1,239 research outputs found

    Future bathroom: A study of user-centred design principles affecting usability, safety and satisfaction in bathrooms for people living with disabilities

    Get PDF
    Research and development work relating to assistive technology 2010-11 (Department of Health) Presented to Parliament pursuant to Section 22 of the Chronically Sick and Disabled Persons Act 197

    Continuum Robotic Surface: Forward Kinematic Analysis and Implementation

    Get PDF
    This thesis presents a new class of biologically inspired robots: continuum robotic surfaces. This work is fueled by the question: can the interaction between robot and environment be advanced with “programmable surfaces in space?” The novelty of continuum robotic surfaces lies in their ability to be actively controlled and reconfigured in what we believe is the current “missing dimension” in robot movements — two–dimensional space. We believe that such surfaces will lend themselves to more complex applications. However, to effectively deploy such surfaces for these complex applications, kinematic models will be necessary to plan and control desired configurations. The forward kinematic models for continuum surfaces introduced herein are an initial step in achieving this goal. Then, to test the precision of our model, we validate it via hardware realizations. Lastly, with the kinematic model and hardware realization, the next step is to explore one of the aforementioned complex applications for these surfaces. We believe that a continuum robotic surface can lend itself to upper–extremity stroke rehabilitation in a novel way. Our efforts in interactively designing and building a working prototype with the clinical and staff healthcare subject matter experts at the Roger C. Peace Rehabilitation Center of the Greenville Hospital System are detailed

    Trust in Robots

    Get PDF
    Robots are increasingly becoming prevalent in our daily lives within our living or working spaces. We hope that robots will take up tedious, mundane or dirty chores and make our lives more comfortable, easy and enjoyable by providing companionship and care. However, robots may pose a threat to human privacy, safety and autonomy; therefore, it is necessary to have constant control over the developing technology to ensure the benevolent intentions and safety of autonomous systems. Building trust in (autonomous) robotic systems is thus necessary. The title of this book highlights this challenge: “Trust in robots—Trusting robots”. Herein, various notions and research areas associated with robots are unified. The theme “Trust in robots” addresses the development of technology that is trustworthy for users; “Trusting robots” focuses on building a trusting relationship with robots, furthering previous research. These themes and topics are at the core of the PhD program “Trust Robots” at TU Wien, Austria

    Accessible Autonomy: Exploring Inclusive Autonomous Vehicle Design and Interaction for People who are Blind and Visually Impaired

    Get PDF
    Autonomous vehicles are poised to revolutionize independent travel for millions of people experiencing transportation-limiting visual impairments worldwide. However, the current trajectory of automotive technology is rife with roadblocks to accessible interaction and inclusion for this demographic. Inaccessible (visually dependent) interfaces and lack of information access throughout the trip are surmountable, yet nevertheless critical barriers to this potentially lifechanging technology. To address these challenges, the programmatic dissertation research presented here includes ten studies, three published papers, and three submitted papers in high impact outlets that together address accessibility across the complete trip of transportation. The first paper began with a thorough review of the fully autonomous vehicle (FAV) and blind and visually impaired (BVI) literature, as well as the underlying policy landscape. Results guided prejourney ridesharing needs among BVI users, which were addressed in paper two via a survey with (n=90) transit service drivers, interviews with (n=12) BVI users, and prototype design evaluations with (n=6) users, all contributing to the Autonomous Vehicle Assistant: an award-winning and accessible ridesharing app. A subsequent study with (n=12) users, presented in paper three, focused on prejourney mapping to provide critical information access in future FAVs. Accessible in-vehicle interactions were explored in the fourth paper through a survey with (n=187) BVI users. Results prioritized nonvisual information about the trip and indicated the importance of situational awareness. This effort informed the design and evaluation of an ultrasonic haptic HMI intended to promote situational awareness with (n=14) participants (paper five), leading to a novel gestural-audio interface with (n=23) users (paper six). Strong support from users across these studies suggested positive outcomes in pursuit of actionable situational awareness and control. Cumulative results from this dissertation research program represent, to our knowledge, the single most comprehensive approach to FAV BVI accessibility to date. By considering both pre-journey and in-vehicle accessibility, results pave the way for autonomous driving experiences that enable meaningful interaction for BVI users across the complete trip of transportation. This new mode of accessible travel is predicted to transform independent travel for millions of people with visual impairment, leading to increased independence, mobility, and quality of life

    Development and evaluation of a haptic framework supporting telerehabilitation robotics and group interaction

    Get PDF
    Telerehabilitation robotics has grown remarkably in the past few years. It can provide intensive training to people with special needs remotely while facilitating therapists to observe the whole process. Telerehabilitation robotics is a promising solution supporting routine care which can help to transform face-to-face and one-on-one treatment sessions that require not only intensive human resource but are also restricted to some specialised care centres to treatments that are technology-based (less human involvement) and easy to access remotely from anywhere. However, there are some limitations such as network latency, jitter, and delay of the internet that can affect negatively user experience and quality of the treatment session. Moreover, the lack of social interaction since all treatments are performed over the internet can reduce motivation of the patients. As a result, these limitations are making it very difficult to deliver an efficient recovery plan. This thesis developed and evaluated a new framework designed to facilitate telerehabilitation robotics. The framework integrates multiple cutting-edge technologies to generate playful activities that involve group interaction with binaural audio, visual, and haptic feedback with robot interaction in a variety of environments. The research questions asked were: 1) Can activity mediated by technology motivate and influence the behaviour of users, so that they engage in the activity and sustain a good level of motivation? 2) Will working as a group enhance users’ motivation and interaction? 3) Can we transfer real life activity involving group interaction to virtual domain and deliver it reliably via the internet? There were three goals in this work: first was to compare people’s behaviours and motivations while doing the task in a group and on their own; second was to determine whether group interaction in virtual and reala environments was different from each other in terms of performance, engagement and strategy to complete the task; finally was to test out the effectiveness of the framework based on the benchmarks generated from socially assistive robotics literature. Three studies have been conducted to achieve the first goal, two with healthy participants and one with seven autistic children. The first study observed how people react in a challenging group task while the other two studies compared group and individual interactions. The results obtained from these studies showed that the group interactions were more enjoyable than individual interactions and most likely had more positive effects in terms of user behaviours. This suggests that the group interaction approach has the potential to motivate individuals to make more movements and be more active and could be applied in the future for more serious therapy. Another study has been conducted to measure group interaction’s performance in virtual and real environments and pointed out which aspect influences users’ strategy for dealing with the task. The results from this study helped to form a better understanding to predict a user’s behaviour in a collaborative task. A simulation has been run to compare the results generated from the predictor and the real data. It has shown that, with an appropriate training method, the predictor can perform very well. This thesis has demonstrated the feasibility of group interaction via the internet using robotic technology which could be beneficial for people who require social interaction (e.g. stroke patients and autistic children) in their treatments without regular visits to the clinical centres

    User-based gesture vocabulary for form creation during a product design process

    Get PDF
    There are inconsistencies between the nature of the conceptual design and the functionalities of the computational systems supporting it, which disrupt the designers’ process, focusing on technology rather than designers’ needs. A need for elicitation of hand gestures appropriate for the requirements of the conceptual design, rather than those arbitrarily chosen or focusing on ease of implementation was identified.The aim of this thesis is to identify natural and intuitive hand gestures for conceptual design, performed by designers (3rd, 4th year product design engineering students and recent graduates) working on their own, without instruction and without limitations imposed by the facilitating technology. This was done via a user centred study including 44 participants. 1785 gestures were collected. Gestures were explored as a sole mean for shape creation and manipulation in virtual 3D space. Gestures were identified, described in writing, sketched, coded based on the taxonomy used, categorised based on hand form and the path travelled and variants identified. Then they were statistically analysed to ascertain agreement rates between the participants, significance of the agreement and the likelihood of number of repetitions for each category occurring by chance. The most frequently used and statistically significant gestures formed the consensus set of vocabulary for conceptual design. The effect of the shape of the manipulated object on the gesture performed, and if the sequence of the gestures participants proposed was different from the established CAD solid modelling practices were also observed.Vocabulary was evaluated by non-designer participants, and the outcomes have shown that the majority of gestures were appropriate and easy to perform. Evaluation was performed theoretically and in the VR environment. Participants selected their preferred gestures for each activity, and a variant of the vocabulary for conceptual design was created as an outcome, that aims to ensure that extensive training is not required, extending the ability to design beyond trained designers only.There are inconsistencies between the nature of the conceptual design and the functionalities of the computational systems supporting it, which disrupt the designers’ process, focusing on technology rather than designers’ needs. A need for elicitation of hand gestures appropriate for the requirements of the conceptual design, rather than those arbitrarily chosen or focusing on ease of implementation was identified.The aim of this thesis is to identify natural and intuitive hand gestures for conceptual design, performed by designers (3rd, 4th year product design engineering students and recent graduates) working on their own, without instruction and without limitations imposed by the facilitating technology. This was done via a user centred study including 44 participants. 1785 gestures were collected. Gestures were explored as a sole mean for shape creation and manipulation in virtual 3D space. Gestures were identified, described in writing, sketched, coded based on the taxonomy used, categorised based on hand form and the path travelled and variants identified. Then they were statistically analysed to ascertain agreement rates between the participants, significance of the agreement and the likelihood of number of repetitions for each category occurring by chance. The most frequently used and statistically significant gestures formed the consensus set of vocabulary for conceptual design. The effect of the shape of the manipulated object on the gesture performed, and if the sequence of the gestures participants proposed was different from the established CAD solid modelling practices were also observed.Vocabulary was evaluated by non-designer participants, and the outcomes have shown that the majority of gestures were appropriate and easy to perform. Evaluation was performed theoretically and in the VR environment. Participants selected their preferred gestures for each activity, and a variant of the vocabulary for conceptual design was created as an outcome, that aims to ensure that extensive training is not required, extending the ability to design beyond trained designers only

    TouchStory: Interactive Software Designed to Assist Children with Autism to Understand Narrative

    Get PDF
    The work described in this thesis falls under the umbrella of the Aurora project (Aurora 2000). Aurora is a long-term research project which, through diverse studies, investigates the potential enhancement of the everyday lives of children with autism through the use of robots, and other interactive systems, in playful contexts. Autism is a lifelong pervasive disability which affects social interaction and communication. Importantly for this thesis, children with autism exhibit a deficit in narrative comprehension which adversely impacts their social world. The research agenda addressed by this thesis was to develop an interactive software system which promotes an understanding of narrative structure (and thus the social world) while addressing the needs of individual children. The conceptual approach developed was to break down narrative into proto-narrative components and address these components individually through the introduction of simple game-like tasks, called t-stories, presented in a human-computer interaction context. The overarching hypothesis addressed was that it is possible to help children with autism to improve their narrative skills by addressing proto-narrative components independently. An interactive software system called TouchStory was developed to present t-stories to children with autism. Following knowledge of the characteristics and preferences of this group of learners TouchStory maintained strong analogies with the concrete, physical world. The design approach was to keep things simple, introducing features only if necessary to provide a focussed and enjoyable game. TouchStory uses a touch-sensitive screen as the interaction device as it affords immediate direct manipulation of the t-story components. Socially mediated methods of requirements elicitation and software evaluation (such as focus groups, thinking aloud protocols, or intergenerational design teams) are not appropriate for use with children with autism who are not socially oriented and, in the case of children with ‗lower functioning‘ autism, may have very few words or no productive language. Therefore a new strategy was developed to achieve an inclusive, child-centred design; this was to interleave prototype development with evaluation over several long-term trials. The trials were carried out in the participants‘ own school environments to provide an ecologically valid contextual enquiry. In the first trial 18 participants were each seen individually once. The second and third trials were extended studies of 12 and 20 school visits with 12 and 6 participants respectively; each participant was seen individually on each school visit, provided that the participant was at school on the day of the visit. Evaluation was carried out on the basis of video recordings of the sessions and software logs of the on-screen interactions. Individual learning needs were addressed by adapting the set of t-stories presented to the participant on the basis of success during recent sessions. No ordering of difficulty among the proto-narrative categories could be known a priori for any individual child, and may vary from child to child. Therefore the intention was to gradually, over multiple sessions, increase the proportion of t-stories from proto-narrative categories which the individual participant found challenging, while retaining sufficient scope for the expression of skills already mastered for the session to be enjoyable and rewarding. The adaptation of the software was achieved by introducing a simple adaptive formula, evaluating it over successive long terms trials, and increasing the complexity of the formula only where necessary. Results indicate that individual participants found the interactive presentation of the simple game-like tasks engaging, even after repeated exposures on as many as 20 occasions. The adaptive formula developed in this study did, for engaged participants, focus on the proto-narrative categories which the participant needed to practice but was likely to succeed; that is it did target an effective learning zone. While little evidence was seen of learning with respect to the fully developed narratives encountered in everyday life, results strongly suggest that some participants were actively engaged in self-directed, curiosity-driven activity that functioned as learning in that they were able to transfer knowledge about the appropriateness of particular responses to previously unseen t-stories. This thesis was driven by the needs of children with autism; contributions are made in a number of cognate areas. A conceptual contribution was made by the introduction of the proto-narrative concept which was shown to identify narrative deficits in children with autism and to form a basis for learning. A contribution was made to computational adaptation by the development of a novel adaptive formula which was shown to present a challenging experience while maintaining sufficient predictability and opportunities for the expression of skills already mastered to provide a comfortable experience for children with autism. A contribution was made to software development by showing that children with autism may be included in the design process through iterative development combined with long term trials. A contribution was made to assistive technology by demonstrating that simplicity together with evaluation over long term trials engages children with autism and is a route to inclusion. We cannot expect any magic fixes for children with autism, progress will be made by small steps; this thesis forms a small but significant contribution

    What do Collaborations with the Arts Have to Say About Human-Robot Interaction?

    Get PDF
    This is a collection of papers presented at the workshop What Do Collaborations with the Arts Have to Say About HRI , held at the 2010 Human-Robot Interaction Conference, in Osaka, Japan
    corecore