402 research outputs found

    Artificial Vision Algorithms for Socially Assistive Robot Applications: A Review of the Literature

    Get PDF
    Today, computer vision algorithms are very important for different fields and applications, such as closed-circuit television security, health status monitoring, and recognizing a specific person or object and robotics. Regarding this topic, the present paper deals with a recent review of the literature on computer vision algorithms (recognition and tracking of faces, bodies, and objects) oriented towards socially assistive robot applications. The performance, frames per second (FPS) processing speed, and hardware implemented to run the algorithms are highlighted by comparing the available solutions. Moreover, this paper provides general information for researchers interested in knowing which vision algorithms are available, enabling them to select the one that is most suitable to include in their robotic system applicationsBeca Conacyt Doctorado No de CVU: 64683

    Gaze-tracking-based interface for robotic chair guidance

    Get PDF
    This research focuses on finding solutions to enhance the quality of life for wheelchair users, specifically by applying a gaze-tracking-based interface for the guidance of a robotized wheelchair. For this purpose, the interface was applied in two different approaches for the wheelchair control system. The first one was an assisted control in which the user was continuously involved in controlling the movement of the wheelchair in the environment and the inclination of the different parts of the seat through the user’s gaze and eye blinks obtained with the interface. The second approach was to take the first steps to apply the device to an autonomous wheelchair control in which the wheelchair moves autonomously avoiding collisions towards the position defined by the user. To this end, the basis for obtaining the gaze position relative to the wheelchair and the object detection was developed in this project to be able to calculate in the future the optimal route to which the wheelchair should move. In addition, the integration of a robotic arm in the wheelchair to manipulate different objects was also considered, obtaining in this work the object of interest indicated by the user's gaze within the detected objects so that in the future the robotic arm could select and pick up the object the user wants to manipulate. In addition to the two approaches, an attempt was also made to estimate the user's gaze without the software interface. For this purpose, the gaze is obtained from pupil detection libraries, a calibration and a mathematical model that relates pupil positions to gaze. The results of the implementations have been analysed in this work, including some limitations encountered. Nevertheless, future improvements are proposed, with the aim of increasing the independence of wheelchair user

    Guidage non-intrusif d'un bras robotique à l'aide d'un bracelet myoélectrique à électrode sèche

    Get PDF
    Depuis plusieurs années la robotique est vue comme une solution clef pour améliorer la qualité de vie des personnes ayant subi une amputation. Pour créer de nouvelles prothèses intelligentes qui peuvent être facilement intégrées à la vie quotidienne et acceptée par ces personnes, celles-ci doivent être non-intrusives, fiables et peu coûteuses. L’électromyographie de surface fournit une interface intuitive et non intrusive basée sur l’activité musculaire de l’utilisateur permettant d’interagir avec des robots. Cependant, malgré des recherches approfondies dans le domaine de la classification des signaux sEMG, les classificateurs actuels manquent toujours de fiabilité, car ils ne sont pas robustes face au bruit à court terme (par exemple, petit déplacement des électrodes, fatigue musculaire) ou à long terme (par exemple, changement de la masse musculaire et des tissus adipeux) et requiert donc de recalibrer le classifieur de façon périodique. L’objectif de mon projet de recherche est de proposer une interface myoélectrique humain-robot basé sur des algorithmes d’apprentissage par transfert et d’adaptation de domaine afin d’augmenter la fiabilité du système à long-terme, tout en minimisant l’intrusivité (au niveau du temps de préparation) de ce genre de système. L’aspect non intrusif est obtenu en utilisant un bracelet à électrode sèche possédant dix canaux. Ce bracelet (3DC Armband) est de notre (Docteur Gabriel Gagnon-Turcotte, mes co-directeurs et moi-même) conception et a été réalisé durant mon doctorat. À l’heure d’écrire ces lignes, le 3DC Armband est le bracelet sans fil pour l’enregistrement de signaux sEMG le plus performant disponible. Contrairement aux dispositifs utilisant des électrodes à base de gel qui nécessitent un rasage de l’avant-bras, un nettoyage de la zone de placement et l’application d’un gel conducteur avant l’utilisation, le brassard du 3DC peut simplement être placé sur l’avant-bras sans aucune préparation. Cependant, cette facilité d’utilisation entraîne une diminution de la qualité de l’information du signal. Cette diminution provient du fait que les électrodes sèches obtiennent un signal plus bruité que celle à base de gel. En outre, des méthodes invasives peuvent réduire les déplacements d’électrodes lors de l’utilisation, contrairement au brassard. Pour remédier à cette dégradation de l’information, le projet de recherche s’appuiera sur l’apprentissage profond, et plus précisément sur les réseaux convolutionels. Le projet de recherche a été divisé en trois phases. La première porte sur la conception d’un classifieur permettant la reconnaissance de gestes de la main en temps réel. La deuxième porte sur l’implémentation d’un algorithme d’apprentissage par transfert afin de pouvoir profiter des données provenant d’autres personnes, permettant ainsi d’améliorer la classification des mouvements de la main pour un nouvel individu tout en diminuant le temps de préparation nécessaire pour utiliser le système. La troisième phase consiste en l’élaboration et l’implémentation des algorithmes d’adaptation de domaine et d’apprentissage faiblement supervisé afin de créer un classifieur qui soit robuste au changement à long terme.For several years, robotics has been seen as a key solution to improve the quality of life of people living with upper-limb disabilities. To create new, smart prostheses that can easily be integrated into everyday life, they must be non-intrusive, reliable and inexpensive. Surface electromyography provides an intuitive interface based on a user’s muscle activity to interact with robots. However, despite extensive research in the field of sEMG signal classification, current classifiers still lack reliability due to their lack of robustness to short-term (e.g. small electrode displacement, muscle fatigue) or long-term (e.g. change in muscle mass and adipose tissue) noise. In practice, this mean that to be useful, classifier needs to be periodically re-calibrated, a time consuming process. The goal of my research project is to proposes a human-robot myoelectric interface based on transfer learning and domain adaptation algorithms to increase the reliability of the system in the long term, while at the same time reducing the intrusiveness (in terms of hardware and preparation time) of this kind of systems. The non-intrusive aspect is achieved from a dry-electrode armband featuring ten channels. This armband, named the 3DC Armband is from our (Dr. Gabriel Gagnon-Turcotte, my co-directors and myself) conception and was realized during my doctorate. At the time of writing, the 3DC Armband offers the best performance for currently available dry-electrodes, surface electromyographic armbands. Unlike gel-based electrodes which require intrusive skin preparation (i.e. shaving, cleaning the skin and applying conductive gel), the 3DC Armband can simply be placed on the forearm without any preparation. However, this ease of use results in a decrease in the quality of information. This decrease is due to the fact that the signal recorded by dry electrodes is inherently noisier than gel-based ones. In addition, other systems use invasive methods (intramuscular electromyography) to capture a cleaner signal and reduce the source of noises (e.g. electrode shift). To remedy this degradation of information resulting from the non-intrusiveness of the armband, this research project will rely on deep learning, and more specifically on convolutional networks. The research project was divided into three phases. The first is the design of a classifier allowing the recognition of hand gestures in real-time. The second is the implementation of a transfer learning algorithm to take advantage of the data recorded across multiple users, thereby improving the system’s accuracy, while decreasing the time required to use the system. The third phase is the development and implementation of a domain adaptation and self-supervised learning to enhance the classifier’s robustness to long-term changes

    Study and development of sensorimotor interfaces for robotic human augmentation

    Get PDF
    This thesis presents my research contribution to robotics and haptics in the context of human augmentation. In particular, in this document, we are interested in bodily or sensorimotor augmentation, thus the augmentation of humans by supernumerary robotic limbs (SRL). The field of sensorimotor augmentation is new in robotics and thanks to the combination with neuroscience, great leaps forward have already been made in the past 10 years. All of the research work I produced during my Ph.D. focused on the development and study of fundamental technology for human augmentation by robotics: the sensorimotor interface. This new concept is born to indicate a wearable device which has two main purposes, the first is to extract the input generated by the movement of the user's body, and the second to provide the somatosensory system of the user with an haptic feedback. This thesis starts with an exploratory study of integration between robotic and haptic devices, intending to combine state-of-the-art devices. This allowed us to realize that we still need to understand how to improve the interface that will allow us to feel the agency when using an augmentative robot. At this point, the path of this thesis forks into two alternative ways that have been adopted to improve the interaction between the human and the robot. In this regard, the first path we presented tackles two aspects conerning the haptic feedback of sensorimotor interfaces, which are the choice of the positioning and the effectiveness of the discrete haptic feedback. In the second way we attempted to lighten a supernumerary finger, focusing on the agility of use and the lightness of the device. One of the main findings of this thesis is that haptic feedback is considered to be helpful by stroke patients, but this does not mitigate the fact that the cumbersomeness of the devices is a deterrent to their use. Preliminary results here presented show that both the path we chose to improve sensorimotor augmentation worked: the presence of the haptic feedback improves the performance of sensorimotor interfaces, the co-positioning of haptic feedback and the input taken from the human body can improve the effectiveness of these interfaces, and creating a lightweight version of a SRL is a viable solution for recovering the grasping function

    Improving classification of error related potentials using novel feature extraction and classification algorithms for an assistive robotic device

    Get PDF
    We evaluated the proposed feature extraction algorithm and the classifier, and we showed that the performance surpassed the state of the art algorithms in error detection. Advances in technology are required to improve the quality of life of a person with a severe disability who has lost their independence of movement in their daily life. Brain-computer interface (BCI) is a possible technology to re-establish a sense of independence for the person with a severe disability through direct communication between the brain and an electronic device. To enhance the symbiotic interface between the person and BCI its accuracy and robustness should be improved across all age groups. This thesis aims to address the above-mentioned issue by developing a novel feature extraction algorithm and a novel classification algorithm for the detection of erroneous actions made by either human or BCI. The research approach evaluated the state of the art error detection classifier using data from two different age groups, young and elderly. The performance showed a statistical difference between the aforementioned age groups; therefore, there needs to be an improvement in error detection and classification. The results showed that my proposed relative peak feature (RPF) and adaptive decision surface (ADS) classifier outperformed the state of the art algorithms in detecting errors using EEG for both elderly and young groups. In addition, the novel classification algorithm has been applied to motor imagery to improve the detection of when a person imagines moving a limb. Finally, this thesis takes a brief look at object recognition for a shared control task of identifying utensils in cooperation with a prosthetic robotic hand

    Down-Conditioning of Soleus Reflex Activity using Mechanical Stimuli and EMG Biofeedback

    Get PDF
    Spasticity is a common syndrome caused by various brain and neural injuries, which can severely impair walking ability and functional independence. To improve functional independence, conditioning protocols are available aimed at reducing spasticity by facilitating spinal neuroplasticity. This down-conditioning can be performed using different types of stimuli, electrical or mechanical, and reflex activity measures, EMG or impedance, used as biofeedback variable. Still, current results on effectiveness of these conditioning protocols are incomplete, making comparisons difficult. We aimed to show the within-session task- dependent and across-session long-term adaptation of a conditioning protocol based on mechanical stimuli and EMG biofeedback. However, in contrast to literature, preliminary results show that subjects were unable to successfully obtain task-dependent modulation of their soleus short-latency stretch reflex magnitude
    • …
    corecore