103 research outputs found

    Understanding the impact of Lumbar Disc Degeneration (LDD) and recurrent pain

    Get PDF
    Introduction: Some people with Lumbar Disc Degeneration (LDD) experience recurrent low back pain (LBP) and others do not and it is unclear why. This thesis investigates the biomechanical differences between those with LDD and LBP and those without through the examination of intrinsic lumbar spine shape, postural adjustments and kinematic strategies. Methods: Patients and healthy controls were recruited and consented to our cross-sectional cohort (ethical approval reference13/LO/0793). T2 weighted images (L1-S1, 3T MRI) were acquired and groups identified based upon LDD grade (Modified Pfirrmann grading) and the presence of LBP. Intrinsic lumbar spine shape was investigated using Statistical Shape Modelling (SSM). Postural and kinematic strategies were examined during gait, sit-to-stand and bespoke perturbation tasks using surface electromyography (eight bilateral trunk and lower limb muscles) and a novel marker set, the ‘Imperial Spine’ (three segmented spine and bilateral lower limbs). Participant pain (NRS), depression and anxiety (HADS), quality of life (SF-36), disability (ODI) and total STarT Back scores (SBT) were recorded. Results: Intrinsic lumbar shape was significantly different between groups; the ‘LDD pain’ group had larger antero-posterior vertebral diameters (p=0.05) and a more even lumbar curvature with smaller L5/S1 intervertebral disc spaces (p=0.01) than the ‘no LDD no pain’ group. Significant differences in postural and kinematic strategy were observed between ‘LDD pain’ and ‘LDD no pain’ groups, particularly during the postural perturbation task (p=0.049-0.001). Depression, anxiety, disability and SBT scores were significantly higher and quality of life lower for the ‘LDD pain’ group when compared with the ‘LDD no pain’ group (p≤0.0001). Conclusions: This study provides new evidence that intrinsic lumbar shape is associated with LDD and LBP in adults. People with LDD and LBP use different postural and kinematic strategies and have different psychosocial profiles to those without LBP. Future management will need to reflect these biomechanical and psychosocial components.Open Acces

    Low Back Pain Pathogenesis and Treatment

    Get PDF
    Low back pain is a common disorder which affects the lumbar spine, and is associated with substantial morbidity for about 80% of the general population at some stages during their lives. Although low back pain usually is a self-limiting disorder that improves spontaneously over time, the etiology of low back pain is generally unknown and the diagnostic label, "non-specific low back pain", is frequently given. This book contains reviews and original articles with emphasis on pathogenesis and treatment of low back pain except for the rehabilitative aspect. Consisting of three sections, the first section of the book has a focus on pathogenesis of low back pain, while the second and third sections are on the treatment including conservative and surgical procedure, respectively

    Finite element simulation of the healthy and degenerated lumbar spine : interplay between muscle activity and intervertebral disc multiphysics

    Get PDF
    The human spine provides mechanical support to the trunk while it protects the spinal cord and nerves from the external loads transferred during daily activities. Such loads are largely controlled by the spine muscles and influence the biophysical regulation of the intervertebral discs (IVD). Numerical models have been important tools for the translation of the external forces into internal loads that otherwise cannot be easily measured directly. This PhD thesis used the predictive ability of constitutive equations to reflect the mechanical properties of the lumbar IVD and muscles and explore the IVD-muscle interplay on the healthy and degenerated spine. A review of the state-of-the-art reported for the estimation of spine loads was performed, and the Hill¿s mus cle model and the poro-hyperelastic formulations used for IVD modeling were particularly detailed. A new constitutive equation assembly was proposed involving one active parameter controlled via strain-based criteria, and four passive parameters. For the latters, literature-based values were initially defined, and a parametric study was designed for the active parameter by proposing stretch-related activation thresholds. An optimization scheme was then developed to define a full set of calibrated values per fascicle using force estimations from a reported rigid body model based on measured kinematics of the vertebrae. To test the robustness of the method, a generic L3-S1 finite element (FE) model was developed that included 46 muscle fascicles and all passive issues. Simulation of forward flexion showed that the predicted muscle forces increased in caudal direction. The intradiscal pressure (IDP) predictions correlated with previous in vivo measurements showing the ability of the model to capture realistic internal loads. To simulate standing, the gravity loads were defined by considering the heterogeneous distribution of body volumes along the trunk. This simulation was also coupled to a previous 8-hour free IVD swelling to mimic the overnight disc hydration. Disc swelling led to muscle activation and force distributions that seemed particularly appropriate to counterbalance the gravity loads, pointing out the likely existence of a functional balance between stretch-induced muscle activation and IVD multiphysics. A geometrical extension was then performed to incorporate all relevant tissues of the full lumbar spine including in total 96 fascicles. The effect of previous rest (PR) and muscle presence (MS) on internal loads was explored in standing and lying. Muscle force predictions in standing showed that with PR, the total loads transferred were altered from compressive to tensile. Overnight, the computed IDP increase reproduced previous in vivo data. Both PR and MS affected the vertebrae motion particularly between L1-L2. When degenerated discs properties were used, a general IDP decrease and up to 14 times higher activation was predicted in standing with PR.At last, the previous workflow was repeated using a patient L1-S1 FE model with patient-specific (P-SP) and condition-depended material properties. In standing, asymmetric fascicle activation with increased shortening at the left side and lateral bending was predicted. The decreased swelling capacity of the degenerated discs was associated to an increased muscle activation needed to balance the gravity loads that tended to flex forward the trunk. Comparisons of the IDP results in both models with healthy discs showed that introducing P-SP geometries gave better correlations with in vivo data. Given the difficulties to evaluate the predicted muscle forces experimentally, such outcome further contributed to the validation of the method. Despite its limitations, this approach allowed to explicitly and rationally explore the interactions between muscle function and passive tissue biomechanics in the lumbar spine. The information provided could help clinical decision for patients whom source of back pain is unclearLa columna vertebral proporciona suport mecànic al tors alhora que protegeix la medul·la espinal i els nervis de les forces externes transferides durant les activitats diàries. Aquestes forces són controlades en gran part pels músculs espinals i influeixen en la regulació biofísica dels discos intervertebrals (IVD).Els models numèrics han estat eines importants per a la traducció de les forces externes en càrregues internes que d'altra manera no poden ser fàcilment mesurades directament.Aquesta tesi utilitza la capacitat predictiva de les equacions constitutives per considerar les propietats mecàniques dels discs lumbars i dels músculs i explorar la interacció IVD-múscul a la columna vertebral sana i degenerada. Es va realitzar una revisió de l'estat de l'art dels mètodes reportats per l'estimació de les càrregues, i es van detallar particularment el model muscular de Hill i les formulacions poro-hiperelàstics utilitzades per a la modelització del disc. Es va proposar un model novedós d'equacions cons titutives implicant un paràmetre actiu controlat a través de criteris basats en la deformació, i quatre paràmetres passius. Per aquests últims, es van definir uns valors inicialment basats en la literatura, mentre que pel paràmetre actiu es va realitzar un estudi paramètric per proposar els llindars d'activació relacionats amb l'estirament.A continuació,es va desenvolupar un esquema d'optimització per definir un conjunt complet de valors calibrats per fascicle utilitzant estimacions de forces d'un model de cos rígid de la literatura basat en la cinemàtica de les vèrtebres mesurada. Per comprovar la robustesa del mètode, es va desenvolupar un model L3-S1 d'elements finits (FE) incloent 46 fascicles musculars i tots els teixits passius. La simulació de flexió anterior va mostrar que les forces musculars predites van augmentar en direcció caudal. Les prediccions de pressió intradiscal (IDP) es van correlacionar amb mesures "in vivo" mostrant així la capacitat del model per capturar les càrregues internes reals.Per simular la posició dempeus , les càrregues de gravetat es van definir considerant la distribució heterogènia dels volums del cos al llarg del tronc. A més, aquesta simulació es va acoblar amb un inflament previ del IVD de 8 hores per imitar la hidratació del disc durant la nit. L'inflament del disc va induir activació muscular i una distribució de forces que semblaven particularment apropiades per a contrarestar les càrregues de gravetat, assenyalant la probable existència d'un equilibri funcional entre l'activació muscular i la multifísica del disc. Després es va realitzar una extensió geomètrica del model per incorporar tots els teixits pertinents de la columna lumbar completa incloent un total de 94 fascicles. L'efecte del repòs previ (PR) i la presència de múscul (MS) sobre les càrregues internes va ser explorat en posició dempeus i es tirada. Durant la nit, l'augment de l'IDP computat va confirmar dades anteriors "in vivo". Quan es van definir propietats degenerades als discs, es va predir una disminució general de l'IDP i una activació fins a 14 vegades més alta en peu amb PR. Per últim, les simulacions es van repetir utilitzant un model L1-S1 FE de pacient amb propietats del material específics pel pacient (P-SP) i dependents de la condició del teixit. Dempeus, es va predir una activació asimètrica a la banda esquerra i inclinació lateral.La disminució de la capacitat d'inflament dels discs degenerats es va associar a un augment de l'activació muscular necessària per equilibrar les forces de gravetat que tendeixen a flexionar el tronc. La bona correlació dels resultats de l'IDP en el model P-SP amb discos s ans amb dades "in vivo" va contribuir a la validació del mètode presentat. Malgrat les seves limitacions, aquest enfoc va permetre explorar de manera explícita i racional les interaccions entre la funció muscular i la biomecànica dels teixits passius i contribuir a l'enteniment de l'origen de mal d'esquena.Postprint (published version

    Anterior Lumbar Interbody Fusion (ALIF): a 360 degrees analysis

    Full text link
    Lower back pain is a major cause of morbidity and disability in the western world. Lumbar fusion surgery is indicated in a minority of these patients and ALIF is one of the well-accepted techniques. This thesis represents the body of work, which addresses several aspects of ALIF surgery – a 360-degree overview. Initially we review the role of infection as a cause for degeneration of intervertebral disc, which is the commonest etiology for ALIF surgery. A systematic review demonstrated a high rate of bacterial growth in symptomatic disc degeneration but also raised the concern for the role of contamination and lack of adequate power. A pilot clinical study was undertaken which revealed a similar degree of bacterial infection. This was followed by a multicenter prospective case cohort study (DISC) to compare infection rates, evaluate contamination rate and review histopathological support for inflammation. At interim analysis, we found no difference in true infection rates between cases and controls, high rate of contamination in paraspinal tissue and no correlation between histopathological signs of inflammation and growth of organism. Indications for ALIF surgery and outcomes were evaluated, and ALIF had excellent clinical and radiological outcomes in degenerative disc disease, scoliosis and spondylolisthesis. Adjacent segment disease and failed posterior fusion had small sample size and were not as successful compared to other indications. We perform a clinical study to evaluate objective measurement of physical activity by accelerometers in spine surgery, demonstrating good patient compliance and no correlation between accelerometer measured physical activity and subjective outcome scores. Several radiological outcomes were also investigated. Utilizing a new standardization technique to measure foraminal area, we found ALIF significantly improved all the foraminal parameters, and that posterior disc height correlated with foraminal height restoration. A clinical study on i-factor as a bone graft substitute revealed a high rate of radiological fusion. We also found a reasonable sustained indirect reduction of spondylolisthesis by ALIF. Finally, we evaluated the complications of ALIF surgery particularly the vascular complications. The advantages of the team approach and lessons learnt to minimize complications are discussed

    Multi-objective design optimization of a mobile-bearing total disc arthroplasty considering spinal kinematics, facet joint loads, and metal-on-polyethylene contact mechanics

    Get PDF
    Total disc arthroplasty (TDA) is a motion-preserving surgical technique used to treat spinal disorders, when more conservative medical therapies fail. Unfortunately, a high incidence of revision surgery exists due to postoperative complications including abnormal kinematics, facet joint arthritis, and implant failures. However, TDA is still an attractive option, since an optimally designed artificial disc is expected to reproduce native segmental biomechanics. Correspondingly, it would mitigate the development of adjacent segment diseases (a major concern of spinal fusion) caused by altered segmental biomechanics. Design optimization is a process of finding the best design parameters for a component/system to satisfy one/multiple design requirements using optimization algorithms. The shape of a candidate design is parametrized using computer-aided design, such that design parameters are manipulated to minimize one/multiple objective functions subject to performance constraints and design space bounds. Optimization algorithms typically require the gradients of the objective/constraint functions with respect to each design variable. In the traditional design optimization, due to the high computational cost to calculate the gradients by performing finite element analysis in each optimization iteration, it often results in a slow process to seek the optimal solution. To address the problem, an artificial neural network (ANN) was implemented to derive the analytical expressions of the objective/constraint function and their gradients. By incorporating analytical gradients, we successfully developed a multiobjective optimization (MOO) framework considering three performance metrics simultaneously. Furthermore, a new mobile-bearing TDA design concept featuring a biconcave polyethylene (PE) core was proposed, to strengthen the PE rim, where a high risk of fracture exists. It was hypothesized that there is a trade-off relationship among postoperative performance metrics in terms of spinal kinematics, facet joint loading, and metal-on-polyethylene contact mechanics. We tested this hypothesis by refining the new TDA to match normal segmental biomechanics and alleviate PE core stress. After performing MOO, the best-trade-off TDA design was determined by the solved three-dimensional Pareto frontier. The novel MOO framework can be also used to improve existing TDA designs, as well as to push the cutting edge of surgical techniques for the treatment of spinal disorders

    Multisensory Wearable Motion Analysis in Spine Biomechanics

    Get PDF
    Textile based piezoresistive transducers are an innovative category of devices that use yarns made of conductive and elastic fibers or screen printed conductive rubber coatings to sense strain. They usually satisfy wearability requirements and are used in real-time information gathering systems, being comfortable, ubiquitous and available for long term monitoring. They include knitted fiber transducers (KFTs), sewed fiber transducers (SFTs) and smeared redundant elastomer (SRETs) transducers. In the latter category, SRETs constituted by Conductive Elastomers (CEs) have been commonly employed as strain sensors networks to detect human posture and gesture. Elastic interconnection wiring is also easily realized leading to monolithic fabrication techniques which avoid the presence of metal wires and multiple solderings. Despite this, there is a strong dependence of the system performance by the body structure garment fitting. Moreover, the non-linear dynamical behaviour of SRETs requires identification algorithms, functions which relate joint angles to electrical values presented by the sensor network. The construction of these functions is quite complex and time of computation dramatically increases with the number of degrees of freedom and with the accuracy required to the system to be resolved. Recent development of CEs sensor modeling overcomed some of their main limitations and introduced new fields of operability in SRETs networks. In particular, in strain applications, a useful data processing technique is presented for treating the non-linear dynamical response, considering the different behaviour in sensor elongation and relaxation: actually, when the sensor in stretched, the breakdown of carbon black agglomerates produces an increase in resistance. Inversely, when the sensor is relaxed, the cross-link readjustment lead to different electrically conductive paths in respect to the previous states. This technique has found its implementation in multisensory systems, leading to encouraging results in biomechanical reconstruction. Furthermore, a novel approach in CEs sensing is described, relating the global curvature of a layer to its electrical resistance value variation and exploring under which conditions the resistance can be considered uncorrelated with its particular local bending profile. These devices are called Smeared Conductive Elastomer Electrogoniometers (SCEEGs) and under particular configuration they can be employed as on-body electrogoniometers. The integration of SRET arrays and SCEEGs is definitely a powerful tool for human body posture and gesture reconstruction through efficient and fast algorithms. Moreover In this study we introduce a particular realization of CE strain sensors deposed on an adhesive taping, obtaining a very low skin artifact device (VLSA). We present an electrogoniometric system in which the inextensible insulating layer has been replaced by an elastic layer, allowing the system to be employed both as strain sensor and as electrogoniometer. Finally, we present a biomechanical application in lumbar spine posture monitorization. As a matter of fact, it is known from literature that in the sagittal balance there is a strong correlation with the torso angle and geometrical parameters of lumbar vertebraes, such as the angle between subsequent upper endplates. Data obtained from piezoresistive sensors are so suitable to be used in biomechanical analysis in order to predict forces and moments acting on the functional spinal units

    Subject-Specific Computational Musculoskeletal Modeling of Human Trunk in Lifting : Role of Age, Sex, Body Weight and Body Height

    Get PDF
    Résumé Les troubles musculosquelettiques sont parmi les problèmes de santé les plus fréquents et les plus coûteux au monde. Les maux de dos figurent en deuxième position sur la liste des états chroniques les plus répandus au Canada et quatre adultes sur cinq souffriront de lombalgie un jour ou l’autre de leur vie. Les efforts excessifs sur la colonne vertébrale constituent l’un des facteurs de risque potentiels de lombalgie et peuvent initier ou générer de la douleur et de la dégénérescence des disques. À cet effet, plusieurs études s’accordent pour affirmer qu’une estimation juste des charges vertébrales est utile pour une prévention efficace des blessures et pour des programmes de réadaptation appropriés. Toutefois, il n’existe pas de méthodes directes pour mesurer les charges vertébrales et de plus, toutes les méthodes indirectes (comme la mesure de la pression intradiscale – PID – et l’estimation au moyen de prothèse discale instrumentée) sont invasives et limitées. Les modèles musculosquelettiques (MS) offrent toutefois une alternative intéressante en estimant de manière non invasive, économique et précise les forces musculaires, les charges vertébrales ainsi que la stabilité de la colonne vertébrale en tenant compte des différences individuelles. Dans cette thèse, un modèle MS du tronc par éléments finis (EF) guidé par la cinématique a été mis à niveau. L’architecture des origines et insertions musculaires a été améliorée, une unité vertébrale comprenant un disque déformable a été ajoutée (T11-T12) et un nouvel algorithme de mise à l’échelle a été introduit afin d’explorer les effets du sexe, de l’âge, du poids et de la taille sur la biomécanique et les charges appliquées sur la colonne vertébrale. Au moyen de données issues d’imageries médicales et à partir de principes biomécaniques, l’algorithme de mise à l’échelle a permis d’ajuster l’architecture musculaire (les bras de levier des muscles et les aires transverses), la géométrie et les propriétés passives ligamentaires de la colonne vertébrale ainsi que la charge gravitationnelle, le tout en fonction du sexe, de l’âge, du poids et de la taille. Une analyse de sensibilité a été effectuée au moyen d’une analyse factorielle multiple. Les données d’entrées du modèle (sexe, âge, poids et taille) ont été modifiées à l’intérieur de plages physiologiques (sexe : femme et homme ; âge : 35 à 60 ans ; poids : 50 à 120 kg ; taille : 150 à 190 cm) tandis que le modèle personnalisé par EF était guidé par une cinématique spécifique à l’âge et au sexe lors de différentes tâches de flexion avant avec ou sans charges manuelles. Des graphiques illustrant les effets principaux et des analyses de variance ont été utilisés pour évaluer les effets des données d’entrées sur le chargement au dos. Le poids du corps a été le facteur le plus influent, en expliquant 99 % du chargement lombaire en compression et 96 % de celui en cisaillement, alors que les effets de la taille, du sexe et de l’âge (<5 %) étaient minimes. Aussi, pour des poids et des tailles similaires aux hommes, les femmes supportaient généralement des charges plus importantes au dos (5 % en compression, 9 % en cisaillement) La prévalence de l’obésité, dont l’indice de masse corporelle (IMC) dépasse les 30 kg/m2, est en croissance constante dans les pays développés comme dans les pays en voie de développement et a atteint un seuil critique « d’épidémie mondiale ». Bien que l’obésité soit associée à plusieurs problèmes au dos (ex. : dégénération discale, fractures vertébrales, maux de dos), le rôle de la biomécanique dans les problèmes liés à l’obésité demeure inconnu. La distribution du tissu adipeux varie considérablement d’un individu obèse à un autre, et ce, même dans les cas d’IMC et de poids identiques. On retrouve différentes formes d’obésité, dont celle « en pomme » et celle « en poire » (androïde et gynoïde respectivement). Le rôle de l’obésité et des formes d’obésité sur les charges supportées par la colonne vertébrale et sur les fractures de compression vertébrale a été étudié à l’aide du modèle personnalisé mis à jour. Trois formes distinctes d’obésité (correspondant à une taille de circonférence minimale, moyenne et maximale) pour un poids et un IMC identiques ont été simulées au moyen de mensurations anthropométriques obtenues à partir de 5852 individus obèses et d’une analyse par composantes principales. L’obésité a des conséquences significatives sur le chargement lombaire : la compression sur L4-L5 a bondi de 16 % (2820 N vs 3350 N) pour une flexion avant sans charges lorsque l’IMC a augmenté de 31 kg/m2 à 39 kg/m2. Dans une comparaison entre une taille de circonférence minimale (obésité en forme de poire) et celle d’une circonférence maximale (obésité en forme de pomme), le chargement lombaire a subi une augmentation similaire à celle d’ajouter 20 kg de poids supplémentaire, ainsi qu’un risque de fracture de fatigue vertébrale sept fois plus élevé. En somme, l’obésité et les formes d’obésité ont une influence considérable sur la biomécanique de la colonne vertébrale, et donc, devraient être prises en compte lors d’une modélisation spécifique aux sujets. En plus de servir à l’évaluation de la force maximale du tronc et à la normalisation de l’électromyographie (EMG), les contractions musculaires volontaires maximales (CVM) peuvent être utilisées pour calibrer et valider les modèles MS. La performance du modèle MS personnalisé a été étudiée en comparant les activités musculaires estimées avec les EMG durant diverses tâches de CVM. Le stress musculaire maximal des muscles du tronc a également été calculé pour chaque sujet. Ce dernier a varié considérablement entre différents sujets et groupes musculaires. Le muscle grand droit et le muscle oblique externe de l’abdomen ont eu, respectivement, le plus petite (0,40 ±0,22 MPa) et la plus grande valeur (0,99 ±0,29 MPa) de stress musculaire maximal parmi les groupes de muscles. Pour les CVM en flexion et en extension, les activités musculaires estimées correspondaient adéquatement avec les EMG. Cependant, cette correspondance était faible pour les CVM en flexion latérale et rotations axiales. Le chargement lombaire des femmes était en général plus faible que celui des hommes. Les charges vertébrales maximales lors des CVM ont été obtenues lors des efforts en extension (compression d’environ 6000 N à L5-S1) tandis que les plus faibles ont été enregistrées en flexion avant (compression d’environ 3000 N à L5-S1) ; les participants ont subi des chargements lombaires assez importants durant des CVM en flexion latérale et rotation axiale. (5500 N en compression et 1700 N en cisaillement). La prédiction exacte du stress musculaire maximal et l’évaluation complète de la performance d’un modèle MS nécessitent la prise en compte des tâches de CVM dans toutes les directions et l’application des moments dans les plans principaux et couplés du modèle. Une simulation adéquate des ligaments passifs de la colonne vertébrale, l’une des composantes majeures d’un modèle MS du tronc, est d’une importance capitale. Les modèles détaillés d’EF peuvent capturer avec précision les réactions non linéaires et temporelles de la colonne vertébrale. Toutefois, en raison des coûts de calcul importants des modèles détaillés d’éléments finis, des modèles simplifiés (c.-à-d. à partir de joints sphériques et de poutres ayant des propriétés passives linéaires ou non linéaires) sont couramment utilisés dans les principaux modèles MS. Par conséquent, la précision et la validité de l’utilisation de modèles simplifiés et de leur positionnement antéro-postérieur dans l’estimation de la cinématique de la colonne vertébrale ligamentaire, des forces musculaires et des charges spinales ont été étudiées. Contrairement aux poutres, les articulations de type sphérique négligeaient les degrés de liberté en translation et n’ont pas réussi à prédire la cinématique de la colonne lombaire avec précision, surtout dans la direction craniocaudale. Les poutres et les joints sphériques non linéaires ont prédit de manière satisfaisante la PID en comparaison avec les mesures in vivo d’activités physiques variées. En revanche, l’utilisation des poutres ou des joints sphériques aux propriétés linéaires passives n’a donné que des résultats valides que pour des angles de flexion d’amplitude faible ou modérée (<40 o). En négligeant les propriétés passives des articulations (joints sphériques sans frottement), on a considérablement augmenté le chargement lombaire en compression et en cisaillement, de 32 % et 63 % respectivement. Le déplacement postérieur (de 8 mm) d’une articulation simplifiée a augmenté les charges lombaires (en compression et en cisaillement) d’environ 20 %, tandis qu’un déplacement vers l’avant (2 mm) a diminué de 10 % la compression et de 18 % la force de cisaillement. De plus, un déplacement postérieur du modèle simplifié a réduit la force passive des muscles agonistes, et ce, tout en augmentant leurs composantes actives. Les modèles d’articulation simplifiés avec des propriétés passives non linéaires devraient se situer entre -2 à +4 mm (+ : postérieur) du centre du disque pour des prédictions justes des forces sur la colonne vertébrale et des forces musculaires actives/passives. L’obtention de résultats valides à l’aide des modèles MS exige des moyens considérables comme une collecte complète de données (ex. : cinématiques, EMG), un laboratoire bien équipé et une formation suffisante. Par ailleurs, des équations de régression faciles à utiliser ont précédemment été mises au point pour estimer le chargement lombaire. Cependant, ces équations ne tiennent pas compte de l’anthropométrie des participants (ex. : poids et taille) fondée sur une approche physiologique, et elles négligent souvent l’asymétrie de la tâche. Dans cette partie de l’étude, des équations de régression spécifiques aux sujets ont été développées pour prédire le chargement lombaire (à L4-L5 et L5-S1) en utilisant un modèle d’EF guidé par la cinématique. L’exactitude de ce modèle et des équations de régression ont été évaluées en comparant les activités musculaires estimées par le modèle avec ceux obtenus au moyen de l’EMG et des PDI calculées avec ceux de la littérature existante. Les valeurs estimées de la PDI spécifiques aux sujets présentaient des corrélations élevées avec les résultats d’études in vivo lors de tâches symétriques et asymétriques (R2=0.82). Dans le cas des tâches symétriques, les estimations d’activité musculaire étaient raisonnablement comparables avec les résultats d’EMG. Toutefois, dans les tâches asymétriques, les estimations étaient moyennement (muscles du dos) ou faiblement (muscles de l’abdomen) en accord avec les EMG. En somme, les équations de régression développées peuvent être utilisées dans le but d’estimer le chargement lombaire dans des tâches de levage symétriques et asymétriques. Ces équations personnalisées pourraient servir à l’évaluation des risques de blessure au dos lors d’activités de manutention. En résumé, un modèle MS d’EF guidé par la cinématique, mis à jour par une architecture musculaire améliorée, un disque déformable additionnel (T11-T12) et un nouvel algorithme de mise à l’échelle a été utilisé pour examiner la biomécanique personnalisée de la colonne vertébrale. En personnalisant tous les paramètres du modèle MS (les bras de levier des muscles, les aires transverses musculaires, le chargement gravitationnel, la géométrie de la colonne, les propriétés passives et la cinématique de la colonne vertébrale), et en effectuant une analyse de sensibilité sur les données d’entrées du modèle (sexe, âge, taille et poids), il a été démontré que le poids d’une personne influence nettement les forces de chargement subies par la colonne vertébrale, alors que l’influence des autres facteurs était plutôt faible. Deux formes distinctes d’obésité ont été reconstituées à partir d’un ensemble de données anthropométriques disponibles dans la littérature. Les résultats ont établi que l’obésité et les formes d’obésité (formes en pomme ou en poire) affectent, toutes les deux, les forces sur la colonne vertébrale ainsi que le risque de fracture de fatigue vertébrale. Lors de tâches de CVM (en extension, en flexion, en flexion latérale et en rotation axiale), les grandeurs du stress musculaire variaient substantiellement parmi les sujets et différents groupes musculaires. Dans le cas des CVM en flexion et en extension, les valeurs prédites d’activité musculaire par le modèle personnalisé étaient près des EMG enregistrés, alors que les prédictions concernant les CVM en rotation axiale et en flexion latérale n’avaient pas la même exactitude. Des poutres et des joints sphériques ayant des propriétés non linéaires (d’une position variant de -2 à +4 mm [+ : postérieur] du centre des disques) prédisait avec exactitudes les cinématiques de la colonne vertébrale, le chargement lombaire et les activités musculaires. Par contre, les modèles articulaires qui avaient des propriétés linéaires ou qui n’avaient pas de degrés de liberté en translation détérioraient l’exactitude des prédictions. Enfin, des équations de régression faciles à utiliser ont été mises au point dans le but de prédire les forces de compression et de cisaillement subies par la colonne vertébrale (aux niveaux L4-L5 et L5-S1) lors de tâches symétriques et asymétriques. Les équations personnalisées ont correctement estimé les valeurs de PID en comparant les valeurs calculées avec les résultats mesurés in vivo retrouvés dans la littérature. Lors de plusieurs tâches symétriques et asymétriques, les valeurs estimées des activités musculaires étaient moyennement (pour les muscles du dos) à faiblement (pour les muscles abdominaux) comparables avec les EMG enregistrés des participants. Par conséquent, les équations de régression proposées peuvent être utilisées pour évaluer les risques de blessures lors d’activités de manutention. ---------- Abstract Musculoskeletal disorders are one the most frequent and costly disabilities in the world. Back problems are the second most common chronic condition in Canada. Four out of five adults experience low back pain in their lifetime. As one of the potential risk factors of back pain, excessive loads on the spine can initiate and promote disc degeneration and pain, so accurate estimation of spinal loads are helpful in designing effective prevention, evaluation, and treatment programs. There is no direct method to measure spinal loads, and all indirect methods (intradiscal pressure – IDP – and instrumented vertebral replacement) are invasive and scarce. Alternatively, musculoskeletal (MS) models with physiological scaling algorithms economically and accurately estimate muscle forces, spinal loads and spinal stability margin by taking into account individual differences. An existing kinematics driven (KD) finite element (FE) MS musculoskeletal model of the trunk has been upgraded in this work by refining the muscle architecture, by adding a new deformable disc level (T11-T12), and by introducing a novel scaling algorithm to explore likely effects of sex, age, body weight (BW) and body height (BH) on spine biomechanics and spinal loads. By using imaging datasets and biomechanical principles, the scaling algorithm adjusted the muscle architecture (muscle moment arms and cross-sectional areas), spine geometry, passive properties of the ligamentous spine and gravity loads based on subject’s sex, age, BH and BW. To perform a sensitivity analysis in a full-factorial design, model inputs (i.e., sex, age, BH and BW) were altered within physiological ranges (sex: female and male; age: 35-60 years; BH: 150-190 cm; BW:50-120 kg) while the personalized KD-FE model of the trunk was driven with sex- and age-specific kinematics during different forward flexion tasks with and without a hand-load. Main effect plots and the analysis of variance were employed to investigate effects of inputs on spinal loads. As the most influential factor, BW contributed 99% to compression and 96% to shear spinal loads while effects of BH, sex and age (<5%) remained much smaller. At identical BH, BW and waist circumference, females had slightly greater spinal loads (5% in compression; 9% in shear). The prevalence of obesity (body mass index; BMI>30 kg/m2) is rising in both developed and developing countries, and has reached “global epidemic” proportions. Although obesity has been associated with various back problems (e.g., disc degeneration, vertebral fracture and back pain),the likely role of biomechanics in obesity-related back problems is still unknown. At identical BMI and BW, fat distribution varies substantially from one obese individual to another. Different obesity types have qualitatively been described as apple- and pear-shaped (or android and gynoid). Therefore, effects of obesity and obesity shapes on spinal loads and vertebral compression fracture were investigated by using the upgraded subject-specific model. At identical BW and BH, three distinct obesity shapes (corresponding to minimum, average and maximum waist circumferences) were reconstructed by using available anthropometric measurements of 5852 obese individuals and principal component analysis. Obesity markedly affected spinal loads; L4-L5 compression increased by 16% (2820 N vs 3350 N) in forward flexion without a hand-load when BMI increased from 31 kg/m2 to 39 kg/m2. Greater waist circumferences (apple-shaped obesity) in comparison with smaller waist circumferences (pear-shaped obesity) increased spinal loads to the extent of gaining 20 kg additional BW and the risk of vertebral fatigue fracture by up to ~7 times. Therefore, both obesity and obesity shapes substantially affected spine biomechanics and should be taken into account in subject-specific modeling of the spine. Apart from serving in the trunk strength quantification and electromyography (EMG) normalization, maximum voluntary exertions (MVEs) can be used to calibrate and validate MS models. The performance of the current upgraded subject-specific MS model was investigated by comparing estimated muscle activities with reported EMGs during various MVE tasks. Maximum muscle stresses of trunk muscles were also calculated for each subject individually. Estimated maximum muscle stresses varied substantially among subjects and different muscle groups; rectus abdominis and external oblique had the smallest (0.40±0.22 MPa) and largest (0.99±0.29 MPa) maximum muscle stresses, respectively. In sagittal symmetric MVEs (extension and flexion), estimated muscle activities were found in satisfactory agreement with measured reported EMGs while in lateral and axial MVEs, the agreement was rather weak. Females in general had smaller spinal loads. Peak spinal loads were obtained in extension MVE (~6000 N compression at L5-S1) while flexion MVE yielded the smallest spinal loads (~3000 N compression at L5-S1); subjects experienced rather large spinal loads (5500 N in compression and 1700 N in shear) under lateral and axial MVEs. Accurate prediction of maximum muscle stresses and comprehensive evaluation of the performance of a MS model require the consideration of MVE tasks in all directions with the application of both primary and coupled moments to the model. Accurate simulation of the passive ligamentous spine, as one of the integral components of a trunk MS model, is of great importance. Detailed FE models can accurately capture nonlinear and time-dependent responses of the spine; however, due to the significant computational costs of detailed FE models, simplified models (i.e., spherical joints/beams with linear/nonlinear passive properties) are commonly used in the trunk MS models. Therefore, the accuracy and validity of using simplified models and their anterior-posterior positioning in estimating kinematics of the ligamentous spine, muscle forces and spinal loads were investigated. Unlike beam elements, spherical joints overlooked translational degrees of freedom and failed to accurately predict kinematics of the lumbar spine particularly in the cranial-caudal direction. Nonlinear shear deformable beams and spherical joints were found to satisfactorily predict IDPs in comparison with in vivo measurements during various activities. In contrast, using beams or spherical joints with linear passive properties yielded valid results only in small to moderate flexion angles (<40o). Neglecting passive properties of joints (frictionless spherical joints) substantially increased compression and shear spinal loads by 32% and 63%. Shifting a simplified joint posteriorly (by 8 mm) increased spinal loads (compression and shear) by ~20% while an anterior shift (by 2 mm) decreased spinal loads by 10% and 18% in compression and shear directions. Moving simplified joint models posteriorly reduced also passive muscle forces of agonist muscles while increasing their active components. Simplified joint models with nonlinear passive properties should be located in -2 to +4 mm (+: posterior) range from the disc center for accurate predictions of spinal loads and active/passive muscle forces. Obtaining reasonably accurate results by MS models requires comprehensive data collection (e.g., kinematics, EMG), equipped laboratory, and sufficient training. Alternatively, easy to use regression equations have previously been developed to estimate spinal loads, but they do not take account of personalized anthropometric factors (e.g., BW and BH) based on a physiological approach and often overlook task asymmetry. Thus, in this work, subjects-specific regression equations were developed to predict spinal loads at lower spinal levels (L4-L5 and L5-S1) by using the upgraded KD-FE model, and the Accuracy of the model and regression equations were subseq

    Patient Positioning for Surgeries of the Spine : How Does it Impact Spinal Geometry and How Can it be Exploited to Improve Surgical Procedures

    Get PDF
    RÉSUMÉ Les cas les plus graves de déformation rachidienne, telles que la scoliose, nécessitent une intervention chirurgicale afin de traiter les symptômes et de réaligner la colonne vertébrale. Au cours de l'intervention chirurgicale, les patients sont habituellement maintenus dans une position en décubitus ventral et une instrumentation est utilisée pour corriger et fixer la géométrie de la colonne. Il a été démontré que le positionnement des patients sur des cadres chirurgicaux a un impact sur la géométrie rachidienne, mais ceci n'est pas exploité afin de faciliter et améliorer les procédures chirurgicales. Les cadres disponibles commercialement ont des capacités limitées de positionnement du patient qui puisse être modifiable durant l'intervention. Aussi, afin d‟exploiter éventuellement les diverses possibilités de positionnement, on doit connaître l‟impact de ces positions sur la modulation de la géométrie de la colonne vertébrale du patient opéré. Ce projet a été effectué en parallèle avec la conception et la construction d'un nouveau cadre de positionnement multifonctionnel (MFPF) pour les chirurgies du rachis qui permet le positionnement des membres inférieurs ainsi que le déplacement vertical du thorax. Le MFPF lui-même était une combinaison de deux cadres précédents permettant le positionnement chirurgical: le DPF (permettant le réglage de coussins sur le tronc et l'application de forces correctives) et le "leg positionner" (permettant la flexion et l'extension des membres inférieurs). La modélisation par éléments finis (MEF) a été utilisée pour étudier le positionnement de patient sur le DPF. Les objectifs spécifiques de ce projet étaient: 1) d'adapter et développer une MEF de la colonne vertébrale, cage thoracique, bassin, et des membres inférieurs qui soit capable de simuler les effets géométriques sur la colonne vertébrale résultant du positionnement en décubitus ventral et de l‟ajustement des capacités de positionnement du MFPF; 2) effectuer des essais expérimentaux sur le positionnement en décubitus ventral et les capacités de positionnement du MFPF et utiliser les résultats pour valider le MFF; 3) exploiter le MEF pour développer de nouvelles possibilités de positionnement sur le MFPF permettant de moduler la géométrie de la colonne vertébrale et évaluer ces nouvelles positions expérimentalement avec des accessoires construit pour le MFPF; et 4) exploiter la MEF afin d'étudier l'impact de la combinaison des----------ABSTRACT The most severe cases of spinal deformity, such as scoliosis, require surgical intervention in order to treat symptoms and re-align the spine. During surgical procedures, patients are typically kept in the prone position while surgical instrumentation is utilized to manipulate and fix spinal geometry. Patient positioning on surgical frames has been shown to have an impact on spinal geometry which can be exploited in order to facilitate and improve upon surgical procedures. Current commercial surgical frames have no or limited patient positioning capabilities. In order to best take advantage of a surgical frame‟s positioning capabilities, knowledge must be gained on how they will impact a given patient‟s spinal geometry. This project was done in parallel with the design and construction of a new Multi-Functional Positioning Frame (MFPF) for spinal surgeries which allowed for lower limb positioning and thoracic vertical displacement. The MFPF itself was a combination of two previously developed surgical positioning devices: the Dynamic Positioning Frame (DPF) (allowing thoracic cushion adjustment and corrective force application) and the “leg positioner” (allowing hip flexion and extension). Finite element modeling (FEM) was previously used to study patient positioning on the DPF. The global objective of this thesis was to study how patient positioning on a frame can be used in order to improve scoliosis instrumentation procedures through the intra-operative manipulation of spinal geometry. The specific objectives of this project were: 1) adapt and develop a FEM of the spine, thoracic cage, pelvis, and adjacent structures that is able to simulate the geometric effects on the spine resulting from prone positioning and feature adjustment on the MFPF; 2) experimentally test the impact of prone positioning and feature adjustment on the MFPF and utilize the results to validate the FEM; 3) exploit the FEM in order to study additional surgical positions allowing modification of spinal geometrical parameters not possible on the original MFPF design and experimentally assess these new positions using proof of concept features constructed for the MFPF; and 4) exploit the FEM in order to study the impact of combined MFPF positioning parameters on the geometry of the spine (especially the leg positioning and thoracic components) including developing a method allowing for individual an
    corecore