907 research outputs found

    Future bathroom: A study of user-centred design principles affecting usability, safety and satisfaction in bathrooms for people living with disabilities

    Get PDF
    Research and development work relating to assistive technology 2010-11 (Department of Health) Presented to Parliament pursuant to Section 22 of the Chronically Sick and Disabled Persons Act 197

    Cognitive assisted living ambient system: a survey

    Get PDF
    The demographic change towards an aging population is creating a significant impact and introducing drastic challenges to our society. We therefore need to find ways to assist older people to stay independently and prevent social isolation of these population. Information and Communication Technologies (ICT) provide various solutions to help older adults to improve their quality of life, stay healthier, and live independently for a time. Ambient Assisted Living (AAL) is a field to investigate innovative technologies to provide assistance as well as healthcare and rehabilitation to impaired seniors. The paper provides a review of research background and technologies of AAL

    Socially Assistive Robot Enabled Home-Based Care for Supporting People with Autism

    Get PDF
    The growing number of people diagnosed with Autism Spectrum Disorder (ASD) is an issue of concern in Australia and many countries. In order to improve the engagement, reciprocity, productivity and usefulness of people with ASD in a home-based environment, in this paper the authors report on a 9 month Australian home-based care trial of socially assistive robot (Lucy) to support two young adults with autism. This work demonstrates that by marrying personhood (of people with ASD) with human-like communication modalities of Lucy potentially positive outcomes can be achieved in terms of engagement, productivity and usefulness as well as reciprocity of the people with ASD. Lucy also provide respite to their carers (e.g., parents) in their day to day living

    The Perceptions of People with Dementia and Key Stakeholders Regarding the Use and Impact of the Social Robot MARIO

    Get PDF
    People with dementia often experience loneliness and social isolation. This can result in increased cognitive decline which, in turn, has a negative impact on quality of life. This paper explores the use of the social robot, MARIO, with older people living with dementia as a way of addressing these issues. A descriptive qualitative study was conducted to explore the perceptions and experiences of the use and impact of MARIO. The research took place in the UK, Italy and Ireland. Semi-structured interviews were held in each location with people with dementia (n = 38), relatives/carers (n = 28), formal carers (n = 28) and managers (n = 13). The data was analyzed using qualitative content analysis. The findings revealed that despite challenges in relation to voice recognition and the practicalities of conducting research involving robots in real-life settings, most participants were positive about MARIO. Through the robot’s user-led design and personalized applications, MARIO provided a point of interest, social activities, and cognitive engagement increased. However, some formal carers and managers voiced concern that robots might replace care staff

    A Reference Software Architecture for Social Robots

    Full text link
    Social Robotics poses tough challenges to software designers who are required to take care of difficult architectural drivers like acceptability, trust of robots as well as to guarantee that robots establish a personalised interaction with their users. Moreover, in this context recurrent software design issues such as ensuring interoperability, improving reusability and customizability of software components also arise. Designing and implementing social robotic software architectures is a time-intensive activity requiring multi-disciplinary expertise: this makes difficult to rapidly develop, customise, and personalise robotic solutions. These challenges may be mitigated at design time by choosing certain architectural styles, implementing specific architectural patterns and using particular technologies. Leveraging on our experience in the MARIO project, in this paper we propose a series of principles that social robots may benefit from. These principles lay also the foundations for the design of a reference software architecture for Social Robots. The ultimate goal of this work is to establish a common ground based on a reference software architecture to allow to easily reuse robotic software components in order to rapidly develop, implement, and personalise Social Robots

    RoboChain: A Secure Data-Sharing Framework for Human-Robot Interaction

    Full text link
    Robots have potential to revolutionize the way we interact with the world around us. One of their largest potentials is in the domain of mobile health where they can be used to facilitate clinical interventions. However, to accomplish this, robots need to have access to our private data in order to learn from these data and improve their interaction capabilities. Furthermore, to enhance this learning process, the knowledge sharing among multiple robot units is the natural step forward. However, to date, there is no well-established framework which allows for such data sharing while preserving the privacy of the users (e.g., the hospital patients). To this end, we introduce RoboChain - the first learning framework for secure, decentralized and computationally efficient data and model sharing among multiple robot units installed at multiple sites (e.g., hospitals). RoboChain builds upon and combines the latest advances in open data access and blockchain technologies, as well as machine learning. We illustrate this framework using the example of a clinical intervention conducted in a private network of hospitals. Specifically, we lay down the system architecture that allows multiple robot units, conducting the interventions at different hospitals, to perform efficient learning without compromising the data privacy.Comment: 7 pages, 6 figure

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Smart home applications for cognitive health of older adults

    Get PDF
    Capítulo 6The lifespan of older people is growing together with their proportion in the population Growth in the older population. This leads to an increasing need for support services for older adults who will inevitably experience a significant decrease in their cognitive capabilities and mental health conditions. Cognitive function, including memory, attention, sleeping, problem-solving activities, or speed processing, are playing a crucial role in everyone’s independent daily life. Technologies can help maintain their independence and improve quality of life, reducing the care costs. In this regards, smart home applications (SMAs) offer a solution to the complex needs of older adults and their families, monitoring physiological and functional issues, as well as aiding in emergency detection and response. This chapter provides an overview of current applications reported in the scientific literature, identifies the frameworks proposed for designing these types of applications, and defines evidence based recommendations for designing SMAs for cognitive health of older adults
    corecore