp (±inφ̂).

Unfolding the change of variables, r̂ = √
δ(r − R)/ε, φ̂ = θ − β̃ log(r/R) + ω f t

and t ′ = δt , yields the small-noise expansion from Proposition 5 of the eigenvalues and
eigenfunctions of the SHE (2.8) for δ > 0 and σε small. A term exp (iω f t) appears in front
of the eigenfunctions that can be canceled out since multiples of eigenfunctions are also
eigenfunctions. To find the adjoint eigenfunctions ψ

(0)∗
ln , orthonormal to the eigenfunctions

ψ
(0)
ln , l ∈ N, n ∈ Z, one uses the orthogonality of the Hermite polynomials [59, p. 65].

Finally, note that higher-order terms in the expansion depend on β̃.
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