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Abstract

In 1972 Shapley and Shubik introduced assignment games associated to finite as-
signment problems in which two types of agents were involved and they proved that
these games have a non-empty core. In this paper we look at the situation where the set
of onetypeisinfinite and investigate when the core of the associated gameis non-empty.
Two infinite programming problems arise here, which we tackle with the aid of finite
approximations. We prove that there is no duality gap and we show that the core of
the corresponding game is non-empty. Finally, the existence of optimal assignmentsis
discussed.
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1 Introduction

Nowadays many markets and transactions are bilateral, so 'two-sided’ market models have
become widely used in economic theory.

Since 1972, when Shapley and Shubik ([9]) introduced finite assignment games, much
work related to these games has been devel oped. We point out the book of Roth and Sotomayor
([7]) as an important monograph on two-sided matching. Curiel ([1]) provides a thorough
analysis of assignment games. In their work, Shapley and Shubik proved that the core of
an assignment game is the non-empty set of solutions of the dual problem corresponding to
the assignment problem. In ([8]), Sasaki gives axiomatic characterizations of the core of
assignment games. Some generalizations and extensions of these models are presented in
Kaneko and Wooders ([5],[6]).

In this paper, we look at semi-infinite assignment problems where the number of one of
the two types of agentsinvolved isfinite and the other is countabl e infinite and we prove that
semi-infinite bounded assignment games are balanced. Recently, Fragnelli et a. ([2]) and
Timmer et a. ([11]) have studied some kinds of semi-infinite balanced games arising from
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different linear programming situations, where one of the factorsinvolved in the problemis
countable infinite but the number of playersisfinite. However, here we tackle semi-infinite
assignment games with the aid of some toolsthat are related to Tijs ([10]).

This paper consists of four sections. In the next section we present the most relevant
definitions and results for the assignment problem with two finite sets of agents. We extend
these problems in section 3 to semi-infinite bounded assignment problems where one of
the sets of agents is countable infinite and the set of values of matched pairs of agentsis
upper bounded. We show that the corresponding primal and dual program have no duality
gap and that there exist optimal solutions to the dual program, which is equivalent to the
non-emptiness of the core of the corresponding game. Finally, in section 4 we introduce the
critical number and the existence of optimal assignmentsis discussed.

2 Finite Assignment Problems

An assignment problem describes a situation in which there are two types of agents, for
example, sellers and buyers or firms and workers. Denote by M and W respectively these
two finite and digoint sets of agents. Let m be the number of agentsin M, i.e, m = |M]|,
andn = |W|. Assume without loss of generality that m < n. When agenti € M ismatched
to agent j € W then this givesthe couple avalue of a;; > 0. An assignment problem isthus
described by thetriple (M, W, A) with A = [ai;]icm jew-

The maximal total value of paired agents, where each agent ¢ € M is coupled to at most
oneagent j € W and vice versa, can be determined by the following linear program.

max Z Z Qi T45
iEM jeWw
st. > x;; <1, forallje W
&M 1
> oz <1, foralli € M
JEW
z;; € {0,1}, foralli € M, j € W.

Theassignment matrix X € {0, 13" | X = [z;}ic i jew, corresponds to the situation
inwhich theagents: € M and j € W arematched if and only if z;; = 1.

We will distinguish between two types of assignments or matchings. An M -assignment
isan injective function = : M’ — W, where M’ C M, and a W-assignment is an injective
functiono : W' — M where W' C W. A complete M-assignment is an M-assignment
m: M — W, thus M’ = M, whichisonly possible if m < n. To an assignment matrix X
there corresponds the M-assignment 7, : M, — W and the W-assignment o, : W, — M
where M, = {z EM|Yewxij = 1}, Wy ={jeW|Xicnuziy =1} and m, (i) = j if
z;; = 1,foral ¢ € M,,and o,(j) =i if z;; = 1, for al j € W,. Conversely, corresponding
to an M-assignment 7 : M’ — W isthe assgnment matrix X with z;; = 1if ¢ € M’ and
j = m(7), otherwise z;; = 0.

Given an assignment problem (M, W, A), the corresponding assignment game (V, w) is
agamewith player sst N = M UW. Let S C N beacoalition of players. Then the worth
w(S) is defined to be the maximal value this coalition can obtain by matching its members.
Define Mg = SN M and Wg = SNW. If Mg = () or Wg = () then w(S) = 0 since no
matchings can be made. Otherwise, if Mg # () and Wy # () then w(S) = val(Mg, Ws, A)



where

! ! _ R L
val(M', W', A) = max{ > aywy M’ x W'—assignment matrix

(4,5)EM'X W'

X/ = [-Tij]iEM/,jEW/ iS an }

foral M' c M, W' C W. Sincewe assumed that m < n, it holds that

val(M, W, A) = max{ > Ging)

€M

7 is a complete
M —assignment, |

An optimal matching is a complete M-assignment such that 3=, ys air) = Yicns Gir i)
for all complete M-assignments . Let O, (A) be the set of these optimal matchings.

The vector (u,v), u € RY and v € RY, is caled afeasible payoff for the assignment
problem (M, W, A) if thereis a complete M -assignment = such that >-,c yy ui + > jew v =
i Gin(i)- INthis case, we say ((u,v), ) is afeasible outcome and it is stable if (u,v) is
an element of the core C'(w) of the corresponding assignment game, where
>oui+ Y v >w(S)VSCN }

1€EMg jeEWs

and Y u; + > v; = w(N)

i€EM jeEW

C(w) = {(u,v) e RY xRY

If (u,v) € C(w) is proposed as payoff to the players, then each coalition S C N getsat least
asmuch as it can obtain on its own since 3-;c yr, ui + X jew, v; > w(S). Thus no coalition
has an incentive to break up with the grand coalition V. The following lemma by Roth and
Sotomayor ([7]) tells something more about stable outcomes.

Lemma 2.1 (Roth and Sotomayor) Let ((u,v), ) be a stable outcome for (M, W, A). Then
(a) U; + Vj = Ay |f7T(Z) =7
(b) u; = 0 and v; = 0 for all unassigned 7 and j.

Thisresultimpliesthat at a stable outcome, the only utility transfers occur between agents
in M and W who are matched to each other. It also shows that those players who remain
unmatched in some optimal solution receive a zero payoff.

Itiswell known that if we replace theinteger condition z;; € {0, 1} inthelinear program
() by z;; > 0fordli € M, j € W,thenall theoptimal solutionswill still have z;; € {0,1}.
Thus the dual problem (D) equas

min Z U; + Z Vj
€M JEW

st. u;, +v; > a, forallie M, j €W
u;,v; > 0, foralle € M, 5 € W.

Because the primal problem has a solution, we know that also (D) must have a solution
and the fundamental duality theorem asserts that these programs attain the same value. We
denote by O4(A) and R4(A) the set of optimal dual solutions and the set of feasible dual
solutions, respectively.

By definition of w(.S) it holdsthat if (u, v) isan optimal solution of the dual program then
Yiens i + 2 jews v; > w(S) for any coalition S, which ensures that this coalition cannot
improve by splitting off from N when (u, v) is proposed as payoff. The following theorem
saysthat these conditions are exactly the conditions that determinethe core of an assignment
game.



Theorem 2.2 (Shapley and Shubik) Let (M, W, A) be an assignment problem. Then the
core of the corresponding assignment game is the non-empty set of solutions of the dual LP
for the grand coalition N, i.e, C(w) = O4(A).

Moreover, if 7 isan optimal assignment then ((u, v), 7) is a stable outcome for all core-
elements (u, v). Viceversa, if ((u, v), 7) isastable outcome then 7 is an optimal assignment
(see[7] for the proofs). So, we can concentrate on the payoffs to the agents rather than on
the underlying assignment.

Example2.3 Letm = 2,n =3 and

1 20
A= [ 1 01 1 ’
Then the maximization problem of N = M U W equals

max 11 + 2T12 + To1 + To3
st. > x;; <1, forallje W

ieM

> oz <1, foralli € M

JEW

xi; € {0,1}, foralli e M, j € W.
One of the optimal solutionsis: 12 = z9; = 1 and z;; = 0 otherwise. Thus the third agent
of W isnot matched. The corresponding optimal assignment 7 : M — W is. «(1) = 2 and
7(2) = 1 and the value of this program equals v,(A) = w(N) = 3.

The dual problem reads

min  u; + us + vy + V2 + v3
st. u;,+v; > a, forallie M, j €W
u;,v; > 0, foralle € M, 5 € W.

One of the dual solutionsis: u; = uy = 1, v; = 0, v = 1 and vz = 0. Itiseasy to check
that (1,1,0,1,0) is a core-element of the corresponding 5-person assignment game. Note
that since agent 3 € W is not matched, he should receive v; = 0.

Let (M, W, A) be an assignment problem and let j € . By B;(j, A) we denote the set
of agentsin W \ {5} who are at least asgood as j for agent i € M, 0,

Bz(]7 A) = {k S W’ k#]? azkzaz]}

The following proposition tells us that an agent j € 1 gets zero in each core-element if for
eachi € M thereare at least m (weakly) better agentsin W than j.

Proposition 2.4 Let (M, W, A) bean assignment problemand let j € W. If |B;(j, A)| > m
for all i € M thenv; =0 for all (u,v) € O4(A).

Proof. Takean optimal assignment m € O,(A). If j ¢ {n(i)|: € M}, thenv; = 0 by lemma
2.1.

If j = w(i*) for somei* € M thenthereisak € W\{j} suchthat £k € B;(j,A) \
{m(i)|i € M\{:*}} because |B;-(j,A)| > m and |{n(i)|i € M\{i*}}| = m — 1. But
k is not matched, implying vy = 0 by lemma 2.1. Since & € B;:(j, A) we have that
Ui = Ui + V> Q>0+ = W= + v; Where the last equality follows from 7 (i*) = j. Thus
v; < 0 and since v; > 0 by the dual program we conclude that v; = 0.0
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3 Semi-Infinite Bounded Assignment Problems

In this section we introduce semi-infinite bounded assignment problems (M, W, A), where
M = {1,2,...,m}, afinite set, W = N, the countable infinite set of natural numbers, and
0 <a;; <bforsomebd e R,foral i e M, 7 € W. We anayze the corresponding semi-
infinite bounded assignment games by finite approximation matrices A,, € R™*™ where
A, = [aijliem j=1.2,..n, ad by means of the so-called hard-choice number of the matrix A,
to be introduced later. Since m < oo we will talk, from now on, about assignments instead
of (complete) M-assignments.

We start by defining two types of agentsin M. Anagenti € M isof type 1if thisagent
can choose one-by-one m best elements j € N with respect to the largest reward a,;. We
denote by M, the set of agents of type 1. If i € M \ M, then the agent is of type 2 and M,
denotes the set of all these agents.

The choice set C; of an agent 7 of type 2 is the set of al his chosen best elements in
W. Since this agent cannot choose m best elements (otherwise he is of type 1), we have
0 < |Ci] < m. The choice set C; of an agent i € M; consists of those m agents in W
obtained in m steps by taking in each step that agent ; € T not yet chosen by him and which
gives him the maximal value a,; over al non-chosen j € W. In case there are more agents
Jj € W that give the same maximal value a;; then we choose that agent j with the smallest
ranking number. The following example illustrates these concepts.

Example3.1 Let M ={1,2,3}, W = Nand

321000 ...
_ 1 2 3 4 5
111111 .

Agent 1 € M attains hismaximal value of 3 if heisassigned to agent 1 € . The second
largest value he can obtainisa;s = 2 and a;3 = 1 isthethird largest value he can get. This
agent has no problemswith choosing histhree best agentsfrom I/ and therefore heis of type
1. Hischoice set thusequals Cy = {1, 2, 3}.

The largest value that agent 2 € M can attain isas; = 1. However, there is no second
largest value because a,,, reaches the value 1 from below when n goesto infinity. This agent
can only choose one best agent from 1 and therefore he is of type 2. His choice set equals
Cy = {2}.

Finally, agent 3 € M hasan easy job, sincefor all ;7 € W he getsthevalue as; = 1. All
agentsin W are best elements for him. We will choose those three agents with the smallest
ranking number, thus C5 = {1, 2, 3}. Thisagent isof type 1. We conclude that M; = {1, 3}
and M, = {2}.

We will now introduce the hard-choice number.
Definition 3.2 The hard-choice number n*(A) is the smallest number in NU {0} such that
UcC; c{L,2,..,n(A)}.
=1

Lemma 3.3 Let (M, W, A) be a semi-infinite bounded assignment problem. If j > n*(A),
j € W, then there is an agent n(j)>j, n(j) € W, such that |B;(j, An(j))‘ > m for each
1€ M.




Proof. Notethat j > n*(A) impliesthat j ¢ C; foral i € M. If i € M, then B;(j, A) N
{1,2,...,n*(A)} D C;thus|B;(5, A) N {1,2,...,n*"(A)} > |C;| = m and wedefinen;(j) =
j. If i € My then |C;| < m andthereareaninfinitenumber of agentsin W\ {1,2,...,n*(A)}
strictly better than j. So, for n sufficiently large, say n;(j) > j, there are (at least) m agents
in{1,2,...,n;(y)} better than j. Taken(j) = max{n;(j)| ¢ € M}. Then |B;(j, An(j))‘ >m
foralie M. O

Remark 3.4 Fromlemma 3.3 and from proposition 2.4 it follows that for all j > n*(A) and
for each (u,v) € O4(A4,), n > n(j), wehavev; = 0.

The games corresponding to these semi-infinitebounded assignment problemsare defined
asfollows. Theplayer set N = M U W consists of an infinite number of players. The value
of codition S, w(S), equas0if S ¢ M or S C W and

w(S) = sup{ S agw

(1,7)EMsxWg

X(S) = [xij]iEMsaJEWs Is an
Mg x Wg—assignment matrix [’

otherwise. Just as in the previous section, the value w(N) = v,(A) of the grand coalition
N can be determined by the linear program (1), replacing the maximum by the supremum
sincethe set IV iscountable infinite. The following problemisthe dual when we replacethe
integer condition by nonnegativity in the primal problem.

Ud(A) = inf Z U; + Z Uj
ieM JEW
st. u;, +v; > a, forallie M, j €W
u;,v; > 0, foralle € M, 5 € W.

Notice that both the primal and the dual program have an infinite number of variablesand an
infinite number of restrictions. In general, oo x co-programs show a gap between the optimal
primal and dua value. There is alarge literature on the existence or absence of so-called
duality gaps in (semi-)infinite programs. See e.g. the books by Glashoff and Gustafson ([3])
and Gobernaand L6pez ([4]). Our goal isto prove that here the primal and the dual problem
have the same value and that there exist optimal solutions of the dual problem. We achieve
this result in some steps starting with alimit process in the finite space R™ x R™', where for
the sake of brevity wewill write n* instead of n*(A) in asubscript or a superscript.

Wetakefor eachn € Nwithn > n*(A),anelement (u", v™) of O4(A,). Thenweremove
al coordinates of v™ with index larger than n*(A) and obtain (u”, s (v")) € R™ x R™,
where s : R™ — R™ isthe map s™ (v}, .., v, ..,o") = (v}, ..,v™), Vn > n*(A). Note
that {(u™, s (v"))|n € {n*(A)+1,n*(A)+2,...} } isabounded set inthefinite dimensional
space R™ x R™ since A isabounded matrix and (u", v™) € O4(A,). S0,

u; <max{a;|i € M,j € {1,2,....,n}} <sup{a;;|i € M,j € N}

and similarly we get v} < sup{a;;li € M,j € N}.
Without loss of generality, we suppose that Lim (u™, s (v")) exists (otherwise take a

subsequence) and we denote this limit by (u,7) € R™ x R™". With the aid of (u,v) we
construct thevector (4, ) € R™xR>bytakingu = uandd = a,« (), whereay, : RF — R
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isthe map defined by ay(z) = (1, .., 21,0,0..) foral k € Nand x € R*. So, % is obtained
from v by adding an infinite number of zeros. Later we will seethat (u, ) isacore-element
of the corresponding semi-infinite bounded assignment game but we start with showing that
(u,v) isfeasiblein the dua problem.

Lemma3.5 Let (M, W, A) be a semi-infinite bounded assignment problem and let (u, v) be
as defined above. Then (4, v) € R4(A).

Proof. By definition of (i, ?) it holdsthat all its coordinates are non-negative. Furthermore,
u; +Q7j > Qi foralie M, je€ {1,2,,n*(A)} since uy' +U;L > Qg foral i € M,
jeA{L,2,..,n"(A)}. Forie M, j > n"(A), weknow from remark 3.4 that lim vj' = 0.
Together withu}! + v} > a;; forall j € {1,2,...,n} itfollowsby taking thelimit for n — oo
that 4, + v, > a;;. SO (4, v) isafeasible solution of the dual problem.C

Thenext threelemmasdeal with therelations between the val ues of thefinite subproblems
and the infinite problems and with weak duality.

Lemma 3.6 v,(A) < Lim va(Ap)

Proof. Forn > n*(A) and (u",v") € O4(An) wehave 357 v + 377, v = va(Ay,). We
construct (u,?) as we did before and so it follows that 37, 4; + 377, 0 = Lim va(Ap).
Then, from lemma 3.5 we obtain that va(A) < >3 @; + 372, 95 = lim vg(A,).0
Lemma 3.7 v,(A) = lim v,(A,)

n—o0

Proof. Clearly v,(A,) < v,(A) because each matching = : M — {1,2,...,n} in thefinite
problem is also feasible in the infinite problem. Furthermore, {v,(A,) | n > n*(A)} isan
increasing sequence. So, lim v,(A,) existsand lim v,(A,) < v,(A4).

For the converse inequality, take ¢ > 0 and a matching 7= : M — N such that
ity Gire(iy > Up(A) —e. Let k € N besuchthat {n°(i)[: € M} C {1,2,...,k}. Then for
aln>k:v,(An) > X0 Gire(i) > vp(A) — €. Thisimpliesthat Lim vp(An) > v,(A).0

Lemma 3.8 Weak duality, v,(A) < v4(A), holds.

Proof. Note that R4(A) # 0 because (v/,v") € Ry(A), wherev' = 0 and uj = sup;cy ai;
foral i € M. Takean assignment = : M — N and a payoff vector (u,v) € R4(A). Then
> ainiy <30 (wiFva) <D w0
i=1 =1 i=1 j=1

(2

and therefore

vp(A) = sup { Z Qi (i)

=1

T is an assignment}

=1 j=1

= Ud(A).D

S mf{Zuz—l—ZUJ

Ui +vj 2 aij, Ui, Vj >0, foralli € M, ]EW}



Now we formulate the main result in this section, which tells us that there is no duality
gap and that the set of optimal dual solutionsis non-empty.

Theorem 3.9 Let (M, W, A) be a semi-infinite bounded assignment problem. Thenv,(A) =
va(A) and O4(A) # 0.

Proof. First, we provethat thereisno duality gap using the fact that finite problems have no
duality gap. From lemmas 3.6 and 3.7 follows,

va(A) < lim va(An) = lim vp(A:) = vp(A).

Conversely, lemma 3.8 shows that v,(A) < va(A). Sovp(A) = v4(A) = lim vy(Ay).
Second, we prove that (u,v) € O4(A). It follows from the proof of lemma 3.6 and the

first part of this proof that =", @; + 3272, 0; = nll_)rrolo va(An) = vqa(A). Furthermore, by

lemma3.5, (4,7) € R4(A). So, (4,0) € O4(A).C

Since O4(A) equals the core of the corresponding assignment game, it follows from this
theorem that semi-infinite bounded assignment games have a non-empty core.

4 The Critical Number and Related Concepts

In this section, we present the critical number of a semi-infinite bounded assignment game.
It turns out to be a key concept because, as we will show, it is related to the hard-choice
number, introduced in section 3, and to the finite approximations.

Definition 4.1 The critical number ¢(A) equals min{n € N | v,(4,) = v,(A)}, if there
existsann € Nwith v,(A4,,) = v,(A). Otherwise, ¢(A) = .

First, we present some results for finite critical numbers. The next proposition shows a
relation between the hard-choice number and the critical number.

Proposition 4.2 Let (M, W, A) beasemi-infinite bounded assignment problem. Ifc(A) < oo
then c(A) < n*(A).

Proof. Let m € O,(A). If n(i) ¢ C;, fori € My, then C; \ {n(¢*) |i* € M \ {i}} # 0 since
|Ci| = mand |[{m(:*)|i* € M \ {i}}| =m—1. Thusthereisaj € C; suchthat j # = (:) for
al i € M. If weredefine w(i) = j then the matching remains optimal and agent 7 restricts
hischoiceto C;.

For i € M, thereis no optimal matching = with (i) ¢ C;. This followsimmediately
from the definition of C;. We conclude that = € O,(A) but also 7 € O,(A,~). Thus
c(A) <n*(A).O

As the next example shows, an optimal assignment can use agents j € W for which
Jj > n*(A).



Example4.3 Let M = {1,2,3}, W =N, and
321000
A=lb1E g
111111

Wehaveseeninexample3.1thatC; = {1,2,3}, Cy = {2}, C5 = {1,2,3}, M; = {1,3} and
M, = {2}. Also, n*(A) = 3, v,(A) = 5 and each m, with £ > 3, defined by (1) =
1, m(2) = 2, mx(3) = k, isoptimal. For £ > 3 we have optima matchingswith 7 (3) ¢ Cs,
but the assignment 75 is optimal and uses only elementsin A,-. So, ¢(A) = n*(A4) = 3.

The next example showsthat we may have c¢(A) < n*(A).

Example4.4 Let M = {1,2}, W = Nand
120 0 ..
A:ll 010 ]
Then C; = {1,2}, C; = {1,3}, n*(A) = 3 and v,(A) = 3. An optimal assignment is
m(l)=2and7(2) =1landsoc(A) =2 < 3 = n*(A).

In the next theorem we characterize the structure of the sets of optimal primal and dual
solutions when the critical number isfinite.

Theorem 4.5 Let (M, W, A) be a semi-infinite bounded assignment problem. If ¢(A) < oo
then

(i) Op(A): U Op(An)

n>c(A)

n>n*(A)
Proof. (i) First, weprovethat O,(A) D Up>c4)Op(An). f n > c¢(A) and 7 € O,(A,), then
S tiniy = vp(An) = vp(A). S0, T € O(A).

Next, we prove that O,(A) C Up>ca)Op(Ay). Let m € O,(A). Taken > c¢(A) such that
{r(1),....,m7(m)} C {1,..,n}.Then, m € R,(An) and 37" air(i) = vp(A4) = vp(Ar). SO,
T € Op(4,).

(i) Suppose (u, v) € O4(A). Then, itfollowsfromremark 3.4 thatv; = 0 for j > n*(A).
So, for n > n*(A) we have (u, s"(v)) € Oq(A4,) and (u,v) € a,(04(4,)). Conversaly,
take an element in o, (O4(A,)) for al n > n*(A). Thenitisof the form (u, o, (v)) where
(an(v)); = 0foral j > n*(A). For n = n*(A) there exists an optimal assgnment 7. This
m isalso optimal in A because v,(A) = v,(A,). Onthe other hand, Y1) a;r) = vp(A) =
2 ui 4 252 (an(v) - S0 (u; am(v)) € Oa(A). B

In case ¢(A) = oo, we construct an auxiliary matrix H corresponding to the matrix A.
Thism x (n*(A) + |Ma|)-matrix H isdefined by H = [A,« T wherefor each i € M, we
have a column ¢;¢’ in T with ¢; = sup{a;;| j € N\ Ci} ande, = 1ifk =iande, =0
otherwise. We will show that there are no optimal assignments if ¢(4) = oo, but v,(A)
and e-optimal assignments can be obtained with the corresponding auxiliary matrix H. We
illustrate these factsin the next example.



Example4.6 Let M = {1,2,3}, W = Nand

321 0 0 0 .
_ 1 2 3 4 5
A— 1 5 52 Zg 54 65 cee .
02 12 13 12 13 .

Then Cy = {1,2,3}, Cy = {1}, 03 = {2}, M, = {1}, M, = {2,3} and ’TL*(A) = 3.
The feasible matching = with 7(1) = 3, m(2) = 1,7(3) = 2 has the property 7 (i) € C;
for each i € M. But this assignment is not optimal since >-" | ari) = 4 < 6 = v(A4). In
this example we have that ¢(A) = oo, so, no optimal assignment exists. But, we can use the
auxiliary matrix H,

32 100
H:1§§10,
021z 0 2

where v,(H) = 6 and now the matching 7/, with7'(1) = 1, 7'(2) =n (n > 3),7'(3) =2,
isan = —optimal assignment in A.

Theorem 4.7 Let (M, W, A) beasemi-infinitebounded assignment problemwith ¢(A) = oo
and let H bethe corresponding auxiliary matrix. Then

(i) Oy(4) =0;
(il) vp(A) = vp(H);

(iii) For each optimal 7 € O,(H) and each ¢ > 0 there isa matching 7 € O,(A) such
that 7°(¢) = «(d) for al ¢ € M; and 7°(i) € {n*(A) + 1,n*(A) + 2, ...} such that
Qine(s) > ti — /m, if i € M.

Proof. (i) For all assignments 7 : M — N it holdsfor n large enough that {=(i)| i € M} C
{1,2,...,n} and thus is 7 a matching for the assignment problem (M, {1,2,...,n}, A,).
Together with ¢(A) = oo thisgives

Zaiﬂ(i) < vp(An) < vp(A).
i—1

Hence, O,(A) = 0.
To prove (ii) and (iii) it is sufficient to show that

1. v,(H) > v,(A). Let 7 € R,(A). Construct 7* € R,(H) asfollows. Leti € M. If
m(1) € C; then *(i) = w(:). If 7(i) ¢ C; and i € M, then we can choose a partner
(i) = j* € C; because C; is large enough. (See the proof of proposition 4.2.) If
7(i) ¢ C; andi € M, then define 7*(i) = j*, where j* corresponds to column ¢;e’ in
T. Thusfor al i € M wehave hir(iy > Gix(i), SO, vp(H) > v,(A).

2. v(A) > v,(H) —eforale > 0. Lete > 0and 7 € R,(H). We will construct
amatching 7¢ € R,(A) as follows. Take one-by-one elements i € M. Note that
(1) ¢ {1,2,...,n*(A)} \ C; since otherwise player i can improve by choosing t;.
If 7(i) € C; then define 7¢(:) = = (i). If w(i) € T then take j* > n*(A) such that
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a;j» > t; —e/mand j* # w(i') for dl i’ # ¢ and define 7° (i) = j*. This can be done
such that al i € M are matched to m different elementsin 1. Then

Doy =Y Gmm T D Qe

iEM 1€EM:me(i)€C; 1€ M (i) ¢C;
> Z Pir(s) + Z (ti —e/m)
1€M:(1)€C; ieM:m(i)eT
> Z hmr(z) - &
ieM

where the last inequality holds because |{i € M | 7(i) € T}| < m. Thusv,(A) >
vp(H) —e.0

Given a semi-infinite bounded assignment problem (M, W, A) consider the sequence
(ul, aq (v1)), (u?, aa(v?)), (u?, az(v?)), ..., where (u™,v™) € O4(A,) for dl n € N. Denote
by L(A) the set of pointsthat can be obtained as alimit of asubsequence as above. Then we
have the following result.

Theorem 4.8 L(A) # 0 and L(A) C O4(A).

Proof. Analyzing the proofs in section 3 and the construction of (u, v), we conclude that
(u,0) € L(A) sincev; = 0 foral j > n*(A). Henceit may be clear that L(A) C O4(A).0
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