research

Approximate algorithms for partitioning and assignment problems

Abstract

The problem of optimally assigning the modules of a parallel/pipelined program over the processors of a multiple computer system under certain restrictions on the interconnection structure of the program as well as the multiple computer system was considered. For a variety of such programs it is possible to find linear time if a partition of the program exists in which the load on any processor is within a certain bound. This method, when combined with a binary search over a finite range, provides an approximate solution to the partitioning problem. The specific problems considered were: a chain structured parallel program over a chain-like computer system, multiple chain-like programs over a host-satellite system, and a tree structured parallel program over a host-satellite system. For a problem with m modules and n processors, the complexity of the algorithm is no worse than O(mnlog(W sub T/epsilon)), where W sub T is the cost of assigning all modules to one processor and epsilon the desired accuracy

    Similar works