1,264 research outputs found

    Ensemble Support Vector Machine Models of Radiation-Induced Lung Injury Risk

    Get PDF
    Patients undergoing radiation therapy can develop a potentially fatal inflammation of the lungs known as radiation pneumonitis: RP). In practice, modeling RP factors is difficult because existing data are under-sampled and imbalanced. Support vector machines: SVMs), a class of statistical learning methods that implicitly maps data into a higher dimensional space, is one machine learning method that recently has been applied to the RP problem with encouraging results. In this thesis, we present and evaluate an ensemble SVM method of modeling radiation pneumonitis. The method internalizes kernel/model parameter selection into model building and enables feature scaling via Olivier Chapelle\u27s method. We show that the ensemble method provides statistically significant increases to the cross-folded area under the receiver operating characteristic curve while maintaining model parsimony. Finally, we extend our model with John C. Platt\u27s method to support non-binary outcomes in order to augment clinical relevancy

    Selecting subsets of newly extracted features from PCA and PLS in microarray data analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dimension reduction is a critical issue in the analysis of microarray data, because the high dimensionality of gene expression microarray data set hurts generalization performance of classifiers. It consists of two types of methods, i.e. feature selection and feature extraction. Principle component analysis (PCA) and partial least squares (PLS) are two frequently used feature extraction methods, and in the previous works, the top several components of PCA or PLS are selected for modeling according to the descending order of eigenvalues. While in this paper, we prove that not all the top features are useful, but features should be selected from all the components by feature selection methods.</p> <p>Results</p> <p>We demonstrate a framework for selecting feature subsets from all the newly extracted components, leading to reduced classification error rates on the gene expression microarray data. Here we have considered both an unsupervised method PCA and a supervised method PLS for extracting new components, genetic algorithms for feature selection, and support vector machines and <it>k </it>nearest neighbor for classification. Experimental results illustrate that our proposed framework is effective to select feature subsets and to reduce classification error rates.</p> <p>Conclusion</p> <p>Not only the top features newly extracted by PCA or PLS are important, therefore, feature selection should be performed to select subsets from new features to improve generalization performance of classifiers.</p

    A Review on Detection of Traumatic brain Injury using Visual-Contextual model in MRI Images

    Get PDF
    Recently, there are various computational methods to analyze the traumatic brain injury (TBI) from magnetic resonance imaging (MRI).The detection of brain injury is very difficult task in the medical science. There are various soft techniques for the detection of the patch of brain injury on the basis of MRI image contents. This paper gives brief analysis about the different methods to determine the normal and abnormal tissues of the brain

    Learning Algorithms for Fat Quantification and Tumor Characterization

    Get PDF
    Obesity is one of the most prevalent health conditions. About 30% of the world\u27s and over 70% of the United States\u27 adult populations are either overweight or obese, causing an increased risk for cardiovascular diseases, diabetes, and certain types of cancer. Among all cancers, lung cancer is the leading cause of death, whereas pancreatic cancer has the poorest prognosis among all major cancers. Early diagnosis of these cancers can save lives. This dissertation contributes towards the development of computer-aided diagnosis tools in order to aid clinicians in establishing the quantitative relationship between obesity and cancers. With respect to obesity and metabolism, in the first part of the dissertation, we specifically focus on the segmentation and quantification of white and brown adipose tissue. For cancer diagnosis, we perform analysis on two important cases: lung cancer and Intraductal Papillary Mucinous Neoplasm (IPMN), a precursor to pancreatic cancer. This dissertation proposes an automatic body region detection method trained with only a single example. Then a new fat quantification approach is proposed which is based on geometric and appearance characteristics. For the segmentation of brown fat, a PET-guided CT co-segmentation method is presented. With different variants of Convolutional Neural Networks (CNN), supervised learning strategies are proposed for the automatic diagnosis of lung nodules and IPMN. In order to address the unavailability of a large number of labeled examples required for training, unsupervised learning approaches for cancer diagnosis without explicit labeling are proposed. We evaluate our proposed approaches (both supervised and unsupervised) on two different tumor diagnosis challenges: lung and pancreas with 1018 CT and 171 MRI scans respectively. The proposed segmentation, quantification and diagnosis approaches explore the important adiposity-cancer association and help pave the way towards improved diagnostic decision making in routine clinical practice

    Texture analysis in gel electrophoresis images using an integrative kernel-based approach

    Get PDF
    [Abstract] Texture information could be used in proteomics to improve the quality of the image analysis of proteins separated on a gel. In order to evaluate the best technique to identify relevant textures, we use several different kernel-based machine learning techniques to classify proteins in 2-DE images into spot and noise. We evaluate the classification accuracy of each of these techniques with proteins extracted from ten 2-DE images of different types of tissues and different experimental conditions. We found that the best classification model was FSMKL, a data integration method using multiple kernel learning, which achieved AUROC values above 95% while using a reduced number of features. This technique allows us to increment the interpretability of the complex combinations of textures and to weight the importance of each particular feature in the final model. In particular the Inverse Difference Moment exhibited the highest discriminating power. A higher value can be associated with an homogeneous structure as this feature describes the homogeneity; the larger the value, the more symmetric. The final model is performed by the combination of different groups of textural features. Here we demonstrated the feasibility of combining different groups of textures in 2-DE image analysis for spot detection.Instituto de Salud Carlos III; PI13/00280United Kingdom. Medical Research Council; G10000427, MC_UU_12013/8Galicia. ConsellerĂ­a de EconomĂ­a e Industria; 10SIN105004P

    Boosting for tumor classification with gene expression data

    Get PDF
    Motivation: Microarray experiments generate large datasets with expression values for thousands of genes but not more than a few dozens of samples. Accurate supervised classification of tissue samples in such high-dimensional problems is difficult but often crucial for successful diagnosis and treatment. A promising way to meet this challenge is by using boosting in conjunction with decision trees. Results: We demonstrate that the generic boosting algorithm needs some modification to become an accurate classifier in the context of gene expression data. In particular, we present a feature preselection method, a more robust boosting procedure and a new approach for multi-categorical problems. This allows for slight to drastic increase in performance and yields competitive results on several publicly available datasets. Availability: Software for the modified boosting algorithms as well as for decision trees is available for free in R at http://stat.ethz.ch/~dettling/boosting.html Contact: [email protected] * To whom correspondence should be addresse
    • …
    corecore