6,917 research outputs found

    “Apps that make things, not apps that do things”: appropriation and assistive learning technologies.

    Get PDF
    This paper describes three initial case studies of software use by teachers to support learners with special educational needs. In each case, the teachers were observed to be appropriating the software in ways that went beyond the intended use of the technologies. Appropriation has been previously explored as a positive process that provides benefits to users, yet these cases suggest that there may be specific benefits of appropriation for teachers in this context, and this is worthy of deeper investigation in the future

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Internet of Mirrors for Connected Healthcare and Beauty: A Prospective Vision

    Full text link
    With the shift towards smart objects and automated services in many industries, the health and beauty industries are also becoming increasingly involved in AI-driven smart systems. There is a rising market demand for personalised services and a need for unified platforms in many sectors, specifically the cosmetics and healthcare industries. Alongside this rising demand, there are two major gaps when considering the integration of autonomous systems within these sectors. Firstly, the existing smart systems in the cosmetics industry are limited to single-purpose products and the employed technologies are not widespread enough to support the growing consumer demand for personalisation. Secondly, despite the rise of smart devices in healthcare, the current state-of-the-art services do not fulfil the accessibility demands and holistic nature of healthcare. To bridge these gaps, we propose integrating autonomous systems with health and beauty services through a unified visual platform coined as the Internet-of-Mirrors (IoM), an interconnected system of smart mirrors with sensing and communication capabilities where the smart mirror functions as an immersive visual dashboard to provide personalised services for health and beauty consultations and routines. We aim to present an overview of current state-of-the-art technologies that will enable the development of the IoM as well as provide a practical vision of this system with innovative scenarios to give a forward-looking vision for assistive technologies. We also discuss the missing capabilities and challenges the development of the IoM would face and outline future research directions that will support the realisation of our proposed framework.Comment: 21 pages, 6 figure

    Future bathroom: A study of user-centred design principles affecting usability, safety and satisfaction in bathrooms for people living with disabilities

    Get PDF
    Research and development work relating to assistive technology 2010-11 (Department of Health) Presented to Parliament pursuant to Section 22 of the Chronically Sick and Disabled Persons Act 197

    An IoT-based contribution to improve mobility of the visually impaired in Smart Cities

    Get PDF
    The Internet of Things envisions that objects of everyday life will be equipped with sensors, microcontrollers, transceivers for digital communication and suitable protocol which communicates among them and with users, becoming an integral part of Internet. Due to the growing developments in digital technologies, Smart Cities have been equipped with different electronic devices based on IoT and several applications are being created for most diverse areas of knowledge making systems more efficient. However, Assistive technology is a field that is not enough explored in this scenario yet. In this work, an integrated framework with an IoT architecture customized for an electronic cane (electronic travel aid designed for the visually impaired) has been designed. The architecture is organized by a five-layer architecture: edge technology, gateway, Internet, middleware and application. This new feature brings the ability to connect to environment devices, receiving the coordinates of their geographic locations, alerting the user when it is close to anyone of these devices and sending those coordinates to a web application for smart monitoring. Preliminary studies and experimental tests with three blind users of the Cane show that this approach would contribute to get more spatial information from the environment improving mobility of visually impaired people.This research was supported by the Brazilian National Council of Scientific & Technological Development—CNPq, Grant Number 315338/2018-0, and Fundação de Amparo a Pesquisa no Estado de Santa Catarina -FAPESC, (Programa Sinapse da Inovação Operação SC III)

    Possibilities of Applying ICT to Improve Safe Movement of Blind and Visually Impaired Persons

    Get PDF
    Today’s level of the development of information and communication technologies enables the implementation of assistive technologies that can contribute to improved mobility of the persons with impaired vision (users that move along the traffic network). The user in this research has the role of a pedestrian moving along the traffic network, using information and communication technology (ICT) solutions and services for the purpose of information about the surrounding and navigation. In order to achieve greater information and safe movement of the user in the environment, one has to identify and define the relevant parameters necessary to define the user’s requirements, as the basic precondition for the design of new information and communication services. The analysis of the most used application solutions for mobile terminal devices showed the failure in providing precise information to the user, designing of functionality, structure of information and education of the users about the new solutions and services. The downsides of the current applications have served as the basis in defining the recommendations for the development of future applications, with the aim of increasing the user safety. Proper structure of information allows the user a faster and easier search of relevant information and information methods while moving along the traffic network elements. Therefore, the recommendations in designing future solutions and services based on possible technologies of short coverage area (RFID, NFC, Bluetooth, WiFi, RTLS) have been defined. These technologies allow communication connectivity of the users, other traffic entities and the entire traffic surrounding into a unique whole by using the principle of Internet of Things (IoT)
    • …
    corecore