482 research outputs found

    Cooperative Localization on Computationally Constrained Devices

    Get PDF
    Cooperative localization is a useful way for nodes within a network to share location information in order to better arrive at a position estimate. This is handy in GPS contested environments (indoors and urban settings). Most systems exploring cooperative localization rely on special hardware, or extra devices to store the database or do the computations. Research also deals with specific localization techniques such as using Wi-Fi, ultra-wideband signals, or accelerometers independently opposed to fusing multiple sources together. This research brings cooperative localization to the smartphone platform, to take advantage of the multiple sensors that are available. The system is run on Android powered devices, including the wireless hotspot. In order to determine the merit of each sensor, analysis was completed to determine successes and failures. The accelerometer, compass, and received signal strength capability were examined to determine their usefulness in cooperative localization. Experiments at meter intervals show the system detected changes in location at each interval with an average standard deviation of 0.44m. The closest location estimates occurred at 3m, 4m and 6m with average errors of 0.15m, 0.11m, and 0.07m respectively. This indicates that very precise estimates can be achieved with an Android hotspot and mobile nodes

    A Fast-rate WLAN Measurement Tool for Improved Miss-rate in Indoor Navigation

    Full text link
    Recently, location-based services (LBS) have steered attention to indoor positioning systems (IPS). WLAN-based IPSs relying on received signal strength (RSS) measurements such as fingerprinting are gaining popularity due to proven high accuracy of their results. Typically, sets of RSS measurements at selected locations from several WLAN access points (APs) are used to calibrate the system. Retrieval of such measurements from WLAN cards are commonly at one-Hz rate. Such measurement collection is needed for offline radio-map surveying stage which aligns fingerprints to locations, and for online navigation stage, when collected measurements are associated with the radio-map for user navigation. As WLAN network is not originally designed for positioning, an RSS measurement miss could have a high impact on the fingerprinting system. Additionally, measurement fluctuations require laborious signal processing, and surveying process can be very time consuming. This paper proposes a fast-rate measurement collection method that addresses previously mentioned problems by achieving a higher probability of RSS measurement collection during a given one-second window. This translates to more data for statistical processing and faster surveying. The fast-rate collection approach is analyzed against the conventional measurement rate in a proposed testing methodology that mimics real-life scenarios related to IPS surveying and online navigation

    A Real-Time Laboratory Testbed For Evaluating Localization Performance Of WIFI RFID Technologies

    Get PDF
    A realistic comparative performance evaluation of indoor Geolocation systems is a complex and challenging problem facing the research community. This is due to the fact that performance of these systems depends on the statistical variations of the fading multipath characteristics of the wireless channel, the density and distribution of the access points in the area, and the number of the training points used by the positioning algorithm. This problem, in particular, becomes more challenging when we address RFID devices, because the RFID tags and the positioning algorithm are implemented in two separate devices. In this thesis, we have designed and implemented a testbed for comparative performance evaluation of RFID localization systems in a controlled and repeatable laboratory environment. The testbed consists of a real-time RF channel simulator, several WiFi 802.11 access points, commercial RFID tags, and a laptop loaded with the positioning algorithm and its associated user interface. In the real-time channel simulator the fading multipath characteristics of the wireless channel between the access points and the RFID tags is modeled by a modified site-specific IEEE 802.11 channel model which combines this model with the correlation model of shadow fading existing in the literature. The testbed is first used to compare the performance of the modified IEEE 802.11 channel model and the Ray Tracing channel model previously reported in the literature. Then, the testbed with the new channel model is used for comparative performance evaluation of two different WiFi RFID devices

    Location estimation in smart homes setting with RFID systems

    Get PDF
    Indoor localisation technologies are a core component of Smart Homes. Many applications within Smart Homes benefit from localisation technologies to determine the locations of things, objects and people. The tremendous characteristics of the Radio Frequency Identification (RFID) systems have become one of the enabler technologies in the Internet of Things (IOT) that connect objects and things wirelessly. RFID is a promising technology in indoor positioning that not only uniquely identifies entities but also locates affixed RFID tags on objects or subjects in stationary and real-time. The rapid advancement in RFID-based systems has sparked the interest of researchers in Smart Homes to employ RFID technologies and potentials to assist with optimising (non-) pervasive healthcare systems in automated homes. In this research localisation techniques and enabled positioning sensors are investigated. Passive RFID sensors are used to localise passive tags that are affixed to Smart Home objects and track the movement of individuals in stationary and real-time settings. In this study, we develop an affordable passive localisation platform using inexpensive passive RFID sensors. To fillful this aim, a passive localisation framework using minimum tracking resources (RFID sensors) has been designed. A localisation prototype and localisation application that examined the affixed RFID tag on objects to evaluate our proposed locaisation framework was then developed. Localising algorithms were utilised to achieve enhanced accuracy of localising one particular passive tag which that affixed to target objects. This thesis uses a general enough approach so that it could be applied more widely to other applications in addition to Health Smart Homes. A passive RFID localising framework is designed and developed through systematic procedures. A localising platform is built to test the proposed framework, along with developing a RFID tracking application using Java programming language and further data analysis in MATLAB. This project applies localisation procedures and evaluates them experimentally. The experimental study positively confirms that our proposed localisation framework is capable of enhancing the accuracy of the location of the tracked individual. The low-cost design uses only one passive RFID target tag, one RFID reader and three to four antennas

    Location-Enabled IoT (LE-IoT): A Survey of Positioning Techniques, Error Sources, and Mitigation

    Get PDF
    The Internet of Things (IoT) has started to empower the future of many industrial and mass-market applications. Localization techniques are becoming key to add location context to IoT data without human perception and intervention. Meanwhile, the newly-emerged Low-Power Wide-Area Network (LPWAN) technologies have advantages such as long-range, low power consumption, low cost, massive connections, and the capability for communication in both indoor and outdoor areas. These features make LPWAN signals strong candidates for mass-market localization applications. However, there are various error sources that have limited localization performance by using such IoT signals. This paper reviews the IoT localization system through the following sequence: IoT localization system review -- localization data sources -- localization algorithms -- localization error sources and mitigation -- localization performance evaluation. Compared to the related surveys, this paper has a more comprehensive and state-of-the-art review on IoT localization methods, an original review on IoT localization error sources and mitigation, an original review on IoT localization performance evaluation, and a more comprehensive review of IoT localization applications, opportunities, and challenges. Thus, this survey provides comprehensive guidance for peers who are interested in enabling localization ability in the existing IoT systems, using IoT systems for localization, or integrating IoT signals with the existing localization sensors

    Novel Methods for Personal Indoor Positioning

    Get PDF
    Currently, people are used to getting accurate GNSS based positioning services. However, in indoor environments, the GNSS cannot provide the accuracy and availability comparable to open outdoor environments. Therefore, alternatives to GNSS are needed for indoor positioning. In this thesis, methods for pedestrian indoor positioning are proposed. With these novel methods, the mobile unit performs all the required positioning measurements and no dedicated positioning infrastructure is required.This thesis proposes novel radio map configuration methods for WLAN fingerprinting based on received signal strength measurements. These methods with different model parameters were studied in field tests to identify the best models with reasonable positioning accuracy and moderate memory requirements. A histogram based WLAN fingerprinting model is proposed to aid IMU based pedestrian dead reckoning that is obtained using a gyro and a 3-axis accelerometer, both based on MEMS technology. The sensor data is used to detect the steps taken by a person on foot and to estimate the step length and the heading change during each step.For the aiding of the PDR with WLAN positioning, this thesis proposes two different configurations of complementary extended Kalman filters. The field tests show that these configurations produce equivalent position estimates. Two particle filters are proposed to implement the map aided PDR: one filter uses only the PDR and map information, while the other uses also the WLAN positioning. Based on the field tests, map aiding improves the positioning accuracy more than WLAN positioning.Novel map checking algorithms based on the sequential re-selection of obstacle lines are proposed to decrease the computation time required by the indoor map matching. To present the map information, both unstructured and structured obstacle maps are used. The feasibility of the proposed particle filter algorithms to real time navigation were demonstrated in field tests

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Body attenuation and path loss exponent estimation for RSS-based positioning in WSN

    Get PDF
    The influence of the human body in antenna systems has significant impact in the received signal strength (RSS) of wireless transmissions. Accounting for body effect is generally considered as being able to improve position estimation based on RSS measurements. In this work we perform several experiments with a wireless sensor network, using a sensor node equipped with an inertial measurement unit (IMU), in order to obtain the relative orientation between the sensor node and multiple anchor nodes. A model of the RSS attenuation induced by the body was created using experimental measurements in a controlled environment and applied to a real-time positioning system. A path loss exponent (PLE) estimation method using RSS information from neighbor anchors was also implemented and evaluated. Weighted centroid localization (WCL) algorithm was the positioning method used in this work. When the sensor node was placed on the user’s body, accounting for body effect produced negligible improvements (6%) in the best-case scenario and consistently degraded accuracy under real conditions, whether the node was placed on the user’s body (in the order of 3%), 10 cm away (from 14% to 35%) or 20 cm away from the body (from 42% to 105%) for results in the 70th percentile. The PLE estimation method showed improvements (in the order of 11%) when the sensor node is further away from the body. Results demonstrate that the distance between sensor node and the body has an extremely important influence on the accuracy of the position estimate.This work has been supported by FCT (Fundação para a Ciência e Tecnologia) in the scope of the project UID/EEA/04436/2013. Helder D. Silva is supported by FCT under the grant SFRH/BD/78018/2011info:eu-repo/semantics/publishedVersio

    Impact of Positioning Technology on Human Navigation

    Get PDF
    In navigation from one place to another, spatial knowledge helps us establish a destination and route while travelling. Therefore, sufficient spatial knowledge is a vital element in successful navigation. To build adequate spatial knowledge, various forms of spatial tools have been introduced to deliver spatial information without direct experience (maps, descriptions, pictures, etc.). An innovation developed in the 1970s and available on many handheld platforms from the early 2000s is the Global Position System (GPS) and related map and text-based navigation support systems. Contemporary technical achievements, such as GPS, have made navigation more effective, efficient, and comfortable in most outdoor environments. Because GPS delivers such accurate information, human navigation can be supported without specific spatial knowledge. Unfortunately, there is no universal and accurate navigation system for indoor environments. Since smartphones have become increasingly popular, we can more frequently and easily access various positioning services that appear to work both indoors and outdoors. The expansion of positioning services and related navigation technology have changed the nature of navigation. For example, routes to destination are progressively determined by a “system,” not the individual. Unfortunately we only have a partial and nascent notion of how such an intervention affects spatial behaviour. The practical purpose of this research is to develop a trustworthy positioning system that functions in indoor environments and identify those aspects those should be considered before deploying Indoor Positioning System (IPS), all towards the goal of maintaining affordable positioning accuracy, quality, and consistency. In the same way that GPS provides worry free directions and navigation support, an IPS would extend such opportunities to many of our built environments. Unfortunately, just as we know little about how GPS, or any real time navigation system, affects human navigation, there is little evidence suggesting how such a system (indoors or outdoors) changes how we find our way. For this reason, in addition to specifying an indoor position system, this research examines the difference in human’s spatial behaviour based on the availability of a navigation system and evaluates the impact of varying the levels of availability of such tools (not available, partially available, or full availability). This research relies on outdoor GPS, but when such systems are available indoors and meet the accuracy and reliability or GPS, the results will be generalizable to such situations
    corecore