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Abstract

We introduce aggregate efficiency (AE) for random assignments (RA) by requiring
higher expected numbers of agents be assigned to their more preferred choices. It is
shown that the realizations of any aggregate efficient random assignment (AERA) must
be an AE permutation matrix. While AE implies ordinally efficiency, the reverse does
not hold. And there is no mechanism treating equals equally while satisfying weak
strategyproofness and AE. But, a new mechanism, the reservation-1 (R1), is identified
and shown to provide an improvement on grounds of AE over the probabilistic serial
mechanism of Bogomolnaia and Moulin (2001). We prove that R1 is weakly strate-
gyproof, ordinally efficient, and weak envy–free. Moreover, the characterization of R1
displays that it is the probabilistic serial mechanism updated by a principle decreed by
the Turkish parliament concerning the random assignment of new doctors: Modifying
the axioms of Hashimoto, Hirata, Kesten, Kurino, and Unver (forthcoming) charac-
terizing the probabilistic serial mechanism to satisfy this principle, fully characterizes
R1.
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1 Introduction

Random assignment problems are allocation problems allotting some number of distinct

indivisible alternatives among a population of agents with the use of a randomization device,

e.g. the flip of a coin or the use of a dice, but without the use of monetary transfers. They

constitute a non-negligible and often important aspect in our everyday life. Indeed, in recent

years the surge of the use of random assignment methods by market designers and social

planners has been significant. Relevant examples include student placement in public schools

at various levels of education, organ transplantation, and the assignment of dormitory rooms.

While many of these applications are implemented all over the world, Turkey, the country of

our residence, features another important example: In the fields of medicine and education

and justice, recent graduates are assigned to their places of duty via a random allotment

arrangement.1

Among random assignment mechanisms, rules associating any (reported) preference pro-

file with a stochastic distribution of alternatives to the agents, the random priority mecha-

nism (henceforth, to be referred to as RP) is one of the most widely used and it has been

analyzed extensively in Abdulkadiroglu and Sonmez (1998). It is also called the random

serial dictatorship mechanism and defined as follows: A priority ranking of agents is selected

uniformly, and following that rank every agent sequentially receives his favorite alternative

among the ones that were not chosen by higher ranked agents. That study shows that even

though the particular form of this mechanism is surprisingly simple, it is strategyproof (i.e.

reporting the true preferences is a dominant strategy) and ex–post efficient (i.e. it can be

represented by a probability distribution over efficient deterministic assignments). Another

efficiency notion may be used when the problem at hand features von Neumann–Morgenstern

utilities: A random assignment is ex–ante efficient if it is Pareto optimal with respect to

1We refer the reader to Roth and Sotomayor (1992) for a classic source on the subject. On the other hand,
for more details on random assignment problems, we cite to Hylland and Zeckhauser (1979), Abdulkadiroglu
and Sonmez (1998), Abdulkadiroglu and Sonmez (1999), Bogomolnaia and Moulin (2001), Bogomolnaia and
Moulin (2002), Chen, Sonmez, and Unver (2002), Abdulkadiroglu and Sonmez (2003), Bogomolnaia and
Moulin (2004), Roth, Sonmez, and Unver (2004), Ergin and Sonmez (2006), Katta and Sethuraman (2006),
Kesten (2009), Kojima (2009), Yilmaz (2009), Yilmaz (2010), Kesten and Unver (2011), Hashimoto, Hirata,
Kesten, Kurino, and Unver (forthcoming).

2



the profile of von Neumann–Morgenstern utilities. Bogomolnaia and Moulin (2001) (hence-

forth, BM) shows that by using only the ordinal preference rankings some of the random

assignments that are not ex–ante efficient may be identified even if agents’ utility functions

are not given. To that regard that study proposes ordinal efficiency which necessitates

the consideration of (first order) stochastic dominance. A random assignment stochastically

dominates another one whenever for all agents the probability of being allocated one of the

top k ranked alternatives under the former is weakly higher than the one under the latter

for all k = 1, . . . , K where K denotes the total number of available alternatives. A random

assignment is ordinally efficient for a given profile of preferences if there is no random as-

signment stochastically dominating it for that given profile of preferences. BM shows that

ex–ante efficiency implies ordinal efficiency and ordinal efficiency implies ex–post efficiency.

The reverse directions of these two relations do not hold. Due to McLennan (2002), it is

also known that if a random assignment is ordinally efficient then there is a profile of von

Neumann–Morgenstern utilities such that that particular random assignment is ex–ante ef-

ficient. Motivated by its key finding that RP is not an ordinally efficient mechanism BM

introduces and analyzes the probabilistic serial (henceforth, PS) mechanism. The outcome

of the PS mechanism is identified using BM’s simultaneous eating algorithm (SEA): Each

object is considered as a continuum of probability shares. Agents “eat away” from their

favorite objects simultaneously and at the same speed, and once the favorite object of an

agent is gone he turns to his next favorite object, and so on. The amount of an object eaten

away by an agent in this process is interpreted as the probability with which he is assigned

this object under the PS mechanism. BM shows that PS satisfies ordinal efficiency but is not

strategyproof. It satisfies the following weaker version: A random assignment mechanism is

weak strategyproof whenever the random allocation sustained by an agent misrepresenting

his preferences stochastically dominates the one he obtains under truthful revelation implies

that the two allocations are the same. This shortcoming concerning incentives is made up

by some gains in terms of envy–freeness, another relevant notion to judge the value–added

of a random assignment mechanism. A random assignment mechanism is envy–free if it

associates every profile of preferences with a random assignment in which the prescribed

random allocation for any agent stochastically dominates that for another agent evaluated
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with the former’s preferences. Meanwhile, relaxing this notion delivers weak envy–freeness

by requiring that the prescribed random allocation for any agent satisfying the following:

The random allocation of another agent stochastically dominating that of the agent at hand

implies that the two random allocations are the same. The same study proves that while the

PS mechanism involves envy–freeness, the RP rule is weakly envy–free (but not envy–free).

Insisting on ordinal efficiency may create unappealing features. When assigning 100

objects among a population of 100 both of the following assignments may be efficient: The

first allocating 1 person to his best and 99 to their second best, and the second allotting

99 to their best and 1 to their second best.2 Indeed, there are many instances where social

planners and market designers evaluate a mechanism by considering how many agents are

located into their first best, how many into their second choice, and so on. Often some

statistics about how many agents are allocated their higher ranking choices is announced as

a positive indicator of the performance of the system.3

The current paper introduces a new notion of efficiency, aggregate efficiency, tailored

for situations in which social planners and market designers value the expected number of

agents assigned to their higher ranked choices: We say that a random assignment aggregate

stochastic dominates another whenever the expected number of agents placed into one of their

top k choices under the former is weakly higher than that of the latter for k = 1, . . . , K.

Moreover, a random assignment is aggregate efficient whenever another random allocation

aggregate stochastic dominating the one under consideration implies that both of them assign

2Consider a situation where there are 100 agents and 100 objects denoted by {aj}100j=1, on which the strict
preference relations are as follows: Agent 1 strictly prefers a1 to a100, and a100 to any other alternative, and
all other alternatives are ranked strictly lower and arbitrarily. Every other agent i 6= 1 strictly prefers ai−1

to ai, and ai to any other alternative, and all other alternatives are ranked strictly lower and arbitrarily. In
this setting assigning each agent i to alternative ai is (ordinally) efficient, and creates a situation in which
one player (agent 1) gets his first best while all the other 99 players obtain their second ranked choice. On
the other hand, assigning agent 1 to his second best alternative a100 and any other agent i to alternative
ai−1 is also (ordinally) efficient and causes one agent to obtain his second best while 99 of them are allotted
their first ranked choice.

3OSYM, the Turkish government agency responsible of administering the nation-wide university admission
examination and allocating students to programs, includes the percentage of students allocated to one of
their top three choices in their press conferences. Moreover, Featherstone (2011), an independent study that
was brought to our attention when the final draft of this paper was being prepared, observes that reports
by NYC Department of Education 2009 and San Fransisco Unified School District 2011 also include such
aspects.
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the same expected number of agents into any one of their top k choices for k = 1, . . . , K.

We establish that the notion of aggregate efficiency implies ordinal efficiency. Yet the

reverse does not hold and there are no logical relations between ex–ante efficiency and ag-

gregate efficiency. After proving the existence of aggregate efficiency, we show that Gale’s

conjecture, the incompatibility of strategyproof and efficient mechanisms treating equals

equally, takes a new form: The search for an aggregate efficient and weak strategyproof

mechanism treating equals equally is futile.

On the other hand, we prove that there is a weak strategyproof, weak envy–free, and

ordinally efficient mechanism, the reservation–1 mechanism (henceforth, R1), that displays a

better performance on grounds of aggregate efficiency when compared to the PS mechanism.

The outcome of the R1 mechanism is also identified using the SEA with an important

modification that provides agents reservation rights for their most favorite alternatives. That

is, the algorithm starts with agents “eating away” from their favorite objects simultaneously

all at the same speed while no agent (who is finished with his favorite alternative) is allowed

to start eating an alternative that is a favorite for some other agent. Once these favorite

objects are gone, the algorithm proceeds exactly as the unmodified SEA does. Naturally, the

amount of an object eaten away by an agent in this process is interpreted as the probability

with which he is assigned this object under the R1 mechanism.

A characterization of the R1 mechanism is provided along the lines of a recent important

study, Hashimoto, Hirata, Kesten, Kurino, and Unver (forthcoming). This establishes that

the R1 mechanism is nothing but the PS mechanism modified to satisfy a principle decreed

by the Turkish parliament on the issue of the random assignment of new doctors to their

places of duty.

The organization of the paper is as follows: The next section provides intuition and

motivation for the efficiency notion proposed and contains an elucidative discussion of our

results. Then section 3 presents the model. In section 4 we analyze aggregate efficiency and

obtain some impossibility results. Section 5 introduces and contains the detailed analysis

and full characterization of the R1 mechanism.
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I. a b c

1 1 0 0

2 0 1 0

3 0 0 1

II. a b c

1 0 1 0

2 1 0 0

3 0 0 1

III. a b c

1 1 0 0

2 0 0 1

3 0 1 0

IV. a b c

1 0 0 1

2 1 0 0

3 0 1 0

Table 1: The deterministic efficient assignments.

2 Aggregate Efficiency and the R1 Mechanism

In order to facilitate an easier reading and more motivation we wish to introduce the notion

of aggregate efficiency and present our results in the context of the following simple example

with 3 agents and 3 alternatives. The set of players is N = {1, 2, 3} and the set of alternatives

A = {a, b, c}. The preferences of agents are given by a Â1 b Â1 c, a Â2 b Â2 c, and

b Â3 a Â3 c, where x Âi y denotes agent i strictly preferring x to y.

The deterministic efficient assignments are given in table 1. In fact, in matrices I and

II player 3 is assigned to c, his least preferred alternative, and one of players 1 and 2 get

his favorite alternative a while the other consumes his second best, alternative b. Therefore,

one player is given his most favorite one his second best and one his worst. On the other

hand, in permutation matrices III and IV two players are achieving their first best while

one player has to bear his least preferred alternative.

When the society values the number of agents allocated to their higher ranked alter-

natives, the dismissal of the efficient matrices I and II can be justified on grounds of an

“aggregate” efficiency notion. Consequently, both III and IV can be labeled as aggregate

efficient deterministic assignments because there are no other permutation matrices that

beat them on grounds of this efficiency notion. Moreover, when one extends this analysis to

random assignment settings, this notion implies that no strictly positive weights should be

given to permutation matrices I and II. Indeed, in this example any convex combination of

III and IV would be aggregate efficient.4

On the other hand, when one employs the RP rule and/or the PS mechanism the resulting

random assignments coincide and are given by the table on the left hand side of table 2. It

4In general, convex combinations of aggregate efficient deterministic assignments are not necessarily
aggregate efficient.
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N\A a b c

1 1/2 1/6 1/3

2 1/2 1/6 1/3

3 0 2/3 1/3

N\A a b c

1 1/2 0 1/2

2 1/2 0 1/2

3 0 1 0

Table 2: Two random assignments.

should be pointed out that under the RP and PS mechanisms the permutation matrices I

and II are realized with a probability of 1/6 each and III and IV with a probability of

1/3 each. Hence, the expected number of agents ranked into their top choices is 5/3 and

the top two 2 and, naturally, the top three 3. Noticing that the same figures are given by

2,2, and 3 for the aggregate efficient random assignment, this example establishes that both

the RP and PS are not aggregate efficient as they are aggregate stochastic dominated. This

follows from (2, 2, 3) ≥ (5/3, 2, 3) and (2, 2, 3) 6= (5/3, 2, 3). The same example also shows

that there are ordinally efficient random assignments, the one given by RP and PS, which

are not aggregate efficient.

After proving the existence of an aggregate efficient random assignment, we show that

the set of aggregate efficient random assignments is a subset of the set of ordinally efficient

random allotments and that aggregate efficient random assignments are decomposed only to

aggregate efficient permutation matrices. These establish that in any realized state of the

world the outcome of an aggregate efficient random assignment must be not only be efficient

but also aggregate efficient. Furthermore, ex–ante efficiency and aggregate efficiency are not

logically related, i.e. these two notions of efficiency do not have any containment relations

between each other. In general, there are von Neumann–Morgenstern utility profiles for

which the first of two ordinally efficient random allotments is aggregate efficient and not

ex–ante efficient and the second ex–ante efficient but not aggregate efficient.5 On the other

hand, it needs to be mentioned that using McLennan (2002) and our result that aggregate

efficiency implies ordinal efficiency it can be concluded that for every aggregate efficient

random assignment there exists a profile of von Neumann–Morgenstern utilities with which

5We refer the reader to example 1 in the proof of Theorem 4 which is obtained from the above example
by a particular choice of von Neumann–Morgenstern utilities.
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that particular random assignment is ex–ante efficient.

These findings, naturally, makes one wonder about aggregate efficient and strategyproof

mechanisms. Yet one should not forget Gale’s conjecture about the incompatibility of effi-

ciency and strategyproofness. It is useful to remind the reader that considering deterministic

environments Zhou (1990) proves that efficiency and strategyproofness cannot be simulta-

neously satisfied by a mechanism treating equals equally. BM extends this result to random

assignment problems and prove that there is no mechanism treating equals equally and sat-

isfying ordinal efficiency and strategyproofness. Thus, the mechanism they propose, the PS

mechanism, being weak strategyproof is of significance.

In the current study we show that Gale’s conjecture takes a new form: We prove that there

is no mechanism treating equals equally and satisfying aggregate efficiency and weak strate-

gyproofness. Moreover, another impossibility result involves a weaker notion of envy–freeness

and a stronger efficiency concept: There is no mechanism satisfying aggregate efficiency and

weak envy–freeness.

While these results ensure that the search for an aggregate efficient and weak strate-

gyproof mechanism satisfying the equal treatment property is futile, they do not rule out

the possibility of an improvement upon the PS mechanism in terms of the notion of aggregate

efficiency. Indeed, it turns out that a relevant and interesting observation can be found in

Turkey in the context of the random assignment mechanism used in the allotment of new

doctors to their specific places of duty. The Turkish lawmaker decrees that the following

principle has to be obeyed: (1) whenever a new doctor is the only one ranking a place of duty

as the highest, then he is allocated that particular place of duty; and (2) if there are more

than one new doctors ranking a particular place of duty as their highest, then one of them

is selected with a random draw.6 This requirement, which we name condition T, results in

the bistochastic matrix on the right hand side of table 2.

The above example establishes that the RP and PS do not satisfy condition T and are

both not aggregate efficient. Meanwhile, it also shows that there are ordinally efficient ran-

dom assignments that are not aggregate efficient.7 While condition T produced an aggregate

6We refer the reader to the Official Journal of Republic of Turkey 16 November 1996 issue number 22819.
7Considering the example given in BM (Bogomolnaia and Moulin 2001, p.298), one can easily show that

the resulting random assignments of the PS and the aggregate efficiency coincide while both are different
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efficient allocation in this example, in general we also show that there are situations in which

there exists an ordinally efficient random allocation satisfying condition T but not aggregate

efficiency, and there is an aggregate efficient random allotment that do not satisfy condition

T.8

On the other hand, imposing condition T on the PS mechanism produces a weak strate-

gyproof rule that is weak envy-free and outperforms the PS mechanism in terms of aggregate

efficiency: the R1 mechanism. We prove that this mechanism aggregate stochastic domi-

nates the PS mechanism and preserves all of the important properties of the PS mechanism

with the exception of envy–freeness: The R1 mechanism is weak strategyproof and ordinally

efficient and weak envy–free (but not envy–free).

Imposing condition T in the characterization of the R1 mechanism involves the modifi-

cation of two axioms of a recent and important study, Hashimoto, Hirata, Kesten, Kurino,

and Unver (forthcoming) (HHKKU, hereafter). These two axioms, ordinal fairness and

non-wastefulness, fully characterize the PS mechanism. As elegantly put by some of these

authors in the working paper version of this study (Kesten, Kurino, and Unver 2011), ordinal

fairness follows “whenever an agent is assigned some object with positive probability, his

surplus at this object is no greater than that of any other agent at the same object”; and

non-wastefulness whenever “the surplus of no agent at any object can be raised through the

use of an unassigned probability share of some object”.9

The current study provides a full characterization of the R1 mechanism by employing

versions of these axioms modified to make them satisfy condition T. Indeed, the imposition

of condition T on the PS is obtained as follows: HHKKU’s axiom concerning efficiency (non-

wastefulness) is modified to satisfy the first part of condition T and their fairness axiom

(ordinal fairness) is updated by the second part. Consequently, our axioms are T-ordinal

fairness and T-non-wastefulness are obtained. A random assignment is T-ordinally fair if

each favorite object has to be assigned with equal probabilities to agents preferring it as

the first choice, and whenever an agent is assigned with positive probability some object

from the outcome of the RP.
8See the first example in the proof of Theorem 5.
9The surplus of an agent in a random allotment for a given object is the cumulative probability that he

is assigned an alternative at least as good as the current one.
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that is not a favorite by any one of the agents then his surplus at this object is no greater

than that of any other agent at the same object. On the other hand, a random assignment

is T-non-wasteful if each one of the favorite alternatives are fully assigned to those agents

preferring it as their first choice, and the surplus of no agent at any object can be raised

through the use of an unassigned probability share of some object.

Why not R2? Naturally this is a relevant follow-up question. That is why not allow

agents to have two reservations, not just one. We prove that doing so eliminates weak

strategyproofness a key property that we do not wish to sacrifice.

A recent and independent study, Featherstone (2011), was brought to our attention when

the final draft of this paper was being prepared.10 It deserves special emphasis. We should

point out that that study is also concerned with aggregate efficiency (which it refers to as the

rank efficiency) and some important parts of our results involving the analysis of aggregate

efficiency are common. On the other hand, the two papers differ extensively after developing

this efficiency notion. We restrict attention to the identification and characterization of a

tangible weakly strategyproof and ordinally efficient mechanism with better aggregate effi-

ciency performances than the PS mechanism (while not completely giving up envy–freeness).

On the other hand, Featherstone (2011) analyzes and characterizes aggregate efficient mech-

anisms (at the expense of weak strategyproofness) and concentrates on special cases given by

low information environments, like the ones given in Roth and Rothblum (1999). Moreover,

an empirical analysis about costs of strategyproofness is considered and it is established that

“it would be a mistake to not at least consider using a rank efficient mechanism” even at

the expense of strategyproofness.

3 The Model

Let A be a finite set of indivisible objects and N = {1, 2, ..., n} be a finite set of agents,

with the requirement that |A| ≥ |N |. A random assignment (alternatively, an allocation)

P = [pia]i∈N,a∈A is a matrix where pia ∈ [0, 1] denotes the probability of agent i being

allocated an object a.
∑

a∈A pia = 1 and
∑

i∈N pia ≤ 1. Let the set of all random assignments

10We thank Umut Mert Dur in that regard.
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be denoted by P . On the other hand, a preference profile is denoted with Â≡ (Âi)i∈N ,

where Âi is the strict preference relation of agent i on A. Let ºi denote the weak preference

relation induced by Âi. We assume that preferences are linear orders, i.e., for all a, b ∈ A,

a ºi b ⇔ a = b or a Âi b. We denote the set of all such preference relations of agent i

by Πi, and the set of all such preference profiles by Π. For any Â in Π, we define favorite

alternatives as F (Â) = {a ∈ A|∃i ∈ N : a ºi b, ∀b ∈ A}. For all agents i ∈ N , define most

preferred alternative of agent i as Fi(Â) = {a ∈ A|a ºi b, ∀b ∈ A} and define the set of

agents preferring alternative a as their first choices, Fa(Â) = {i ∈ N |a ºi b, ∀b ∈ A}. Given

a preference profile Â in Π, define the weak upper contour set of agent i ∈ N at object a ∈ A

by U(a,Âi) = {b ∈ A : b ºi a} and given P ∈ P let U(a, P,Âi) =
∑

bºia
Pib denote the

surplus of agent i at a under P , i.e. the probability that i is assigned an object at least as

good as a under Pi.

Next, we define ex-ante efficiency and ex-post efficiency : Let (ui)i∈N be a profile of von

Neumann-Morgenstern utility functions, where each individual one is a real valued function

on A and the corresponding preferences over P is obtained by the comparison of expected

utilities where ui(Pi) =
∑

a∈A piaui(a). Given a profile of preferences Â in Π and an as-

sociated profile of von Neumann-Morgenstern utilities u = (ui)i∈N , we say that a random

assignment P ∈ P is (1) ex-ante efficient at u if and only if P is Pareto optimal in P at u;

and (2) ex-post efficient at Â whenever its decomposition involves only efficient deterministic

assignments.

Given two allocations P and Q, we say that P stochastically dominates Q for agent i,

and denote it by Pi Âsd
i Qi, if and only if U(a, Pi,Âi) ≥ U(a, Qi,Âi) for all a ∈ A. Moreover,

P stochastically dominates Q if and only if Pi Âsd
i Qi for all i ∈ N . Furthermore, given

preference profile Â in Π, a random assignment P ∈ P is said to be ordinally efficient if and

only if for any given P ′ ∈ P , P ′ Âsd P implies P ′ = P .

We say that an allocation P ∈ P is envy-free for a given preference profile Â if and only

if we have that for all i, j ∈ N , Pi Âsd
i Pj. Moreover, it is weakly envy-free if and only if

Pj Âsd
i Pi implies Pi = Pj.

A mechanism is a function mapping preference profiles to random assignments. Given a

mechanism ϕ : Π → P , we say ϕ is strategy-proof if for all Â in Π and for all i ∈ N we have
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ϕi(Â) Âsd
i ϕi(Â′i,Â−i) for all Â′i in Πi. Furthermore, ϕ is weakly strategy-proof if for all Â

in Π and for all i ∈ N , ϕi(Â′i,Â−i) Âsd
i ϕi(Â) implies ϕi(Â′i,Â−i) = ϕi(Â) for all Â′i in Πi.

Next we introduce aggregate efficiency : For a given preference profile Â in Π, define

rik as the most preferred k objects in A by agent i ∈ N . Moreover, for a given random

assignment P ∈ P let an aggregate efficiency vector be defined by wP = (wP
1 , ..., wP

|A|) in R|A|

where wP
k =

∑
i∈N

∑
a∈rik

Pia. Consequently, given a preference profile Â in Π, we say that

a random assignment P aggregate stochastically dominates Q, if wP ≥ wQ, and we denote

this by P Âasd Q. Finally, given a preference profile Â in Π, a random assignment P ∈ P is

aggregate efficient whenever P ′ Âasd P for some P ′ ∈ P implies wP = wP ′ .

Moreover, aggregate stochastic domination between mechanisms is defined as follows: A

mechanism ϕ : Π → P aggregate stochastically dominates another mechanism ϕ′ : Π → P ,

if for all Â in Π we have ϕ′(Â) Âasd ϕ(Â) implies wϕ′(Â) = wϕ(Â), and there exist Â∗ such

that ϕ(Â∗) Âasd ϕ′(Â∗) and wϕ′(Â∗) 6= wϕ(Â∗).

4 Aggregate Efficiency and Impossibility Results

Due to BM it is well known that ex-ante efficiency implies ordinal efficiency which in turn

implies ex-post efficiency, demanding that every possible realization of the random assign-

ment has to be an efficient deterministic assignment. On the other hand, McLennan (2002)

establishes that if a random assignment is ordinally efficient then there exists a profile of von

Neumann-Morgenstern utilities for which this random assignment is ex-ante efficient.

After handling the existence question in Theorem 1, we prove that every aggregate effi-

cient random assignment has to be ordinally efficient, (hence, ex-post efficient), and there

are ordinally efficient random assignments that are not aggregate efficient (Theorem 3).

Moreover, we also show that an aggregate efficient random assignment resolves only into

aggregate efficient deterministic assignments (Theorem 2). Therefore, combining these two

results formally establishes that every possible realization of an aggregate efficient random

assignment can involve only an aggregate efficient deterministic assignment. While aggre-

gate efficiency has these useful properties, an interesting finding emerges when considering

the relation of ex-ante efficiency with aggregate efficiency: Ex-ante efficiency does not imply
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aggregate efficiency (Theorem 4). On the other hand, due to Theorem 3 and McLennan

(2002), we know that if a random assignment is aggregate efficient then there exists a profile

of von Neumann-Morgenstern utilities for which this random assignment is ex-ante efficient.

Next, we consider the relation between strategyproofness and aggregate efficiency. Zhou

(1990) proves Gale’s conjecture about the incompatibility of Pareto efficiency and strate-

gyproofness in one–sided deterministic matching problems: “When there are n objects to

be assigned to n agents, for n ≥ 3, there exits no mechanism that satisfies symmetry (equal

treatment of equals), Pareto optimality, and strategyproofness.” Moreover, BM shows that

this incompatibility arises in random allocation problems as a tradeoff between ordinal effi-

ciency and strategyproofness: They show that there is no mechanism treating equals equally

which satisfies ordinal efficiency and strategyproofness. We, therefore, ask whether or not

similar conclusions hold with the stronger efficiency concept introduced in the current study.

Indeed, in Theorem 5 we show that the inevitable trade–off between efficiency and strate-

gyproofness concepts (when attention is restricted to mechanisms treating equals equally)

prevails: Aggregate efficiency and weak–strategy proofness are incompatible with the equal

treatment property. In other words, when one strengthens the efficiency notion and weakens

the strategyproofness concept, there are no changes regarding this impossibility result. This,

in turn, points to an updated version of the classic trade–off between efficiency and strate-

gyproofness, this time between aggregate efficiency and weak strategyproofness. Moreover,

Theorem 6 points to another impossibility: Aggregate efficiency and the property of weak

envy-free are not compatible.

The existence of aggregate efficient random assignments follows from the Theorem 1

which is presented without a proof. This is because the result is an immediate consequence

of the acyclicity of the order on random assignments defined in R|A| and compactness of P ,

the set of all random assignments on A.

Theorem 1 Given any preference profile Â in Π, there exist an aggregate efficient random

assignment P in P.

Theorem 1 also establishes the existence of an aggregate efficient mechanism: For every

given preference structure, using Theorem 1 one can simply construct an aggregate efficient

mechanism by picking an aggregate efficient allocation for each possible preference structure.
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The following 3 Theorems present the results discussed above.

Theorem 2 An aggregate efficient random assignment can only be decomposed into aggre-

gate efficient permutation matrices.

Proof. The Von-Neumann Birkhoff Theorem tells us that a matrix is identifying a

random assignment if and only if it can be written as a convex combination of permutation

matrices. Therefore, any aggregate efficient random assignment P ∈ P , can be written as

a convex combination of permutation matrices (P1, P2, ..., Pk), as P =
∑k

`=1 λ`P`. We claim

that all these permutation matrices have to be aggregate efficient. Suppose not, then there

exists a permutation matrix Pc for some c ∈ {1, 2, ..., k} that is not aggregate efficient; so,

P ′
c aggregated stochastically dominates Pc. Hence, P ′ defined through (P1, P2, ..., P

′
c, ..., Pk)

as the following convex combination λcP
′
c +

∑
` 6=c λ`P` aggregate stochastically dominates P .

Consequently, P is not aggregate efficient.

Theorem 3 The set of aggregate efficient random assignments is a subset of the set of

ordinally efficient random assignments. Moreover, this containment relation may be strict.

Proof. For any P ∈ P that is not ordinally efficient, it must be that there exists P ′ 6= P

and i ∈ N such that Pi 6= P ′
i and P ′

i Âsd
i Pi, which is if and only if

∑
bºia

P ′
ib ≥

∑
bºia

Pib

for all a ∈ A and there exists a′ ∈ A such that this inequality holds strictly. Hence,
∑

a∈rjk
P ′

ja ≥
∑

a∈rjk
Pja, for all k ≤ |A| and for all j ∈ N , yet there exists m ≤ |A| such

that this inequality holds strictly for agent i ∈ N , because otherwise P ′ = P . Therefore,
∑

j∈N

∑
a∈rjk

P ′
ja ≥

∑
j∈N

∑
a∈rjk

Pja for all k and this inequality holds strictly for k = m.

Hence, P ′ aggregated stochastically dominates P , implying that P is not aggregate efficient.

In order to see the second part, consider the example supplied both in the introduction

and as 2 in the proof of Theorem 9.

Theorem 4 Given any preference profile Â in Π and associated von Neumann-Morgenstern

utility profile u = (ui)i∈N , an ex-ante efficient random assignment does not need to be ag-

gregate efficient. Moreover, for every aggregate efficient random assignment P in P, there

exists a von Neumann-Morgenstern utility profile ũ = (ũi)i∈N such that P is ex-ante efficient

at ũ.

Proof. The first part is due to the following example which is a cardinal version of the

example supplied both in section 2 and as Example 2 in the proof of Theorem 9:
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W (Â) a b c d

1 0.5 0 0.5 0

2 0.5 0 0.5 0

3 0 1 0 0

4 0 0 0 1

W (Â′) a b c d

1 0.5 0 0.5 0

2 0.5 0 0.5 0

3 0 0.5 0 0.5

4 0 0.5 0 0.5

Table 3: Aggregate efficient allocations for Â and Â′.

Example 1 Let N = {1, 2, 3}, A = {a, b, c} and a Â1 b Â1 c, a Â2 b Â2 c, b Â3 a Â3 c. Let

ui = (uia, uib, uic) be the vector which denotes the utilities of agent i ∈ {1, 2, 3} from getting

objects {a, b, c} respectively. Suppose u1 = u2 = (10, 8, 1), and u3 = (8, 10, 6).

Then any aggregate efficient allocation P can be denoted by a number x ∈ [0, 1] such that

P1(Â) = (x, 0, 1 − x), P2(Â) = (1 − x, 0, x) and P3(Â) = (0, 1, 0). So, the sum of expected

utilities of agents under any aggregate efficient allocation is equal to 21. However, let R

be an allocation such that R1 = (1, 0, 0), R2 = (0, 1, 0) and R3 = (0, 0, 1). Then, sum of

expected utilities of agents under R is equal to 24.

The second part of the Theorem follows from Theorem 3 and McLennan (2002).

The following Theorem establishes the incompatibility of aggregate efficiency with weak

strategyproofness and equal treatment of equals:

Theorem 5 Suppose that N ≥ 4. Then, there is no mechanism treating equals equally and

satisfies aggregate efficiency and weak strategyproofness.

Proof. Consider the following example: N = {1, 2, 3, 4} and A = {a, b, c, d} where

a Âi c Âi b Âi d, for i = 1, 2, and b Â3 c Â3 d Â3 a and b Â4 d Â4 c Â4 a. The unique

aggregate efficient allocation satisfying the equal treatment property is given in first table

in table 3.

Now, consider Â′ where Â′i=Âi for i ∈ {1, 2, 3} and Â′4=Â3. That is to say, Â′ is pref-

erence structure constructed with the deviation of fourth agent to third agents’ preferences.

Then a mechanism satisfying aggregate efficiency and equal treatment of equals should as-

sign the allocation on the right. This deviation is profitable for player 4 because it results

in an ordinally better allocation for the fourth agent when compared with stating his true

preference.

This example can be embedded into other problems with more than four agents as follows:

Suppose there are n agents and n objects. Let, first four agents’ are called old agents and
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their first four preferences are exactly like the above example and the order of preferences

of other objects are not important for old agents. Also, any new object is declared as a first

choice by exactly one new agent. Then a mechanism satisfying welfare efficiency and equal

treatment of equals should assign old agents exactly the allocation given above and assign

each new agent his most preferred object. Hence, the same deviation is still profitable for

fourth agent as in example above.

In the following Theorem, we establish that aggregate efficiency and the property of weak

envy-free are not compatible without the need to employ the equal treatment property:

Theorem 6 Suppose that N ≥ 4. Then, there is no mechanism satisfying aggregate effi-

ciency and weak envy-freeness.

Proof. Consider the example in the proof of Theorem 5 and notice that any aggregate

efficient mechanism must assign object b to the third agent and object d to the fourth. Then

clearly forth agent strictly envies the third. As discussed in the proof of Theorem 5, this

example can be generalized to other problems with more agents and more alternatives.

5 The R1 Mechanism

Theorem 5 tells us that there is no mechanism treating equals equally and satisfying weak

strategyproofness and aggregate efficiency. On the other hand, BM shows that the PS

mechanism satisfies ordinal efficiency and weak strategyproofness and equal treatment of

equals (while it is shown not to be strategyproof). Therefore, the PS mechanism cannot

satisfy aggregate efficiency whenever N ≥ 4.

Following the same of thinking as in BM, it is a plausible question to ask whether or

not the PS mechanism can be beaten on grounds of aggregate efficiency when one restricts

attention to weakly strategyproof mechanisms treating equals equally. It turns out that the

answer to this question is positive.

Theorems 8 and 9 establish that there exists a mechanism, the R1, treating equals equally

and satisfying weak strategyproofness while displaying a better performance with respect to

aggregate efficiency. Moreover, this mechanism is weakly envy-free.
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The R1 mechanism is defined via the following algorithm: Given a problem (Â, A), each

alternative a ∈ A is interpreted as infinitely divisible with total supply of 1 unit. Agents

can eat one object at a time and the eating speed values of agents are all equal. On the

other hand, a distinct feature is that each agent has a reservation right for his most preferred

object. That is, each agent i ∈ N starts to eat away from Fi(Â) until it is depleted. When

agent i’s best alternative is exhausted, then he starts to eat from their most preferred object

in A\F (Â), until that one is also depleted. Then, he continues with the next best among the

nondepleted ones in A \ F (Â). That is, once F (Â) is depleted, the R1 mechanism behaves

exactly as the PS mechanism. The algorithm terminates when each agent has eaten exactly

1 total unit of objects. The allocation of an agent i by R1 is then given by the amount of

each object he has eaten until the algorithm terminates. Let R1(Â) ∈ P denote the random

assignment obtained as a result of R1 for a preference profile given by Â in Π.

A natural follow-up questions is about why we are not allowing agents to have two

reservations. In fact, why not R2? The interesting finding is that, doing so eliminates weak

strategyproofness. Hence, clearly this provides sufficiently strong reasons for the dismissal

of the R2 mechanisms. The formal execution is in Appendix B.

A further interesting and motivating observation emerges when one considers the char-

acterization of the R1 mechanism: It is nothing but the PS mechanism modified to satisfy

a principle set forth by the Turkish parliament. This principle, which we call condition T

is outlined in the Official Journal of Republic of Turkey 16 November 1996 issue number

22819, and it decrees that: (1) whenever a new doctor (an agent) is the only one ranking

a place of duty (an alternative) as the highest, then he is allocated that particular place of

duty; and (2) if there are more than one new doctors ranking a particular place of duty as

their highest, then one of them is selected with a random draw.

In a recent and important study, Hashimoto, Hirata, Kesten, Kurino, and Unver (forth-

coming) provides a full characterization for PS mechanism by using only two axioms, one

related to fairness and the other one to efficiency. These are namely ordinal fairness and

non-wastefulness. Ordinal fairness follows “whenever an agent is assigned some object with

positive probability, his surplus at this object is no greater than that of any other agent at

the same object”; and non-wastefulness whenever “the surplus of no agent at any object can
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be raised through the use of an unassigned probability share of some object”.

Theorem 7 of the current study provides a full characterization of the R1 mechanism

which employs versions of these axioms modified to make them satisfy condition T. These

axioms are T-ordinal fairness and T-non-wastefulness:

Definition 1 Given Â in Π, a random assignment P ∈ P is T-non-wasteful at Â if∑
i∈Fa(Â) Pi,a = 1 for all a ∈ F (Â); and, for all i ∈ N and for all a ∈ A such that Pi,a > 0

we have
∑

j∈N Pj,b = 1 for all b ∈ A with b Âi a.

Definition 2 Given Â in Π, a random assignment P ∈ P is T-ordinally fair at Â if a =

Fi(Â) with i ∈ N and a ∈ A implies U(a, P,Âi) ≤ U(a, P,Âj) for all j ∈ Fa(Â), and for

all i, j ∈ N and for all alternatives a 6= Fi(Â) with Pi,a > 0 it must be that U(a, P,Âi)) ≤
U(a, P,Âj).

The next Theorem the proof of which is deferred to the Appendix, renders a full charac-

terization of the R1 mechanism:

Theorem 7 A mechanism is T-ordinally fair and T-non-wasteful if and only if it is R1.

In what follows, we provide some important properties of the R1 mechanism. In fact, it is

useful to point out that under the R1 mechanism any alternative a ∈ F (Â) will be allocated

only to agents in Fa(Â), and with equal probabilities. That is, the R1 mechanism obeys

condition T while satisfying the important properties of weak strategyproofness, ordinal

efficiency, and weak envy-freeness. These are stated in the following Theorem the proof of

which is in the Appendix.

Theorem 8 R1 mechanism satisfies condition T, weak strategyproofness, ordinally efficency

and weak envy-freeness.

It is important to emphasize that due to Theorem 5 we know that there exists no mecha-

nism treating equals equally and satisfying aggregate efficiency and weak strategyproofness.

Moreover, due to Theorem 8 we know that the R1 mechanism is weak strategyproof and

ordinally efficient, while being weakly envy-free (which clearly implies the equal treatment

property). Therefore, it is not aggregate efficient. On the other hand, recalling that the PS

mechanism is weakly strategyproof and ordinally efficient and envy-free, one may wonder
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whether or not the “slack” created by relaxing envy-freeness to weak envy-freeness is useful

for some other property. The answer is affirmative, and the property that gets strength-

ened concerns aggregate efficiency. To be precise, the R1 mechanism satisfies condition T,

and moreover, we show that the R1 mechanism aggregate stochastically dominates the PS

mechanism.

Theorem 9 The R1 mechanism aggregate stochastic dominates the probabilistic serial mech-

anism.

Proof. We prove this Theorem by showing that there is no preference profile where

PS(Â) Âasd R1(Â) and wPS(Â) 6= wR1(Â), where PS : Π → P denotes the PS mechanism.

Moreover, using the example given in the introduction we establish that there exists Ẫ ∈ Π

with R1(Ẫ) Âasd PS(Ẫ) and wPS(Ẫ) 6= wR1(Ẫ).

In order to show that there does not exist a preference profile Â in Π such that PS(Â
) Âasd R1(Â) and wPS(Â) 6= wR1(Â), suppose (for a contradiction) that there exists a Â∗

for which PS(Â∗) Âasd R1(Â∗). By the definition of aggregate stochastic domination, there

should be a strict difference between the allocations, therefore PS(Â∗) 6= R1(Â∗). Note that

if PS(Â∗)ia = R1(Â∗)ia for all a ∈ F (Â∗), then PS(Â∗) = R1(Â∗), since the R1 algorithm

proceeds exactly the same as PS after the favorite alternatives are allocated (i.e. R1 behaves

the same as PS for all a /∈ F (Â∗)). Therefore, there exist i ∈ N and a = Fi(Â∗) such

that PS(Â∗)ia 6= R1(Â∗)ia. Hence, by the defining property of R1, PS(Â∗)ia 6= R1(Â∗

)ia implies R1(Â∗)iFi(Â∗) > PS(Â∗)iFi(Â∗) (since the reservation right can lead only to an

increase in the allocation of a good to an agent who prefers it as his favorite object), so
∑N

i=1 PS(Â∗)i,Fi(Â∗) <
∑N

i=1 R1(Â∗)i,Fi(Â∗) and PS(Â∗) 6Âasd R1(Â∗), delivering the desired

contradiction.

Example 2 Let N = {1, 2, 3}, A = {a, b, c} and a Â1 b Â1 c, a Â2 b Â2 c, b Â3 a Â3 c.

Then R11(Â) = R12(Â) = [1/2, 0, 1/2] and R13(Â) = [1, 0, 0]. Where as PS1(Â) = PS2(Â
) = [1/2, 1/6, 1/3] and PS3(Â) = [2/3, 0, 1/3]. When we compare these two allocation, R1

allocates 2 alternatives to agents viewing them as the first choice preferences and 1 alternative

to an agent ranking it the least while PS distributes one to each. That is to say, wR1(Â) =

(2, 2, 3) and wPS(Â) = (1, 2, 3).

This finishes the proof of Theorem 9.
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A Proofs

A.1 Proof of Theorem 7

First, we propose an eating algorithm that can be used for any allocation at any preference

structure Â in Π, which will be key to the proof.

Fix a preference structure Â. Then any allocation P (Â) can be simulated by an eating

function defined as follows:

Think each object as an infinitely divisible good with a quota 1. Each agent eats away

from his most preferred object among the objects that are assigned him with a positive

probability. When an agent eats his assigned probability from some object, he starts to eat

away from his next preferred object that is assigned him with a positive probability. Each

agent eats with a same speed until the algorithm ends at time 1 when each agent has eaten

exactly 1 total unit of objects. Therefore we define the eating function f : [0, 1)×N → A such

that for all fP
Â (t, i) = {a ∈ U(t)|a ºi b, ∀b ∈ U(t)} where U(t) = {a ∈ A : U(a, P,Âi) > t}.

This function identifies the object that agent i eats at time t.

Proof. First we will show that there exist an allocation which satisfies T-ordinal fairness

and aggregate non-wastefulness for any preference Â. In particular, we will show that it is

R1(Â).

For all a ∈ F (Â), R1(Â)ia = 1/|Fa(Â)| for all i ∈ Fa(Â). Therefore it must be that
∑

i∈Fa(Â) R1(Â)ia = 1 for all a ∈ F (Â). Then, let i be any player in N and a, b be any

objects in A such that Pi,a > 0 and b Âi a. Then, from the ordinal efficiency of R1(Â) (due

to Theorem 8),
∑

j∈N Pj,b = 1. Hence, R1(Â) is aggregate non-wasteful.

For all i ∈ N and a ∈ A such that a = Fi(Â), we have U(a, P,Âi) ≤ U(a, P,Âj) for all

j ∈ Fa(Â) since R1(Â)ja = R1(Â)ia = 1/|Fa(Â)| (by aggregate non-wastefulness of R1(Â)).

Now, we have to show that for each object a /∈ F (Â) and all i, j ∈ N with Pia > 0 , we

have U(a, P,Âi) ≤ U(a, P,Âj). Suppose not, then there exists t∗ ∈ [0, U(a, P,Âi)) such that

a Âj fR1
Â (t∗, j). However, this means that agent j has eaten from an object less preferred to a

while the unfavorite object a is not exhausted, contradicting with R1 mechanism. Therefore

R1(Â) is T-ordinally fair.

We have shown that there exists an aggregate non-wasteful and T-ordinally fair allocation
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for every preference structure. Now we will show that there is no other allocation than R1

satisfying these two properties by showing that if there is an allocation satisfying these

properties, it should be characterized by the same eating function with R1.

Fix a preference profile Â, and let P ∈ P be any T-ordinally fair and aggregate non-

wasteful allocation at Â. We will show that fP
Â (t, i) = fR1

Â (t, i) for all t ∈ [0, 1) and i ∈ N .

Suppose not, then there exists a time, say t∗, where the eating functions proceed same until

t∗, but starts to differ at t∗. Formally, t∗ = max{t ∈ [0, 1) : fP
Â (t′, i) = fR1

Â (t′, i) for all t′ < t

for all i ∈ N}. Then there exist an agent i such that fP
Â (t∗, i) 6= fR1

Â (t∗, i). Let fR1
Â (t∗, i) = a

and fP
Â (t∗, i) = b.

Aggregate non-wastefulness restricts that all favorite goods has to be assigned completely,
∑

i∈Fa(Â) Pia = 1, and must be assigned equally among the agents who prefers that object

as his favorite good, PiFi(Â) = 1/|FFi(Â)(Â)| follows from the definition of T-ordinal fairness.

Therefore, the eating functions should be exactly same for favorite goods, hence a and b

cannot be in F (Â). Note that, the eating functions are same until t∗, therefore with the

fact that b is not exhausted at t∗ and agent i eats from a in R1 at t∗ where b /∈ F (Â),

a Âi b. Then, there are two cases to consider: (i) There exist j ∈ N and t > t∗ such that

fP
Â (t, j) = a. Then U(a, P,Âj) ≥ t > t∗ ≥ U(a, P,Âi) contradicting with T-ordinal fairness

of P , since a /∈ F (Â) and Pja > 0. (ii) Otherwise,
∑

k∈N Pka <
∑

k∈N R1ka = 1 and Pib > 0

contradicts with aggregate non-wastefulness of P .

Therefore there exist not such t∗ ∈ [0, 1) and hence fP
Â (t, i) = fR1

Â (t, i) for all t ∈ [0, 1)

implying P = R1(Â).

A.2 Proof of Theorem 8

In the eating algorithm given in proof of Theorem 7, define tÂ(a) to be time at which object

a is exhausted at preference Â∈ Π (under R1 mechanism), i.e.

tÂ(a) =





sup{t ∈ [0, 1) : fR1
Â (t, i) = a} if

∑
i R1(Â)ia = 1

+∞ otherwise.

Claim 1 R1 mechanism satisfies ordinal efficiency.
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Proof. Fix a preference profile Â. Suppose R1(Â) is not ordinally efficient. Then

there exists an allocation Q 6= R1(Â) such that Q Âsd R1(Â). First of all, we claim that

there do not exist an agent i ∈ N and objects a, b ∈ A such that R1(Â)ib > 0 and a Âi b,
∑

j∈N R1(Â)ja < 1. If otherwise, a cannot be in F (Â) since R1 mechanism assigns favourable

objects completely. On the other hand, object a must be in F (Â) since agent i starts to eat

away from object b when object a is available in the simultaneous eating algorithm for R1

mechanism. End of claim.

Q Âsd R1(Â) and Q 6= R1(Â) implies that there exist an agent i1 ∈ N such that

Qi1 Âsd
i1

R1(Â)i1 and Qi1 6= R1(Â)i1 . Then, there are objects a1, a2 ∈ A such that a2 Âi1 a1

and Qi1a2 > R1(Â)i1a2 and Qi1a1 < R1(Â)i1a1 . Since,
∑

j∈N R1(Â)ja2 = 1, there exist an

agent i2 6= i1 such that Qi2a2 < R1(Â)i2a2 . Since Qi2 Âsd R1(Â)i2 and Qi2a2 < R1(Â)i2a2 ,

then there exist an object a3 ∈ A such that Qi2a3 > R1(Â)i2a3 . Hence, we can successively

define sets {i1, i2, .., in} and {a1, a2, .., an, an+1} where an+1 = am for some m < n.

Now consider the agents (im, im+1, ..., in) and objects (am, am+1, ..., an+1) such that ak+1 Âik

ak for every m ≤ k ≤ n and an+1 = am. Any object ak is not in F (Â), since ak+1 Âik ak

and R1(Â)ikak
> 0. Then tÂ(ak) > tÂ(ak+1) for all m ≤ k ≤ n, since object ak+1 must be

unavailable when agent ik eats away from object ak. Therefore tÂ(am) > tÂ(am+1) > ... >

tÂ(an+1) = tÂ(am). Contradiction.

Claim 2 R1 mechanism satisfies weak strategy proofness.

Proof. Fix a preference structure Â and take an agent i ∈ N and let Âi: a1 Â a2 Â ... Â
an. Suppose there exists a deviation Â′i such that R1i(Â′) Âsd

i R1i(Â), where Â′= (Â′i,Â−i).

We will show that R1i(Â) = R1i(Â′) with induction, first by showing that for any given

deviation, R1(Â) and R1(Â′) coincides on the interval [0, tÂ(a1)) in the basis step. Then

we will assume that for any am such that 1 ≤ m < n and R1(Â)iam > 0, eating algorithms

coincide on the interval [0, tÂ(am)) such that tÂ(am) < 1. Set fR1
Â (tÂ(am), i) = al. We will

prove that eating algorithms coincide on the interval [0, min(tÂ(al), 1)), which completes this

proof in an inductive manner.

Basis: Note that if R1(Â)ia1 = 1, then it is clear that R1(Â) = R1i(Â′). If R1(Â)ia1 < 1,

then there exist j ∈ N \ {i} such that j ∈ Fa1(Â). So if i /∈ Fa1(Â′), then R1(Â′)ia1 =
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0 < R1(Â)ia1 . Contradiction. Hence, i cannot misreport his favorite object, and so Fj(Â′) =

Fj(Â) for all j ∈ N . So, the eating algorithms coincide on the interval [0, tÂ(a1)).

Inductive Step: Suppose for some am such that 1 ≤ m < n and R1(Â)iam > 0, eating

algorithms coincide on the interval [0, tÂ(am)) such that tÂ(am) < 1. Set fR1
Â (tÂ(am), i) = al,

and note that al º b for all b such that b /∈ F (Â) and tÂ(b) > tÂ(am), that is to say al is the

most preferred object for agent i among the available ones at tÂ(am). We will prove that

eating algorithms coincide on the interval [0, min{tÂ(al), 1}).

Note that, we assumed that R1i(Â′) Âsd
i R1i(Â), so it must be true that R1(Â)ial

≤
R1(Â′)ial

and therefore min{tÂ(al), 1} ≤ min{tÂ′(al), 1}. If there is no agent j ∈ N \{i} and

time t′, tÂ(am) ≤ t′ < tÂ(al) such that fR1
Â (t′, j) = al, then the surplus of agent i at object

al is equal to 1, hence R1(Â)i = R1(Â′)i. So, there exist an agent j ∈ N \ {i}, and a time

t′ ∈ [tÂ(am), tÂ(al)) such that fR1
Â (t′, j) = al.

If there is no agent j, j 6= i and a time t′ ∈ [tÂ(am), tÂ(al)) such that fR1
Â (t′, j) = al and

fR1
Â′ (t

′, j) = b, where b 6= al, then there are two cases,

(i) if tÂ(al) < 1, we claim tÂ
′
(al) = tÂ(al). First note that tÂ

′
(al) < tÂ(al), contradicts

with the assumption R1i(Â′) Âsd
i R1i(Â). Also, if tÂ

′
(al) > tÂ(al), then for all j ∈ N \ {i}

such that R1(Â)jal
> 0, R1(Â′)jal

> R1(Â)jal
, implying R1(Â′)ial

< R1(Â)ial
and hence

R1i(Â′) 6Âsd R1i(Â). Contradiction. So, tÂ
′
(al) = tÂ(al) and hence fR1

Â (t, i) = fR1
Â′ (t

′, i) = al

for all t′ such that tÂ(am) ≤ t′ < tÂ(al) implying that eating algorithms coincide on the

interval [0, min{tÂ(al), 1}).
(ii) if tÂ(al) ≥ 1, then

∑
bºal

R1(Â)ib = 1. Hence R1(Â′) Âsd R1(Â) implies
∑

bºal
R1(Â′

)ib = 1. Therefore, fR1
Â (t, i) = fR1

Â′ (t
′, i) = al for all t′ such that tÂ(am) ≤ t′ < 1 implying

that eating algorithms coincide on the interval [0, min{tÂ(al), 1}).
We have shown that there exist an agent j ∈ N \ {i} and a time t′ ∈ [tÂ(am), tÂ(al))

such that fR1
Â (t′, j) = al and fR1

Â′ (t
′, j) = b, where b 6= al. Then, b Âj al and note that

b and al cannot be in either F (Â) or F (Â′). Hence b is not available at t′ under Â but

available under Â′, so tÂ(b) < tÂ′(b). Let G be the set of objects such that g 6= al such that

tÂ(g) < tÂ′(g). Note that G is nonempty (b is in G) and let y be the object in G with minimal

tÂ(y). Note that tÂ(am) ≤ tÂ(y) < tÂ(al), since the algorithm proceeds same until tÂ(am)
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and tÂ(y) ≤ tÂ(b) from the definition of y and tÂ(b) < tÂ(al) from b Âj al and R1(Â)jal
> 0.

Suppose there exist an agent k and a time t′, t′ < tÂ(y) such that fR1
Â (t′, k) = y and

fR1
Â′ (t

′, k) = c, where c 6= y. ( Otherwise, verify that tÂ(y) = tÂ′(y). Contradiction.) Note

that k 6= i since agent i eats object al for all t′, tÂ(am) ≤ t′ < tÂ(al) at Â since tÂ(y) <

tÂ(al).Then, c Âk y and tÂ(c) < t′ < tÂ(y). Also, tÂ(c) < tÂ
′
(c) since c Âk y and fR1

Â (t′, k) =

y and fR1
Â′ (t

′, k) = c. Then c must be the minimal in G. A contradiction.

Therefore there cannot be any agent starting to eat from any other object between tÂ(am)

and tÂ(al), implying that each algorithm proceed same until min{tÂ(al), 1}.

Claim 3 R1 mechanism satisfies weak envy-freeness.

Proof. Fix a preference structure Â. Take i, j ∈ N such that R1(Â)j Âsd
i R1(Â)i, we

will show that R1(Â)j = R1(Â)i. If Fi(Â) 6= Fj(Â), then R1(Â)jFi(Â) = 0 < R1(Â)iFi(Â). A

contradiction. So, fR1
Â (t′, i) = fR1

Â (t′, j) = Fi(Â) for all t′ such that 0 ≤ t′ < tÂ(Fi(Â)).

Suppose fR1
Â (t′, i) = fR1

Â (t′, j) for all t′,0 ≤ t′ < tÂ(a) < 1 for some object a ∈ A with

R1(Â)ia > 0. Then let fR1
Â (tÂ(a), i) = b and fR1

Â (tÂ(a), j) = c, where b 6= c. Note that b, c /∈
F (Â). Then b Âi c and fR1

Â (t′, i) = b for all t′ such that tÂ(a) ≤ t′ < min(1, tÂ(b)). Hence,

clearly R1(Â)ib > R1(Â)jb and so
∑

mºib
R1(Â)im >

∑
mºib

R1(Â)jm. A contradiction.

Hence we can conclude that b and c should be the same good, inductively implying that

R1(Â)i = R1(Â)j

B The R2 Mechanism

We can define R2 mechanism as follows:

A plausible extension of R1 mechanism is to give reservation right to agents not only for

their top choice but also to their second most preferred object. Similar to the reservation

right for top choice in R1 mechanism, an agent can put reservation to an object if he ranks

that object as his second choice in R2 mechanism. This reservation right can be introduced

in various ways but we will prefer to define it as general as possible as follows: An agent can

put reservation on his second choice as much as his remaining quota if he is the first person

who eat from that object through the eating algorithm. We leave the following questions
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about the reservation rights in R2 mechanism open, since our counter example covers all

possible versions of reservation rights for the second most preferred object: ”Can an agent

put reservation when he is not the first one that eats from an object even he ranks that

object as his second choice?” or ”what happens if there are more than one agent who can

put reservation?” or ”Can a group of agents put reservation, when another group is eating

from that object?”.

Note that, we can extend R1 algorithm by giving two reservation rights to agents where

they will put these reservations to not only their top two choices, but the first two goods

they eat through the algorithm. Again, the following example will show that this mechanism

is also not weak strategy proof.

Example 3 Let N = {1, 2, 3, 4, 5} and A = {a, b, c, d, e}, and the preferences are given by

a Â1 b Â1 c Â1 d Â1 e, a Â2 c Â2 b Â2 d Â2 e, a Â3 c Â3 d Â3 e Â3 b and Â3=Â4=Â5.

All possible version of R2 allocation is given by:

N/A a b c d e

1 1/5 4/5 0 0 0

2 1/5 1/5 1/4 1/10 1/4

3 1/5 0 1/4 3/10 1/4

4 1/5 0 1/4 3/10 1/4

5 1/5 0 1/4 3/10 1/4

When the second agent reports his ranking as a Â′2 c Â′2 d Â′2 b Â′2 e, the R2 allocation,

for all possible versions, for reported preferences is given by:

N/A a b c d e

1 1/5 4/5 0 0 0

2 1/5 1/5 1/4 1/4 1/10

3 1/5 0 1/4 1/4 3/10

4 1/5 0 1/4 1/4 3/10

5 1/5 0 1/4 1/4 3/10

Therefore, there is a profitable deviation where the second agent gets an allocation that

stochastically dominates his previous allocation in truthful submission.
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