243 research outputs found

    Algorithms for Triangles, Cones & Peaks

    Get PDF
    Three different geometric objects are at the center of this dissertation: triangles, cones and peaks. In computational geometry, triangles are the most basic shape for planar subdivisions. Particularly, Delaunay triangulations are a widely used for manifold applications in engineering, geographic information systems, telecommunication networks, etc. We present two novel parallel algorithms to construct the Delaunay triangulation of a given point set. Yao graphs are geometric spanners that connect each point of a given set to its nearest neighbor in each of kk cones drawn around it. They are used to aid the construction of Euclidean minimum spanning trees or in wireless networks for topology control and routing. We present the first implementation of an optimal O(nlogn)\mathcal{O}(n \log n)-time sweepline algorithm to construct Yao graphs. One metric to quantify the importance of a mountain peak is its isolation. Isolation measures the distance between a peak and the closest point of higher elevation. Computing this metric from high-resolution digital elevation models (DEMs) requires efficient algorithms. We present a novel sweep-plane algorithm that can calculate the isolation of all peaks on Earth in mere minutes

    Robust network computation

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.Includes bibliographical references (p. 91-98).In this thesis, we present various models of distributed computation and algorithms for these models. The underlying theme is to come up with fast algorithms that can tolerate faults in the underlying network. We begin with the classical message-passing model of computation, surveying many known results. We give a new, universally optimal, edge-biconnectivity algorithm for the classical model. We also give a near-optimal sub-linear algorithm for identifying bridges, when all nodes are activated simultaneously. After discussing some ways in which the classical model is unrealistic, we survey known techniques for adapting the classical model to the real world. We describe a new balancing model of computation. The intent is that algorithms in this model should be automatically fault-tolerant. Existing algorithms that can be expressed in this model are discussed, including ones for clustering, maximum flow, and synchronization. We discuss the use of agents in our model, and give new agent-based algorithms for census and biconnectivity. Inspired by the balancing model, we look at two problems in more depth.(cont.) First, we give matching upper and lower bounds on the time complexity of the census algorithm, and we show how the census algorithm can be used to name nodes uniquely in a faulty network. Second, we consider using discrete harmonic functions as a computational tool. These functions are a natural exemplar of the balancing model. We prove new results concerning the stability and convergence of discrete harmonic functions, and describe a method which we call Eulerization for speeding up convergence.by David Pritchard.M.Eng

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Acta Cybernetica : Volume 23. Number 3.

    Get PDF

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum
    corecore