8,876 research outputs found

    Consistency and Monotonicity in One-Sided Assignment Problems

    Get PDF
    One-sided assignment problems combine important features of two well-known matching models. First, as in roommate problems, any two agents can be matched and second, as in two-sided assignment problems, the payoffs of a matching can be divided between the agents. We take a similar approach to one-sided assignment problems as Sasaki (1995) for two-sided assignment problems and we analyze various desirable properties of solutions including consistency and weak pairwise-monotonicity. We show that for the class of solvable one-sided assignment problems (i.e., the subset of one-sided assignment problems with a non-empty core), if a subsolution of the core satisfies [indifference with respect to dummy agents, continuity, and consistency] or [Pareto indifference and consistency], then it coincides with the core (Theorems 1 and 2). However, we also prove that on the class of all one-sided assignment problems (solvable or not), no solution satisfies consistency and coincides with the core whenever the core is non-empty (Theorem 3). Finally, we comment on the difficulty in obtaining further positive results for the class of solvable one-sided assignment problems in line with Sasaki's (1995) characterizations of the core for two-sided assignment problems.(One-sided) assignment problems, consistency, core, matching.

    Aggregate efficiency in random assignment problems

    Get PDF
    We introduce aggregate efficiency (AE) for random assignments (RA) by requiring higher expected numbers of agents be assigned to their more preferred choices. It is shown that the realizations of any aggregate efficient random assignment (AERA) must be an AE permutation matrix. While AE implies ordinally efficiency, the reverse does not hold. And there is no mechanism treating equals equally while satisfying weak strategyproofness and AE. But, a new mechanism, the reservation-1 (R1), is identified and shown to provide an improvement on grounds of AE over the probabilistic serial mechanism of Bogomolnaia and Moulin (2001). We prove that R1 is weakly strategyproof, ordinally efficient, and weak envy--free. Moreover, the characterization of R1 displays that it is the probabilistic serial mechanism updated by a principle decreed by the Turkish parliament concerning the random assignment of new doctors: Modifying the axioms of Hasimoto, et. al. (2012) characterizing the probabilistic serial mechanism to satisfy this principle, fully characterizes R1

    Some recent results in the analysis of greedy algorithms for assignment problems

    Get PDF
    We survey some recent developments in the analysis of greedy algorithms for assignment and transportation problems. We focus on the linear programming model for matroids and linear assignment problems with Monge property, on general linear programs, probabilistic analysis for linear assignment and makespan minimization, and on-line algorithms for linear and non-linear assignment problems

    Approximate algorithms for partitioning and assignment problems

    Get PDF
    The problem of optimally assigning the modules of a parallel/pipelined program over the processors of a multiple computer system under certain restrictions on the interconnection structure of the program as well as the multiple computer system was considered. For a variety of such programs it is possible to find linear time if a partition of the program exists in which the load on any processor is within a certain bound. This method, when combined with a binary search over a finite range, provides an approximate solution to the partitioning problem. The specific problems considered were: a chain structured parallel program over a chain-like computer system, multiple chain-like programs over a host-satellite system, and a tree structured parallel program over a host-satellite system. For a problem with m modules and n processors, the complexity of the algorithm is no worse than O(mnlog(W sub T/epsilon)), where W sub T is the cost of assigning all modules to one processor and epsilon the desired accuracy

    Semi-Infinite Assignment Problems and Related Games

    Get PDF
    In 1972 Shapley and Shubik introduced assignment games associated to finite assignment problems in which two types of agents were involved and they proved that these games have a non-empty core. In this paper we look at the situation where the set of one type is infinite and investigatewhen the core of the associated game is non-empty. Two infinite programming problems arise here, which we tackle with the aid of finite approximations. We prove that there is no duality gap and we show that the core of the corresponding game is non-empty. Finally, the existence of optimal assignments is discussed.Infinite programs;assignment;cooperative games;balancedness
    corecore