9,686 research outputs found

    Assessment of an IoT platform for data collection and analysis for medical sensors

    Get PDF
    Health facilities produce an increasing and vast amount of data that must be efficiently analyzed. New approaches for healthcare monitoring are being developed every day and the Internet of Things (IoT) came to fill the still existing void on real-time monitoring. A new generation of mechanisms and techniques are being used to facilitate the practice of medicine, promoting faster diagnosis and prevention of diseases. We proposed a system that relies on IoT for storing and monitoring medical sensors data with analytic capabilities. To this end, we chose two approaches for storing this data which were thoroughly evaluated. Apache HBase presents a higher rate of data ingestion, when collaborating with the Kaa IoT platform, than Apache Cassandra, exhibiting good performance storing unstructured data, as presented in a healthcare environment. The outcome of this system has shown the possibility of a large number of medical sensors being simultaneously connected to the same platform (6000 records sent by the second or 48 ECG sensors with a frequency of 125Hz). The results presented in this paper are promising and should be further investigated as a comprehensive system would benefit the patient's diagnosis but also the physicians

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Weathering the Nest: Privacy Implications of Home Monitoring for the Aging American Population

    Get PDF
    The research in this paper will seek to ascertain the extent of personal data entry and collection required to enjoy at least the minimal promised benefits of distributed intelligence and monitoring in the home. Particular attention will be given to the abilities and sensitivities of the population most likely to need these devices, notably the elderly and disabled. The paper will then evaluate whether existing legal limitations on the collection, maintenance, and use of such data are applicable to devices currently in use in the home environment and whether such regulations effectively protect privacy. Finally, given appropriate policy parameters, the paper will offer proposals to effectuate reasonable and practical privacy-protective solutions for developers and consumers

    Smart vest for respiratory rate monitoring of COPD patients based on non-contact capacitive sensing

    Get PDF
    In this paper, a first approach to the design of a portable device for non-contact monitoring of respiratory rate by capacitive sensing is presented. The sensing system is integrated into a smart vest for an untethered, low-cost and comfortable breathing monitoring of Chronic Obstructive Pulmonary Disease (COPD) patients during the rest period between respiratory rehabilitation exercises at home. To provide an extensible solution to the remote monitoring using this sensor and other devices, the design and preliminary development of an e-Health platform based on the Internet of Medical Things (IoMT) paradigm is also presented. In order to validate the proposed solution, two quasi-experimental studies have been developed, comparing the estimations with respect to the golden standard. In a first study with healthy subjects, the mean value of the respiratory rate error, the standard deviation of the error and the correlation coefficient were 0.01 breaths per minute (bpm), 0.97 bpm and 0.995 (p < 0.00001), respectively. In a second study with COPD patients, the values were -0.14 bpm, 0.28 bpm and 0.9988 (p < 0.0000001), respectively. The results for the rest period show the technical and functional feasibility of the prototype and serve as a preliminary validation of the device for respiratory rate monitoring of patients with COPD.Ministerio de Ciencia e Innovación PI15/00306Ministerio de Ciencia e Innovación DTS15/00195Junta de Andalucía PI-0010-2013Junta de Andalucía PI-0041-2014Junta de Andalucía PIN-0394-201

    New intelligent network approach for monitoring physiological parameters : the case of Benin

    Get PDF
    Benin health system is facing many challenges as: (i) affordable high-quality health care to a growing population providing need, (ii) patients’ hospitalization time reduction, (iii) and presence time of the nursing staff optimization. Such challenges can be solved by remote monitoring of patients. To achieve this, five steps were followed. 1) Identification of the Wireless Body Area Network (WBAN) systems’ characteristics and the patient physiological parameters’ monitoring. 2) The national Integrated Patient Monitoring Network (RIMP) architecture modeling in a cloud of Technocenters. 3) Cross-analysis between the characteristics and the functional requirements identified. 4) Each Technocenter’s functionality simulation through: a) the design approach choice inspired by the life cycle of V systems; b) functional modeling through SysML Language; c) the communication technology and different architectures of sensor networks choice studying. 5) An estimate of the material resources of the national RIMP according to physiological parameters. A National Integrated Network for Patient Monitoring (RNIMP) remotely, ambulatory or not, was designed for Beninese health system. The implementation of the RNIMP will contribute to improve patients’ care in Benin. The proposed network is supported by a repository that can be used for its implementation, monitoring and evaluation. It is a table of 36 characteristic elements each of which must satisfy 5 requirements relating to: medical application, design factors, safety, performance indicators and materiovigilance

    Tracking Human Behavioural Consistency by Analysing Periodicity of Household Water Consumption

    Get PDF
    People are living longer than ever due to advances in healthcare, and this has prompted many healthcare providers to look towards remote patient care as a means to meet the needs of the future. It is now a priority to enable people to reside in their own homes rather than in overburdened facilities whenever possible. The increasing maturity of IoT technologies and the falling costs of connected sensors has made the deployment of remote healthcare at scale an increasingly attractive prospect. In this work we demonstrate that we can measure the consistency and regularity of the behaviour of a household using sensor readings generated from interaction with the home environment. We show that we can track changes in this behaviour regularity longitudinally and detect changes that may be related to significant life events or trends that may be medically significant. We achieve this using periodicity analysis on water usage readings sampled from the main household water meter every 15 minutes for over 8 months. We utilise an IoT Application Enablement Platform in conjunction with low cost LoRa-enabled sensors and a Low Power Wide Area Network in order to validate a data collection methodology that could be deployed at large scale in future. We envision the statistical methods described here being applied to data streams from the homes of elderly and at-risk groups, both as a means of early illness detection and for monitoring the well-being of those with known illnesses.Comment: 2019 2nd International Conference on Sensors, Signal and Image Processin

    Designing the Health-related Internet of Things: Ethical Principles and Guidelines

    Get PDF
    The conjunction of wireless computing, ubiquitous Internet access, and the miniaturisation of sensors have opened the door for technological applications that can monitor health and well-being outside of formal healthcare systems. The health-related Internet of Things (H-IoT) increasingly plays a key role in health management by providing real-time tele-monitoring of patients, testing of treatments, actuation of medical devices, and fitness and well-being monitoring. Given its numerous applications and proposed benefits, adoption by medical and social care institutions and consumers may be rapid. However, a host of ethical concerns are also raised that must be addressed. The inherent sensitivity of health-related data being generated and latent risks of Internet-enabled devices pose serious challenges. Users, already in a vulnerable position as patients, face a seemingly impossible task to retain control over their data due to the scale, scope and complexity of systems that create, aggregate, and analyse personal health data. In response, the H-IoT must be designed to be technologically robust and scientifically reliable, while also remaining ethically responsible, trustworthy, and respectful of user rights and interests. To assist developers of the H-IoT, this paper describes nine principles and nine guidelines for ethical design of H-IoT devices and data protocols
    corecore