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Abstract 

 

 Total disc arthroplasty (TDA) is a motion-preserving surgical technique used to treat 

spinal disorders, when more conservative medical therapies fail. Unfortunately, a high incidence 

of revision surgery exists due to postoperative complications including abnormal kinematics, 

facet joint arthritis, and implant failures. However, TDA is still an attractive option, since an 

optimally designed artificial disc is expected to reproduce native segmental biomechanics. 

Correspondingly, it would mitigate the development of adjacent segment diseases (a major 

concern of spinal fusion) caused by altered segmental biomechanics. 

 Design optimization is a process of finding the best design parameters for a 

component/system to satisfy one/multiple design requirements using optimization algorithms. 

The shape of a candidate design is parametrized using computer-aided design, such that design 

parameters are manipulated to minimize one/multiple objective functions subject to performance 

constraints and design space bounds. Optimization algorithms typically require the gradients of 

the objective/constraint functions with respect to each design variable. In the traditional design 

optimization, due to the high computational cost to calculate the gradients by performing finite 

element analysis in each optimization iteration, it often results in a slow process to seek the 

optimal solution. To address the problem, an artificial neural network (ANN) was implemented to 

derive the analytical expressions of the objective/constraint function and their gradients. By 

incorporating analytical gradients, we successfully developed a multiobjective optimization 

(MOO) framework considering three performance metrics simultaneously.  

 Furthermore, a new mobile-bearing TDA design concept featuring a biconcave 

polyethylene (PE) core was proposed, to strengthen the PE rim, where a high risk of fracture 
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exists. It was hypothesized that there is a trade-off relationship among postoperative performance 

metrics in terms of spinal kinematics, facet joint loading, and metal-on-polyethylene contact 

mechanics. We tested this hypothesis by refining the new TDA to match normal segmental 

biomechanics and alleviate PE core stress. After performing MOO, the best-trade-off TDA design 

was determined by the solved three-dimensional Pareto frontier. The novel MOO framework can 

be also used to improve existing TDA designs, as well as to push the cutting edge of surgical 

techniques for the treatment of spinal disorders. 
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Chapter 1: Introduction 

 

1.1. Motivation 

 Lower back pain (LBP) is a public health concern in western countries. In the United 

States, 80% of adults suffer from LBP in their lifetimes [1]. It is the most common cause of job-

related disability and a leading contributor to lost work days. In an analysis of 30,074 case reports 

to the National Health Interview Survey in 1998, it was estimated that 4.6% LBP patients lost 

their jobs, and LBP resulted in 149 million lost work days annually [2]. Due to the high 

prevalence rate, not only the suffering from LBP does cause distress to their families, but also a 

substantial economic burden on the whole society [3].  

 A significant portion of LBP is associated with intervertebral disc (IVD) degeneration. 

The IVD is a soft tissue, which consists of a gel-like center, the nucleus pulposus (NP), 

surrounded by an outer fibrous ring, the annulus fibrosus (AF). Disc degeneration is commonly 

initiated by natural daily stresses and minor injuries in the annular lamellae [4, 5]. As discs 

damage and lose water, they start to collapse. The decrease in the IVD height can result in 

pressure on the nerves in the human spinal column and abnormal loads on other spinal tissues. 

Therefore, disc degeneration further induces other pathologic conditions (e.g., spinal stenosis and 

joint arthritis) in the lumbar spine, causing pain and weakness.  

 When more conservative medical therapies fail, surgical procedures such as spinal fusion 

and total disc arthroplasty (TDA) are required to relieve pain. In spinal fusion, the diseased disc is 

replaced by implanting a high-stiffness metal or polymeric cage loaded with bone graft, which 

promotes the fusion of adjacent vertebral bodies. Although the intervertebral height and lordosis 
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(inclination angle) are restored, the insertion of a high-stiffness implant compromises many 

aspects of the normal disc biomechanics. In contrast, TDA using an artificial disc featuring metal-

on-polyethylene (MoP) articulations or a viscoelastic core can relieve pain and pressure, with 

fewer restrictions on postoperative activities.  

 In the literature, there has not been a consensus for a recommended surgical treatment 

that would decrease the incidence of complications. Inconsistent results regarding the 

biomechanical effects of different therapies such as spinal fusion and TDA on the instrumented 

spine have been reported previously. However, clinical studies have indicated that TDA causes 

complications (e.g., the development of adjacent segment diseases) which also occur in patients 

who receive spinal fusion, with additional concerns of spinal tissue overloading and abnormal 

motion patterns at the treated segment, as well as implant failures due to wear, fracture and creep. 

The more complex complications impede the application of TDA, despite the benefit of motion 

preserving. Therefore, spinal fusion is still the gold standard treatment for spinal disorders, due to 

the higher risk of revision surgery after TDA. 

 Theoretically, spinal fusion that creates a high-stiffness construct in the intervertebral 

space can completely restrict the motion of the treated spinal segment, unless pseudo-arthrodesis 

(the failure to achieve the complete bony union) occurs. Therefore, the segmental behavior after 

spinal fusion is less sensitive to implant design. On the contrary, TDA design may significantly 

influence the postoperative segmental kinematics, MoP contact mechanics, and spinal tissue load-

sharing, according to the knowledge from the intense studies of total knee/hip arthroplasty in the 

literature. Previously reported biomechanical comparisons between spinal fusion and TDA were 

often conducted by considering a unique commercial available TDA design. To the best of our 

knowledge, design optimization of a TDA has not been performed in previously published studies. 

Due to the lack of an in-depth understanding of the relationship between TDA design and 

postoperative spinal responses, whether the motion-preserving surgical treatment using an 

optimally designed implant can translate into a better spinal function is unclear. 
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1.2. Objectives 

 The overarching goal of this work is to find the optimum TDA designs using 

multiobjective design optimization simultaneously considering postoperative segmental 

kinematics, MoP contact mechanics, and spinal tissue load-sharing. To perform TDA 

multiobjective optimization, several sub-objectives need to be met. They include: 

 

1. Development of a numeric framework to model the material anisotropy and heterogeneity 

across the annulus pulposus, and simulate the responses of the native intervertebral disc in 

various physiologically relevant loading scenarios. 

 

2. Development of a multi-segment lumbar spine finite element (FE) model in order to investigate 

the behaviors at different levels of the intact and TDA-treated lumbar spines. 

 

3. Performance assessment of segmental kinematics, MoP contact mechanics, and spinal tissue 

load-sharing in lumbar segments treated by different commercially available TDAs, and their 

sensitivities to implant design and facet joint articulation. 

 

4. Proposal of a new biconcave mobile-bearing TDA design concept which improves MoP 

contact mechanics, and parametric FE modeling of the new TDA design considering the 

important design parameters which influence the TDA performance. 

 

5. Development of an artificial neural network based multiobjective optimization algorithm to 

generate the complete Pareto frontier in a high-dimensional objective space. 
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6. Multiobjective design optimization of the biconcave mobile-bearing TDA simultaneously 

considering segmental kinematics, MoP contact mechanics, and facet joint loading in the treated 

lumbar segment, to achieve the best tradeoff among these performance measures. 

 

1.3. Hypotheses 

1.3.1. Hypothesis in the Study of Intervertebral Disc Biomechanics 

 Typically, soft tissue observed in clinical images is prestressed by internal pressure and 

tissue hydration; the normal disc is pressurized with a physiological intradiscal pressure (IDP) 

due to nucleus swelling. Simulations based on the geometry and fiber orientation from clinical 

images without considering these residual stresses will cause a discrepancy with the physical 

reality. It was reported that mild disc degeneration due to the loss of the capability of nucleus 

swelling caused a substantial decrease in the resistance to intervertebral rotations. Therefore, it is 

necessary to incorporate nucleus swelling into an IVD computational model to better understand 

IVD biomechanics. We hypothesize that thermoelastic analysis can be repurposed to provide an 

accurate representation of the disc prestrain under nucleus swelling. The geometry and annulus 

fiber orientation of the prestrained disc under a physiological IDP are identical to those observed 

in clinical images. Moreover, IDP and fiber orientation regulate the disc mechanical behavior in 

different loading scenarios.  

 

1.3.2. Hypothesis in a New Mobile-bearing Total Disc Arthroplasty Design Concept 

 Impingement in TDAs with MoP articulations is defined as unintended contact between 

two nonbearing surfaces. According to well-documented retrieval studies [6], it is highly 

associated with excessive wear and fracture of the polyethylene [7]. However, we hypothesize 

that impingement as a contact constraint can prevent excessive intervertebral rotations and spinal 

tissue overloading. Therefore, the author proposed a new TDA concept featuring a biconcave PE 
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mobile core, with a smooth transition from the dome to the rim. It is further hypothesized that the 

biconcave-core TDA design results in a significant increase in the strength of the PE rim, which 

can serve an intended bearing. 

 

1.3.3. Hypothesis in Multiobjective Design Optimization of Total Disc Arthroplasty  

 TDA treatment using the anterior surgical approach may cause postsurgical 

complications such as excessive segmental rotation [8], spinal tissue overloading [9] and 

polyethylene inlay wear/fracture failures [10]. We hypothesize that these complications can be 

mitigated and native disc biomechanics can be matched by optimally designing a TDA. In this 

study, spinal fusion is considered as a TDA design extremity, and a motion-sacrificing 

configuration can be realized when the complete congruence on the MoP articulations is 

designated. To quantify TDA complications, three performance metrics regarding the segmental 

range of motion (ROM), facet joint force (FJF) and polyethylene contact pressure (PCP) were 

introduced. It is further hypothesized that there is a tradeoff among these three performance 

metrics. Multiobjective design optimization will provide a Pareto curve which quantifies the 

tradeoff relationship. Furthermore, it will allow us to achieve the best tradeoff design by changing 

design variables of a TDA. 

 

1.4. Contributions 

1.4.1. Modeling of Material Anisotropy and Heterogeneity in Intervertebral Disc  

 In the study of intervertebral disc biomechanics, a new constitutive model was developed 

to describe the nonlinear tensile behavior of annular reinforcing collagen fibers. Based on the 

constitutive model, algorithms used to fit and interpolate the stress-stretch curves of collagen 

fibers were developed, to model the material anisotropy and heterogeneity across the annulus 

fibrosus.  
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1.4.2. Investigation of Changes in Disc Geometry and Mechanics by Nucleus Swelling  

 Thermoelastic analysis was introduced in an intervertebral disc FE model to simulate the 

disc prestrain in nucleus swelling, and inversely derive the configuration of the unloaded 

(degenerated) disc due to the lack of nucleus swelling using an iterative “pull-back” algorithm 

[11]. By comparing the resulting intradiscal pressure (IDP) in the nucleus and principal stresses in 

the annulus to those using a reported disc prestrain simulation method, the author demonstrates 

that the disc prestrain is mechanically equivalent to thermal expansion. However, different from 

the previous disc prestrain method, the thermal expansion based disc prestrain method enables the 

“pull-back” of the entire disc including the annulus and nucleus, such that the effect of disc 

degeneration (the loss of the physiological IDP) on the disc behavior can be investigated.  

 

1.4.3. Comparison of Normal and Degenerated Disc Behaviors 

 The behaviors of the normal (prestrained) disc and degenerated (unloaded) disc were 

computationally investigated by applying the reported physiological ranges of motions (ROMs) 

in different loading scenarios. The author revealed that the disc stiffness is regulated by the IDP 

and fiber orientation; a decrease of the IDP and fiber angles causes a distinct deterioration in the 

resistance to intervertebral rotations. Therefore, calibration of the IDP and fiber orientation can 

improve the model prediction of disc behavior.  

 

1.4.4. Proposal of a New Biconcave Total Disc Arthroplasty Concept  

 According to well-documented TDA retrieval studies, the author proposed a new mobile-

bearing TDA design concept featuring a biconcave polyethylene core, which strengthens the 

polyethylene rim, where a high risk of fracture exists. Using kinematic analysis and contact 

simulation, the author has successfully demonstrated that the new TDA design is capable of 
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alleviating complications which commonly occurs in the treatments using commercially available 

TDAs.  

 

1.4.5. Multiobjective Optimization of Total Disc Arthroplasty 

 The proposed mobile-bearing TDA concept was refined using a neural network (NN) 

based multiobjective design optimization algorithm. Multiobjective design optimization 

considering two objectives has been widely used to optimally design implants [12, 13]. Here, the 

author derived the analytical gradient of the NN predictions with respect to the NN inputs, and 

incorporated it into an evolutionary multiobjective optimization algorithm. Thus, the 

computational efficiency was significantly boosted to allow multiobjective optimization 

considering more objectives in this study. Specifically, the best tradeoff of the TDA performance 

was achieved considering three objectives (segmental kinematics, contact mechanics, and spinal 

tissue load-sharing) simultaneously. 

 

 

 

  



8 
 

 

 

 

 

 

Chapter 2: Background 

 

2.1. Lumbar Spine 

 As shown in Figure 2.1, the human spinal column consists of a series of vertebrae 

(segmented bones), which are separated by intervertebral discs. The cervical, thoracic and lumbar 

spines are three main spine regions from the cranial to the caudal defined according to different 

curvatures observed in the spine column. The lumbar spine region (Figure 2.1a) comprises five 

lumbar vertebrae (L1-L5), and sometimes also includes the caudal-most thoracic vertebrae (T12) 

and the sacrum (S1).  

 

Figure 2.1: 3D model of the human lumbar spine created from CT images. (a) The sagittal view 

of the L1-L5 lumbar spine; (c) The posterior view of the lumbar spine.  

 

 Intervertebral rotations and translations in six degrees of freedom in three anatomic 

planes (Figure 2.2) are allowed in each motion segment or functional spine unit (FSU), which 
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consists of two adjacent vertebrae, the intervertebral discs, and all intersegment ligaments. From 

L1 to L5 (Figure 2.1b), differences in anatomic dimensions of vertebrae [14] and orientations of 

the facet joints [15] can be observed, indicating that the load-sharing of spinal tissues varies from 

cranial to caudal in spinal motion [16].  

 

Figure 2.2: The anatomical planes of a lumbar functional spine unit, including the coronal (frontal) 

plane, sagittal plane and axial (transverse) plane. 

 

2.2. Intervertebral Disc 

 The intervertebral disc (IVD) is a sophisticated soft tissue structure (Figure 2.3a) that 

consists of a gel-like center, the nucleus pulposus (NP), and an outer fibrous ring, the annulus 

fibrosus (AF). The NP contains type II collagen and polysaccharide, capable of trapping ions to 

generate an osmotic pressure for nucleus swelling [17]; therefore, the high water content is 

commonly observed in the NP of the healthy disc [18]. The AF ground substance (GS) 

surrounding the NP is reinforced by collagen fiber lamellae [19–22], with a crossing pattern of 

fiber bundles due to the alternating fiber orientations in adjacent lamellae (Figure 2.3b). The fiber 

angles with respect to the disc transverse plane vary radially and circumferentially across the AF 

[19, 20]. Meanwhile, the relative content of type I and II collagens gradually changes across the 

AF, as a consequence of the adaptation in tissue remodeling to loading history and physiological 
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aging (Brickley-Parsons and Glimcher. 1984). Therefore, the different collagen content 

distribution and fiber orientation within the AF result in the material heterogeneity of the AF 

composite. 

 

Figure 2.3: Anatomy of the human lumbar intervertebral disc [24], used with permission from 

Elsevier. (a) The NP and AF of a disc; (b) The AF lamellae reinforced by collagen fibers with a 

crossing pattern.  

 

 The disc mechanical functions in a spine motion segment follow the disc structure. The 

main function of the disc is the load-bearing of a dynamic compressive load, associated with the 

change in body positions in life activity [25]. The incompressible disc matrix resists the 

compressive load, and interstitial fluid plays a vital role in absorbing the impact [26, 27]. The 

fiber lamellae embedded in the AF constrain disc bulging, and further pressurize the disc matrix 

to avoid disc collapse. Besides, the disc serves to connect adjacent vertebrae to each other, and 

guide and restrict the intervertebral rotations, such as flexion, extension, lateral bending and axial 

torsion. In-vitro experiments have demonstrated that there exists a neutral zone in the hysteresis 

curve of the kinematic response, which describes the laxity of the motion segment [28], as shown 

in Figure 2.4. Beyond the neutral zone, pronounced tissue stiffening occurs in each loading 

scenario, so it determines the physiological ranges of motion (ROMs) and avoids excessive 
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intervertebral rotations. Both the microscopic structural change and re-orientation of collagen 

fibers in large deformation contribute to the stiffening effect in the AF tissue. Polarized light 

microscopy demonstrates that initially crimped fiber bundles with a periodic wave pattern are 

gradually stretched and unfolded in uniaxial tensile testing [29]. In the meantime, the fibers with 

the crossing pattern are re-oriented along the loading direction [30]. Thus the increasing fiber 

forces stiffen the disc tissue.  

 

Figure 2.4: Graphic representation of the hysteresis curves of a lumbar segment applied a moment 

(NZ = neutral zone; ROM = range of motion; IV = intervertebral) [28], modified with permission 

from Elsevier. 

 

 The IVD behavior is strongly sensitive to the collagen fiber orientation [31–34], which 

varies radially and circumferentially across the IVD AF [19, 20]. The regional material variation 

may result from the tissue evolution in the adaptation to the loading history and physiological 

aging [23, 35]. To develop a computational biomechanical model with high fidelity, the 

experimental data available in the literature should be incorporated [36]. Holzapfel et al (2005) 

and Zhu et al. (2008) measured the stress-stretch curves of the fiber lamellae at different anatomic 

sites in the lumbar IVD specimens. A summary of reported material properties and in-vitro disc 

behavior using disc specimens at the upper lumbar levels [19, 37] and lower lumbar levels [20, 28] 

is listed in Table 2.1. These experimental data have been used to model the material heterogeneity 

of the AF in previous FE models [33, 34, 38–40]. 
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Table 2.1: Summary of the IVD material properties and IVD mechanical behavior data in in-vitro 

experiments. 

 

Single 

lamellar 

testing 

References Holzapfel et al (2005) Zhu et al (2008) 

Testing specimens L1-L2 discs: 11 

Age: 57.9 ± 15.4 years 

Gender ratio: m:f = 8:3 

L4-L5/L5-S1 discs: 5 

Age: 28–45 years 

Gender ratio: m:f = 5:0 

Uniaxial tensile 

testing 

Stress-stretch curves at 4 

testing sites 

Linear-fit tangent moduli at 8 

polar sectors 

Fiber orientations Linear-fit relation in the polar 

direction 

Variation in both radial and 

polar direction 

Lamellar thicknesses Available at 5 testing sites Not available 

In-vitro 

IVD 

behavior 

References Li et al (2009) Heuer et al (2007a) 

Testing specimens L2-L3 discs: 2 

Age: 23–44 years 

L4-L5 discs: 8 

Age: 52 (38–59) years 

Loading condition in 

each loading 

scenario 

The range of displacement 

/rotation were applied, the 

rest DOFs were allowed 

Pure moment was applied 

 

 

2.3. Ligaments and Facet Joints 

 As presented in Figure 2.5, there are seven ligaments in the lumbar spine, including 

anterior longitudinal ligament (ALL), posterior longitudinal ligament (PLL), ligamentum flavum 

(LF), intertransverse ligament (ITL), capsular ligament (CL), interspinous ligament (ISL) and 

supraspinous ligament (SSL). Similar to the annular lamellae, the behavior of spinal ligaments 

can be described as a tension-only, nonlinear stress-stretch or force-deflection curve, with an 

effect of tissue stiffening. Exceptionally, the SSL is able to resist compression, since Heuer et al. 

(2007a) reported that the ROMs of the L4-5 specimens significantly increased (Wilcoxon rank 

test) in extension after removing the SSL. 
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Figure 2.5: Illustration of seven lumbar spinal ligaments. Adopted from [41], under the terms of  

the Creative Commons user license (https://creativecommons.org/licenses/by/4.0/).   

 

 The facet joint surrounded by the CL (Figure 2.5) is a synovial plane joint between the 

articular processes of two adjacent vertebrae. It is made up of two major functional components, 

the articular cartilage and the capsular ligament. According to in-vitro experiments [28, 42] and 

simulations [16, 34], the dissection of the facet joints caused distinct changes in kinematic 

responses in both flexion and extension. Thus facet joints play an important role in the spinal 

function and stability only secondary to IVDs. Experiments on the isolated facet joints [43] have 

demonstrated that compression and tension are resisted by the articular cartilage and the capsular 

ligament, respectively.  

 

2.4. Degenerative Disc Disease 

 Most spinal pathologies result from disc degeneration, in which the disc loses its 

capability for tissue hydration (hence the degenerated disc is like a flat tire). The underlying 

causes of disc degeneration include genetic inheritance and inadequate metabolite transport [4, 

44–46]. Excessive loading initiates tissue damages in the IVD, which changes the cell 
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environment; an aberrant, cell-mediated response to the environmental changes further 

accelerates tissue disruption. Due to extremely low cellularity, healing potential in adult IVDs is 

limited, so the progressive structural failure is almost irreversible. Adams et al. (2000) mimicked 

the disc degeneration process using in-vitro experiment. They observed that minor damages in the 

vertebral body endplates led to the progressive structural deterioration in the IVDs in dynamic 

loading. Similar to the in-vivo disc degeneration, the resulting tissue disruptions in the disc 

specimens include inwardly collapsing annulus, extreme outward bulging, complete radial 

fissures, and nucleus migration. Generally speaking, disc degeneration resembles failure in metals 

due to fatigue, which involves the crack initiation and propagation stages. 

 The extent of tissue deterioration in the degenerated discs is often evaluated using the 

Pfirrmann magnetic resonance imaging (MRI) classification system or Pfirrmann grades for short 

[47]. According to MRI images, the IVD can be graded as the healthy disc (Grade I and II), and 

the mildly (Grade III), moderately (Grade IV) and severely (Grade V) degenerated discs. The 

MRI features of the healthy and degenerated discs due to different MRI signal intensities are 

listed in Figure 2.6 and Table 2.2.  

 

Figure 2.6: MRI images of degenerated discs with different grades [47], reproduced with 

permission from Wolters Kluwer Health, Inc. (a) Grade I; (b) Grade II; (c) Grade III; (d) Grade 

IV; (e) Grade V.  
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Table 2.2: The MRI classification of disc degeneration [47]. 

 

Grade Structure Distinction of 

NP and AF 

Signal Intensity Height of IVD 

I Homogeneous, bright 

white 

Clear Hyperintense, 

isointense to 

cerebrospinal fluid 

Normal 

II Inhomogeneous with or 

without horizontal bands 

Clear Hyperintense, 

isointense to 

cerebrospinal fluid 

Normal 

III Inhomogeneous, gray Unclear Intermediate Normal to 

slightly 

decreased 

IV Inhomogeneous, gray to 

black 

Lost Intermediate to 

hypointense 

Normal to 

moderately 

decreased 

V Inhomogeneous, black Lost Hypointense Collapsed disc 

space 

 

 In general, the nucleus region of a healthier disc appears lighter in color (hyperintense) 

than the surrounding tissues, with a uniform signal intensity equivalent to that of the 

cerebrospinal fluid. However, the nucleus region of a more degenerated disc would be darker 

(hypointense). In terms of the disc size, the heights of mildly, moderately and severely 

degenerated discs are commonly 80%, 60% and 40% of the healthy disc height, respectively [48]. 

 

2.5. Lower Back Pain 

 The thoracolumbosacral region undergoes the most severe loading conditions and the 

largest range of motion. Hence, it is most susceptible to wear and tear, and spinal disorders 

commonly occur in the region. Although the etiology of lower back pain is not well known, 

spinal insatiability (referred to abnormally large intervertebral rotations) is considered as one of 

the important causes [49]. Through a comprehensive literature review, it is found that there are 

three major sources of lower back pain, including discogenic pain, pain due to the impingement 

of spinal cord and nerve roots, and pain triggered by facet joint arthritis. Three common pathways 



16 
 

causing pain in the lumbar spine are summarized in Figure 2.7. It can be noted that all of them are 

associated with disc degeneration. 

 

Figure 2.7: Three common pathways causing pain. 

 

2.5.1. Discogenic pain 

 According to the sites where damages initiate, disc degeneration can be classified as 

either annulus-driven or endplate-driven [4, 44]. Annulus-driven disc degeneration (Figure 2.8a) 

commonly occurs in L4-S1 due to annulus damage. The upper lumbar and thoracic spines often 

suffer from endplate-driven disc degeneration (Figure 2.8b) due to endplate fracture [45]. 

Especially, fissures in the annular lamellae (Figure 2.8a) are mechanically and chemically 

conductive to revascularization and reinnervation, so cyclic loads and excessive stress in 

degenerated discs [5] may irritate invaded nerves, causing the discogenic pain [4]. 
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Figure 2.8: Examples regarding two phenotypes of disc degeneration [44], reproduced with 

permission from Wolters Kluwer Health, Inc. (a) Annulus-driven degeneration where a complete 

radial fissure was noted in the posterior anulus (arrow); (b) Endplate-driven degeneration that 

causes the inward bulging of the inner anulus lamellae (arrow) and damage to the vertebral body 

endplate (star). 

 

2.5.1. Spinal Stenosis 

 Disc degeneration may cause a significant decrease in the disc height, disc herniation 

(extrusion of the gel-like nucleus material), and growth of bone spurs around the vertebral body 

margin to restore spinal stability [45]. These pathological conditions narrow the spinal canal and 

foramen, and thus compress the spinal cord and nerve roots, as illustrated in Figure 2.9. 

Furthermore, it can produce symptoms during gait, such as sciatica (tingling, weakness or 

numbness that radiates from the low back and into the buttocks and legs) [50]. People with spinal 

stenosis may describe the onset of leg pain or weakness with walking, but with relief of 

symptoms with sitting. Many will also describe increased tolerance to walking when flexed 

forward. 
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Figure 2.9: Spinal stenosis in the lumbar spine. Reproduced with permission from [51], Copyright 

Massachusetts Medical Society.  

 

2.5.1. Facet Joint Arthritis 

 At last but not least, facet joint arthritis may be a consequence of disc degeneration [52], 

as presented in Figure 2.9. Loss of the intradiscal pressure (IDP) in the mildly degenerated disc 

significantly decreases the load-bearing capability and increases ROMs [48]. In the severely 

degenerated disc, the disc height substantially decreases, and the intervertebral space is 

obliterated, as the spine fuses [45, 53]. In both cases, the facet joints may carry an abnormal load 

on the spine in flexion and extension. Due to the excessive compression of articular cartilage and 

stretch of capsular ligament, facet joints may become inflamed, irritated or swollen, as well as 

nerves innervating the facet joint are impinged, causing pain and other uncomfortable symptoms 

[43, 46]. 

 

2.6. Surgical Procedures and Complications in the Treatment of Spinal Disorders 
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2.6.1. Spinal Fusion 

 Over the past 50 years, spinal fusion procedure (Figure 2.10) using implanted cages 

loaded with bone graft in combination with stabilization devices (e.g., pedicle screw system) to 

fuse two or more vertebrae has become the gold standard for treatment of numerous pathologic 

conditions in the human spine [54]. Implant failures may occur at the treated level include 

pseudo-arthrosis (the failure to achieve the complete bony union), broken screws, device 

loosening, implant migration and subsidence [55]. 

 

Figure 2.10: Schematic of posterior lumbar interbody fusion with pedicle screw stabilization 

devices. Adopted from [56], under the terms of the Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/2.0).  

 

 Long-term follow-up studies of disc replacements have suggested that adjacent segment 

degeneration (disc degeneration at levels adjacent to a disc replacement) and adjacent segment 

diseases (development of new symptoms correlating with adjacent segment degeneration) are 

common problems [54]. It was reported that adjacent segment diseases were associated spinal 

fusion, which sacrifices spinal motion and causes different biomechanics from the native IVD 

[57–59]. For example, a cage plus a rigid stabilized instrument in spinal fusion (Figure 2.10) has 
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a much higher stiffness than that of a native disc. As a result, stress concentration commonly 

occurs in the disc and facet joints at the level adjacent to the spinal fusion level, indicating a 

higher risk of disc degeneration and facet joint arthritis at the adjacent levels [60, 61]. 

 To treat adjacent segment diseases, dynamic stabilization devices (e.g., the Dynesys 

device which consists of polyethylene terephthalate cords and polycarbonate urethane spacers) 

have been developed to replace the rigid rods in the traditional pedicle screw system [62]. The 

viscoelastic material property of the polyurethane spacers in the dynamic stabilization device can 

allow micromotion and reduce stress in IVDs and facet joints at the adjacent levels. However, 

native disc biomechanics still cannot be completely restored, due to the high stiffness of the 

interbody fusion cage [63–65]. 

 

2.6.2. Total Disc Arthroplasty 

 Total disc arthroplasty (TDA) is an attractive option to treat lower back pain and restore 

the physiological ROM of the lumbar segment. The surgical treatment for the lumbar spine is 

conducted according to an anterior surgical procedure (Figure 2.11), in which the anterior 

longitudinal ligament, the anterior portion of the annulus and the entire nucleus are removed. 

Only the posterior and lateral portion of the annulus remains in place [9, 66].  
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Figure 2.11: Lumbar total disc arthroplasty (Prodisc I implant) and a ten-year follow-up lateral 

radiograph after L5-S1 disc replacement [67]. Modified with permission from Wolters Kluwer 

Health, Inc.  

 

 Commercially available TDA designs can be classified into the un-/semi-constrained 

(ball-in-socket designs featuring metal-on-polyethylene articulations) TDA designs and 

constrained TDA designs (a viscoelastic core which restrained between two metallic endplates). 

The unconstrained artificial disc (Figure 2.12a) adopts an ultra-high-molecular-weight 

polyethylene mobile core which articulates both the superior and inferior metal endplates, and the 

semi-constrained artificial disc (Figure 2.12b,c) features a fixed-bearing ball-in-socket 

articulation. In both unconstrained and semi-constrained designs, commonly used material 

couplings are metal/polyethylene (Figure 2.12a,b) and metal/metal (Figure 2.12c) [9, 68].  

 

Figure 2.12: The cross-section views of unconstrained (mobile-bearing) and semi-constrained 

(fixed-bearing) lumbar TDAs. (a) SB Charité III; (b) ProDisc II; (c) Maverick.  
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 The constrained TDA design (e.g., AxioMed) commonly consists of titanium alloy 

retaining plates, with attached end caps, bonded to a viscoelastic, silicone polycarbonate urethane 

core [62]. Moreover, a novel TDA (M6-L) incorporates the artificial annulus fibers, so it creates a 

more physiological IVD structure compared to other TDA designs and can match native disc 

kinematics [9]. The constrained TDAs can avoid early loosening and long-term wear as using a 

non-elastic polyethylene core in unconstrained and semi-constrained TDAs, and effectively 

absorb shock [69, 70]. However, the long-term creep deformation of the viscoelastic core and the 

low bonding strength between the core and the metallic plates are limiting factors in their 

applications [71]. 

 TDA provides a motion-preserving technique to treat disc degeneration diseases and thus 

theoretically mitigate adjacent segment degeneration. However, the treatment using the anterior 

surgical procedure substantially deteriorates the anterior spinal and disc tissues, compared to the 

intact segment that can provide significant resistance to intervertebral rotations [72]. Therefore, it 

may result in excessive segmental rotation [8] and facet joint overloading due to TDA 

hypermotion at both the treated level [55, 61, 66, 73, 74] and at the adjacent level [9, 75]. Implant 

failures such as subsidence and migration of metallic endplates are also a concern. 

 In this study, we focus on the unconstrained and semi-constrained TDAs with metal-on-

polyethylene articulations. In these TDAs, damage and wear on the polyethylene components 

would occur, as observed in hip and knee replacements, with different extent and severity [68, 76]. 

Osteolysis caused by polyethylene wear debris is a common cause of aseptic loosening implant 

failure in MoP arthroplasty. Furthermore, well-documented retrieval studies for mobile-bearing 

(unconstrained) SB Charite TDAs have revealed that the polyethylene rim fracture and 

deformation (Figure 2.13) are a more noticeable problem rather than polyethylene wear [10, 76, 

77]. In these retrieved Charite TDAs, the median unworn thickness of the polyethylene rim was 

only 2.9 mm (range: 0.9 to 5.0 mm), which could be regarded as the original design dimension 

[76]. Due to the unsymmetric motion of the superior and inferior MoP articulations in vivo, the 
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rim was repeatedly bent and micro-cracks initiated in the rim areas. Hence, fractures and plastic 

deformations were commonly observed at the rims of these retrieved Charite TDAs, as presented 

in Figure 2.13. 

 

Figure 2.13: PE damage of retrieved Charite TDAs [76], reproduced with permission from 

Elsevier. (a) Burnishing, plastic deformation, and transverse crack (white arrow); (b) Transverse 

crack, rim fracture (white arrow); (c) Burnishing, plastic deformation (white arrow); (d) Rim 

fracture, transverse cracks (white arrow); (e) Burnishing, plastic deformation, and transverse 

crack (white arrow). 

 

 Aiming at these complications, Galbusera et al. (2008) suggested the key biomechanical 

parameters for TDA design: 1) restoration of a physiological kinematics and mobility, avoiding 

segmental instability; 2) restoration of a correct spinal alignment; 3) protection of the biological 

structures, such as the adjacent intervertebral discs, the facet joints and the ligaments, from 

overloading and resulting accelerated degeneration; 4) device stability and wear. This present 

research will focus on assessment of commercially available TDA designs using these key 

biomechanical parameters. However, the TDA device integrity and wear are not a focus of this 

study. We assume that commercially available artificial prostheses have been strictly tested 

according to ASTM F2326 (TDA static and dynamic tests) and F2423 (TDA functional, 

kinematic and wear assessment) protocols. 
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2.6. Finite Element Analysis  

 Cadaveric simulator and in-vivo imaging systems [37, 78] have been used to investigate 

spine kinematics, but sporadic experiments were designed to measure stress, strain, loads in 

various structures. For example, IVD stress profiles were measured using needle transduce [5] 

and facet joint deformation using strain gage [46]. Generally, measurements and experiments are 

impractical, when complicated internal loads and other clinically relevant parameters need to be 

evaluated. Therefore, finite element (FE) analysis is a powerful tool, which supplements the in-

vivo and in-vitro studies. 

 

2.6.1. Intervertebral Disc Prestrain FE Analysis  

 Typically, soft tissue such as ligament, cornea, vessel, and IVD observed in clinical 

images is a configuration prestressed by internal pressure or tissue hydration [11, 38, 79–81]. 

Therefore, simulation based on the image configuration without considering the residual stress 

may cause a significant discrepancy with the actual stress. In previous studies, different prestrain 

simulation methods [11, 38, 79–81] been developed to iteratively compute the unloaded soft 

tissue configuration (an assumed configuration without prestress) and simulate the prestrained 

soft tissue configuration.  

 For the IVD tissue, Marini et al. (2014; 2016) performed a prestrain simulation, in which 

an IDP of 0.1 MPa (representing the physiological IDP in the supine position) was applied on the 

internal space where the NP was removed from the IVD FE model. After the unloaded AF (losing 

the physiological IDP) was inversely computed from the image geometry using a “pull-back” 

algorithm, the NP was reinserted to the IVD FE model, and an adaptation simulation was 

performed by applying the initial strain distribution. Due to the incompressibility of the NP, the 

disc geometry was not influenced by the reinsertion of the NP into the IVD FE model. Therefore, 
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a prestrained IVD identical to the image geometry was obtained, and the simulated responses of 

the prestrained IVD in different loading scenarios could compare favorably with in-vitro 

experimental measurements [28, 37]. However, it is noted that the NP was not considered when 

they conducted the “pull-back” computation. Therefore, the entire geometry of a degenerated disc 

due to the loss of the IDP cannot be obtained using their approach, and thus the effect of IDP on 

the disc behavior cannot be investigated.  

 Jacobs et al (2014) developed a viscoelastic lumbar IVD FE model to investigate the 

time-dependent disc response in compression. Homogeneous material properties were assigned to 

soft tissues (NP, AF, cartilaginous and bony endplates) in their IVD FE model. Prior to loading, 

the disc bulges of the NP and AF were simulated after tissue hydration in saline solution for 24 

hours. However, they did not derive the configuration of the unloaded disc on which prestrain 

simulation should be based, so the prediction accuracy of the resulting stress distribution in 

physiological relevant loading scenarios might be compromised. In addition, the computational 

cost using viscoelastic analysis would also be a concern to implement the iterative “pull-back” 

algorithm. 

 

2.6.2. Loading Protocols  

 Two testing protocols have been used to perform the biomechanical tests of the intact and 

treated lumbar spine in both in-vitro experiments and computational simulations. In the load-

control protocol, the spine is applied an axial follower compressive load to simulate the upper 

body weight and the activation of spinal muscles [82], followed by a pure moment in 

physiologically relevant loading scenarios (flexion, extension, lateral bending and axial torsion). 

In real life, people bend or torque their spines within a similar, limited ROM regardless of 

whether their spines are healthy or subjected to surgical treatments. Hence, a hybrid loading 

protocol was proposed by Goel et al. (2005). It requires that the overall rotation of the treated 
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spine in an axial compression and a pure moment (load-control) is equal to that of the intact spine 

subjected to the same loading scenario. 

 

2.6.3. Intact Lumbar Spine FE Analysis  

 Most spinal tissues have complicated anisotropic and heterogeneous material properties. 

Previous studies [33, 34] have demonstrated that many different parameter combinations in FE 

spine models may yield simulation results in good agreement with in-vitro or in-vivo 

experimental measurements. However, the mechanical behavior of individual tissue is 

confounded, so it may cause poor prediction for the responses of a postoperative spine, in which 

implants are inserted by partially dissecting spinal tissues. Therefore, before the development of 

multi-segment spine models, it is recommended to calibrate material properties of spinal tissues 

in a spinal segment FE model using a procedure of stepwise reduction of functional tissues [28, 

42]. As such, simulation results can match not only the overall response of a spine but also the 

responses of individual components.  

 FE analysis has been widely used to investigate the spinal behavior in different loading 

scenarios noninvasively. Dreischarf et al. (2014) reviewed eight well-established FE models of 

the lumbar L1-L5 spine incorporating all functional spinal tissues (vertebrae, IVDs, ligaments, 

and cartilages) in different research centers around the globe. Their simulation results can match 

well with in-vitro measurements of the nonlinear spine behavior using pure and combined loading 

modes, and the resulting functions of force-displacement and moment-rotation can be used as 

input data for musculoskeletal models [32]. 

 

2.6.4. Instrumented Lumbar Spine FE Analysis  

 FE spine models can be used to compare the mechanical responses of the healthy spine to 

those of the instrumented spine subjected to different surgical treatments [73, 83–86]. In general, 
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the responses at the treated level and the adjacent levels are sensitive to the implant stiffness 

(TDA vs. interbody cage), although slight differences in reported simulation results exist. The 

main problems in a treated lumbar spine occur at the implanted level, compared to the spinal 

fusion which induces abnormal responses at the adjacent levels. 

 Using the load-control protocol, Chen et al. (2009) reported that the fixed-bearing TDA 

(ProDisc) led to instability at the treated level, which might accelerate degeneration at the highly 

stressed annulus and facet joint, but no instability at the adjacent levels. In contrast, the posterior 

interbody fusion procedure revealed possibly accelerative degeneration of the annulus and facet 

joint at both adjacent levels. However, Denozière and Ku (2006) showed that the same fixed-

bearing TDA design caused a higher risk of instability and further degeneration than predicted for 

the fused model at both the treated and adjacent levels.  

 For the mobile-bearing TDA (Charite), a decrease in segmental rotational stiffness 

resulting from TDR and the removal of soft tissue structures caused excessive motion and 

increased loading in the facets at the implanted level [87]. Using the hybrid loading protocol, 

Goel et al. (2005) found that the mobile-bearing TDA slightly increases motion with an increase 

in facet loads at the implanted level, when compared to the adjacent segments where ROMs and 

loads decrease at the adjacent levels. In addition, impingement is a concern that is sensitive to 

disc height distraction, anterior-posterior position, implant lordosis and spinal sagittal orientation 

[7]. 

 Through our survey of the reported simulations of TDA treatments, we can conclude that 

TDA design significantly influences TDA kinematics, contact mechanics, and spinal tissue load-

sharing. Therefore, it is essential to employ design optimization to elucidate the association of 

TDA responses with TDA design.  

 

2.7. Multiobjective Optimization 
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 Multiobjective optimization (MOO) is used to consider more than one performance 

metric during optimization. As the number of objectives (performance metric) increases, the 

dimensions of the objective space also increases. By convention, an optimization problem is 

defined as a minimization problem (a maximization problem can be converted to a minimization 

problem). In single-objective optimization (SOO), the optimum is a point in the 1-D objective 

space (Figure 2.14a). As the number of objectives increases, the set of optimums in bi-objective 

and tri-objective optimizations is known as the Pareto frontier. Its typical shapes in 2-D and 3-D 

objective spaces are a curved line (Figure 2.14b) and a curved face (Figure 2.14c), respectively. 

Since the Pareto frontier is comprised of optimums, no point outperforms another in terms of all 

objective functions.  

 

Figure 2.14: The optimums in 1-D (a), 2-D (b), 3-D (c) objective spaces. 

 

 Using MOO, we can describe the trade-off among objectives using the Pareto frontier. 

For the convenience of the visualization, we consider a Pareto curve (Figure 2.15) in a 2-D 

objective space, which is obtained using bi-objective optimization. It can be observed that as the 

objective 𝑦1 is improved (decreased), the other objective 𝑦2 is compromised (increased), as 

shown the green Pareto curve along the direction marked by an arrow in Figure 2.15. Hence, this 

Pareto curve allows the designer to explore how much be sacrificed in terms of either objective 

function in order to improve in the other, while still maintaining an optimum design.  
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Figure 2.15. The Pareto curve (green) in 2-D objective space. Blue points: the anchor points (𝒚1∗ 
and 𝒚2∗). Black points: the Utopian point (𝒚𝑈) and the pseudo Nadir point (𝒚𝑃), respectively. Red 

point: the best trade-off point (𝒚𝑏𝑒𝑠𝑡) on the Pareto curve in the minimum distance from the 

Utopian point (𝒚𝑈).  

 

 The end points of the Pareto curve are called the anchor points (𝒚1∗ and 𝒚2∗), as indicated 

by the two blue points in Figure 2.15. These anchor points represent the performance of designs 

which was optimized (minimized) for just one objective, without considering the other; they are 

single-objective optimums solved by SOO. The anchor points can determine two special points, 

the Utopian point (𝒚𝑈) and the pseudo Nadir point (𝒚𝑃), as shown in Figure 2.15. The Utopian 

point (𝒚𝑈) is an ideal solution, only when the two anchor points (single-objective optimums) are 

coincident; therefore, the Utopian point is commonly impossible to be achieved. Correspondingly, 

the best trade-off point (𝒚𝑏𝑒𝑠𝑡, Figure 2.15) can be defined as a point on the Pareto curve in the 

minimum distance from the Utopian point (𝒚𝑈), representing the minimum sacrifices with respect 

to the Utopian point (𝒚𝑈). 

 The pseudo Nadir point (𝒚𝑃) represents a “bad” design point in the objective space, 

whose components was chosen as the worst performance measure of each single-objective 

optimum. Different from the pseudo Nadir point, the Nadir point (𝒚𝑁) is defined a point, whose 

components are the maxima that each objective can reach in the feasible objective space; 

therefore, the Nadir point is also an idea design point. To better understand the Utopia point, 

pseudo Nadir point, and the Nadir point, their relationship is described using an example in the 2-
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D objective space, as shown in Figure 2.16. For further discussion of relevant concepts and 

formula in multiobjective optimization, please be referred to Appendix C.2.2. 

 

Figure 2.16: Illustration of the Utopia point (𝒚𝑈), pseudo Nadir point (𝒚𝑃), and the Nadir point 

(𝒚𝑁), modified from [88] with Dr. Achille Messac’s permission. 
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Chapter 3: Investigation of the Lumbar Intervertebral Disc Biomechanics 

 

 Adjacent vertebrae articulate through the intervertebral disc (IVD), which serves to guide 

and restrict intervertebral rotations. The intervertebral disc is prestressed by an intradiscal 

pressure (IDP) caused by nucleus swelling. The collagen fiber reinforced annulus fibrosus (AF) 

provides resistance to intervertebral rotations and pressurizes the nucleus pulposus (NP) to 

prevent disc collapse. Therefore, the objective is to investigate the changes in the disc geometry, 

fiber orientation and biomechanics by nucleus swelling. A sophisticated FE model of the disc was 

developed by incorporating non-homogeneous material properties across the AF, while nucleus 

swelling was simulated by repurposing thermoelastic analysis. The resulting stresses in the 

nucleus and annulus were compared to those using a reported simulation method of nucleus 

swelling, to demonstrate that nucleus swelling is mechanically equivalent to thermal expansion. 

The IVD mechanical responses were simulated in various physiologically relevant loading 

scenarios, by varying the intradiscal pressures (normal vs. degenerated discs) and fiber 

orientations. 

 

3.1. Parametric Finite Element Modeling of Intervertebral Disc 

 Using a mesh morphing technique (Appendix A), a representative L2-L3 lumbar IVD 

with a transverse diameter of 50 mm and a sagittal diameter of 37 mm [39] was parametrically 

modeled, as shown in Figure 3.1 and Table 3.1. According to reported measurements [89], the 

disc heights (ℎ𝑎 = 10.9 mm, ℎ𝑚 = 12.8 mm and ℎ𝑝 = 8.3 mm) in the disc sagittal section were 

defined, considering the disc inclination angle (4°) in the sagittal plane [39], as well as the 
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superior and inferior endplate bulge depths (1.9 and 1.4 mm, respectively) [90]. The mean disc 

height was defined as (ℎ𝑎 + ℎ𝑝)/2 = 9.6 mm, which is equal to that when flat endplates were 

assumed [39].  

 

Figure 3.1: The L2-L3 lumbar IVD FE model defined in the disc sagittal and transverse sections, 

according to reported measurements (Table 3.1). The green and yellow potions represent the NP 

and AF, respectively. 

 

Table 3.1: The anatomic shape parameters of the L2-L3 lumbar IVD FE model. 

 

Shape Parameters References 

𝑊 (mm) 52 Marini and Ferguson 

(2014) 
𝐷 (mm) 39 

𝛼 (°) 4 

𝑏𝑜, 𝑏𝑖 (mm) 1, 2.5 

ℎ𝑎, ℎ𝑚, ℎ𝑝 (mm) 10.9, 12.8, 8.3 Van Der Houwen et al 

(2010) 
𝑡𝑎, 𝑡𝑙, 𝑡𝑝 (mm) 7.8, 8.7, 4.8 

NP vol. ratio (%) 44 
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 The disc bulge under the 0.1 MPa IDP in the lying supine position [91] was assumed as 1 

mm on the outer AF wall and 2.5 mm on the inner AF wall [38, 39]. The circumferentially 

varying AF thicknesses (𝑡𝑎 = 7.8 mm, 𝑡𝑙 = 8.7 mm and 𝑡𝑝 = 4.8 mm measured at the disc 

transverse section) were chosen such that the nucleus volume has a ratio of 44% to the total disc 

volume [33], with its center posterior to the disc centroid. As shown in Figure 3.2, the L2-L3 IVD 

finite element model using the reported anatomic dimensions includes main shape features, in 

good agreement with the mean shape of the L3-L4 disc in a statistical shape analysis [92]. 

 

Figure 3.2: Comparison of the L2-L3 disc parametric FE model (a) with the mean shape (b) of the 

L3-L4 disc in a statistical shape analysis [92], reproduced with permission from Elsevier. 

 

3.2. Constitutive Material Model 

3.2.1. Nucleus Pulposus 

 The NP was assumed as nearly-incompressible, homogeneous and isotropic hyperelastic 

materials using a Neo-Hookean model [38, 39], as expressed below:  

𝛹𝑁𝑃(𝐽, 𝐼1̅) = 𝛹𝑣𝑜𝑙
𝑁𝑃(𝐽) + 𝛹𝑖𝑠𝑜

𝑁𝑃(𝐼1̅) =
𝜅𝑁𝑃

2
(𝐽 − 1)2 + 𝑐1

𝑁𝑃(𝐼1̅ − 3) (3.1) 

where 𝛹𝑁𝑃(𝐼1̅, 𝐽) is the strain energy functions of the NP. It is decoupled into a volumetric part, 

𝛹𝑣𝑜𝑙
𝑁𝑃(𝐽), and an isochoric (volume-preserving) part, 𝛹𝑖𝑠𝑜

𝑁𝑃(𝐼1̅). 𝐽 = det(𝑭) is the determinant of 

the deformation gradient (𝑭), which is used to measure the volume ratio. To characterize the 
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isochoric deformation, 𝐼1̅ = tr(𝑪) is defined as the first invariant of the modified right Cauchy-

Green tensor, 𝑪 = 𝑭
𝑇
𝑭, in which 𝑭 = 𝐽−1/3 𝑭 satisfying det(𝑭) = 1 in the isochoric deformation. 

𝜅𝑁𝑃 and 𝑐1
𝑁𝑃 are two material constants of the NP tissue. The Neo-Hookean model (Equation 3.1) 

provided by ANSYS was used to simulate the NP using material constants 𝜅𝑁𝑃= 67.163 MPa and 

𝑐1
𝑁𝑃 = 3.353 kPa [38].  

 

3.2.2. Annulus Fibrosus 

 A user material subroutine (ANSYS USERMAT subroutine) developed in Appendix B 

was used to simulate the fiber reinforced AF composite. The AF was assumed as the nearly-

incompressible, heterogeneous and two-family fiber reinforced hyperelastic material. The strain 

energy was decoupled into a volumetric part, 𝛹𝑣𝑜𝑙
𝐴𝐹(𝐽), an isochoric part, 𝛹𝑖𝑠𝑜

𝐴𝐹(𝐼1̅), and two fiber-

reinforcing parts of the two fiber families in different fiber directions, 𝛹𝑓𝑖𝑏
𝐴𝐹(𝜆 = 𝜆𝒂) and 

𝛹𝑓𝑖𝑏
𝐴𝐹(𝜆 = 𝜆𝒈):  

𝛹𝐴𝐹(𝐽, 𝐼1̅, 𝜆1, 𝜆2) = 𝛹𝑣𝑜𝑙
𝐴𝐹(𝐽) + 𝛹𝑖𝑠𝑜

𝐴𝐹(𝐼1̅) + 𝛹𝑓𝑖𝑏
𝐴𝐹(𝜆𝒂) + 𝛹𝑓𝑖𝑏

𝐴𝐹(𝜆𝒈) (3.2) 

 The volumetric part 𝛹𝑣𝑜𝑙
𝐴𝐹(𝐽) and isochoric part 𝛹𝑖𝑠𝑜

𝐴𝐹(𝐼1̅) simulate the isotropic material 

responses of the AF ground substance. Two fiber reinforcing parts 𝛹𝑓𝑖𝑏
𝐴𝐹(𝜆𝒂) and 𝛹𝑓𝑖𝑏

𝐴𝐹(𝜆𝒈) were 

used to model the material transverse isotropy (the stiffness in a direction is much greater than 

that orthogonal to the direction) in the spatial fiber directions 𝒂 and 𝒈 in a crossing pattern. The 

strecth ratio (𝜆𝒂 or 𝜆𝒈) was introduced to descibe the change in the fiber length along the spatial 

fiber direction (𝒂 or 𝒈). It should be noted that the reinforcing fiber parts do not contribute to the 

compressibility (i.e., 𝐽 ≈ 1 is held, so 𝑪 = 𝑪), thus two pseudo-invariants 𝜆𝒂 = √𝒂0 ∙ 𝑪𝒂0 and 

𝜆𝒈 = √𝒈0 ∙ 𝑪𝒈0 [29, 93] are introduced in the material model. Here, 𝑪 is the right Cauchy-Green 

tensor 𝑪 = 𝑭𝑇𝑭. 𝒂0 and 𝒈0 are the fiber directions in the reference configuration, satisfying 



35 
 

𝑭𝒂0 = 𝜆𝒂𝒂 and 𝑭𝒈0 = 𝜆𝒈𝒈, respectively. The two pseudo-invariants (𝜆𝒂 and 𝜆𝒈) represent the 

stretch ratios in the spatial crossing patterned fiber directions, 𝒂 and 𝒈.  

 Same as the previous model [38, 39], the AF ground substance (GS) was represented by a 

modified Yeoh’s model (combing Equations 3.3 and 3.4 together).  

𝛹𝑣𝑜𝑙
𝐴𝐹(𝐽) =

𝜅

2
(𝐽 − 1)2 (3.3) 

𝛹𝑖𝑠𝑜
𝐴𝐹(𝐼1̅) = 𝑐1(𝐼1̅ − 3) + 𝑐2(𝐼1̅ − 3)

2 (3.4) 

where the material constants of the AF GS were chosen as 𝜅 = 73.521 MPa, 𝑐1 = 38.793 kPa, and 

𝑐2 = 55.049 kPa [38]. 

 Since the single lamellar mechanical behavior is tension-only and nonlinear [19, 20], a 

piecewise function was proposed to formulate the strain energy function 𝛹𝑓𝑖𝑏
𝐴𝐹(𝜆) of the 

reinforcing fiber part as shown in Equation 3.5. The constative relationship of the reinforcing 

fibers intimately interacts with the algorithms for fitting and interpolation of the experimentally 

measured stress-stretch curves (described in the next section), in order to realize the modeling of 

the material heterogeneity across the annulus fibrosus. 

𝛹𝑓𝑖𝑏
𝐴𝐹(𝜆) =

{
 
 

 
 

0, 𝜆 < 1

𝑐3 {
1

𝑐4
[𝑒𝑐4(𝜆−1) − 1] − (𝜆 − 1)} , 1 ≤ 𝜆 < 𝑐5

𝐸∗

2
(𝜆 − 𝑐5)

2 + 𝑇∗(𝜆 − 𝑐5) + 𝛹
∗, 𝜆 ≥ 𝑐5

 (3.5) 

where 𝐸∗ = 𝑐3𝑐4𝑒
𝑐4(𝑐5−1), 𝑇∗ = 𝑐3[𝑒

𝑐4(𝑐5−1) − 1] and 𝛹∗ = 𝑐3 {
1

𝑐4
[𝑒𝑐4(𝑐5−1) − 1] − (𝑐5 − 1)}. 

The AF composite material model has 12 material constants including 𝜅, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, three 

components of 𝒂0 and three components of 𝒈0. Especially, 𝜆∗ = 𝑐5 is defined as the uncrimped 

stretch of the AF collagen fiber [94].  

 

3.3. Modeling of Material Anisotropy and Heterogeneity in Annular Lamellae 

3.3.1. Fitting of Fiber Lamellar Tensile Properties 
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 It is assumed that adjacent lamellae have the same tensile properties, but alternating fiber 

orientations represented by 𝒂 and 𝒈. Therefore, only the fiber family in one fiber direction (e.g., 

𝒂) needs to be considered, when fitting the lamellar tensile properties. According to previously 

reported uniaxial tensile test data of single lamellae extracted from L1-L2 disc specimens [19], a 

representative tension-only, nonlinear engineering stress (𝑇) – stretch ratio (𝜆) curve of a single 

lamella along the fiber direction is shown in Figure 3.3.  

 

Figure 3.3: Illustration of engineering stress–stretch curves in the material model. 

 

 Using Equation 3.5, the Cauchy stress of an arbitrary fiber with a stretch ratio 𝜆 in the 

fiber direction 𝒂 can be written as: 

𝝈𝑓𝑖𝑏
𝐴𝐹 =

𝜆

𝐽

𝜕𝛹𝑓𝑖𝑏
𝐴𝐹(𝜆)

𝜕𝜆
𝒂⊗ 𝒂 =

𝜆

𝐽
𝛹𝜆
𝑓𝑖𝑏
𝒂⊗ 𝒂 = 𝜎𝑓𝑖𝑏

𝐴𝐹𝒂⊗ 𝒂 (3.6) 

where the notation 𝛹𝜆
𝑓𝑖𝑏

=
𝜕𝛹𝑓𝑖𝑏

𝐴𝐹(𝜆)

𝜕𝜆
 have been employed. The scalar 𝜎𝑓𝑖𝑏

𝐴𝐹  represents the 

Cauchy/true stress magnitude in the fiber direction 𝒂. In a uniaxial test along the fiber direction 𝒂, 

the fiber engineering stress 𝑇(𝜆), typically used in experimental characterization, can be obtained 

according to the nearly-incompressible constraint (𝐽 ≈ 1). 

𝑇(𝜆) =
𝜎𝑓𝑖𝑏
𝐴𝐹

𝜆
= 𝛹𝜆

𝑓𝑖𝑏
(𝜆) (3.7) 
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 The single lamellar engineering stress (𝑇) – stretch ratio (𝜆) relation (Figure 3.7) can be 

expressed as a piecewise engineering stress-stretch function. Substituting Equation 3.5 into 

Equation 3.7 and differentiating 𝛹𝑓𝑖𝑏
𝐴𝐹(𝜆) with respect to 𝜆, 𝑇(𝜆) is obtained, 

𝑇(𝜆) = {

0, 𝜆 < 1 (compression region)

𝑐3[𝑒
𝑐4(𝜆−1) − 1], 1 ≤ 𝜆 < 𝜆∗ (exponential toe region)

𝐸∗(𝜆 − 𝜆∗) + 𝑇∗, 𝜆 ≥ 𝜆∗ (linear region)

 (3.8) 

where 𝜆∗ = 𝑐5 is the uncrimped stretch ratio of collagen fiber, at which the tensile behavior 

transits from the exponential region to the linear region. 𝑇∗ is defined as the uncrimped 

engineering stress, when the fibers are stretched to the uncrimped stretch ratio of 𝜆∗ and starts the 

linear tensile behavior.𝐸∗ is the tangent modulus in the linear region.  

 The formulation (Equation 3.8) is similar to the previously reported constitutive model of 

ligaments and tendons [29, 94, 95], where 4 material constants were used to describe the fiber 

tension. However, it should be noted that there are only 3 material constants (𝑐3, 𝑐4 and 𝜆∗ = 𝑐5) 

in Equation 3.8, since we have assumed that the 𝑇(𝜆) function is continuously differentiable (𝐶1) 

at the fiber uncrimped stretch (𝜆∗). The assumption largely facilitates fitting and interpolation of 

fiber uniaxial tensile test data to simulate the gradual transition in the fiber stiffness distribution 

across the AF, due to the AF material heterogeneity.  

 According to the property of 𝐶1 continuity at 𝜆∗, they can be expressed in terms of 𝑐3, 𝑐4 

and 𝜆∗, using the function of the exponential toe region in Equation 3.8, 

𝑇∗ = 𝑇(𝜆∗−) = 𝑐3[𝑒
𝑐4(𝜆

∗−1) − 1] (3.9) 

𝐸∗ =
𝜕𝑇(𝜆∗−)

𝜕𝜆
= 𝑐3𝑐4𝑒

𝑐4(𝜆
∗−1) (3.10) 

By combining Equations 3.9 and 3.10, 𝑐3 and 𝑐4 can be uniquely determined by 𝑇∗ and 𝐸∗. 

Therefore, in the uniaxial fiber material model (Equations 3.5 and 3.8), the three material 

parameters, 𝑐3, 𝑐4 and 𝜆∗ are equivalent to 𝑇∗, 𝐸∗ and 𝜆∗. Although no explicit solutions to 𝑐3 and 

𝑐4 in terms of 𝑇∗ and 𝐸∗ exist, they can be numerically solved in MATLAB R2014a. To fit 
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experimental 𝑇–𝜆 curves, it is more convenient to use 𝑇∗, 𝐸∗, and 𝜆∗ rather than using 𝑐3, 𝑐4, and 

𝜆∗, because their physical meanings are so clear that they can be directly measured from the fiber 

uniaxial tensile curve, as illustrated in Figure 3.3.  

 According to the experiment of Holzapfel et al. (2005), tensile tests were performed 

using single lamella specimens of the L1-L2 discs dissected at 4 anatomic sites (VLe = ventral-

lateral external; De = dorsal internal; VLi = ventral-lateral internal; Di = dorsal internal, Figure 

3.4a). The load axis was aligned with the fiber orientation of a single annular lamella specimen 

(Figure 3.4b). Using Equation 3.8, the fitted 𝑇–𝜆 curves of the AF lamellae at 4 testing sites 

(Figure 3.4a) of the L1-L2 disc specimens [19] are shown in Figure 3.4c.  

 

Figure 3.4: Description of previously reported single lamellar tensile test [19], modified with 

permission from Springer Nature. (a) Four test sites of the L1-L2 disc specimens where single 

lamella specimens were dissected. (b) Schematic diagram of the tensile test, in which the load 

axis was aligned with the fiber orientation of a single lamella specimen. (c) Fitting of the 

engineering stress (𝑇) – stretch ratio (𝜆) curves to the measurements at the 4 testing sites using 

our formulation (Equation 3.8).  

 

3.3.2. Interpolation of Fiber Lamellar Tensile Properties 

 The heterogeneous distribution of the AF lamellar tensile properties results from the 

gradually varying collagen content distribution across the AF [23, 39]. However, the lamellar 

tensile properties were only measured at a limited number of anatomic sites (Figure 3.4). 

Therefore, more 𝑇–𝜆 tensile curves need to be interpolated to simulate the material heterogeneity 

due to the gradual change in collagen content distribution [39]. 
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 As illustrated in Figure 3.5a, the linear segments of Curves 1 and N necessarily intersect 

at a point denoted by (𝜆𝐶, 𝑇𝐶). Supposing that 𝑁 − 2 curves (Figure 3.5b) passing through the 

common intersection (𝜆𝐶, 𝑇𝐶) are interpolated between Curve 1 and Curve N, the linear segment 

of each curve can be defined using the coordinate (𝜆𝐶, 𝑇𝐶) of the intersection point, 

𝑇 = 𝐸𝑖
∗(𝜆 − 𝜆𝑐) + 𝑇𝑐 , 𝑖 = 1,  2,  … ,  𝑁  (3.11) 

where 𝐸𝑖
∗ is the slope of the linear segment of each curve.  

 

Figure 3.5: Illustration of the interpolation algorithm. (a) The linear segments of Curves 1 and N 

intersect at a point (𝜆𝐶, 𝑇𝐶); (b) 𝑁 − 2 lines passing through the intersection point are interpolated. 

 

 Combining the linear segments equations of Curves 1 and N in Equation 3.11,  

{
𝑇 = 𝐸1

∗(𝜆 − 𝜆1
∗) + 𝑇1

∗

𝑇 = 𝐸𝑁
∗ (𝜆 − 𝜆𝑁

∗ ) + 𝑇𝑁
∗  (3.12) 

The intersection point (𝜆𝐶, 𝑇𝐶) can be solved, 

{
 
 

 
 𝜆𝑐 =

𝑇1
∗ − 𝑇𝑁

∗ + 𝐸𝑁
∗ 𝜆𝑁

∗ − 𝐸1
∗𝜆1
∗

𝐸𝑁
∗ − 𝐸1

∗

𝑇𝑐 =
𝐸𝑁
∗𝑇1

∗ − 𝐸1
∗𝑇𝑁

∗ + 𝐸1
∗𝐸𝑁

∗ (𝜆𝑁
∗ − 𝜆1

∗)

𝐸𝑁
∗ − 𝐸1

∗

 (3.13) 

 It can be demonstrated that the intersection angle between Curves 1 and N is 𝛽 = 𝛼1 −

𝛼𝑁, where 𝛼1 and 𝛼𝑁 are the inclination angles regarding the abscissa axis 𝜆 (Figure 3.5a). To 

model the gradual change in the tensile properties, it is assumed that the angles between adjacent 
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curves are identical, i.e., ∆𝛽 = 𝛽/(𝑁 − 1), as shown in Figure 3.5b. Therefore, the inclination 

angle (𝛼𝑖) and slope (𝐸𝑖
∗) of the linear segment each curve can be obtained, 

𝛼𝑖 = 𝛼1 − (𝑖 − 1)∆𝛽, 𝑖 = 1,  2,  … ,  𝑁  (3.14) 

𝐸𝑖
∗ = tan(𝛼𝑖) , 𝑖 = 1,  2,  … ,  𝑁 (3.15) 

 Furthermore, it is assumed that the uncrimped stretches (𝜆𝑖
∗) are equally spaced,  

𝜆𝑖
∗ = 𝜆1

∗ +
(𝑖 − 1)(𝜆𝑁

∗ − 𝜆1
∗)

𝑁 − 1
, 𝑖 = 1,  2,  … ,  𝑁 (3.16) 

 According to the definition of the uncrimped stress (𝑇∗), it is the stress that corresponds 

to the uncrimped stretch (𝜆∗), i.e., 𝑇∗ = 𝑇(𝜆∗). Thus, substituting Equation 3.16 into Equation 

3.11, the uncrimped stress of each curve can be obtained, 

𝑇𝑖
∗ = 𝐸𝑖

∗(𝜆𝑖
∗ − 𝜆𝑐) + 𝑇𝑐 , 𝑖 = 1,  2,  … ,  𝑁 (3.17) 

 Combining Equations 3.15 and 3.17, the material constant (𝑐3
𝑖  and 𝑐4

𝑖 ) of each curve can 

be numerically solved using 𝐸𝑖
∗ and 𝑇𝑖

∗ according to Equations 3.9 and 3.10. 

 To characterize the circumferentially and radially varying AF lamellar tensile properties, 

the AF FE model was divided into 6 polar sectors and 6 layers in the radial direction according to 

the previous experiment [19], as shown in Figure 3.6. Using the interpolation algorithm, 36 𝑇–𝜆 

curves (Figure 3.7) of the AF lamellae were interpolated using the 4 fitted 𝑇–𝜆 curves (Figure 

3.4c); the resulting tensile properties (𝑐3, 𝑐4 and 𝜆∗) corresponding to each 𝑇–𝜆 curve (Figure 3.7) 

were assigned to the 36 AF regions (6 polar sectors × 6 layers, Figure 3.6). For the 

implementation of the ANSYS USERMAT subroutine, the engineering stress (𝑇) can be trivially 

converted to the Cauchy’s tress using Equation 3.7. 
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Figure 3.6: The divided polar sectors and layers of the AF lamellae. 

 

 

Figure 3.7: The 𝑇‒𝜆 curves in different regions of the AF lamellae using the proposed 

interpolation algorithm. 

 

3.3.3. Assignment of Annulus Fibrosis Fiber Orientation 

 Collagen fibers are embedded within the AF in a crossing pattern. According to the 

measurement of L1-L2 lumbar disc specimens [19], the alternating fiber angles (|𝜑𝑒𝑥𝑝|, measured 

with respect to the disc transverse plane) are linearly related the polar coordinate (𝜃, Figure 3.6), 
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|𝜑𝑒𝑥𝑝| = 23.2° + 0.13𝜃 (3.18) 

 To model the AF composite material, an algorithm was proposed for assigning the 

alternating fiber orientations to the AF FE elements. In this study, we only consider 8-node 

hexagonal linear solid elements (SOLID185 in ANSYS), which are used to mesh the disc 

geometry.  

 It is assumed that all the fibers in each AF element are aligned on the middle plane across 

the AF, which is determined using two vectors (𝒅1 and 𝒅2), each passing through the centroids of 

two opposite element faces, as shown in Figure 3.8. Especially, 𝒅1 represents the circumferential 

direction across the AF. Since 𝒅1 and 𝒅2 are not necessarily orthogonal, so a new vector 𝒅2
′  

perpendicular to 𝒅1 within the middle plane is introduced, 

𝒅2
′ = (𝒅1 × 𝒅2) × 𝒅1 (3.19) 

 

Figure 3.8: Illustration of assignment of fiber orientations to each AF element. 

 

 After normalization of 𝒅1 and 𝒅2
′ , a set of orthonormal basis vectors (𝒏1 and 𝒏2) within 

the middle plane is obtained, 

𝒏1 =
𝒅1
|𝒅1|

, 𝒏2 =
𝒅2
′

|𝒅2
′ |

 (3.20) 

 Therefore, the reference directions (𝒂0 and 𝒈0) of the two fiber families with alternating 

fiber angles (±𝜑) can be determined using the basis vectors (𝒏1 and 𝒏2), 

𝒂0 = cos𝜑𝒏1 + sin𝜑𝒏2, 𝒈0 = cos𝜑𝒏1 − sin𝜑𝒏2 (3.21) 
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 To match in-vitro measurements of the disc mechanical responses in various 

physiologically relevant loading scenarios [78], the fiber angles in the disc FE model were tuned 

to |𝜑𝑡𝑢𝑛𝑒| = |𝜑𝑒𝑥𝑝| + 10°, 10° larger than the experimentally measured fiber orientation (|𝜑𝑒𝑥𝑝|), 

as shown in Figure 3.9.  

 

Figure 3.9: Comparison of the experimentally measured fiber orientation (|𝜑𝑒𝑥𝑝|) with the model 

adopted fiber orientation (|𝜑𝑡𝑢𝑛𝑒|). Modified from [19] with permission from Springer Nature. 

 

3.4. Pull-back Computation and Disc Prestrain Simulation 

 Typically, soft tissues observed in clinical images are prestressed by internal pressure and 

tissue hydration. The intervertebral disc is a soft tissue, and the normal disc is pressurized with a 

physiological intradiscal pressure (IDP) due to nucleus swelling [91]. As a result of nucleus 

swelling, the resulting hydrostatic pressure in the nucleus is well known as the intradiscal 

pressure (IDP). Simulations based on the image configuration without considering these residual 

stresses may cause a significant discrepancy with the physical reality [80]. Therefore, we 

hypothesize that disc geometry, fiber orientation and mechanics are influenced by nucleus 

swelling. To accurately predict the normal disc behavior and internal stresses, it is essential to 

introduce the nucleus swelling simulation in an IVD element (FE) model, in order to consider the 

residual stress distribution. 
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 As shown in the Figure 3.10, the disc geometry created using well-documented anatomic 

dimensions of the L2-L3 disc represents the image configuration (𝑿𝐼). However, the disc image 

configuration (𝑿𝐼) has been a consequence of disc prestrain caused by nucleus swelling. Thus 

there is a distribution of residual stress in the disc prestrained configuration (𝑿𝑃), although the 

disc geometry and fiber orientation of the prestrained configuration (𝑿𝑃) are completely identical 

to the image configuration (𝑿𝐼). To simulate the residual stress distribution under a physiological 

IDP, we need to inversely derive the fictitious unloaded configuration (𝑿𝑈), which is assumed to 

be configuration due to the loss of the IDP. The unloaded configuration (𝑿𝑈) is typically chosen 

as the reference configuration, such that the prestrained disc configuration (𝑿𝑃) can be obtained 

by applying the physiological IDP to the nucleus of the unloaded configuration (𝑿𝑈).  

 

Figure 3.10: The relationship among the image configuration (𝑿𝐼), unloaded configuration (𝑿𝑈) 

and prestrained configuration (𝑿𝑃) of an intervertebral disc. 

 

 The relationship among the three configurations can be described as the following 

equation [38, 79]:  

𝑭𝑃𝐼 = 𝑭𝑃𝑈𝑭𝑈𝐼 = 𝑰 (3.22) 



45 
 

where 𝑭𝑃𝐼, 𝑭𝑈𝐼, and 𝑭𝑃𝑈 are the deformation gradients (see the definition in Appendix B.1) from 

𝑿𝐼 to 𝑿𝑃, from 𝑿𝐼 to 𝑿𝑈, and from 𝑿𝑈 to 𝑿𝑃, respectively. It is noted that 𝑭𝑃𝐼 = 𝑰 is held, since 

𝑿𝐼 = 𝑿𝑃. 

 

3.4.1. Methods 

 In this study, a pull-back algorithm developed by Riveros et al. (2013) was adopted to 

iteratively compute the initial configuration of intervertebral disc, as described in Figure 3.11. 

The computation was initialized by assuming the unloaded (zero-pressure) configuration (𝑿𝑈) 

equal to the image configuration (𝑿𝐼). In each iteration, a nucleus swelling simulation was 

performed using the unloaded configuration (𝑿𝑈). The resulting prestrained configuration (𝑿𝑃) 

equilibrating an IDP of 0.1 MPa [91] was compared with the image configuration (𝑿𝐼). If the 

geometric error of 𝑿𝑃 from 𝑿𝐼, defined by the infinity normal (||𝑿𝐼 − 𝑿𝑃||∞), was larger than a 

tolerance of 0.2 mm (< image resolution) or the number of iterations less than the preset 

maximum of 15, the pull-back computation would be repeated by superposing the difference 

(𝑿𝐼 − 𝑿𝑃 ≤ 𝟎) onto the unloaded configuration (𝑿𝑈). Meanwhile, the alternating fiber 

orientations (𝒂𝐼 and 𝒈𝐼) in the image configuration were pulled back to the unloaded 

configuration using the numerical deformation gradient (𝑭−1), which is formulated in Appendix 

B.1.2. It is noted that the geometric tolerance and the maximum number of iterations were 

adopted from the previous algorithm [11]; further decreasing the geometric tolerance and 

increasing the maximum number of iterations caused convergence difficulty and additional 

computational cost, respectively. When the termination condition was satisfied, the iterative 

computation stopped, and both the unloaded configuration (𝑿𝑈, 𝒂𝑈 and 𝒈𝑈) and the prestrained 

configuration (𝑿𝑃, 𝒂𝑃 and 𝒈𝑃) identical to the image configuration (𝑿𝐼, 𝒂𝐼 and 𝒈𝐼) were obtained. 
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Figure 3.11: The flowchart of the pull-back algorithm. 

 

 Nucleus swelling in the pull-back computation was simulated by repurposing 

thermoelastic FE analysis in ANSYS. Two rigid endplates were attached to the top and bottom of 

the IVD. No constraints were applied on the superior endplate, but the inferior endplate was fully 

constrained. Thermal expansion in the NP was simulated in 1℃ temperature rise by assigning a 

coefficient of thermal expansion (CTE) to the NP. The NP CTE was calibrated to 0.038 /K, such 

that the simulated IDP in the NP is equal to 0.1 MPa [91]. It is found that there is an approximate 

linear relationship between the CTE and the IDP, but depending on the disc geometry and 

material properties. Therefore, the calibration of the CTE commonly requires that the pull-back 

computation is performed three times, if any change in the disc FE model is made. 
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 In the previous report pull-back computation [38, 39], the physiological intradiscal 

pressure (IDP) of 0.1 MPa was directly applied on the internal surface of the AF and rigid 

endplates, so only the AF was pulled back to the unloaded configuration. The prestrain of the 

entire disc (AF and NP) was achieved by performing a one-increment adaptation simulation, in 

which the re-inserted NP was pressurized by applying the strain distribution caused by the IDP of 

0.1 MPa. Since we introduced the nucleus swelling simulation in the iterative computation, both 

the AF and NP can be pulled back to the unloaded configuration simultaneously.  

 

3.4.2. Results 

 After 12 iterations, the disc image configuration was pulled back to the unloaded 

configuration, and the shape error (represented by the infinite normal, ||𝑿𝐼 − 𝑿𝑃||∞) between the 

prestrained configuration and the image configuration was 0.138 mm, within the preset tolerance 

of 0.2 mm. By calibration of the NP CTE to 0.038 /K, the NP of the prestrained disc is 

hydrostatically pressurized with an average IDP of 0.1 MPa (Figure 3.12), in agreement with the 

in-vivo measurement of the normal disc in the lying supine position [91]. 

 

Figure 3.12: The simulated hydrostatic pressure distribution [MPa] in the XP disc. 

 

 Compared to the unloaded disc, the average disc height increases by 0.8 mm and the 

average disc bulge decreases by 0.4 mm after nucleus swelling (Figure 3.13). Moreover, the 

average criss-cross fiber angle within the outermost fiber lamellae in the image configuration 

(Figure 3.14a) is larger than that in the unloaded configuration (Figure 3.14b) by 1.7°. 
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Figure 3.13: Comparison of the prestrained disc geometry (solid lines) with the unloaded disc 

geometry (dash lines). 

 

 

Figure 3.14: Changes in the fiber orientation in the outermost AF lamella due to nucleus swelling. 

(a) The image configuration; (b) The unloaded configuration. 

 

 To validate the proposed nucleus swelling simulation method using thermoelastic 

analysis (Figure 3.15a), an IDP of 0.1 MPa was directly applied on the AF and endplate internal 

surfaces after removing the NP (Figure 3.15b) according to a previously reported disc prestrain 

simulation [38, 39]. The same principle stress distributions occur in the AFs by either 

thermoelastic analysis (Figure 3.15a) or applying the IDP of 0.1 MPa (Figure 3.15b). Hence, it 

demonstrates that thermal expansion can be repurposed to provide an accurate representation of 

disc prestrain under nucleus swelling. 
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Figure 3.15: The simulated distribution of three principal stresses (PS1, PS2 and PS3, MPa). (a) 

Nucleus swelling was simulated using thermoelastic analysis; (b) A pressure of 0.1 MPa was 

directly applied on the AF and endplate internal surfaces after removing the NP. 

 

3.4.3. Discussion and Conclusion 

 According to our simulation results, the disc geometry and fiber orientation do not 

change obviously after nucleus swelling. It matches the Pfirrmann grades, in which mildly disc 

degeneration causes the loss of the IDP and water content [47]. By comparing with the previously 

reported disc prestrain method, we demonstrate that thermal expansion can provide an accurate 

representation of disc prestrain in nucleus swelling. This ensures that the entire disc including the 

AF and NP can be pulled back to the unloaded disc which experiences mild disc degeneration. 

Therefore, it enables the investigation of the IDP effect on the disc behavior, as described in the 

subsequent section. 

 To develop the FE computational model, the model assumes that the annular fibers are at 

a stretch ratio of 1 when the disc is in its “pull-back” configuration which is considered as the 
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reference configuration. However, the actual distribution of stretch ratios is not uniform, since 

some tissues could be slacker or more taught in the unloaded configuration. In addition, the 

computational cost of the iterative “pull-back” computation and calibration of the coefficient of 

thermal expansion to meet the physiological IDP results in a hurdle to implementing them in 

multi-segment spine FE models. 

 

3.5. Mechanical Responses of Normal Disc and Degenerated Disc 

3.5.1. Methods 

 The behaviors of the normal (prestrained) disc and degenerated (unloaded) disc were 

computationally investigated by applying the reported physiological ranges of motions (ROMs) 

in different loading scenarios [37, 78]. In both disc FE models, the inferior endplate was fully 

constrained, and the superior endplate was applied ±5° in sagittal bending, ±3° lateral bending 

and ±2.5° axial torsion [37], as illustrated in Figure 3.16. In each loading scenario, the rest five 

displacement or rotation degrees of freedom of the superior endplate were allowed [78, 96]. The 

simulated moment reactions were compared with previously reported in-vitro measurements [78].  

 

Figure 3.16: The loading scenarios in which the disc responses were simulated. 
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3.5.2. Results 

 As shown in the Figure 3.17, the simulated behaviors of the normal disc (𝑿𝑷) with the 

fiber orientation of |𝜑𝑡𝑢𝑛𝑒| = |𝜑𝑒𝑥𝑝| + 10° were in good agreement with the in-vitro 

experimental measurements in different loading scenarios [78].  

 

Figure 3.17: Comparison of the simulated rotation-moment curves of the normal vs. degenerated 

L2-L3 discs with the in-vitro measurements in different loading scenarios [78]. 

 

 The resistances to intervertebral rotations are distinctly compromised in all loading 

scenarios, when the fiber angles are decreased to |𝜑𝑒𝑥𝑝|. Disc degeneration (𝑿𝑼 with |𝜑𝑡𝑢𝑛𝑒|) 

also resulted in a substantial decrease in the disc stiffness to resist intervertebral rotations (Figure 

3.17a-c). 

 The maximum stresses of the normal disc (𝑿𝑷 with |𝜑𝑡𝑢𝑛𝑒|) in flexion (11 MPa, Figure 

3.18a) and torsion (4.94 MPa, Figure 3.18d) were located at the dorsal-outer AF lamellae, 

indicating the location with a high risk of AF injury. Compared with the stress distribution of the 

normal disc (Figure 3.18), the degenerated disc (𝑿𝑼 with |𝜑𝑡𝑢𝑛𝑒|) was less stressed in all loading 

scenarios, as shown in Figure 3.19.  
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Figure 3.18: The simulated von Mises distributions in the AF of the normal disc in different 

loading scenarios, where the physiological ROMs were applied on the disc FE model. 

 

 

Figure 3.19: The simulated von Mises distributions in the AF of the degenerated disc in different 

loading scenarios, where the physiological ROMs were applied on the disc FE model. 

 

3.5.3. Discussion and Conclusion 

 Using a well-established discrete modeling technique (Appendix B.4) for composite 

material [97] available in ANSYS 15.0, we validated the derived mathematical formulations used 

to develop the USERMAT subroutine. However, patch test results (Appendix B.4) show that 

fibers with angles less than 25° (corresponding to |𝜑𝑒𝑥𝑝| =  23.2° at the AF anterior) cannot 
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reinforce an isolated AF specimen in tension along the disc craniocaudal axis, regardless of the 

material properties (high vs. low fiber stiffness) and model techniques (discrete vs. continuum 

methods) used for the AF GS and fibers. It indicates that new mechanisms need to be introduced 

to the AF composite constitutive model to improve model fidelity. Here, we tuned fiber angles to 

|𝜑𝑡𝑢𝑛𝑒|, 10° larger than the experimentally measured fiber orientation (|𝜑𝑒𝑥𝑝|), to match the disc 

behavior in experimental measurements [78].  

 Our simulation results show that the disc stiffness is regulated by the IDP and fiber 

orientation; a decrease of the IDP and fiber angles causes a distinct deterioration in the resistance 

to intervertebral rotations. Therefore, calibration of the IDP and fiber orientation can improve the 

model prediction of disc behavior. In the literature, the technique that calibrates the regional 

variation in annular fiber orientation to match the simulated responses of a disc FE model to in-

vitro experimental measurements has been widely implemented [31–34]. 
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Chapter 4: Development and Calibration of a Lumbar Spine Finite Element Model 

 

 The development and calibration of a representative multi-segment L1-L5 lumbar spine 

finite element (FE) model were described in this chapter. This model will be used to investigate 

TDA biomechanics while functional spinal structures are considered. Though a comprehensive 

literature survey, we have identified common complications in patients who received the 

treatment of TDA, including abnormal kinematics, polyethylene wear/fracture, and facet joint 

overloading. The previous continuum disc FE model and the implementation of the “pull-back” 

algorithm and nucleus swelling simulation enable providing a more accurate prediction for stress. 

However, the high computational cost and model complexity limit their applications in the multi-

segment spine FE model. Instead, a simpler discrete disc model using reinforcement elements 

available in commercial software was adopted, since disc stress was not a focus in the studies 

related to TDA performance assessment. Besides, we still leveraged the fiber constitutive model 

(user material subroutine for reinforcing elements) to simulate the nonlinear tensile behavior, as 

well as the fitting and interpolation algorithms to model the heterogeneous material properties 

across the annulus fibrosus. Furthermore, material properties of all spinal soft tissues (disc and 

ligaments) were calibrated using a stepwise reduction procedure, and the effect of muscle co-

activation was considered by implementing a well-established follower preload technique. 

 

4.1. Geometric Modeling 

 In the study, a representative lumbar spine finite element (FE) model was required to 

simulate the normal spine mechanical behavior. Due to the relatively simple anatomy, a 
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representative lumbar spine was parametrically modeled in PTC Creo 2.0, by incorporating well-

documented average anatomical dimensions, as shown in Figure 4.1. Compared to previously 

lumbar spine parametric models [55, 98, 99], more features have been introduced to the current 

model. The modeling technique was briefly described here. 

 

Figure 4.1: Parametric models of L1-L5 vertebrae. (a) 3D quarter view; (b) sagittal view; (c) 

posterior view. 

 

 The kidney-shaped profile of the vertebral body in the transverse plane was modeled 

according to parametric equations proposed by Little et al. (2007). As shown in Figure 4.2, the 

profile of the vertebral endplate consists of 3 elliptical arcs (𝑎𝑎’̂ , 𝑎𝑏̂ and 𝑎’𝑏’̂ ) and 3 circular arcs 

(𝑏𝑐̂, 𝑏’𝑐’̂  and 𝑐’𝑐’̂ ). The periphery walls of vertebral bodies were modeled by sweeping a concave 

curve with a depth of 1mm across the middle transverse plane of each vertebral body. Previously 

reported geometric data, including vertebral anatomic dimensions [14] and articular facet 

dimensions and orientations [15], with a variation from L1 to L5 were incorporated, as listed in 

Tables 4.1 and 4.2, respectively. These dimensions together with nomenclatures were illustrated 

in Figure 4.3 and 4.4, respectively.  



56 
 

 

Figure 4.2: The profile of the vertebral endplate which was modeled according to parametric 

equations proposed by Little et al. (2007). 

 

Table 4.1: The anatomic dimensions (mm) of L1-L5 lumbar vertebrae [14]. 

 

Endplate L1 L2 L3 L4 L5 

Endplate width upper (𝐸𝑃𝑊𝑢) 41.2 42.6 44.1 46.6 47.3 

Endplate depth upper (𝐸𝑃𝐷𝑢) 34.1 34.6 35.2 35.5 34.7 

Endplate width lower (𝐸𝑃𝑊𝑙) 43.3 45.5 48.0 49.5 49.4 

Endplate depth lower (𝐸𝑃𝐷𝑙) 35.3 34.9 34.8 33.9 33.2 

Vertebral body height posterior (𝑉𝐵𝐻𝑝) 23.8 24.3 23.8 24.1 22.9 

Spinal canal L1 L2 L3 L4 L5 

Spinal canal width (𝑆𝐶𝑊) 23.7 23.8 24.3 25.4 27.1 

Spinal canal depth (𝑆𝐶𝐷) 19.0 18.2 17.5 18.6 19.7 

Pedicle L1 L2 L3 L4 L5 

Pedicle width right (𝑃𝐷𝑊𝑟) 8.0 7.8 10.2 13.4 18.0 

Pedicle height right (𝑃𝐷𝐻𝑟) 15.9 15.0 14.2 15.7 19.6 

Pedicle inclination sagittal and right (𝑃𝐷𝐼𝑠𝑟) 16.5 17.1 19.8 18.4 25.9 

Process L1 L2 L3 L4 L5 

Spinous process length (𝑆𝑃𝐿) 67.7 71.7 71.7 70.1 68.3 

Transverse process width (𝑇𝑃𝑊) 71.2 76.1 85.7 79.4 92.5 
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Figure 4.3: Illustration of vertebral anatomic dimensions [14], reproduced with permission from 

Wolters Kluwer Health, Inc. (a) Isometric view; (b) Frontal view; (c) Sagittal view; (d) 

Transverse view. 

 

Table 4.2: The L1-L5 articular facet dimensions (mm) and orientations (○) [15].  

 

Articular facet L1 L2 L3 L4 L5 

Facet width upper and right (𝐹𝐶𝑊𝑢𝑟) 12.7 14.6 16.0 16.1 17.4 

Facet height upper and right (𝐹𝐶𝐻𝑢𝑟) 10.2 11.1 13.8 14.1 16.3 

Facet width lower and right (𝐹𝐶𝑊𝑙𝑟) 12.4 12.7 13.8 14.7 15.6 

Facet height lower and right (𝐹𝐶𝐻𝑙𝑟) 15.3 16.0 15.7 16.2 18.4 

Interfacet width upper (𝐼𝐹𝑊𝑢) 26.2 26.4 28.6 31.4 35.0 

Interfacet width lower (𝐼𝐹𝑊𝑙) 24.8 26.6 29.1 34.8 40.6 

Interfacet height right (𝐼𝐹𝐻𝑟) 32.5 33.0 32.4 28.5 26.1 

Card angle with respect to the transverse plane 

upper and right (𝐶𝐴𝑋𝑢𝑟) 

82.9 85.7 81.9 81.2 86.0 

Card angle with respect to the sagittal plane 

upper and right (𝐶𝐴𝑌𝑢𝑟) 

39.5 44.4 48.0 58.8 62.3 

Card angle with respect to the transverse plane 

lower and right (𝐶𝐴𝑋𝑙𝑟) 

81.3 82.8 75.6 70.5 71.0 

Card angle with respect to the sagittal plane 

lower and right (𝐶𝐴𝑌𝑙𝑟) 

26.6 36.9 47.8 65.8 49.8 
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Figure 4.4: Illustration of articular facet linear and angular dimensions [15], reproduced with 

permission from Wolters Kluwer Health, Inc. (a) Linear dimensions; (b) The facet plane 

orientations defined by two card angles. It is equivalent to rotating a card initially lying in the 

transverse plane by an angle (𝐶𝐴𝑋), followed by rotating the card by another angle (𝐶𝐴𝑌). 

 

 The same parametric modeling technique [100] was implemented to model the disc 

profiles, which were required to coincide with the endplate profiles of adjacent vertebral bodies. 

The nucleus profiles were scaled based on the dimensions of the whole disc, such that the nucleus 

volume has a ratio of 44% to the total disc volume [33], with its center posterior 2 mm to the disc 

centroid. It was assumed that the annulus has an outer bulge of 1 mm and an inner bulge of 2 mm 

[39]. For simplicity, through the lumbar spine, the average disc heights and disc inclination 

angles at the sagittal plane were set as 13 mm and 6○, respectively [66].  

 

4.2. Finite Element Model 

4.2.1. Mesh Preprocessing 

 The geometric model of the L1-L5 lumbar spine was meshed in ANSYS 15.0 ICEM, 

where a multi-zone meshing technique was implemented. The mesh density was taken from a 
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fully validated lumbar spine FE model [66]. As presented in Figure 4.5, the spine FE model 

consists of 9123 brick elements, 3341 shell elements and 11632 nodes. Subsequently, the FE 

model was further pre-processed when it was imported to ANSYS 15.0 Mechanical APDL. 

 

Figure 4.5: The ligamentous L1-L5 spine finite element model (a) and its right half model (b). 

The cancellous bone of the vertebral bodies and arches (c) is overlaid with shell elements (d), 

which represents cortical shells and bony endplates.  

 

4.2.1. Modeling of Facet Joints 

 The articulating facet joint surfaces were modeled using surface-to-surface frictionless 

contact elements in combination with the penalty algorithm with normal contact stiffness of 200 

N/mm [86, 101]. For the purpose of the validation, the augmented Lagrange contact algorithm 

was also employed to compare the simulated segmental ROMs, facet joint forces, and ligament 

forces with those using the penalty algorithm; no difference in these simulation results using 

either algorithm occur. The initial contact gap of the facet joint was adjusted to a uniform 

distance of 0.4 mm (Figure 4.6) [101], using the contact adjustment technique (Command: 

CNCHECK, MORPH, …) in ANSYS 17.1 MAPDL. 
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Figure 4.6: Adjustment of the initial contact gap of the facet joint. (a) The facet joint gap before 

adjustment; (b) The facet joint gap with a uniform distance of 0.4 mm after adjustment. 

 

4.2.2. Modeling of Intervertebral Disc Annular Lamellae 

 As shown in Figure 4.7, six layers of fiber lamellae in a crossing pattern embedded 

within the annulus were modeled using reinforcing elements (REINF265) in ANSYS 15.0. It was 

assumed that adjacent layers were coincident, but with alternating fiber orientations. A new 

constitutive model was proposed to simulate the tension-only, nonlinear behavior of the fiber 

lamellae. The strain energy function of the fiber lamellae was formulated as:  

𝛹𝑓𝑖𝑏
𝐴𝐹(𝜆) =

{
 
 

 
 

0, 𝜆 < 1

𝑐3 {
1

𝑐4
[𝑒𝑐4(𝜆−1) − 1] − (𝜆 − 1)} , 1 ≤ 𝜆 < 𝑐5

𝐸∗

2
(𝜆 − 𝑐5)

2 + 𝑇∗(𝜆 − 𝑐5) + 𝛹
∗, 𝜆 ≥ 𝑐5

 (4.1) 

where the strecth ratio (𝜆) was introduced to descibe the change in the fiber length along the 

spatial fiber direction. Especially, 𝜆∗ = 𝑐5 is defined as the uncrimped stretch of the AF collagen 

fiber [94]. It should be noted that there are only 3 material constants (𝑐3, 𝑐4 and 𝜆∗ = 𝑐5) in 

Equation 4.1, different from previously reported constitutive models for collagen fibers [29, 94, 

95]. The new model facilitates fitting and interpolation of fiber uniaxial tensile test data to 

simulate the material heterogeneity across the AF. An ANSYS USERMAT subroutine was 

developed to implement the new constitutive relationship for collagen fibers. 
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 Moreover, annular lamellae were divided into 3 polar sections across the annulus, to 

which circumferentially varying lamellar thicknesses (Sec 1: 0.73 mm, Sec 2: 0.56 mm, Sec 3: 

0.39 mm, Figure 4.7) were assigned, according to previously reported in-vitro measurements [19]. 

 

Figure 4.7: The reinforcing elements embedded within the brick elements of the annulus ground 

substance. They were divided into 3 polar sections, such that heterogeneous tensile properties 

were assigned. Different element colors indicate different tensile properties assigned. The inset 

shows the crossing pattern of collagen fibers viewed from the lateral. 

 

 The same fitting and interpolation techniques described in Chapter 3 were implemented 

to model radially and tangentially varying nonlinear tensile properties of the annular lamellae. 

The resulting fiber tensile properties (Figure 4.8) corresponding to different layers and polar 

sections (Figure 4.7) were assigned to the annular lamellae in the lumbar spine model. As shown 

in the inset of Figure 4.7, fiber orientations in adjacent lamellae alternate, causing a crossing 

pattern. The fiber angles within ventro-external (Sec 1, Lyr 1), ventro-internal (Sec 1, Lyr 6), 

dorsal-external (Sec 3, Lyr 1) and dorsal-internal (Sec 3, Lyr 6) annular lamellae were calibrated; 

fiber angles within other annular lamellae were linearly interpolated. 
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Figure 4.8: The radially and tangentially varying tensile properties of annular lamellae located at 

different layers and polar sections. 

 

4.2.3. Modeling of Spinal Ligaments 

 As shown in Figure 4.9, there are 7 intersegmental ligaments in the lumbar spine, 

including ALL, PLL, CL, LF, ISL, SSL, and ITL. For most spinal ligaments, they are not capable 

of resisting compression. Thus, the ligament tensile force (𝐹𝑙𝑖𝑔) is assumed to be a tension-only, 

exponential function of the ligament deflection (𝐷𝑙𝑖𝑔) [48], 

𝐹𝑙𝑖𝑔 = {
𝑎(𝑒𝑏𝐷𝑙𝑖𝑔 − 1), 𝐷 ≥ 0

0, 𝐷 < 0
 (4.2) 

where 𝑎 and 𝑏 are two material constants which were determined by calibration. The resulting 

ligament force-deflection curve was assigned to nonlinear spring elements (COMBIN39) in 

ANSYS 15.0, which were used to be modeled each spinal ligament [33, 34]. 
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Figure 4.9: The FE model representations of seven intersegmental spinal ligaments. 

 

 According to the reported in-vitro experiment [28], the segmental rotation in extension 

significantly increased (Wilcoxon rank test) after removing SSL, indicating that it can resist 

compression. Therefore, it was assumed that the SSL can resist in compression by the same force-

deflection curve as in tension [33, 34]. 

 

4.2.3. Material Properties 

 To model the material orthogonality of the cancellous bone in vertebral bodies, five local 

coordinate systems were established at the superior endplate centroids of each vertebral body. 

The z directions of local coordinate systems represent the craneo-caudal direction along the 

lordotic curve of the lumbar spine. The vertebral bodies and neural arches (Figure 4.5c) are 

covered by a cortical shell and bony endplates (Figure 4.5d), both of which were modeled by 

quadrilateral shell elements with the thicknesses of 0.6 mm [102] and 0.5 mm [103], respectively. 

The cartilaginous endplates and facet cartilages were explicitly modeled using brick elements, 

assuming that their thicknesses are 1 mm [102] and 0.25 mm [104], respectively. Cortical shells, 

bony endplates, cartilaginous endplates and facet cartilages were modeled using the isotropic 
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elastic material properties. The disc nucleus pulposus and annulus fibrosus ground substance 

were simulated using Mooney-Rivlin hyperelastic material properties. The material properties [25] 

of each spinal tissue in the FE model were summarized in Table 4.3. 

 

Table 4.3: A summary of the material properties adopted in the lumbar spine FE model. 

 

Spinal Tissues Material Properties  

Vertebral Body Cancellous Bone 𝐸𝑥𝑥 = 𝐸𝑦𝑦 = 140 MPa, 𝐸𝑧𝑧 = 200 MPa 

𝐺𝑥𝑦 = 𝐺𝑦𝑧 = 𝐺𝑥𝑧 = 48.3 MPa 

𝜐𝑥𝑦 = 0.45, 𝜐𝑦𝑧 = 𝜐𝑥𝑧 = 0.315 

Neural Arch Cancellous Bone 𝐸 = 3500 MPa, 𝜐 = 0.25 

Cortical Bone 𝐸 = 12000 MPa, 𝜐 = 0.3 

Bony Endplate 𝐸 = 10000 MPa, 𝜐 = 0.3 

Cartilaginous Endplate  𝐸 = 24 MPa, 𝜐 = 0.4 

Facet Cartilage 𝐸 = 35 MPa, 𝜐 = 0.4 

Nucleus Pulposus Mooney-Rivlin: 𝑐1 = 0.12 MPa, 𝑐2 = 0.03 MPa 

Annulus Fibrosus Ground Substance Mooney-Rivlin: 𝑐1 = 0.18 MPa, 𝑐2 = 0.045 MPa 

Annular Lamellae Tension-only, nonlinear stress-stretch relation 

(ANSYS USERMAT subroutine) 

Spinal Ligaments Tension-only, nonlinear force-deflection 

relation (ANSYS nonlinear spring elements) 

 

 The spine mechanical behavior is significantly influenced by the material properties of 

soft tissues (intervertebral disc annular lamellae and spinal ligaments). Thus, they need to 

carefully modeled and calibrated, such that the resulting kinematic responses of either individual 

tissues or the entire lumbar spine closely matched published in-vitro measurements. The 

calibration procedure was reported in the following. 

 

4.3. Calibration of Spinal Tissue Material Properties 

4.3.1. Methods 

 Heuer et al. (2007a) quantified the mechanical function of each spinal tissue on lumbar 

segments in different loading scenarios and magnitudes, by step-wise reducing functional spine 

structures. In their in-vitro testing, eight specimens of lumbar motion segments (L4-5) with a 



65 
 

median age of 52 years were employed. Spinal structures (ligaments, facet capsules, facet joints, 

vertebral arch and disc nucleus) were successively reduced. Specimens in intact and defect stages 

were mounted on a custom-built spine testing machine, and applied pure moments ramping up to 

10 N in various physiologically relevant loading scenarios. Changes in the kinematic responses 

(range of motion and lordotic angle) of lumbar segments due to the step-wise reduction procedure 

were evaluated. 

 To calibrate material properties of each spinal tissue, the kinematic responses of the L4-

L5 lumbar segment FE model in each reduced stages were simulated using a step-wise addition 

procedure of spinal structures, which was exactly opposite to the produce in the in-vitro 

experiment [28]. The step-wise addition procedure has been implemented to calibrate material 

properties of spinal tissues in previously reported computational models [16, 33, 34]. As shown in 

Figure 4.10, eight segment models in defect stages and one intact segment model (w/ ITL) were 

created as a result of the successive addition of spinal structures.  
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Figure 4.10: Defected/intact states of the L4-L5 lumbar segment model in the step-wise addition 

procedure (w/ = with). 

 

 The same loading conditions described in the in-vitro testing [28, 96] was used to 

simulate the kinematic responses of the defected/intact L4-L5 lumbar segment in flexion, 

extension, lateral bending and axial torsion, as illustrated in Figure 4.11. The L5 inferior endplate 

was fully constrained, and the L4 superior endplate was applied a pure moment of 10 Nm using a 

multi-point constraint technique in ANSYS 15.0. In each model (Figure 4.10), the material 

properties of only one spinal tissue, which was introduced compared to the previous stage, were 
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calibrated using the optimization toolbox in MATALB R2014a, such that the simulated ranges of 

motion (ROMs) of the L4-5 segment matched in-vitro measurements in the 4 loading scenarios 

[28]. Therefore, the calibration order is the IVD, ALL, PLL, VA (where the initial gap of facet 

joint was tuned to 0.4 mm), CL, LF, ISL, SSL, and ITL (the ITL tensile properties were chosen 

from Rohlmann et al. 2006, due to the lack of experimental data in the in-vitro experiment of 

Heuer et al. 2007a).  

 

Figure 4.11: Illustration of the in-vitro loading conditions on a custom-built tester used to test the 

kinematic responses of the L4-L5 lumbar segment in different loading scenarios [42], reproduced 

with permission from Elsevier. 

 

4.3.2. Results 

 After calibration of the annular fiber orientation and spinal ligament tensile properties, 

the simulated kinematic responses of the defected/intact L4-L5 segments are in good agreement 

with the in-vitro measurements [28] in the 4 physiologically relevant loading scenarios, as shown 

in Figure 4.12. 
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Figure 4.12: Comparison of the simulated kinematic responses of the defected/intact L4-L5 

segment with those of in-vitro measurements [28] in flexion (a), extension (b), lateral bending (c) 

and axial torsion (d). 
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 The calibrated fiber angles in different anatomic sites in the L4-L5 segment are listed in 

Table 4.4, where the in-vitro measurements of fiber angles reported in the literature are also 

presented.  

 

Table 4.4: Comparion of the calibrated fiber angles at 4 anatomic sites with the reported in-vitro 

measurements. 

 

 

Fiber Angle, 𝝋 (°) 

Calibrated 
Tangentially 

varying 
Radially varying Fully anisotropic 

Heuer et al. 

(2007a) 

Holzapfel et al. 

(2005) 

Cassidy et al. 

(1989) 
Zhu et al. (2008) 

Ventro-external 30 24 28 25 

Ventro-internal 58 24 45 54 

Dorsal-external 44 46 28 90 

Dorsal-internal 66 46 45 70 

Donor age [years] 38 ~ 59 57.9 ± 15.4 31 ~ 80 28 ~ 45 

IVD level L4-5 L1-2 L1-2, L2-3, L4-5 L4-5, L5-S1 

 

 The calibrated tensile properties of spinal ligaments in the L4-L5 segment are presented 

in Figure 4.13. Generally, the stiffnesses of the anterior ligaments are larger than those of 

posterior ligaments.  

 

Figure 4.13: The calibrated tensile properties of spinal ligaments. 
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4.3.2. Discussion and Conclusion 

 Due to the different lumbar disc specimens used in in-vitro experiments (Table 4.4), it 

was observed that the phenotypes of in-vitro fiber orientation would be radially varied [22], 

circumferentially varied [19, 105], and both radially and circumferentially varied [20]. These 

experiment results revealed a high variability in the annular fiber orientation, which might result 

from the individual-specific adaptation in tissue remodeling to loading history and physiological 

aging (Brickley-Parsons and Glimcher. 1984). As we expected, the calibrated fiber orientation, 

which varies both radially and circumferentially, cannot exactly match any individual dataset of 

in-vitro experimental results listed in Table 4.4, since the in-vitro kinematic responses to which 

we calibrated were measured by Heuer et al. (2007a), who used eight spinal segments (L4-L5) 

with a median age of 52 years. Regrettably, they did not report the fiber orientation in their 

specimens, thus we cannot validate our calibrated fiber orientation and the fidelity in our FE 

model. 

 The trend in the variation of ligament stiffnesses match that reported by Schmidt et al. 

(2007a), who used the same in-vitro measurements of the segmental kinematic responses [28] to 

calibrate the ligament tensile properties. However, our calibrated ligament stiffnesses of the ISL 

and SSL are much smaller than their calibrated results. It should be noted that we calibrated the 

tissue material properties using 4 physiologically relevant loading scenarios, but they only 

simulated the kinematic responses of the defected/intact L4-L5 segment in flexion and extension. 

 

4.4. Modeling of Compressive Follower Preload 

 The follower load is defined as a compressive load whose path approximates the tangent 

to the lordotic curve of the lumbar spine, passing through the instantaneous center of rotation of 

each segment. Patwardhan et al. (1999) have demonstrated that the follower load minimizes the 

segmental bending moments and shear forces, and significantly increases the load-carrying 
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capacity. In contrast, the spine buckles under a vertical compressive load with a magnitude far 

below as seen in vivo. Therefore, the follower load is a consequence of the physiological co-

activation of trunk muscles that alters the direction of the internal compressive force vector, in 

order to provide a greater margin of safety against both instability and tissue injury. In this work, 

we modeled the follower preload according to a previously reported experimental setup [82, 106], 

and the preload path was optimized to minimize the bending moments in the sagittal plane, as 

recommended by Dreischarf et al. (2010). 

 

4.4.1. Methods 

 After performing the stepwise calibration procedure, the resulting material properties 

were assigned to the corresponding spinal tissues at the L1-2, L2-3 and L3-4 levels of the multi-

segment lumbar spine model. According to the in-vitro experiment by Patwardhan et al. (1999), a 

compressive follower load was applied bilaterally by cables and dead weights, as shown in Figure 

4.14a. The loading cables were firmly anchored to the cup holding the L1 vertebra and passed 

freely through cable guides attached to the vertebral bodies from L2 to L5. Correspondingly, in 

the L1-L5 spine FE model (Figure 4.14b), tension-only truss elements (LINK180) were used to 

simulate the load path which was tangent to the spine curve. Each truss element was connected to 

a pilot node which guides the motion of a vertebra. The nodal kinematic constraints of truss 

elements at the L2-L5 were defined using a cylindrical joint element (MPC184), which only 

allows a translation and a rotation degree of freedom along the joint axle.  
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Figure 4.14: Modeling of the compressive follower preload according to the previously reported 

experimental setup. (a) The experimental setup in which a human cadaveric lumbar spine 

subjected to a compressive follower load [106], reproduced with permission from Elsevier; (b) 

The FE model of the lumbar spine undergoing a follower preload which was simulated by 

tension-only truss elements connected with cylindrical joint kinematic constraints. 

 

 For the L1-5 spine FE model, the L5 inferior endplate was fixed, and a symmetric 

boundary was applied to the sagittal plane. A compressive follower preload of 250 N (500 N for 

the complete model), which led to the simulated intervertebral rotations and intradiscal pressures 

that agreed well with in-vivo data [108], was applied to the spine FE model using the technique 

described above. As suggested by Dreischarf et al. (2010), a non-optimized follower preload path 

may cause change in the lordosis of the lumbar spine. Therefore, the preload path was optimized 

using the optimization toolbox in MATALB R2014a, such that no intervertebral rotation occurred 

at each level of the intact spine model [107].  

 

4.4.2. Results 

 After optimization, the nodal positions of truss elements, which define the preload path, 

are 1.68 mm, 1.78 mm, 1.91 mm, 2.19 mm and 2.26 mm posterior to the centers of L1-L5 
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vertebral bodies, respectively. The optimal preload path is consistent with optimized preload 

paths reported in previous publications [107, 109].  

 

4.4.3. Discussion and Conclusion 

 In the previous investigation of intervertebral disc biomechanics, the degenerated 

(unloaded) disc due to the loss of intradiscal pressure (IDP) was derived from the disc geometry 

and fiber orientation observed in clinic images, and disc prestrain under nucleus swelling was 

achieved by applying thermal expansion in the nucleus of the degenerated disc. According to our 

simulation results in various loading scenarios, the normal (prestrained) disc pressurized by a 

hydrostatic pressure in the nucleus provided a more considerable resistance to intervertebral 

rotations. However, the normal disc was modeled using an iterative algorithm, so the high 

computational cost limited its application to a multi-segment spine FE model.  

 In this study, the normal disc was modeled using stiffer material properties and the 

calibrated fiber orientation. It was demonstrated that the simulated kinematic responses of the 

normal disc could closely match in-vitro experimental measurements [28], although the resulting 

stress distribution might not very accurate. Moreover, material properties of all spinal ligaments 

in the intact multi-segment spine FE model have been calibrated using a step-wise addition 

procedure, and the well-established follower preload technique was used to consider the effects of 

muscle co-activation and body weight. Therefore, the spine FE model has achieved sufficiently 

high fidelity, as in the next chapter we will show that the simulated segmental ROMs and facet 

joint forces in each level are consistent with published simulation results. This meets our need to 

evaluate TDA performance metrics associated with postoperative complications, such as 

abnormal segmental kinematics and facet joint overloading. 
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Chapter 5: Performance Assessment of Total Disc Arthroplasty 

 

 The intact multi-segment lumbar L1-L5 spine finite element (FE) model was modified to 

simulate the behavior of a treated spine that was implanted different total disc arthroplasty (TDA) 

designs. First, we demonstrated that TDA led to substantial changes in the range of motion (ROM) 

and spinal tissue loads in the treated segment, but no distinct changes were observed at the 

adjacent levels regardless of different TDA designs. Therefore, the multi-segment spine FE model 

was further reduced to a single lumbar segment L3-L4 FE model, to investigate the effects of 

implant design and facet joint (FJ) articulation on the motion patterns and metal-on-polyethylene 

(MoP) contact mechanics. From the simulation results of commercially available TDA designs, 

we learned that FJ articulation could change the designed TDA motion patterns, and cause lift-off, 

impingement and unsymmetric motion in a mobile-bearing TDA design with a biconvex 

polyethylene (PE) core. The abnormal motion in the biconvex-core TDA further caused a 

downward bending of the rim with a median thickness of only 2.9 mm, and thus a higher risk of 

PE fracture existed. These results were in excellent agreement with well-documented retrieval 

studies in the literature. Therefore, the author proposed a new mobile-bearing TDA design 

featuring a biconcave PE core, which strengthens the PE rim in order to alleviate stress 

concentration and permanent deformation; they cause PE fracture due to the repetitive 

impingement in life activities. Using kinematic analysis and contact simulation, we successfully 

demonstrate that the new TDA design can improve the MoP contact mechanics and spinal 

kinemics in the treated lumbar segment.  
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5.1. Mechanical Behavior of a TDA in Multi-segment Lumbar Spine 

 Intervertebral disc degeneration induces spinal stenosis and facet joint arthritis, and is 

highly associated with lower back pain. When more conservative medical therapy fails, surgical 

procedures need to be performed to replace the diseased discs. Spinal fusion commonly using 

high-stiffness implants significantly alters native disc biomechanics, causing adjacent segment 

diseases. Total disc arthroplasty (TDA) is an attractive alternative to spinal fusion for the 

treatment of spinal pathologies, while the disc height and segmental motion are restored. 

However, in the literature, there has been no consensus that TDA can treat the implanted level 

without compromising the adjacent segments. Therefore, finite element (FE) simulations which 

supplement in-vivo and in-vitro studies were employed to investigate the mechanical responses of 

the lumbar spine after single-level TDA with a widely used socket-in-ball artificial disc. We 

hypothesize that different TDA design parameters influence the segmental range of motion (ROM) 

and the load-sharing of spinal tissues at both the treated and adjacent levels throughout common 

lumbar spine motions, extension and flexion. 

 

5.1.1. Methods  

 The development and calibration procedures of an intact multi-segment L1-L5 lumbar 

spine FE model have been described in Chapter 4. The intact lumbar spine FE model (Figure 5.1a) 

was modified to simulate the mechanical responses of the treated lumbar spine (Figure 5.1b) 

subjected to an anterior surgical procedure [9, 66]. At the L3-L4 level, the anterior longitudinal 

ligament, the anterior portion of the annulus and the entire nucleus were removed. Only the 

posterior and lateral portion of the annulus remained in place. A widely used fixed-bearing TDA 

was inserted into the intervertebral space of the L3-L4 level. 
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Figure 5.1: Finite element models of the intact L1-L5 lumbar spine (a) and the TDA-treated L1-

L5 lumbar spine according to an anterior surgical procedure. 

 

 It was assumed that the TDA consists of two cobalt-chrome (CoCr) alloy endplates and 

an ultra-high-molecular-weight polyethylene (UHMWPE) inlay [55]. The UHMWPE inlay is 

bonded to the inferior CoCr endplate, and articulates with the superior CoCr endplate through a 

convex-up bearing surface. As illustrated in Figure 5.2, the TDA design was parametrically 

modeled considering four design parameters. 𝑔 is the gap between CoCr-UHMWPE contact 

interfaces, used to simulate different TDA heights; 𝑑 is the anteroposterior position of the TDA 

inferior endplate surface center in the intervertebral space with respect to the geometric center of 

the L4 superior endplate surface; ℎ and 𝑟 are the height and radius of the bearing surface of the 

UHMWPE inlay, respectively. The TDA design with 𝑔 = 0, 𝑑 = 0, ℎ = 3 and 𝑟 = 8 mm was 

chosen as the baseline design (Figures 5.2 and 5.3).  
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Figure 5.2: The parametric TDA model with four TDA design parameters (𝑔, 𝑑, ℎ and 𝑟), which 

was implanted into the L3-L4 level. 

 

 In parametric analysis, each design parameter was changed, while other three design 

parameters were kept the same as the baseline design. It resulted in six additional TDA designs 

different from the baseline design, as shown in Figure 5.3. For example, for the TDA design 

denoted by 𝑔 = 1 mm, it implies other design parameters with 𝑑 = 0, ℎ = 3 and 𝑟 = 8 mm. The 

baseline TDA design and other TDA designs with the change in only one of the design 

parameters was implanted into the L3-4 level (Figure 5.2). A coefficient of friction of 0.02 [101] 

was chosen for the material coupling of CoCr-UHMWPE. The Young’s modulus and Poisson’s 

ratio of CoCr was assumed to be 300 GPa and 0.27 [101], respectively. The UHMWPE inlay was 

assigned a Young’s modulus of 2 GPa and a Poisson’s ratio of 0.3 [101].  
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Figure 5.3: Different TDA designs from the baseline design in parametric analysis. The baseline 

TDA design was assign 𝑔 = 0, 𝑑 = 0, ℎ = 3 and 𝑟 = 8 mm. For each design, only one design 

parameter was changed, while other design parameters were kept the same as the baseline design. 

 

 According to the model symmetry in extension and flexion, the right half of the L1-L5 

intact/treated lumbar spine (Figure 5.1a,b) was modeled to investigate mechanical responses of 

each level. The L5 inferior endplate was fixed, and a symmetry boundary was applied at the 

sagittal plane (Figure 5.4) to constrain the normal displacement and the out-of-plane rotations. A 

compressive follower preload of 250 N (500 N for the complete model) was applied to the 

intact/instrumented spine models using tension-only truss elements with cylindrical joint 

kinematic constraints, according to the experimental setup of Patwardhan et al. (1999). The 

preload path was optimized such that no intervertebral rotation occurred at each level of the intact 

spine model [107]. Subsequently, a moment ramping up to 3.75 Nm (7.5 Nm for the complete 

model) was applied to the L1 superior endplate of the intact/treated spine model in extension and 

flexion, respectively. The simulated ROMs, facet joint forces and ligament forces using different 

TDAs in extension and flexion at 3.75 Nm were compared. 
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Figure 5.4: A symmetry boundary which is applied at the sagittal plane. It constrains the 

displacement normal to the sagittal plane, and the rotations out of the sagittal plane. 

 

5.1.2. Results  

 When a follower preload of 250 N and a moment of 3.75 Nm are applied to the intact 

spine FE model, the average ROMs of each level are 4.3 ° in extension (Figure 5.5a-left) and 6.6 ° 

in flexion (Figure 5.5b-left). The facet joint forces in extension (Figure 5.5a-middle) at the L2-3, 

L3-4 and L4-5 levels are 36.2, 28.7 and 34.5 [N], respectively. However, no contact of facet 

joints occurs in flexion (Figure 5.5b-middle). These results closely match those reported by 

Schmidt et al. (2012). 
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Figure 5.5: The simulated ROMs (left), facet joint forces (middle) and ligament forces (right) of 

the L1-5 intact and TDA-treated lumbar spines, each of which was modeled according to the 

symmetry with respect to the sagittal plane. Both models were applied a follower preload of 250 

N and a moment of 3.75 Nm in extension (a) and flexion (b), respectively. 

 

 For TDA-treated lumbar spines, an obvious realignment in the neutral rotation occurs at 

the treated level (L3-L4) after applying the follower preload for different TDAs (1.2° ~ 3.6° in 

extension angle), except for the TDA with 𝑑 = -3 mm (0.2° in flexion angle), which was 

positioned 3 mm posterior to the endplate center, as recommended by Schmidt et al. (2012). The 

TDA realignment after preloading influences the ROMs of the treated level (L3-L4) in both 

extension and flexion. Compared to the responses at the L3-L4 level of the intact lumbar spine, 

there is a same trend in the simulated ROM at the treated level of each treated lumbar spine that 
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increases in extension (Figure 5.5a-left) and decreases in flexion (Figure 5.5b-left), although it is 

sensitive to different TDA designs.  

 In agreement with the study of Huang et al. (2003), distinct increases in facet joint forces 

at the treated level in extension (Figure 5.5a-middle) are induced by only two TDAs with ℎ = 5 

mm (91.7 N) and 𝑟 = 6 mm (80.5 N), both of which cause a smaller radius of curvature on the 

CoCr-UHMWPE articulation. In contrast, facet joints at the treated level remain separated during 

extension, when the TDA with 𝑟 = 10 mm is used. In flexion (Figure 5.5b-middle), facet joint 

loads only occur in two treated spines using the TDAs with 𝑔 = 1 mm (18.0 N) and 𝑟 = 10 mm 

(8.0 N), respectively. In terms of the load-carrying in ligaments, TDA leads to substantial 

increases in the SSL compressive force in extension (Figure 5.5a-right) and the tensile force of 

the posterior longitudinal ligament (PLL) in flexion (Figure 5.5b-right). It is worth noting that 

only slight changes in ROMs, facet joint forces, and ligament forces are observed at the adjacent 

levels (Figure 5.5a,b). 

 

5.1.3. Discussion and Conclusion 

 Compared to the behavior of the intact lumbar spine, TDA using the anterior surgical 

procedure which removes spinal tissues causes a larger ROM in extension and changes the load-

sharing of spinal tissues at the treated level where a TDA is implanted. Although we only focused 

on a convex-up fixed-bearing TDA design, it revealed that the ROM and the load-sharing of 

spinal tissues at the treated level in extension and flexion were very sensitive to TDA design 

parameters, including the disc height distraction, implant position, and radius of curvature of the 

metal-on-polyethylene bearing. However, it is noticed that the implantation of a TDA does not 

influence the mechanical responses of adjacent levels regardless of different TDA design 

parameters, indicating that the same load can be transferred to each level through a treated lumbar 

spine. Due to the slight change in the responses of adjacent levels, the multi-segment lumbar 
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spine FE model can be simplified to a single motion segment FE model, to assess different TDA 

designs in terms of TDA kinematics, spinal tissue loading, and contact mechanics.  

 Not only the overall response of a spine but also the responses of individual components 

are required to match experimental measurements, in order to accurately predict spinal tissue 

load-sharing. Therefore, the well-established step-wise addition procedure was adopted to 

calibrate material properties of discs and ligaments. Especially, the supraspinous ligament (SSL) 

was assumed to be able to resist compression in the spine FE model, since Heuer et al. (2007a) 

reported that the ROMs of the L4-L5 lumbar specimens in extension significantly increased after 

removing the SSL. If the SSL compression resistance is neglected in our FE model, the simulated 

ROM in extension will increase beyond the standard deviation of the experimental data. In 

contrast, García Vacas et al. (2014) predicted that TDA resulted in a larger facet joint force at the 

treated level, and the capsular ligament was the only load-carrying ligament in extension, since 

they did not consider the resistance of the SSL to compression in their FE model. Further 

experimental characterization is essential to investigate whether buckling would occur in the SSL 

due to excessive compression. 

 

5.2. Influence of Implant Design and Facet Joint Gap on TDA Kinematics and Contact 

Mechanics 

 To achieve natural segmental motion, it is desirable to match the range of motion (ROM) 

and the instantaneous center of rotation (ICR) of a total disc arthroplasty (TDA) to that of the 

intact segment; they are two important parameters of prosthesis design related to the quantity and 

quality of motion, respectively [112]. The calculated centrode (the path of ICR) is very sensitive 

to the nodal displacement of the segment in a computational FE model [42, 113], so adverse TDA 

motion will significantly change the desired kinematics [101]. For intact lumbar segments, the 

ICRs are located slightly below the superior endplate of the inferior vertebra, except for the L5-

S1 segment whose ICR lies within the disc space [110]. The theoretical ICRs of the commercially 
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available fixed-bearing (ProDisc) and mobile-bearing (Charite) TDAs approximately match those 

of the intact lumbar and lumbosacral segments, respectively. Unfortunately, it has been reported 

that the lift-off phenomenon (defined as the separation of TDA bearing surfaces) and 

unsymmetrical/one-sided motion (defined as the rotation on one articulation larger than the other 

in a mobile-bearing TDA) may occur [114], necessarily causing a change of designed TDA 

motion and an increased risk of polyethylene (PE) inlay wear/fracture [76]. Therefore, it is 

essential to understand the dependence of TDA kinematics and contact mechanics on TDA design 

and spinal anatomy. In this study, we attempt to elucidate the mechanisms of lift-off and/or 

unsymmetrical motion in commercially available TDAs, when they are implanted into a lumbar 

motion segment. It is hypothesized that both implant design and facet joint (FJ) articulation 

influence TDA motion and PE inlay stress during the metal-on-polyethylene (MoP) articulation. 

 

5.2.1. Methods  

 The intact L1-L5 multi-segment lumbar spine finite element (FE) model developed in 

Chapter 4 was reduced to an intact L3-4 lumbar segment model by removing vertebrae and spinal 

tissues of other levels, as presented in Figure 5.6a. FE models of three commercially available 

MoP TDA designs, including the convex-up design (with a PE radius of curvature of 8 mm, 

Figure 5.7a), convex-down design (a reversed implantation of the convex-up TDA FE model, 

Figure 5.7b) and biconvex design (with the same radii of curvature of 11 mm on both MoP 

articulations, and the PE rim thickness of 2.5 mm, Figure 5.7c), were inserted into the L3-4 

segment model (Figure 5.6a) according to an anterior surgical procedure [101]. They represent 

TDA designs with theoretical ICRs located inferiorly, superiorly and at the PE core center, 

respectively. The resulting TDA-treated lumbar segment model was presented in Figure 5.6b.  
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Figure 5.6: The intact L3-L4 lumbar motion segment FE model (a) and the treated segment FE 

model (b) which was created by inserting a TDA according to the anterior surgical procedure. 

 

 

Figure 5.7: The FE models of the convex-up (a), convex-down (b) and biconvex (c) TDA designs. 

Gray elements represent the metallic endplates, and yellow elements represent the PE 

components. 

 

 The Young’s modulus of 215 GPa and Poisson’s ratio of 0.3 for the cobalt chrome (CoCr) 

alloy were assigned to the TDA metallic endplates [7], which articulated PE components with a 

coefficient of friction of 0.02. In this study, we adopted material properties of the Charite TDA 

polyethylene inlay (a lightly cross-linked UHMWPE gamma-radiation sterilized in nitrogen with 

a standard dose of 30 kGy) to model all PE components, with a Young’s modulus of 940 MPa 
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and a Poisson’s ratio of 0.46, respectively [7, 115]. The rate-independent multilinear isotropic 

hardening plasticity, the so-called J2-plasticity model [7, 115], was used to simulate PE plastic 

deformation. It is noted that the J2-plasticity model cannot fit well the stress-strain curve in very 

large plastic deformation, but the capability of predicting relatively small plastic deformation is 

acceptable [115]. The PE’s J2-plasticity model material parameters were listed in Table 5.1.  

 

Table 5.1: The J2-plasticity model material parameters of the γ-N2 30 kGy UHMWPE [115]. 

 

Plastic strain (𝜀𝑃) 0 0.03 0.11 0.55 1.20 1.40 1.70 

Yielding stress (𝜎𝑌, MPa) 13.1 24.4 29.3 40.0 112.0 216.3 341.8 

 

 The facet joint articulation was simulated using frictionless contact. To investigate the 

effect of FJ gap on TDA motions, mesh morphing was used to adjust the initial gap to 0.0, 0.4, 

0.8 and 1.2 mm (Figure 5.8), respectively. Especially, 0.4 mm represents the normal gap [113, 

116]. For all intact/TDA-treated segment FE models, a compressive follower preload of 500 N 

was applied to the superior endplate of the L3, followed by a moment ramping up to 7.5 Nm in 

extension. The preload path has been optimized as described in Chapter 4, such that no initial 

rotation in the sagittal plane occurred after preloading [107]. Furthermore, all TDAs were placed 

2 mm posterior to the disc centroid, such that the preload path passed through their theoretical 

ICRs (Figure 5.6b). Using the Reuleaux method [101], the centrode (the ICR path) of the intact 

segment with the normal FJ gap (0.4 mm) in extension was calculated. 

 

Figure 5.8: The facet joint FE models with initial gaps of 0.0, 0.4 (normal), 0.8 and 1.2 mm. Red 

elements represent the facet joint cartilages. 
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5.2.2. Results  

  In extension, the ICR of the intact L3-4 segment with the normal FJ gap starts at the disc 

center, and rapidly moves to the superior endplate of the L4 vertebra after 2.5 Nm (Figure 5.9), at 

which facet joints have engaged to provide an obvious resistance to the intervertebral rotation. 

The simulated ICR in extension is consistent with the description of the lumbar segmental ICRs 

[110]. As a result of tissue stiffening, the rotations of the intact L3-L4 segment during extension 

are 0.0° after preloading, 2.6° at 2.5 Nm, 3.6° at 5 Nm and 4.2° at 7.5 Nm, as shown in Figure 

5.10.  

 

Figure 5.9: The centrode (ICR path) of the L3-L4 segment with the normal FJ gap in extension. 

 

 

Figure 5.10: The extension ROMs of the intact segment and treated segments using convex-up, 

convex-down, and biconvex TDAs, when the normal FJ gaps were assigned. “0 Nm” indicates 

the ROMs after preloading. 
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 Using the normal FJ gap, the ROM (4.2°) of the segment treated by the convex-down 

TDA is in good agreement with that of the intact segment, as shown in Figure 5.10. However, the 

rotations of convex-up (8.4°) and biconvex (8.8°) TDA-treated segments are almost double those 

of the intact and convex-down TDA-treated segments in extension at 7.5 Nm. For the convex-up 

TDA design (Figure 5.11-top), the superior CoCr endplate lifts off from the PE component for FJ 

gaps of 0.0 and 0.4 mm, and posterior impingement occurs regardless of FJ gap size. For the 

convex-down TDA design (Figure 5.11-middle), only a slight anterior lift-off is observed when 

no initial FJ gap is simulated, and impingement never occurs.  

 

Figure 5.11. The TDA motion patterns and PE von Mises stresses of the convex-up (top), convex-

down (middle) and biconvex (bottom) designs in extension at 7.5 Nm. The columns from left to 

right correspond to the treated segments with the FJ gaps of 0.0, 0.4, 0.8 and 1.2 mm. The red 

arrows indicate the locations of lift-off. 

 

 For the biconvex TDA design (Figure 5.11-bottom), posterior lift-off at the superior MoP 

articulation occurs in all cases, and superior MoP impingement causes a distinct downward 

bending of the PE rim. In all cases, the rotation of the superior MoP articulation is always larger 

than the inferior MoP articulation. This unsymmetric motion causes a downward bending of the 

PE rim. It is noted that the yield strength of the PE is 13 MPa, thus the PE rim is potentially 
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plastically deformed. As the FJ gap increases, lift-off at the superior MoP articulation decreases, 

and inferior MoP impingement occurs in the segments with FJ gaps of 0.8 and 1.2 mm. As such, 

TDA motion becomes more symmetrical, and PE stress concentrations are mitigated. 

 

5.2.3. Discussion and Conclusion 

 The extension ROM (4.2°) of the single L3-L4 segment accurately matches that of the 

L3-L4 segment in the multi-segment L1-L5 lumbar spine (Figure 5.5a-left). It further 

demonstrates that the applied loads are evenly transferred through each level in the multi-segment 

lumbar spine, as a motion segment which is the smallest physiological motion unit of the spine 

exhibits biomechanical characteristics similar to each level of the entire spine. The segmental 

ROM of the convex-down TDA design is in excellent agreement with that of the intact segment 

(Figure 5.10), and a good congruence on the MoP remains during extension regardless of 

different facet joint gaps. Although the theoretical ICR of the convex-up TDA, which lies 

inferiorly, is closer to the ICR of the intact segment (Figure 5.9), it cannot be anticipated that the 

actual ICR matches the theoretical ICR due to adverse TDA motion (Figure 5.11-top). 

 Lift-off causes stress concentration and a higher wear/fracture risk for the PE component, 

due to a decrease in the contact area of the bearing surfaces. As the FJ gap increases, lift-off 

and/or unsymmetrical motion are alleviated in all TDA-treated segments. It clearly demonstrates 

that FJ articulation guides motion and impedes the MoP articulation. For the convex-up design 

(Figure 5.12a), the FJ tends to be separated by a coupled posterior translation of the superior 

vertebra in extension; the exact opposite occurs for the convex-down design (Figure 5.12b), 

causing FJ contact. Therefore, the convex-up design leads to a larger extension rotation and a 

higher incidence of impingement compared to the convex-down design. Combining both convex-

up and convex-down TDA motions can explain the unsymmetrical motion in the biconvex design.  
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Figure 5.12: Illustration of the motion patterns of the convex-up (a) and convex-down (lower) 

TDAs in extension. (blue/red: the superior/inferior TDA component and the corresponding L3-

inferior/L4-superior facet, both of which are assumed to be rigidly connected together) 

 

 Compared to the intact segment, TDA-treated segments lack the resistance to extension 

due to the dissection of the anterior longitudinal ligament, the anterior annulus, and the entire 

nucleus. Therefore, it is difficult to prevent TDA hypermotion and abnormal rotation (e.g., lift-off 

and unsymmetric motion) in a lumbar segment subjected to anterior surgery. A lateral 

approaching surgical procedure [8] may be beneficial to restoring the normal segmental 

kinematics. In conclusion, facet joint articulation may change the designed motion patterns for 

both fixed- and mobile-bearing TDAs, resulting in lift-off and/or unsymmetric motion 

phenomena. These abnormal motion characteristics may not be identified using a standalone 

TDA; thus we suggest that TDA designs should be tested while incorporating spinal structures. 

 

5.3. Design Optimization of a New Biconcave Mobile-bearing TDA Concept 

 The ball-in-socket total disc arthroplasty (TDA) designs, taken from total knee and hip 

arthroplasty (TKA/THA), provide a motion-preserving technique to treat disc degeneration 

diseases, while mitigate adjacent segment degeneration by maintaining spinal motion. However, 

the native disc is significantly different from cartilaginous interface joints such as knee and hip 
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[72]. Although impressive improvement in the joint functional capability after THA and TKA has 

been achieved, TDA treatment using anterior surgical procedure which removes intersegment 

tissues may cause abnormal biomechanics, and thus more complex complications such as 

excessive segmental rotation [8], spinal tissue overloading [9] and polyethylene (PE) inlay 

wear/fracture failures [10].  

 Impingement, which was observed in both mobile- and fixed-bearing TDAs, is defined as 

unintended contact between two nonbearing surfaces, and it is highly associated with excessive 

wear and fracture of the polyethylene [7, 87]. However, we hypothesize that impingement as a 

contact constraint can prevent excessive intervertebral rotations and spinal tissue overloading. 

Therefore, the author proposed a new TDA concept featuring a biconcave PE mobile core, with a 

smooth transition from the dome to the rim. The biconcave-core TDA was then optimized for 

natural range of motion (ROM) and minimal polyethylene contact pressure (PCP), respectively. 

The kinematics and contact mechanics of the ROM-optimal and PCP-optimal biconcave-core 

TDA designs was compared with those of the intact lumbar segment and the treated lumbar 

segment using a commercially available mobile-bearing TDA design with a biconvex PE core. 

 

5.3.1. Methods 

 To perform design optimization, the proposed biconcave TDA concept (Figure 5.13a) 

was parametrically modeled considering seven design variables (𝒙), including the gaps (𝑔𝑎, 𝑔𝑙, 

𝑔𝑝) between the dome radii of the metallic endplate and PE core at the anterior, lateral and 

posterior, the superior and inferior radii of curvature (𝑟𝑠, 𝑟𝑖) of the biconcave PE core, and the 

superior and inferior offset distances (𝑑𝑠, 𝑑𝑖), as described in Figure 5.14. It is ensured that the 

curved rim faces of both the PE core and metallic EPs are tangent to the spherical dome bearings 

(with a radius of curvature of 𝑟𝑠/𝑟𝑖) on both the superior and inferior MoP articulations. For each 

articulation, the circular PE edge and elliptical EP edge (represented by the black points in Figure 
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5.14a) are maintained on a same spherical face (indicated by the dash line), which is offset from 

the superior/inferior dome bearing (with a radius of curvature of 𝑟𝑠/𝑟𝑖) by a distance of 𝑑𝑠/𝑑𝑖. 

Table 5.2 lists the upper and lower boundaries of each design variable (𝑔𝑎, 𝑔𝑙, 𝑔𝑝, 𝑟𝑠, 𝑟𝑖, 𝑑𝑠, 𝑑𝑖) 

in design optimization. For the purpose of comparison, a biconvex-core TDA with a dome radius 

of curvature of 10 mm and a rim thickness of 2.5 mm [117] was also modeled (Figure 5.13b), and 

subsequently implanted into an intact lumbar segment to simulate the resulting responses in 

different loading scenarios. 

 

Figure 5.13: The 3-D oblique view of the biconcave (a) and biconvex (b) mobile-bearing TDA 

designs, both of which comprises a biconcave PE core and two metallic EPs. 

 

 

Figure 5.14: Design variables of the parametric biconcave mobile-bearing TDA model. (a) The 

sagittal view of the TDA; (b) The top view of the TDA. 
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Table 5.2: The lower and upper boundaries of the TDA design variables. Note that the unit of all 

design variables is mm. 

 

 
Lower Boundary (𝒙𝑙𝑏) Upper Boundary (𝒙𝑢𝑏) 

Dome Radii of Curvature (𝑟𝑠 and 𝑟𝑖) 10.00 20.00 

Offset Distances (𝑑𝑠 and 𝑑𝑖) 3.00 4.20 

Anterior Gaps (𝑔𝑎) 0.50 1.50 

Lateral Gaps (𝑔𝑙) 0.00 1.00 

Posterior Gaps (𝑔𝑝) 0.00 1.00 

 

 To save computational cost in design optimization, the L3-4 intact and treated lumbar 

segment FE models developed previously (Figure 5.6) were simplified by modeling L3/L4 

vertebrae and TDA metallic endplates as rigid bodies (Figure 5.15), using the multipoint 

constraint technique in ANSYS 15.0. A detailed comparison of the effects of deformable and 

rigid segment models on simulation results can be found in Appendix D.2. The PE cores were 

meshed using 20-node quadratic hexahedral elements (SOLID187). J2-plasticity [7, 115] was 

used to model the material properties of TDA PE components (𝐸 = 940 MPa, 𝜐 = 0.46, 𝜎𝑌 = 13 

MPa) as described before. The biconcave / biconvex (Figure 5.15) mobile-bearing TDAs were 

inserted into the L3-4 segment according to an anterior surgical procedure [101]. Facet joint 

articulations and TDA articulations were modeled as frictionless contact and frictional contact 

with a coefficient of friction of 0.02, respectively. 
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Figure 5.15: The intact (a) and TDA-treated (b) segment FE models, in which vertebrae and TDA 

metallic endplates were modeled as rigid bodies. Here, only the rigid treated model (b) implanted 

by a biconcave-core TDA is presented. The same treated segment model was also created for the 

biconvex-core TDA. 

 

 All intact/TDA-treated segment FE models were applied a compressive follower preload 

of 500 N, followed by a moment up to 7.5 Nm on the superior endplate of the L3 in 4 loading 

scenarios (flexion, extension, lateral bending, and axial torsion). The preload path has been 

optimized in terms of the intact multi-segment L1-L5 lumbar spine model (Chapter 4), such that 

no sagittal rotation occurred after preloading [107]. Furthermore, all TDAs were placed 2 mm 

posterior to the disc centroid, such that the preload path passed through their PE core centers. 

According to a mesh convergence study, the bearing surfaces of the biconcave and biconvex PE 

cores were meshed using an element size of 0.8 mm and 0.6 mm, respectively (Appendix D.1).  

 In each optimization iteration, the biconcave TDA-treated segment model was simulated 

in 4 loading scenarios simultaneously. Two single-objective design optimizations were performed 

in MATLAB R2014a, by defining two optimization objectives in terms of the segmental range of 

motion (ROM) and the polyethylene contact pressure (PCP), respectively: 

𝐽𝑅𝑂𝑀(𝒙) =∑∑|𝑅𝑂𝑀𝑖𝑗
𝑇𝐷𝐴 − 𝑅𝑂𝑀𝑖𝑗

𝐼𝑁𝑇|

𝑗𝑖

 (5.1) 
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𝐽𝑃𝐶𝑃(𝒙) = mean
𝑖

(max
𝑗
(𝑃𝐶𝑃𝑖𝑗)) (5.2) 

where 𝑖 represents the 4 loading scenarios of flexion, extension, lateral bending, and axial torsion. 

𝑗 represents the 4 moments of 0 (preload), 2.5, 5, and 7.5 Nm in each loading scenario. The 

components of 𝑅𝑂𝑀𝑖𝑗
𝐼𝑁𝑇 are the normal segmental ROMs simulated using the intact segment FE 

model. Therefore, 𝐽𝑅𝑂𝑀(𝒙) and 𝐽𝑃𝐶𝑃(𝒙) represent the ROM metric (the ROM absolute error sum 

of the TDA-treated segment with respect to the intact segment) and the PCP metric (the mean 

maximum polyethylene contact pressure in four loading scenarios), respectively.  

 

5.3.2. Results 

 After design optimization, the ROM-optimal shape and PCP-optimal shape of the 

biconcave TDA design are presented in Figure 5.16. Values of design variables (𝑔𝑎, 𝑔𝑙, 𝑔𝑝, 𝑟𝑠, 𝑟𝑖, 

𝑑𝑠, 𝑑𝑖) are tabulated for both optimal TDA designs in Table 5.3. Compared to the ROM-optimal 

design (Figure 5.16a), a complete congruence (𝑔𝑝 = 0.00 mm) occurs at the posterior rim 

articulation of the PCP-optimal design (Figure 5.16b). As listed in Table 5.4, the ROM metric 

(𝐽𝑅𝑂𝑀) of the ROM-optimal TDA-treated segment is 7.04○, compared to 11.02○ and 21.72○ for the 

PCP-optimal and biconvex-core TDA-treated segments. The PCP metric (𝐽𝑃𝐶𝑃) for the PCP-

optimal TDA-treated segment is 20.73 MPa, compared to 26.95 MPa and 58.72 MPa for the 

ROM-optimal and biconvex TDA-treated segments. It is worth noting that the worst ROM and 

PCP metrics of ROM-optimal and PCP-optimal biconcave-core TDAs are 11.02 deg and 21.46 

MPa, respectively, but both the metrics (21.72 deg and 58.72 MPa) of the biconvex TDA are even 

worse. 
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Figure 5.16: The ROM-optimal (a) and PCP-optimal (b) biconcave-core TDA designs. 

 

Table 5.3: The design variables of the ROM-optimal and PCP-optimal biconcave TDA designs. 

The unit is mm. 

 

 
𝑟𝑠 𝑟𝑖 𝑑𝑠 𝑑𝑖 𝑔𝑎 𝑔𝑙 𝑔𝑝 

ROM-optimal 12.62 13.93 3.70 3.98 1.16 0.30 0.41 

PCP-optimal 10.02 12.77 3.00 4.20 0.65 0.38 0.00 

 

Table 5.4: The performance metrics of ROM-optimal, PCP-optimal and biconvex-core TDA 

designs in term of TDA kinematics and contact mechanics. 

 

 
𝐽𝑅𝑂𝑀 (○) 𝐽𝑃𝐶𝑃 (MPa) 

ROM-optimal 7.04 29.52 

PCP-optimal 11.02 21.46 

Biconvex-core 21.72 58.72 

 

 The flexion ROMs of all TDA-treated segments are in good agreement with that of the 

intact segment (Figure 5.17a). The biconvex TDA causes distinct hypermotion in other loading 

scenarios (Figure 5.17b-d). Since there is no posterior gap between the rims of PE component and 

metallic endplates in the PCP-optimal TDA (Figure 5.16b), it results in a substantial resistance to 

extension (Figure 5.17b). 
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Figure 5.17. The ROMs of the intact and TDA-treated segments in different loading scenarios (“0 

Nm” indicates the rotation after preloading). 

 

 In flexion at 7.5 Nm (Figure 5.18), contact only occurs on the PE core domes for all 

TDAs with a relatively uniform contact pressure distribution. However, the PE rims are the main 

bearing surfaces for all TDAs in other loading scenarios at 7.5 Nm (Figure 5.18). Especially, 

extension or lateral bending are the most severe loading scenarios which cause much larger 

contact pressures for the biconvex-core TDA design (Figure 5.18-bottom).  
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Figure 5.18: The contact pressures on the superior (left) and inferior (right) articulation surfaces 

of the PE core in different TDAs in different loading scenarios at 7.5 Nm. The transparent contact 

elements on the biconvex PE core indicate where the contact gap is beyond a preset threshold. 

 

 As shown in Figure 5.19a, lift-off and unsymmetric motion occur in the biconvex-core 

TDA in extension at 7.5 Nm, causing a distinct downward bending and plastic deformation (𝜎𝑌 = 

13 MPa) of the posterior PE rim. In contrast, stress concentrations are well relieved in both the 

ROM-optimal and PCP-optimal biconcave-core TDAs (Figure 5.19b,c) owing to more material at 

the PE rims and the smooth transition from the PE domes to the rims, whereas marginal lift-off of 

the PE core from the inferior metallic EP can still be noticed in each optimal biconcave-core TDA. 

 

Figure 5.19: The motion patterns and von Mises stresses of the PE cores in the biconvex-core (a), 

ROM-optimal (b), and PCP-optimal (c) TDAs in extension at 7.5 Nm. 
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5.3.3. Discussion and Conclusion 

 Previous TDA retrieval studies [6] revealed that excessive wear and fracture of the PE 

rim cause biconvex-core TDA failures, due to the small PE rim thickness (median: 0.29 mm) of 

biconvex TDA. By changing the biconvex mobile core to a biconcave mobile core, the PE rim in 

the new biconcave TDA was significantly strengthened, whereby the PE rim can serve as a 

secondary bearing. Therefore, it is expected to considerably prolong implant life in vivo, 

compared to the commercially available biconvex-core TDA design. 

 Typically, there is a trade-off between the performance metrics of kinematics and contact 

mechanics [12]; as one metric improves, the other deteriorates. The trade-off relationship between 

these two metrics can be described by a Pareto front curve (Figure 5.20). The pseudo Nadir point 

can be defined by the two single-objective optimums (blue); each coordinate of the pseudo Nadir 

point were chosen as the worst performance metric of the two single-objective optimums. 

According to Table 5.4, it indicates that the biconvex-core TDA design is even worse than the 

pseudo Nadir point of the biconcave-core TDA design in terms of kinematics and contact 

mechanics. 

 

Figure 5.20: Illustration of a representative Pareto front curve in terms of two objectives, where 

two single-objective optimums (blue points) determine the pseudo Nadir point. 

 

 We will further expand the design variable space of the biconcave-core TDA and 

implement multi-objective optimization to consider both performance metrics simultaneously. To 

our best knowledge, it is the first time to optimally design a total disc arthroplasty, using a finite 
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element model incorporating spinal structures. The new biconcave mobile-core total disc 

arthroplasty is expected to alleviate hypermotion and spinal tissue overloading, as well as 

decrease the risk of polyethylene wear and fracture failures.  
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Chapter 6: Multiobjective Optimization of Total Disc Arthroplasty 

 

 It remains controversial whether spinal fusion or total disc arthroplasty (TDA) is more 

beneficial for the treatment of disc degeneration and spinal disorders. Generally, spinal fusion 

creates a high-stiffness bone union within the intervertebral space, using an interbody cage loaded 

with bone graft. The motion-sacrificing technique completely restricts the intervertebral rotation, 

unless pseudo-arthrodesis slightly restores spinal motion. Therefore, the postoperative segmental 

response after spinal fusion is less sensitive to the interbody cage design. The small sensitivity to 

cage design limits the potential to match the native intervertebral disc biomechanics, despite the 

lower incidence and fewer types of complications after spinal fusion. In contrast, TDA design 

significantly influences the postoperative spine behavior. Here, it is hypothesized that an 

optimally designed TDA can mitigate postoperative complications and better mimic the native 

intervertebral disc. To that end, we leverage multiobjective design optimization to maximize 

benefits that TDA can bring.  

 In the previous chapter, we have proposed a new mobile-bearing TDA with a biconcave 

polyethylene core. It was demonstrated that the new TDA design could improve the treated 

lumbar segmental kinematics and metal-on-polyethylene (MoP) contact mechanics, according to 

our simulation results. In the study, we further investigated the performance of the new TDA in 

terms of facet joint loading, which was considered as an indicator of facet joint arthritis. To 

measure each performance metric, a computational FE model was created to simulate the 

responses of the TDA-treated lumbar segment. The new TDA design was refined in term of TDA 

kinematics, contact mechanics and facet joint loading, using a neural network based 

multiobjective design optimization algorithm. To our best knowledge, this is the first time that 
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optimizes an implant design considering three performance metrics simultaneously. It should be 

noted that we optimally design the new TDA, in order to demonstrate that TDA kinematics, 

contact mechanics, and spinal tissue load-sharing are sensitive to TDA design, rather than 

competing with commercially available TDA designs. 

 

6.1. Parametric Finite Element Modeling of Biconcave Mobile-bearing TDA 

 According to the study described in the previous chapter, the motion of a mobile-bearing 

TDA can be considered as a consequence of the superposition of individual convex-down and 

convex-up metal-on-polyethylene (MoP) articulations. Using ANSYS 15.0 Workbench 

DesignModeler, we developed a more sophisticated parametric model of the biconcave mobile-

bearing TDA (Figure 6.1a), which consists of a polyethylene (PE) core and two metallic 

endplates (EPs).  

 

Figure 6.1: The parametric biconcave mobile-bearing TDA design (a) with the capability of 

changing itself to convex-down (b) and convex-up (c) fixed-bearing configurations. 

 

 The parametric TDA model enables itself to reduce to the two design extremities, a 

convex-down fixed-bearing TDA (Figure 6.1b) or a convex-up fixed-bearing TDA (Figure 6.1c), 

by assigning a complete congruence on either the superior or inferior rim contact interface. As 

such, multiobjective design optimization will determine whether a fixed-bearing design or a 

mobile-bearing design (which lies between the convex-down and convex-up fixed-bearing TDA 

configurations) is the optimal design in terms of different performance metrics. 
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 Compared with the previous parametric TDA design described in Chapter 5, the number 

of design variables has been expanded to ten in the parametric TDA model. All design variables 

were chosen as the mating dimensions between the PE core and metallic EPs in the TDA. As 

presented in Figure 6.2a, 𝑟𝑠 represents the radius of curvature of the superior dome bearing 

interface where the PE and metallic EP dome faces are coincident. It is ensured that the curved 

rim faces of the PE core and metallic EPs are tangent to the spherical dome bearings on both the 

superior and inferior MoP articulations. For the superior articulation, the circular PE edge and 

elliptical EP edge (represented by the black points in Figure 6.2a) are maintained on a same 

spherical face (indicated by the dash line), which is offset from the superior dome bearing 

interface (with a radius of curvature of 𝑟𝑠) by a distance of 𝑑𝑠. 

 

Figure 6.2: Design variables of the parametric biconcave mobile-bearing TDA model. Only the 

design variables (𝑟𝑠, 𝑑𝑠, 𝑔𝑠𝑎, 𝑔𝑠𝑙, and 𝑔𝑠𝑝) on the superior articulation were shown. (a) The 

sagittal view of the TDA; (b) The top view of the TDA. 

 

 The congruence between the PE and EP rims on the superior articulation were adjusted 

by the gaps (𝑔𝑠𝑎, 𝑔𝑠𝑙, and 𝑔𝑠𝑝 in the transverse plane, Figure 6.2b) due to the differences between 

the PE dome radius and the EP dome radii at the anterior, lateral, and posterior. Similarly, there 

are the corresponding design variables (𝑟𝑖, 𝑑𝑖, 𝑔𝑖𝑎, 𝑔𝑖𝑙, and 𝑔𝑖𝑝) for the inferior TDA articulation. 

Table 6.1 lists the ranges of each design variable. By randomly initializing the ten design 

variables within the ranges (Table 6.1), eight random TDA designs are generated as presented in 

Figure 6.3. It shows that the parametric TDA model can yield plentiful designs in the ten-

dimensional design space. 
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Table 6.1: The lower and upper boundaries of the TDA design variables. Note that the unit of all 

design variables is mm. 

 

 
Lower Boundary (𝒙𝑙𝑏) Upper Boundary (𝒙𝑢𝑏) 

Dome Radii of Curvature (𝑟𝑠 and 𝑟𝑖) 11.00 20.00 

Offset Distances (𝑑𝑠 and 𝑑𝑖) 3.10 4.10 

Anterior Gaps (𝑔𝑠𝑎 and 𝑔𝑖𝑎) 0.01 1.20 

Lateral Gaps (𝑔𝑠𝑙 and 𝑔𝑖𝑙) 0.01 1.00 

Posterior Gaps (𝑔𝑠𝑝 and 𝑔𝑖𝑝) 0.01 0.80 

 

 

Figure 6.3: Eight random TDA designs by randomly initializing 10 design variables.  

 

 The parametric TDA design was meshed using 20-node quadratic hexahedral elements 

(SOLID187 in ANSYS), as shown in Figure 6.4. The mesh size of PE articulation surfaces was 

chosen as 0.75 mm, according to a mesh convergence study of the contact pressures on both MoP 

articulations. Within the ranges of design variables (Table 6.1), no failures occur when creating 

the TDA FE model (Figure 6.4), and the minimum element quality is greater than 0.35, according 

to a design exploration for 120 random designs using ANSYS Workbench 15.0. 
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Figure 6.4: The FE mesh of the TDA parametric model, whose design variables were randomly 

chosen within the design space limitations (Table 6.1). 

 

 As shown in Figure 6.5, the TDA FE model was inserted into an intact L3-L4 segment 

FE model according to an anterior surgical procedure, in which the anterior longitudinal ligament, 

the anterior annulus, and the entire nucleus were dissected. The material properties of spinal 

tissues have been calibrated using a step-wise addition procedure [33]. To save computational 

cost in multiobjective design optimization, the vertebrae and TDA metallic endplates were 

modeled as rigid bodies (Figure 6.5a,b), using the multipoint constraint technique in ANSYS 15.0 

MAPDL. J2-plasticity [7, 115] was used to model the material properties of TDA PE components 

(𝐸 = 940 MPa, 𝜐 = 0.46, 𝜎𝑌 = 13 MPa). Facet joint articulations and TDA articulations were 

modeled as frictionless contact and frictional contact with a coefficient of friction of 0.02, 

respectively.  
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Figure 6.5: The FE models of the intact (a) and TDA-treated (b) L3-L4 segments.  

 

 The TDA-treated segment FE models (Figure 6.5b) were applied a compressive follower 

preload of 500 N, followed by a moment up to 7.5 Nm on the superior endplate of the L3 in four 

physiologically relevant loading scenarios (i.e., flexion, extension, lateral bending, and axial 

torsion) [66], which were simulated in parallel. The kinematical responses of the intact segment 

FE model (Figure 6.5a) were also simulated using the same loading protocol [113], in order to 

provide the “benchmark” segmental ranges of motion for the assessment of the treated-segment 

kinematics. The path of the compressive follower preload was modeled using a tension-only cable 

element, in which the inferior node was applied a cylindrical kinematic constraint (Figure 6.5a,b) 

[82]. The preload path has been optimized during the development of the intact multi-segment 

L1-L5 lumbar spine model (Chapter 4), to minimize the sagittal rotation (flexion and extension) 

after preloading [107]. For the treated segment model (Figure 6.5b), the TDA was placed 2 mm 

posterior to the disc centroid, such that the preload path passed through the PE core center. 

 

6.2. Implementation of Artificial Neural Network Based Multiobjective Optimization 

Algorithm 

6.2.1. Performance Metrics of TDA Postoperative Complications 
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 We hypothesize that TDA design can be optimized to alleviate postoperative 

complications, such as TDA abnormal motion, polyethylene wear/fracture, and facet joint 

overloading. Therefore, three TDA performance metrics (objectives) were defined to quantify the 

incidences of these complications; if a smaller value of a performance metric is measured from 

the response of a TDA design, it indicates that the TDA design is associated with a lower 

incidence of the corresponding complication. These performance metrics were predicted from the 

simulation results of the TDA-treated lumbar segment FE model. 

 In each loading scenario (flexion, extension, lateral bending, and axial torsion), we 

simulated the ranges of motion of the TDA-treated segment, the ipsilateral facet joint forces 

(chosen to be the average forces of the left and right facet joints in flexion and extension), and the 

maximum contact pressures on the superior and inferior polyethylene contact surfaces. 

Simulation results were output, when the moment was applied at 0.0, 2.5, 5.0, and 7.5 Nm, 

respectively (0.0 Nm represents the compressive follower preload). Three performance metrics 

regarding the range of motion (ROM), facet joint force (FJF), and polyethylene contact pressure 

(PCP) were formulated below, 

𝑡1 = [∑∑|𝑅𝑂𝑀𝑖𝑗 − 𝑅𝑂𝑀𝑖𝑗
𝐼𝑁𝑇|

𝑗𝑖

]

1.35

 (6.1) 

𝑡2 = mean
𝑖

(max
𝑗
(𝐹𝐽𝐹𝑖𝑗)) (6.2) 

𝑡3 = [∑∑𝑃𝐶𝑃𝑖𝑗
𝑗𝑖

]

0.75

 (6.3) 

where the index 𝑖 represents flexion, extension, lateral bending, and axial torsion. The index 𝑗 

represents the applied moments at 0.0, 2.5, 5.0, and 7.5 Nm in each loading scenario. The 

components of 𝑅𝑂𝑀𝑖𝑗
𝐼𝑁𝑇 are the normal segmental ROMs simulated using the intact segment FE 

model (Figure 6.5a). The exponents in the ROM metric (𝑡1) and the PCP metric (𝑡2) were 
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introduced such that all performance metrics have an approximately identical scale for a better 

visualization of the feasible objective space. The relationship between the FE predicted metrics 

𝒕(𝒙) = [𝑡1(𝒙), 𝑡2(𝒙), 𝑡3(𝒙)]
T and the design variables (𝒙) is described in Figure 6.6. The design 

variables (𝒙) in the design space are mapped to the performance metrics (𝒕) in the objective space, 

through an implicit response function simulated by finite element analysis.  

 

Figure 6.6: Illustrate the relationship between design variable and FE predicted performance 

metrics using finite element analysis (FEA). 

 

6.2.2. Fitting of Performance Metrics Using Artificial Neural Network 

 In a traditional design optimization algorithm, finite element (FE) analysis is performed 

in each optimization iteration to provide a black-box cost function. Generally, evolutionary 

optimization algorithms based on gradient descent require the gradient of the cost function with 

respect to each design variable. Although it can be approximated using the finite difference 

method in an optimization algorithm, the implementation of the numerical gradient typically 

causes a computational cost multi-fold higher than that using the analytical gradient.  

 To improve computational efficiency in optimization, a three-layer multi-output feed-

forward neural network (NN) was implemented to fit the response function of FE analysis, as 

shown in Figure 6.7. The NN is comprised of three layers, including an input layer, a hidden 

(middle) layer, and an output layer. The numbers of neurons at the input layer and the output 

layer match the number of design variables, 𝑛 = 10, and the number of performance metrics, 

𝑚 = 3, respectively. It is noted that three performance metrics are predicted simultaneously using 
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one multi-output NN, based on an assumption that there is a correlation among these performance 

metrics. 

 

Figure 6.7: The architecture of a three-layer multi-output feed-forward NN. Especially, the 

orange neurons represent the bias neurons, whose outputs are always equal to 1. 

 

 The outputs (𝒚) of the NN (Figure 6.7) as a function of the inputs (𝒙) can be analytically 

expressed in the matriculated format, 

𝒚 = 𝒃(2) +𝒘(2)𝑎(𝒃(1) +𝒘(1)𝒙) (6.4) 

where 𝒘(1) and 𝒃(1) are the weights and bias terms of the NN from the input layer to the hidden 

layer. 𝒘(2) and 𝒃(2) are the weights and bias terms of the NN from the hidden layer to the output 

layer. 𝑎(•) is an element-wise activation function of the hidden layer. No activation exists at the 

input layer and the output layer. 

 Based on the continuous differentiability of Equation 6.4, we further formulate the 

gradient of the NN as shown in Equation 6.5, which is subsequently incorporated into a 

multiobjective optimization algorithm. 

grad 𝒚(𝒙) =
𝜕𝒚

𝜕𝒙
= 𝒘(2)[𝑎′(𝒃(1) +𝒘(1)𝒙)⊗ 𝒆𝑟ℎ ∘ 𝒘

(1)] (6.5) 

where ⊗ denotes the outer product. ∘ denotes the component-wise product (no summation 

contraction). 𝒆𝑟ℎ is a vector of all ones with the dimension of 𝑟ℎ, and 𝑟ℎ is the number of neurons 

at the hidden layer. 𝑎′(•) is the derivative of the activation function at the hidden layer. 



109 
 

 A detailed derivation of Equations 6.4 and 6.5 can found in the Appendix C.1. In essence, 

NN prediction is performed by fitting an analytical function, 𝒚(𝒙), and the prediction accuracy 

after training can be improved as the size of the sample 𝒕(𝒙) which is simulated by FE analysis 

increases. Here, an individual example of 𝒕(𝒙) is termed as a target or label, to which the NN 

prediction, 𝒚(𝒙), attempts to match. Compared with Figure 6.6, the implicit response function of 

FE analysis, 𝒕(𝒙), has been converted to a continuously differentiable function, 𝒚(𝒙), using the 

NN, as shown in Figure 6.8. It is obvious that optimization of 𝒚(𝒙) is computationally cheaper 

than optimization of 𝒕(𝒙), as performed in traditional design optimization methods.  

 

Figure 6.8: Illustrate the relationship between design variable and NN predicted performance 

metrics using artificial neural network (ANN). 

 

6.2.3. Formulation of Tri-objective TDA Design Optimization Problem 

 TDA treatment using anterior surgical procedure may cause postsurgical complications 

such as excessive segmental rotation [8], spinal tissue overloading [9] and polyethylene inlay 

wear/fracture failures [10]. Aiming at these complications, the author proposed quantitative 

performance metrics (Equations 6.1, 6.2, and 6.3), used as objective functions in multiobjective 

optimization (MOO). Therefore, the problem of multiobjective TDA design optimization can be 

formulated as follows, 

min
𝒙
𝒚 (𝒙) (6.6) 

subject to 

𝒙𝑙𝑏 ≤ 𝒙 ≤ 𝒙𝑢𝑏 (6.7) 
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where min denotes multiobjective optimization, instead of simultaneously / individually 

minimizing each objective. 𝒚 is an 𝑚-dimensional (𝑚-D) vector of design objectives (cost 

functions) in the objective space (ℝ𝒚
𝑚); here, a 3-D vector of design objectives, 𝒚 = [𝑦1, 𝑦2, 𝑦3]

T, 

corresponding to three performance metrics of postoperative complications. 𝒙 is an 𝑛-

dimensional (𝑛-D) vector of design variables in the design space (ℝ𝒙
𝑛), with a lower boundary 

(𝒙𝑙𝑏) and upper boundary (𝒙𝑢𝑏), respectively. For the TDA parametric design, the design space 

bounds within which no failures occur in model creation and meshing has been shown in Table 

6.1. In this study, we avoided introducing inequality and equality constraints, since their gradients 

were also required in a constrained nonlinear optimization algorithm. In MOO, the cost functions, 

𝒚(𝒙) = [𝑦1(𝒙), 𝑦2(𝒙), 𝑦3(𝒙)]
T, were provided by the predictions of the artificial neural network 

described before. 

 

6.2.4. Complete Pareto Frontier Multiobjective Optimization Algorithm  

 Using single-objective optimization (SOO), the single-objective optimum (𝒙𝑗∗) of the 

design variables in the feasible design space (𝛺𝒙) concerning each objective (𝑦𝑗) can be obtained. 

The corresponding points in the feasible objective space (𝛺𝒚) are defined as the anchor points 

(𝒚𝑗∗), 

𝒚𝑗∗ = 𝒚(𝒙𝑗∗) = [𝑦1(𝒙
𝑗∗) 𝑦2(𝒙

𝑗∗) ⋯ 𝑦𝑚(𝒙
𝑗∗)]𝑇 , 𝑗 = 1, 2,⋯ ,𝑚 (6.8) 

 By sequentially connecting these anchor points (𝒚𝑗∗), the resulting plane is termed as the 

Utopian plane. In a 2-D objective space, the Utopian plane is a line segment, since there are only 

two anchor points. In a 3-D objective space, the Utopian plane is determined by a triangle 

consisting of the three anchor points. 

 Using the well-established normal-boundary interaction (NBI) method [118], the 

boundary (𝜕𝛺𝒚) of the feasible objective space where the Pareto frontier is located can be 

obtained by projecting the points on the Utopian plane along the plane normal vector. The NBI 
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method is graphically described in Figure 6.9. The Pareto frontier is defined as the non-dominated 

boundary region, where no point outperforms another. However, it should be noted that the NBI 

method cannot ensure that all boundary points are non-dominated. To filter out the dominated 

points, a Pareto filtering algorithm [88, 119] needs to be used. 

 

Figure 6.9: Description of the NBI method which is implemented considering two objectives. (a) 

A Utopian plane (line in the 2-D objective space) can be determined by anchor points (𝒚1∗ and 

𝒚2∗). (b) The boundary under the Utopian plane can be obtained by projecting the points on the 

Utopian plane along the plane normal vector. 

 

 The NBI can be stated as an optimization problem, in which the solution is the design 

variable vector (𝒙) corresponding to points on the boundary (𝜕𝛺𝒚) of the feasible objective space 

(𝛺𝒚): 

max
𝒙,𝜌

 𝜌 (6.9) 

subject to 

𝒚𝑢𝑡𝑝 + 𝜌𝒏̂ = 𝒚(𝒙) (6.10) 

and Equation 6.7. 

where an auxiliary scalar variable (𝜌 ∈ [−∞,∞]) is introduced. 𝒚𝑢𝑡𝑝 represents a point on the 

Utopian plane. 𝒏̂ is the unit projection vector in a direction towards the boundary (𝜕𝛺𝒚). 𝒚(𝒙) is a 

point within the feasible design space (𝛺𝒚), which is predicted using NN (Equation 6.4). 

Therefore, the physical meaning of the NBI is that each point (𝒚𝑢𝑡𝑝) on the Utopian plane is 
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moved along the direction of 𝒏̂ as far as possible within the feasible objective space (𝛺𝒚); the 

farthest location where 𝒚𝑢𝑡𝑝 can arrive represent a point on the boundary (𝜕𝛺𝒚). 

 In a high-dimensional (𝑚 ≥ 3) objective space, the entire set of Pareto solutions may not 

be completely covered by the normal projection of the Utopian plane consisting of anchor points 

[88, 118, 119], as illustrated by an example in the 3-D objective space in Figure 6.10. Therefore, 

the Utopian plane needs to be enlarged such that a sufficiently large Utopian plane can cover the 

complete Pareto frontier.  

 

Figure 6.10: Illustration of the Utopian polygon in the 3-D feasible objective space, modified 

from [88] with Dr. Achille Messac’s permission. (a) The Utopian plane defined by the triangle 

section consisting of three anchor points in the 3-D objective space; (b) Unobtainable Pareto 

solutions (hatched regions) which are located outside the normal projection of the Utopian 

polygon. The view direction has been rotated such that it is normal to the Utopian plane. 

 

 On the other hand, although the enlarged Utopian plane can result in the complete Pareto 

frontier, it increases the probability to explore useless regions where dominated points exist. To 

make the computation process more efficient, unnecessary Utopia plane regions that must be 

projected to the dominated boundary regions need to be eliminated. As a result, the optimal shape 

of the enlarged Utopian plane is commonly a polygon, which is called the Utopian polygon 

hereafter. The technique to efficiently expand the Utopian plane has been well established by 

Messac and Mattson (2004). 
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 The size of the enlarged Utopian polygon actually depends on how we define the ranges 

of the boundary of the feasible objective space. To adjust the size of the Utopian polygon, we can 

select the coordinates of either pseudo Nadir point (𝒚𝑃) or Nadir point (𝒚𝑁) to define the upper 

limits of the boundary region. Here, we further introduce a concept of the mixed Nadir point 

(𝒚𝑃/𝑁) whose coordinates can be arbitrarily chosen from those of either pseudo Nadir point (𝒚𝑃) 

or Nadir point (𝒚𝑁). Using the mixed Nadir point (𝒚𝑃/𝑁), it allows us to more flexibly control the 

size of the extended Utopian polygon. In Figure 6.11, we list three Utopian polygons which were 

adopted in this study. Their sizes were determined by the pseudo Nadir point (𝒚𝑃), the Nadir 

point (𝒚𝑁) and a mixed Nadir point (𝒚𝑃/𝑁 = [𝑦1
𝑁 𝑦2

𝑃 𝑦3
𝑁]𝑇), respectively.  

 

Figure 6.11: Different Utopian polygons in the 3-D objective space. They are controlled by the 

pseudo Nadir point (𝒚𝑃) (a), the Nadir point (𝒚𝑁) (b), and a mixed Nadir point (𝒚𝑃/𝑁 =
[𝑦1
𝑁 𝑦2

𝑃 𝑦3
𝑁]𝑇) (c), respectively.  

 

 Since the points (Figure 6.11) on the Utopian polygon have been pre-defined using a 

discretization technique (Appendix C.2.3), we can estimate the positions of the boundary points 

resulting from the normal projection of the points on the Utopian polygon. Therefore, a triangular 

mesh can be maintained to visualize the boundary of the feasible objective space during the NBI 

procedure, as shown in Figure 6.12. More details about the development of the MOO algorithm to 

generate an even representation of the complete Pareto frontier can be found in Appendix C.2. 
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Figure 6.12: Visualization of the boundary of the feasible objective space using a triangle mesh. 

Using the NBI method, the points (blue) on the Utopian polygon are projected to the boundary 

(red). It is noted that the three anchor points determine the Utopian plane (blue triangle), which 

has been enlarged to a Utopian polygon defined by a mixed Nadir point. 

 

6.3. Learning Procedure for Pareto-optimal TDA Designs 

 A three-layer feed-forward artificial neural network (NN) with 10 inputs and 3 outputs 

was created in MATLAB R2014a using the default settings of the NN toolbox (the hyperbolic 

tangent activation function was assigned to the hidden layer, and no activations existed at the 

input and output layers). An initial dataset consisting of 764 feature (𝑿10×764) – label (𝑻3×764) 

examples was generated by simulating the responses of the TDA-treated segmental in FE 

analyses, in which TDA design variables (𝒙) were randomly chosen within the ranges (Table 6.1). 

Subsequently, the boundary of the feasible objective space was learned 50 times, and the number 

of examples was boosted to 6292 in the end. The prediction accuracy of each NN output during 

the boundary learning was monitored using regression analysis (MATLAB R2014a). In each 

boundary learning, the following procedures were carried out. 

 

6.3.1. Adaptive Neural Network Training 
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 In NN training, the example dataset was randomly divided into a training set (70% 

examples), a validation set (15% examples) and a test set (15% examples), using the default 

setting of the NN toolbox in MATLAB R2014a. To achieve the best tradeoff of bias and variance, 

cross-validation has been automatically performed during the mini-batch NN training process in 

the NN toolbox. We further tuned the number of neurons at the hidden layer, 𝑟ℎ, such that the 

mean squared error of the test set was minimized. As the number of examples increased from 764 

to 6292, the tuned number of hidden neurons increased from 15 to 75. 

 

6.3.2. Generation of Feasible Objective Space Boundary Points 

 Using the NBI-based complete Pareto frontier MOO algorithm (Equations 6.9, 6.10, and 

6.7), the boundary points (including dominated and non-dominated points) of the feasible 

objective space were generated. In each MOO, 50 ~ 300 boundary points were solved, depending 

on the size and the grid density of the Utopian plane (Figure 6.11). In the last 10 learnings, the 

mixed Nadir point Utopian polygon (Figure 6.11c) was adopted, because the boundary region of 

𝑦2 ≥ 𝑦2
𝑃 was always dominated. It is important to realize the non-convexity of the cost functions, 

𝒚(𝒙). Therefore, to solve each boundary point, optimization in the NBI method (Equations 6.9, 

6.10, and 6.7) was performed 20 times by random initialization of design variables; only the 

solution corresponding to the maximum value of the projection distance (𝜌) was considered as the 

boundary point. 

 

6.3.3. Validation of NN predictions and NN Sample Expansion 

 After MOO, the resulting TDA designs (𝑿𝑁𝐵𝐼) regarding all boundary points (𝒀𝑁𝐵𝐼) were 

input into the TDA-treated segment FE model, to simulate the ROM, FJF, and PCP metrics using 

FE analysis, and thus generated additional labels (𝑻𝑁𝐵𝐼). The new feature (𝑿𝑁𝐵𝐼) – label (𝑻𝑁𝐵𝐼) 

dataset was fed back to the NN in the next boundary learning. It should be highlighted that we 
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trained the NN only using the dataset of boundary points (a subset of the feasible objective space), 

after providing an initial sample of 764 examples by simulating the responses of random TDA 

designs.  

 

6.3. Results 

6.3.1. Neural Network Prediction Accuracy for Test Set 

 The NN prediction accuracy for the test set was evaluated using regression analysis 

(MATLAB R2014a). It should be noted that the test set was not used for NN training, so it is the 

best criterion to evaluate the NN prediction capability. The linear association between the NN 

predictions and the labels in the test set is measured by the correlation coefficient. For the initial 

dataset which was generated by simulating the responses of random TDA designs, the results of 

linear regression analyses for each TDA performance metric were presented in Figure 6.13. The 

correlation coefficients of the ROM, FJF, and PCP metrics were 0.956, 0.967, and 0.837, 

respectively.  

 

Figure 6.13: The regression analyses between the predictions and labels in the test set generated 

by simulating the responses of random TDA designs. (a) The ROM metric; (b) The FJF metric; (c) 

The PCP metric. 

 

 After machine learning of the feasible objective space boundary 50 times, the number of 

examples in the dataset (including the training set, validation set, and test set) was increased from 
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764 to 6292. During each NN training, the boundary point designs generated from the previous 

learning were fed to the NN, after they were validated by FE analaysis. As shown in Figure 6.14, 

the prediction accuracy of each performance metric in the test set was significantly improved at 

the last boundary learning, especially for the PCP metric. The correlation coefficients of the ROM, 

FJF, and PCP metrics have reached 0.998, 0.996, and 0.991, respectively.  

 

Figure 6.14: The regression analyses between the predictions and labels in the test set after 50 

times of boundary learning. (a) The ROM metric; (b) The FJF metric; (c) The PCP metric. 

 

6.3.2. NN predicted and FE predicted 3-D Pareto Frontiers 

 The complete Pareto frontier MOO algorithm was implemented to generate the boundary 

of the 3-D feasible objective space, in which each point was predicted using the NN. As shown in 

Figure 6.15, the dominated boundary regions (green) were filtered out, and the remaining 

boundary regions (red) represented the non-dominated boundary (Pareto frontier). It can be 

observed that the Utopian triangle consisting of three anchor points cannot cover the complete 

Pareto frontier in the 3-D feasible objective space. Especially, the bottom left Pareto frontier 

shown in Figure 6.15a is far beyond the connecting line between 𝒚2∗ = [54.05 53.65 89.92]T and 

𝒚3∗ = [38.90 79.15 47.22]T. 
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Figure 6.15: The NN predicted 3-D Pareto frontier in the 3-D feasible objective space. (a) The 

view from the Nadir point; (b) The view from the Utopian point. 

 

 In comparison, the FE predicted Pareto frontier in the 3-D feasible objective space was 

also obtained by filtering out dominated points, as presented in Figure 6.16. It should be 

understood that the NN predicted Pareto frontier (Figure 6.15) is a fit for the discrete FE 

predicted Pareto frontier (Figure 6.16). It can be found that there is a mismatch between the NN 

predicted and FE predicted Pareto frontiers, especially located at the border between the non-

dominated boundary and the dominated boundary, where the curvature of the boundary surface 

changes drastically.  

 

Figure 6.16: The FE predicted 3-D Pareto frontier in the 3-D feasible objective space. (a) The 

view from the Nadir point; (b) The view from the Utopian point. 
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 The projection of the NN or FE predicted 3-D feasible objective space onto the 

coordinate plane of the ROM (𝑦1 or 𝑡1) and FJF (𝑦2 or 𝑡2) metrics is shown in Figure 6.17. The 

frontier of the projection represents a 2-D Pareto curve with respect to the ROM and FJF metrics. 

The NN predicted 2-D Pareto frontier (Figure 6.17a) can well fit that predicted by FE analysis 

(Figure 6.17b). It clearly shows that the NN predicted boundary region of 𝑦2 ≥ 𝑦2
𝑃 = 87.80 is 

always dominated, consistent with that of 𝑡2 ≥ 𝑡2
𝑃 = 86.77.  

 

Figure 6.17: Comparison of the projections of the 3-D NN predicted and FE predicted feasible 

objective spaces on the coordinate plane of the ROM (𝑦1 or 𝑡1) and FJF (𝑦2 or 𝑡2) metrics. (a) 

The projection of all NN predictions on the 𝑦1–𝑦2 coordinate plane; (b) The projection of all FE 

predictions on the 𝑡1–𝑡2 coordinate plane. 

 

6.3.3. Pareto-optimal TDA Design Variables  

 The single-objective optimum TDA designs including ROM-optimal, FJF-optimal, and 

PCP-optimal TDA designs correspond to the three anchor points (𝒚1∗, 𝒚2∗, and 𝒚3∗) in the 

feasible objective space. Furthermore, the best-tradeoff TDA design is defined as a Pareto-

optimal TDA design, corresponding to a point in the feasible objective space in the minimum 

Euclidean distance away from the Utopian point (𝒚𝑈). These Pareto-optimal TDA designs are 

presented in Figure 6.18 and their design variables are listed in Table 6.2. Especially, the rim 

congruence of the PCP-optimal design at the anterior, lateral and posterior on the inferior MoP 

articulation is highest (𝑔𝑖𝑎 = 0.01 mm, 𝑔𝑖𝑙 = 0.11 mm, and 𝑔𝑖𝑝 = 0.29 mm), indicating that the 

mobile-bearing TDA design has been almost reduced to a convex-down fixed-bearing TDA 
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design. The best-tradeoff TDA design is similar to the PCP-optimal design, but features larger 

gaps (𝑔𝑖𝑎 = 0.42 mm, 𝑔𝑖𝑙 = 0.24 mm, and 𝑔𝑖𝑝 = 0.47 mm) on the inferior rim articulation and 

the approximately complete rim congruence (𝑔𝑠𝑝 = 0.08 mm) on the posterior of the superior rim 

articulation. 

 

Figure 6.18: The ROM-optimal (a), FJF-optimal (b), PCP-optimal (c) and best-tradeoff (d) TDA 

designs. 

 

Table 6.2: The design variables of the ROM-optimal, FJF-optimal, PCP-optimal and best-tradeoff 

TDA designs. The unit is mm. 

 

 
𝑟𝑠 𝑟𝑖 𝑑𝑠 𝑑𝑖 𝑔𝑠𝑎 𝑔𝑖𝑎 𝑔𝑠𝑙 𝑔𝑖𝑙 𝑔𝑠𝑝 𝑔𝑖𝑝 

ROM-optimal 11.39 11.00 4.10 4.05 0.01 1.20 0.48 0.16 0.01 0.42 

FJF-Optimal 11.00 11.79 3.10 3.10 1.20 0.12 0.17 0.58 0.01 0.80 

PCP-optimal 11.00 19.18 3.10 3.10 0.95 0.01 1.00 0.11 0.80 0.29 

Best-tradeoff 11.71 20.00 3.10 3.10 0.69 0.42 0.61 0.24 0.08 0.47 

 

 

6.3.4. Pareto-optimal TDA Performance Metrics  
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 The ROM, FJF and PCP metrics of each Pareto-optimal TDA design predicted by the NN 

and FE analysis, are listed in Table 6.3. Generally, the NN predicted metrics of these Pareto-

optimal TDA designs closely match the corresponding FE predicted metrics, except for the PCP 

metric (𝑦3 = 99.76 vs. 𝑡3 = 87.19) of the ROM-optimal TDA design, and the ROM metric (𝑦1 = 

54.05 vs. 𝑡1 = 47.89) and the PCP metric (𝑦3 = 80.92 vs. 𝑡3 = 70.05) of the FJF-optimal TDA 

design. For the best-tradeoff TDA design, the NN predicted metrics are in excellent agreement 

with the FE predicted metrics. 

 In Table 6.3, the diagonal metrics (in bold) of the ROM-optimal, FJF-optimal and PCP-

optimal TDA designs represent the optimum ROM, FJF and PCP metrics using single-objective 

optimization. These single-objective optimal TDA designs cause a substantial sacrifice of other 

metrics. For example, the maximum FJF metric (𝑦2 = 87.80 vs. 𝑡2 = 86.77) and PCP metric 

(𝑦3 = 99.76 vs. 𝑡3 = 87.19) are achieved simultaneously for the ROM-optimal design, and the 

FJF-optimal design causes the maximum ROM metric (𝑦3 = 54.05 vs. 𝑡3 = 47.89). In contrast, 

the metrics of the best-tradeoff TDA are within the metric ranges of these single-objective 

optimal TDA designs. 

 

Table 6.3: The NN predicted and FE predicted ROM (𝑦1 or 𝑡1), FJF (𝑦2 or 𝑡2), and PCP (𝑦3 or 𝑡3) 

metrics of the ROM-optimal, FJF-optimal, PCP-optimal, and best-tradeoff TDA designs. 

 

 

ROM Metric FJF Metric PCP Metric 

𝑦1 𝑡1 𝑦2 𝑡2 𝑦3 𝑡3 

ROM-optimal Design 4.46 4.33 87.80 86.77 99.76 87.19 

FJF-optimal Design 54.05 47.89 53.65 53.53 80.92 70.05 

PCP-optimal Design 38.90 37.72 79.15 77.55 47.22 46.28 

Best-tradeoff Design 16.09 14.96 66.94 65.79 56.88 57.57 

 

 The competing relationship among these performance metrics is further revealed in the 

FE model-predicted responses of lumbar segments treated by the four Pareto-optimal TDA 
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designs, including the simulated ROMs (Figure 6.19), FJFs (Figure 6.20), and PCPs (Figure 6.21). 

Although neither the closest ROMs and FJFs to those of the intact segment nor the minimum 

PCPs did the best-tradeoff TDA design lead to in different loading scenarios, no excessive 

sacrifices of these performance metrics occurred, as compared to other single-objective optimum 

TDA designs. 

 

Figure 6.19: The FE model-predicted ROMs of the intact lumbar segment, as well as those treated 

by the ROM-optimal, FJF-optimal, PCP-optimal and best-tradeoff TDA designs in different 

loading scenarios. “0 Nm” indicates the ROMs after preloading. (a) Flexion; (b) Extension; (c) 

Lateral bending; (d) Axial torsion. 
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Figure 6.20: The FE model-predicted total FJFs of the left and right facet joints in the intact 

lumbar segment, as well as those treated by the ROM-optimal, FJF-optimal, PCP-optimal and 

best-tradeoff TDA designs in different loading scenarios. It is noted that all facet joints in the 

intact and TDA-treated segments remain separated in flexion. “0 Nm” indicates the FJFs after 

preloading. (a) Extension; (b) Lateral bending; (c) Axial torsion. 
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Figure 6.21: The FE model-predicted maximum PCPs on the MoP articulations of the ROM-

optimal, FJF-optimal, PCP-optimal and best-tradeoff TDA designs in different loading scenarios. 

“0 Nm” indicates the PCPs after preloading. (a) Flexion; (b) Extension; (c) Lateral bending; (d) 

Axial torsion. 

 

6.3.5. Slicing of 3-D Pareto Frontier 

 The slicing algorithm developed in Appendix C.2.4 was implemented in the 

dimensionality reduction of the 3-D objective space, to better understand the 3-D Pareto frontier. 

As shown in Figure 6.22, the NN predicted 3-D Pareto frontier is sliced using three planes of 𝑦1 = 

15, 𝑦1 = 20, and 𝑦1 = 40, respectively, such that their projections onto the 𝑦2-𝑦3 coordinate plane 

(Figure 6.22c) are equally spaced. It indicates that along the 𝑦1 coordinate, a larger sacrifice in 

the ROM metric (𝑦1) is required, in order to improve the others.  

 In each slice (Figure 6.22c), although some non-dominated points are not obtained in the 

region corresponding to the 3-D Pareto frontier, it reveals that a near 1:1 tradeoff between the FJF 

(𝑦2) and PCP (𝑦3) metric exists at the bottom (𝑦3 < 65) of each slice. At the upper portion (𝑦3 > 
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65) of each slice, however, this tradeoff is not balanced; the PCP metric (𝑦3) is substantially 

sacrificed to achieve a small improvement in the FJF metric (𝑦2). 

 

Figure 6.22: Slicing of the NN predicted 3-D Pareto frontier using three planes of 𝑦1 = 15, 𝑦1 = 

20, and 𝑦1 = 40. (a) The oblique view from the Nadir point; (b) The projection onto the 𝑦1-𝑦3 

coordinate plane, where all points located at the three slicing planes, respectively; (c) The 

projection onto the 𝑦2-𝑦3 coordinate plane, where the slices from left to right are 𝑦1 = 40, 𝑦1 = 20, 

and 𝑦1 = 15, respectively. 

 

 Furthermore, linear regression analysis of the PCP metric (𝑦3) on the Pareto frontier 

sliced by the plane of 𝑦1 = 15 with respect to each design variable was performed, to investigate 

the correlation between independent Pareto-optimal TDA design variables and the dependent 

Pareto-optimal PCP metric (𝑦3) when the ROM metric was fixed at 𝑦1 = 15. As presented in 

Figure 6.22c, nine non-dominated points on the slice of 𝑦1 = 15 were generated using the slicing 

algorithm. According to the results of regression analysis (Table 6.4 and Figure 6.23), the inferior 

dome radius of curvature, 𝑟𝑖 (𝑅 = -0.97), the anterior rim gap on the superior MoP articulation, 

𝑔𝑠𝑎 (𝑅 = 0.94), the anterior rim gap on the inferior MoP articulation, 𝑔𝑖𝑎 (𝑅 = 0.80), and the 

lateral rim gap on the inferior MoP articulation, 𝑔𝑖𝑙 (𝑅 = -0.95) are linearly associated with the 

PCP metric (𝑦3) in the Pareto frontier slice at 𝑦1 = 15. 

 

 

 

 



126 
 

Table 6.4: The linear association between the design objectives (metrics) at the slice of 𝑦1 = 15 

and design variables. The correlation coefficient is denoted by 𝑅. 

 

 
𝑦1 𝑦2 𝑦3 𝑟𝑠 𝑟𝑖 𝑑𝑠 𝑑𝑖 𝑔𝑠𝑎 𝑔𝑖𝑎 𝑔𝑠𝑙 𝑔𝑖𝑙 𝑔𝑠𝑝 𝑔𝑖𝑝 

D
es

ig
n

 O
b
je

ct
iv

es
 /

 V
ar

ia
b

le
s 

15.00 63.24 90.16 11.00 11.00 3.10 3.10 1.20 0.84 0.40 0.02 0.01 0.58 

15.00 62.67 82.86 11.00 11.00 3.10 3.10 1.20 0.73 0.38 0.05 0.01 0.57 

15.00 62.87 79.51 15.82 11.82 3.42 3.10 1.20 0.86 1.00 0.05 0.01 0.42 

15.00 62.82 76.00 15.68 12.10 3.33 3.10 1.20 0.82 1.00 0.07 0.01 0.42 

15.00 62.42 65.34 11.00 18.32 3.10 3.10 0.93 0.66 0.38 0.18 0.01 0.73 

15.00 62.44 61.87 11.00 18.15 3.10 3.10 0.81 0.52 0.36 0.25 0.01 0.67 

15.00 63.74 59.19 11.00 19.01 3.10 3.10 0.63 0.55 0.41 0.33 0.01 0.60 

15.00 66.17 57.19 11.17 20.00 3.10 3.10 0.62 0.59 0.45 0.31 0.11 0.57 

15.00 70.16 56.13 11.00 20.00 3.10 3.10 0.59 0.69 0.44 0.26 0.36 0.53 

𝑅 0.00 -0.55 1.00 0.35 -0.97 0.37 0.00 0.94 0.80 0.32 -0.95 -0.51 -0.32 
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Figure 6.23: The linear regression of design variables (𝑟𝑖, 𝑔𝑠𝑎, 𝑔𝑖𝑎 and 𝑔𝑖𝑙) with respect to the 

design objectives (metrics) at the slice of 𝑦1 = 15. 

 

6.4. Discussion and Conclusion 

 In this study, a neural network based multiobjective optimization algorithm was 

developed to refine a new mobile-bearing TDA design featuring a biconcave polyethylene core, 

which strengths the polyethylene rim where a high risk of polyethylene fracture/wear exists due 

to the impingent on the MoP articulations. After multiobjective optimization, a TDA design (the 

best-tradeoff TDA design) was achieved without excessively compromising any one of ROM, 

FJF, and PCP performance metrics. It indicates that the best-tradeoff TDA design may result in a 

lower incidence of common complications as reported in the clinic results [71, 120–122] and 

retrieval studies [6, 10, 76, 77] following the surgical treatments using commercial available 

lumbar TDAs. Furthermore, we demonstrated that the responses of the TDA-treated lumbar 

segment were very sensitive to TDA designs. TDA can be optimally designed to match the native 
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intervertebral disc biomechanics, but an arbitrary TDA design may cause abnormal postoperative 

spinal responses and a higher risk of implant failures. Therefore, it should be realized that design 

optimization of TDA is essential to compete with the motion-sacrificing surgical technique (e.g., 

spinal fusion) which is the gold standard treatment for spinal disorders nowadays. Several aspects 

regarding the work are discussed as follows. 

 

6.4.1. Fitting Accuracy of 3-D Pareto Frontier  

 After providing an initial sample of 764 examples, the NN predicted TDA designs (𝑿𝑁𝐵𝐼) 

corresponding to the boundary points (𝒀𝑁𝐵𝐼) were simulated by FE analysis in each learning, and 

the resulting dataset (𝑿𝑁𝐵𝐼 and 𝑻𝑁𝐵𝐼) were fed back to the NN in the next learning. Although 

only the validated data of boundary points were used to train the NN during the learning 

procedure, the NN prediction accuracy for all performance metrics was significantly increased 

compared to the initial prediction accuracy. It demonstrates that the NN prediction accuracy can 

be improved more strategically by only providing the validated boundary points of the feasible 

objective space, instead of attempting to cover the entire feasible objective space (e.g., using 

random initialization of design variables), which requires more computational resources and time. 

 As the dataset validated by FE analysis became sufficiently large, it revealed that the 

region of 𝑡2 ≥ 𝑡2
𝑃 in the feasible objective space was always dominated. Hence, it is not necessary 

to further improve the prediction accuracy for the region of 𝑦2 ≥ 𝑦2
𝑃. On the other hand, a 

Utopian polygon (Figure 6.11a) defined by a pseudo Nadir point (𝒚𝑃) as recommended by 

Messac and Mattson (2004) was not large enough to cover the complete Pareto frontier (Figure 

6.15 or 6.16) in the TDA multiobjective optimization problem. To satisfy both demands, we 

introduced a Utopian polygon defined by a mixed Nadir point (𝒚𝑃/𝑁 = [𝑦1
𝑁 𝑦2

𝑃 𝑦3
𝑁]𝑇, Figure 

6.11c) to generate the boundary points of the feasible 3-D objective space.  
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 It is worth noting that we trained the NN using both the non-dominated (Pareto) and the 

dominated boundary points. These dominated boundary points were helpful to improve the 

prediction accuracy for a local region on the boundary of the feasible objective space, and 

facilitated the judgement of the non-dominated boundary points, since the Pareto filtering 

algorithm (Appendix C.2.6) was conducted by comparing the coordinates of a concerned point 

with those of all boundary points. 

 It can be found that there is a mismatch between the shapes of the Pareto frontiers 

predicted by the NN (Figure 6.15) and FE analysis (Figure 6.16), primarily located at the border 

between the non-dominated boundary and the dominated boundary, where the curvature of the 

boundary surface tends to be infinite. For the same reason, distinct discrepancies may occur in the 

NN predicted performance metrics of single-objective optimum TDA designs corresponding to 

three anchor points from those predicted by FE analysis (Table 6.3). However, the NN predicted 

metrics are in excellent agreement with the FE predicted metrics for the best-tradeoff TDA design. 

To better fit the FE predicted Pareto frontier, a denser label dataset at these steep local regions is 

required to enhance the NN prediction accuracy, such that Pareto filtering can correctly 

distinguish the non-dominated and dominated boundary points. 

 

6.4.2. Pareto-optimal TDA Designs and Performance Metrics  

 In Chapter 5.2, we have demonstrated that the convex-down fixed bearing TDA design 

led to a better motion pattern and lower polyethylene stress due to the MoP articulation, 

compared with other commercially available TDA designs. By optimizing the PCP metric, the 

resulting PCP-optimal TDA design (Figure 6.18c and Table 6.2) has the highest congruence at the 

inferior rim articulation, similar to the convex-down fixed bearing TDA design. Therefore, it 

indirectly validates the robustness of the proposed NN based multiobjective optimization method.  
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 Using single-objective optimization, the ROM-optimal, FJF-optimal, and PCP-optimal 

TDA designs can achieve the optimal performance for a single objective function, but other 

objectives are sacrificed (Table 6.3 and Figures 6.19, 6.20, and 6.21). In contrast, no performance 

metrics are excessively compromised for the best-tradeoff TDA design. Therefore, in order to get 

more confidence for choosing the candidate implant design, more performance metrics need to be 

considered in MOO. Our NN based MOO algorithm can be further expanded to incorporate more 

performance metrics, and generate the Pareto frontier in the high-dimensional (𝑚 > 3) objective 

space. Although the best-tradeoff TDA design was focused in the study, it is important to 

acknowledge that we do not just pull the best tradeoff out of MOO. The MOO algorithm also 

enables us to quantify how much we need to sacrifice in one area to improve in another, so 

preference can be applied more intelligently. 

 The development of an analytic expression for the relationship between Pareto-optimal 

design variables and performance metrics is attractive but challenging. As shown in Figure 6.18c 

and Table 6.2, different optimum points on the Pareto frontier correspond to different TDA 

design variables, indicating that 3 performance metrics are highly associated with 10 design 

variables. However, the PCP metric is linearly associated with only 4 design variables (Table 6.4 

and Figure 6.23), when a slice of the Pareto frontier at 𝑦1 = 15 was investigated. It implies that 

the function (Figure 6.6 or 6.8) mapping the Pareto-optimal design space to the Pareto-optimal 

objective space is highly nonlinear. To fit this complex map function, the number of the hidden 

neurons in the NN was tuned to 75, when the NN sample size increased to 6292. For a point on 

the Pareto frontier between known optimum points obtained using the NBI method, the 

corresponding Pareto-optimal design variables cannot be simply determined using linear 

interpolation. The correct approach is to densify the grid on the Utopian plane, such that denser 

Pareto boundary points and their corresponding design variables can be yielded using the NBI 

method. 
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6.4.3. Limitations  

 In multiobjective optimization of the new biconcave mobile-bearing TDA design, some 

assumptions and simplifications have been made and they require further validations. First, only a 

TDA-treated segment FE model was adopted to simulate the ROM, FJF, and PCP metrics, so the 

responses of adjacent segments were not be incorporated in MOO. In the previous work (Chapter 

5.1) to investigate the behaviors of intact and treated multi-segment lumbar spines, we found that 

no differences in the simulated ROMs, FJFs, and ligament forces occurred at the adjacent levels 

using the load-control protocol. Therefore, we reduced the multi-segment spine model to a single 

segment model. It is well known that the in-vivo loading conditions are complicated and a hybrid 

loading protocol [73] may be more suitable for considering the muscular co-activation. However, 

we assumed that no abnormal responses at the adjacent levels existed, if TDA biomechanics were 

able to accurately reproduce the native intervertebral disc biomechanics. To match native disc 

biomechanics, the ROM and FJF metrics at the treated level have been introduced to 

multiobjective optimization.  

 Furthermore, the vertebrae and TDA metallic endplates were modeled as rigid bodies to 

save computational cost. This simplification has been made in previously reported lumbar spine 

FE models [25, 123]. Comparing the simulation results in Chapters 5.1.2 and 5.2.2, we indeed 

found that the formulation of rigid body caused a decrease in the segmental ROM and an increase 

in the polyethylene contact pressures and facet joint forces. However, it was impossible to change 

the general trend when the responses of the TDA-treated segment model were optimized to those 

of the intact segment model.  

 In this study, a representative lumbar segment FE model was created according to well-

documented anatomic dimensions [14, 15], and the kinematical responses of the intact segment 

FE model (using material properties of deformable vertebrae) were calibrated to in-vitro 

experimental measurements in various loading scenarios [28] using a step-wise addition 

procedure of functional spinal structure [16, 33, 34]. However, we did not consider the inter-
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individual variations in the spine anatomy, inter-segment alignment, and material properties of 

spinal tissues. However, we have performed a sensitivity analysis of segment responses (ROM, 

FJF, and PCP) to varied ligament properties, which was documented in Appendix D.3. It was 

demonstrated that variations in ligament properties caused slight changes in segment responses, 

indicating that discs and TDAs are the main load-carrying components. In addition, it is essential 

to further introducing statistical modeling [92, 124–126] to incorporate these inter-individual 

variations into the computational FE models. The coefficients of their principal components of 

these probability distributions can be added to the NN inputs to fit the responses of the 

instrumented lumbar spine to these inter-individual variations. The future work would create a 

more complex neural network based surrogate model [127], and perform multiobjective 

optimization of patient-specific TDA designs.  
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Chapter 7: Summary and Conclusion 

 

7.1. Accomplishments 

 The overarching goal of this work was to perform multiobjective design optimization of a 

new biconcave mobile-bearing total disc arthroplasty considering spinal kinematics, facet joint 

loading, and metal-on-polyethylene contact mechanics in an instrumented lumbar segment. A set 

of necessary sub-objectives were outlined in Chapter 1.2, each of which has been successfully 

completed in order to meet the proposed overarching goal. 

 

7.1.1. Sub-objective 1: Investigation of Native Disc Biomechanics Using Finite Element Analysis 

 The material anisotropy and heterogeneity across the AF of the intervertebral disc were 

modeled based on a new constitutive model of collagen fibers, which enables the fitting and 

interpolation of experimentally measured stress-stretch curves of single annular lamellae. The 

pull-back computation and disc prestrain simulation were used to investigate the effect of nucleus 

swelling on the disc geometry, fiber orientation and mechanics. In the previously reported 

simulation, only the unloaded AF configuration due to the loss of the IDP was derived, without 

including the NP. The prestrained disc was modeled by applying an initial strain distribution 

(equivalent to that when an IDP was directly applied on the internal surface of the AF) to the AF. 

By introducing thermoelastic analysis, we demonstrated that thermal expansion can provide an 

accurate representation of the disc prestrain under nucleus swelling. This new technique allows us 

to derive the unloaded configuration of an entire disc when the IDP is lost. Furthermore, we 

simulated the responses of the normal (prestrained) disc and the degenerated (unloaded) disc in 
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various physiologically relevant loading scenarios. It was concluded that the disc stiffness is 

regulated by the IDP and fiber orientation; a decrease in the IDP and fiber angles causes a distinct 

deterioration in the resistance to intervertebral rotations. 

 

7.1.2. Sub-objective 2: Finite Element Modeling of Multi-segment Lumbar Spine 

 A representative intact multi-segment lumbar spine FE model was parametrically created 

according to well-documented anatomic dimensions. The intervertebral discs were modeled 

considering the material anisotropy and heterogeneity across the AF. The material properties of 

discs and ligaments were calibrated using a step-wise addition procedure of functional spinal 

structures, such that the simulated segmental kinematical responses match the in-vitro 

experimental measurements. The physiological co-activation of trunk muscles was considered by 

introducing a compressive follower preload. The path of the preload was optimized, such that no 

intervertebral rotation in the sagittal plane occurred at each level of the intact spine model. The 

resulting segmental ROMs, facet joint forces and ligament forces at each level of the intact 

lumbar spine model are in good agreement with those of well-established lumbar spine FE 

models in the literature. 

 

7.1.3. Sub-objective 3: Performance Assessment of Commercially Available TDA Designs 

 Using the multi-segment lumbar spine FE model, it was observed that the implantation of 

a TDA did not influence the mechanical responses of adjacent levels regardless of different 

parameters adopted in a parametric TDA design, indicating that the same load can be transferred 

to each level throughout the treated lumbar spine. Therefore, TDA using the anterior surgical 

procedure causes a poorer resistance to extension (larger ROM) and changes the load-sharing of 

spinal tissues only at the treated segment. Due to the slight change in the responses of adjacent 

levels, the multi-segement lumbar spine FE model was simplified to a single segment (L3-L4) FE 
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model, in which different TDA designs was futher evaluated in terms of segmental kinematics 

and MoP contact mechanics. 

 The convex-up fixed-bearing, convex-down fixed-bearing, and biconvex mobile-bearing 

commercially available TDA designs were inserted into the L3-L4 segment model to simulate the 

resulting responses. They represent three TDA designs whose initial instantaneous centers of 

rotation (ICRs) are located blow the inferior metallic EP, above the superior metallic EP, and at 

the center of the PE core, respectively. Compared to the fixed ICRs in the fixed-bearing TDAs, it 

was assumed that the unconstrained configuration in the biconvex mobile-bearing TDA leads to a 

physiological moving ICR which is less sensitive to implant placement, and thus lower facet joint 

forces [9, 110]. However, our simulation results showed that all designed TDA motion patterns 

were changed by lift-off, impingement, and/or unsymmetric motion, due to the interaction with 

the facet joint articulation.  

 For the convex-up TDA design, the FJ tends to be separated by a coupled posterior 

translation of the superior vertebra in extension and it goes more evident when the functional 

tissues are dissected in the anterior surgery, so it results in a larger extension rotation and a higher 

incidence of impingement. The exact opposite occurs for the convex-down TDA design; a larger 

resistance to extension can be provided by the FJs, as they close. Combining both convex-up and 

convex-down TDA motions can explain the unsymmetrical motions on the superior and inferior 

MoP articulations in the biconvex mobile-bearing TDA design. This unsymmetric motion in the 

biconvex TDA design causes a distinct downward bending of the PE rim, where the median rim 

thickness is only 2.9 mm [76] and the yield strength is 13 MPa [115]. Hence, the PE rim is 

potentially plastically deformed and cracked during cyclic bending in life activities. Consistent 

with previously reported retrieval studies [10, 76, 77], the PE rim fracture appears to be a more 

noticeable problem than PE wear. 
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7.1.4. Sub-objective 4: Proposal of a New Biconcave Mobile-bearing TDA Design Concept 

 Impingement, observed in both mobile- and fixed-bearing TDAs, is defined as the 

unintended contact between two nonbearing surfaces. Through an in-depth analysis of the 

segmental kinematics and MoP contact mechanics after the treatment using commercially 

available TDA designs, we demonstrated that the unsymmetric motion and impingement in the 

mobile-bearing TDA with a biconvex core are the contributing factors of the PE fracture. On the 

other hand, TDA using the anterior surgical procedure introduces a low-stiffness artificial joint, 

causing excessive segmental rotations [8, 9]. Therefore, the impingement of the metallic EPs 

against the rims of the PE core is inevitable. We hypothesized that impingement as a contact 

constraint could prevent excessive intervertebral rotations and facet joint overloading. To 

strengthen the PE rims, a new mobile-bearing TDA concept was proposed featuring a biconcave 

PE mobile core, with a smooth transition from the dome to the rim. Simulation results indicate 

that the proposed TDA design with a biconcave core can improve the MoP articulation and 

relieve the stress concentration in the PE rim. Therefore, it is expected to considerably prolong 

implant life in vivo, compared to commercially available mobile-bearing TDA designs. 

 

7.1.5. Sub-objective 5: Development of Neural Network Based Multiobjective Optimization 

Algorithm 

 Generally, evolutionary optimization algorithms based on gradient descent require the 

gradient of the objective function and constraint function with respect to each design variable. In 

the traditional design optimization method, finite element analysis performed in each 

optimization iteration can only provide a black-box objective or constraint function without an 

analytical expression. Although the numerical gradient computed using finite difference enables 

the execution of an optimization program, it results in an expensive computational cost and a 

slow process to seek the optimal solution in design optimization. To address the problem, 
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artificial neural network was implemented to derive analytical expressions of the objective and 

constraint functions and their gradients with respect to design variables. By combining artificial 

neural network and multiobjective optimization, we realized design optimization of a TDA 

simultaneously considering three performance metrics. To the best of our knowledge, there has 

not been a work that performs tri-objective design optimization of an implant in the literature. 

 

7.1.6. Sub-objective 6: Multiobjective Optimization of Total Disc Arthroplasty 

 The biconcave mobile-bearing TDA design was further optimized using the proposed NN 

based MOO algorithm, considering the segmental kinematics, facet joint loading, and MoP 

contact mechanics simultaneously. To that end, a parametric model of the biconcave mobile-

bearing TDA with ten design variables was developed in ANSYS 15.0 Workbench 

DesignModeler. The parametric TDA model can be reduced to two design extremities, a convex-

down fixed-bearing TDA or a convex-up fixed-bearing TDA, by assigning a complete 

congruence on either the superior or inferior rim contact interfaces. As such, the fixed-bearing 

TDA configurations were also included in the design space. The parametric TDA model was 

inserted into a lumbar segment model, to simulate various performance metrics. 

 Using the NN based MOO algorithm, the complete Pareto frontier in the 3-D feasible 

objective space was fit and visualized by a triangular mesh. The ROM-optimal, FJF-optimal, and 

PCP-optimal TDA designs represent the optimal performance for a single objective function, but 

sacrifices in other objectives are observed. The best-tradeoff TDA design was defined as a design 

corresponding to an optimum point on the Pareto frontier in the minimum Euclidean distance 

away from the Utopian point. According to the simulated responses of the lumbar segment treated 

by the best-tradeoff TDA design, no performance metrics are excessively compromised, 

indicating that native disc biomechanics and the best MoP contact mechanics are achieved.  
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7.2. Limitations to Address in Future Work 

7.2.1. Continuum Modeling of Soft Tissues 

 In the research, performance measures were proposed to evaluate the risks of postsurgical 

complications associated with abnormal kinematics, facet joint overloading, and implant failures 

in the instrumented lumbar segment. Therefore, stresses in intervertebral discs and spinal 

ligaments were not a focus. The FE representations of these soft tissues were simplified using 

discrete FE modeling techniques which facilitate the computational efficiency. In the lumbar 

segment FE model, the discs and ligaments were modeled using smeared reinforcing elements 

and nonlinear spring elements, respectively. However, stresses in the discs and ligaments are the 

important indicator for spinal tissue overloading and adjacent disc degeneration. To accurately 

predict stresses in soft tissues, continuum modeling techniques should be implemented in future 

work.  

 

7.2.2. Physiological Loading Conditions 

 In the parametric analysis of a socket-in-ball fixed-bearing TDA design, changes in the 

simulated responses of the adjacent levels in the multi-segment lumbar spine model were not 

observed, as different TDA design parameters were used. It is concerned that the loading protocol 

utilizing a follower preload followed by pure moments in different loading scenarios is too simple, 

although it has been widely used to simulate the spine behavior in previous reported in-vitro 

experiments and computational models. The adjacent-level responses in the TDA-treated lumbar 

spine FE model should be further validated using more complicated loading conditions such as 

the hybrid loading protocol [73] and musculoskeletal modeling to consider the physiological co-

activation of trunk muscles. 

 

7.2.3. Inter-individual Variations 
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 In this study, a representative lumbar segment FE model was created according to well-

documented anatomic dimensions [14, 15], and the kinematical responses of the intact segment 

FE model (using material properties of deformable vertebrae) were calibrated to in-vitro 

experimental measurements in various loading scenarios [28] using a step-wise addition 

procedure of functional spinal structure [16, 33, 34]. However, we did not consider the inter-

individual variations in the spine anatomy, inter-segment alignment, and material properties of 

spinal tissues. To address the problem, statistical modeling [92, 124–126] needs to be performed 

to investigate these inter-individual variations. The coefficients of their principal components of 

these probability distributions can be added to the NN inputs to fit the responses of the 

instrumented lumbar spine to these inter-individual variations. The future work would create a 

more complex neural network based surrogate model [127], and perform multiobjective 

optimization of patient-specific TDA designs. 

 

7.2.4. Polyethylene Wear 

 Theoretically, the instantaneous center of rotation of the biconvex mobile-bearing TDA 

design is mobile, resulting in the better kinematics and lower facet joint loads than fixed-bearing 

TDA designs. However, unsymmetric motion and impingement were observed in the biconvex 

mobile-bearing TDA design, when it was simulated using a computational model incorporating 

functional spinal structures. Due to the abnormal motion and MoP articulation, the PE rim is 

vulnerable to fracture, which was considered as a more serious problem to be addressed 

compared to PE wear. Therefore, a new biconcave mobile-bearing TDA design was proposed to 

strengthen the PE rim, such that it can serve as an intended bearing.  

 In multiobjective design optimization, the performance metric regarding the PE contact 

pressure was introduced, and it was assumed that the lower PE contact pressure can reduce the 

risks of both the PE fracture and wear. However, it is well known that PE wear is sensitive to the 
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patterns of sliding distance and cross-shear ratio, and the resulting wear debris may induce 

osteolysis which is the major cause of aseptic loosening and implant failure in MoP arthroplasty 

[12, 128]. In future, a more comprehensive literature review will be conducted to identify the risk 

of PE wear in TDA, and develop a computational framework to predict the TDA performance 

related to PE wear. 

 

7.3. Conclusion 

 In conclusion, a new mobile-bearing TDA featuring a biconcave core was optimally 

designed in terms of spinal kinematics, facet joint loading, and MoP contact mechanics using 

multiobjective design optimization. These results could not have been obtained without the 

numerical frameworks for simulating these performance metrics related to the complications after 

the TDA treatment, as well as the development of the neural network based multiobjective 

optimization algorithm. By searching the optimum point on the 3-D Pareto frontier in the 

minimum Euclidean distance from the Utopian point, the best-tradeoff TDA design was 

determined. Since no distinct sacrifices of each performance measure occur in the best-tradeoff 

TDA design, it is expected to match native disc biomechanics and improve the MoP contact 

mechanics. Although the impressive results have been achieved using multiobjective design 

optimization, TDA surgical outcomes are influenced by many more factors, such as implant 

designs and alignment, soft tissue functional deficits, maladies in the vertebral anatomy, surgical 

techniques, rehabilitation, postoperative activity level.  

 The future vision is multiobjective design optimization of patient-specific TDAs, in the 

combination with imaging techniques, in-vivo clinical research, material characterization, 

statistical analysis, and rapid prototyping technology. The proposed neural network based 

multiobjective optimization algorithm can be further expanded to generate the patient-specific 

Pareto frontier by incorporating inter-individual variations in spine anatomy, intersegment 
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alignment, and material properties of spinal tissues. The resulting Pareto frontier allows the health 

care provider to determine the best tradeoff TDA design for individual patients, which would be 

manufactured using rapid prototyping. As these techniques are put in practice, motion-preserving 

techniques will be able to reproduce native disc biomechanics, and ultimately take the place of 

motion-sacrificing techniques in the treatment for spinal disorders. 
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Appendix A: Mesh Morphing Technique 

 

 In previously reported computer vision works [129, 130], implicit surface equations have 

been employed to model complicated anatomic geometry. They have deomonstred that both the 

vertebral body (VB) and intervertebral disc (IVD) can be modeled using a series of 

transformations governed by implicit surface equations. Using these implicit equations, 

visualization can be trivially achieved in programming software. In the study, the implicit surface 

modeling method were incorporated into a new mesh morphing technique to create lumbar VB 

and IVD parametric FE models in ANSYS 15.0 MAPDL. The representative transformations in 

mesh morphing of VB and IVD models were presented in Figures A.1 and A.2, respectively. 

Initially, a truncated elliptical cone was created as the basic shape of the VB/IVD model. After it 

was meshed, the nodal coordinates were sequentially applied wall cardioid shape transformation, 

wall concave/bulge transformation, endplate concave/bulge transformation, and endplate sagittal 

inclination transformation for either VB (Figures A.1) or IVD (Figures A.2).  
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Figure A.1: The shape transformations used to model a vertebral body. 

 

 

Figure A.2: The shape transformations used to model an intervertebral disc. 

 

 Previously, we have successfully implemented the mesh morphing technique to model an 

L4-L5 lumbar motion segment using well-documented anatomic dimension (Table A.1), as 

presented in Figures A.3. To ensure the endplate congruence between the VB and the IVD, the 

reported transformation formulations [129, 130] were modified. These modified transformation 

formulations used in this study for modeling both VB (Figures A.1) and IVD (Figures A.2) were 

described in the following. 
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Table A.1: Well-documented anatomic dimensions of L4-L5 lumbar motion segment [14, 32, 33]. 

Note that the unit is mm, except for the disc inclination angle and the volume ratio of the nucleus 

pulposus to the whole L4-L5 disc. 

 

Dimensions L4 L5 References 

𝐷𝑠𝑢𝑝 35.5 34.7 Panjabi et al (1992) 

𝑊𝑠𝑢𝑝 46.6 47.3 

𝐷𝑖𝑛𝑓 33.9 33.2 

𝑊𝑖𝑛𝑓 49.5 49.4 

𝐻 24.1 22.9 

ℎ 9.6 Weisse et al (2012) 

𝛼 7.6° 

𝑡𝑎, 𝑡𝑙, 𝑡𝑝 9.1, 8.9, 5.2 Schmidt et al (2006) 

Vol. ratio of NP 44% 

 

 

Figure A.3: Parametric FE model of a L4-L5 lumbar motion segment using reported anatomic 

dimensions, as listed in Table A.1. 

 

A.1. Initialization of VB/IVD FE model: Alignment and Basic Shape 

 The alignment of the VB/IVD FE model can be conveniently performed by defining a 

local coordinate system (CS) in ANSYS, equivalent to the operations of rigid body translation 

and rotation. The basic shape of the VB/IVD was defined as a truncated elliptical cone. After the 
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VB/IVD basic shape model was meshed, the nodal coordinates are governed by an inequality 

equation, 𝐹𝐵𝑆(𝑥, 𝑦, 𝑧) ≤ 1, in which 𝐹𝐵𝑆(𝑥, 𝑦, 𝑧) is an implicit function of the truncated elliptical 

cone, 

𝐹𝐵𝑆(𝑥, 𝑦, 𝑧) = (
𝑥2 + 𝑦2

𝑟2
)10 + (

𝑧

ℎ
)20 

(A.1) 

where 𝑥, 𝑦, and 𝑧 are the nodal coordinates of the FE mesh in the local Cartesian CS. ℎ is the half 

height of the elliptical cone. 𝑟(𝑧, 𝜃) is the radius of the directrix curve (the cross-section ellipse), 

𝑟(𝑧, 𝜃) = 𝑟𝑠𝑢𝑝(𝑧, 𝜃) + 𝑟𝑖𝑛𝑓(𝑧, 𝜃) 

=
1

2
(1 +

𝑧

ℎ
)

𝑎𝑠𝑢𝑝𝑏𝑠𝑢𝑝

√(𝑎𝑠𝑢𝑝sin𝜃)
2
+ (𝑏𝑠𝑢𝑝cos𝜃)

2
+
1

2
(1 −

𝑧

ℎ
)

𝑎𝑖𝑛𝑓𝑏𝑖𝑛𝑓

√(𝑎𝑖𝑛𝑓sin𝜃)
2
+ (𝑏𝑖𝑛𝑓cos𝜃)

2
 

(A.2) 

where 𝜃 = arctan (𝑦/𝑥) is the polar angle measured from the semi-major axis of the cross-

section ellipse, and the angle unit is [rad]. 𝑎𝑠𝑢𝑝 and 𝑏𝑠𝑢𝑝 are the major and minor radii of the 

superior surface of the elliptical cone, and 𝑎𝑖𝑛𝑓 and 𝑏𝑖𝑛𝑓 are the major and minor radii of the 

inferior surface. 

 

A.2. Wall Kidney Shape Transformation 

 The cross-section of the elliptical cone in the basic shape model was transformed to a 

kidney shape, by superposing four Gaussian functions on the radial nodal coordinates of the basic 

shape model, with the magnitudes (𝑚𝑖), standard deviation angles (𝜎𝑖), and polar angle 

coordinates (𝜃𝑖) at the anterior (𝑖 = a), posterior (𝑖 = p), left (𝑖 = l) and right (𝑖 = r), respectively. 

𝑟𝐺 = 𝑟 ∙ [1 + ∑ 𝑚𝑖𝑒
−
𝑓2(𝜃−𝜃𝑖)

2𝜎𝑖
2

𝑖∈{a,p,l,r}

] (A.3) 

where 𝑓(𝛼) is a correction function of the polar angle coordinates in terms of the argument, 

𝛼 = 𝜃 − 𝜃𝑖,  
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𝑓(𝛼) = {
𝛼 + 2𝜋, 𝛼 < −𝜋
𝛼 −𝜋 ≤ 𝛼 ≤ 𝜋

𝛼 − 2𝜋, 𝛼 ≥ 𝜋
 (A.4) 

 For convenience, the kidney-shaped wall transformation can be performed by defining a 

local cylindrical CS (𝑟, 𝜃, 𝑧) with the same origin as the previous local Cartesian CS. 

 

A.3. Wall Concavity/Bulge Transformation 

 The wall concavity/bulge can be simply modeled by a cosine function with the amplitude 

of 𝑐𝑤 (positive value for the VB and negative value for the IVD), and half of the function period 

is equal to the height (2ℎ) of the VB/IVD basic shape model. 

𝑟𝑊 = 𝑟 ∙ [1 − 𝑐𝑤cos (
𝜋𝑧

2ℎ
)] (A.5) 

 

A.4. Endplate Concavity/Bulge Transformation 

 The superior and inferior endplate concavity/bulge of the VB/IVD was modeled by 

introducing a 2D cosine function with the period equal to the diameter (2𝑟𝑊) of the directrix 

curve and the amplitude of 𝑐𝑒𝑠 at the superior endplate or 𝑐𝑒𝑖 at the inferior endplate (positive 

value for the VB and negative value for the IVD). To ensure the interface congruence of the 

adjacent VB and IVD, the amplitudes was corrected by dividing the half height (ℎ) of the basic 

shape model. Furthermore, the peaks or valleys of the cosine functions at the superior and inferior 

surfaces may be shifted by (𝑥𝑠𝑢𝑝
′ , 𝑦𝑠𝑢𝑝

′ ) and (𝑥𝑖𝑛𝑓
′ , 𝑦𝑖𝑛𝑓

′ ), respectively. 

𝑧𝐸 =

{
 
 
 
 

 
 
 
 

𝑧 ∙

[
 
 
 

1 +
𝑐𝑒𝑠
ℎ
cos

(

 
𝜋√(𝑥 − 𝑥𝑠𝑢𝑝

′ )
2
+ (𝑦 − 𝑦𝑠𝑢𝑝

′ )
2

𝑟𝑊
)

 

]
 
 
 

, 𝑧 ≥ 0

𝑧 ∙

[
 
 
 

1 +
𝑐𝑒𝑖
ℎ
cos

(

 
𝜋√(𝑥 − 𝑥𝑖𝑛𝑓

′ )
2
+ (𝑦 − 𝑦𝑖𝑛𝑓

′ )
2

𝑟𝑊
)

 

]
 
 
 

, 𝑧 < 0

 (A.6) 
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A.5. Endplate Sagittal Inclination Transformation  

 The endplate inclination in the sagittal plane was modeled by bending deformation with 

the magnitudes of 𝑠𝑒𝑠 and 𝑠𝑒𝑖 (positive value for the VB and negative value for the IVD), and the 

directions defined by the polar angles of 𝜓𝑒𝑠 and 𝜓𝑒𝑖 (positive value for the superior surface and 

negative value for inferior surface in both VB and IVD models).  

[

𝑥𝐼
𝑦𝐼
𝑧𝐼
] =

{
 
 
 
 

 
 
 
 
[

𝑥 + (𝐵 − 𝑏) ∙ cos 𝜓𝑒𝑠
𝑦 + (𝐵 − 𝑏) ∙ sin 𝜓𝑒𝑠

𝑧 − (|𝑠𝑒𝑠| − 𝑏) ∙ sin (
𝜋𝑠𝑒𝑠𝑧

180ℎ𝐸
)
] , 𝑧 ≥ 0

[

𝑥 + (𝐵 − 𝑏) ∙ cos 𝜓𝑒𝑖
𝑦 + (𝐵 − 𝑏) ∙ sin 𝜓𝑒𝑖

𝑧 − (|𝑠𝑒𝑖| − 𝑏) ∙ sin (
𝜋𝑠𝑒𝑖𝑧

180ℎ𝐸
)
] , 𝑧 < 0

 (A.7) 

𝑏 = {
√𝑥2 + 𝑦2 ∙ cos(𝜓𝑒𝑠 − 𝜃) , 𝑧 ≥ 0

√𝑥2 + 𝑦2 ∙ cos(𝜓𝑒𝑖 − 𝜃) , 𝑧 < 0
 (A.8) 

𝐵 = {

|𝑠𝑒𝑠| − (|𝑠𝑒𝑠| − 𝑏) ∙ cos (
𝜋𝑠𝑒𝑠𝑧

180ℎ𝐸
), 𝑧 ≥ 0

|𝑠𝑒𝑖| − (|𝑠𝑒𝑖| − 𝑏) ∙ cos (
𝜋𝑠𝑒𝑖𝑧

180ℎ𝐸
), 𝑧 < 0

 (A.9) 

where ℎ𝐸 = 𝑧𝐸|𝑧=ℎ according to Equation A.6 is introduced to achieve the endplate congruence 

between adjacent VB and IVD. 
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Appendix B: Constitutive Modeling of Intervertebral Disc Annular Lamellae 

 

 The intervertebral disc (IVD) is a sophisticated soft tissue structure that consists of a gel-

like center, the nucleus pulposus (NP), and an outer fibrous ring, the annulus fibrosus (AF). The 

AF ground substance (GS) is reinforced by collagen fiber lamellae [19–22], with a crossing 

pattern of fiber bundles due to the alternating fiber orientations in adjacent lamellae. The fiber 

angles vary radially and circumferentially across the AF [19, 20]. The relative content of type I 

and II collagens gradually changes across the AF, causing a non-uniform distribution of lamellar 

tensile properties (Brickley-Parsons and Glimcher. 1984). Therefore, the different collagen 

content distribution and fiber orientation within the AF result in the material anisotropy and 

heterogeneity of the AF composite.  

 To develop a computational model of the IVD, the constitutive relationship of the annular 

material needs to be provided. However, commercially available FE software lacks a material 

model to describe the nonlinear tensile properties of the collagen fibers. Therefore, the author 

proposed a continuum material model which introduces new formulations to model the nonlinear 

mechanical behavior of the collagen fibers. Furthermore, the constitutive relationship of the 

collagen fibers intimately interacts with the algorithms of fitting and interpolation of the fiber 

stress-stretch curves described in the subsequent Chapter, in order to model the material 

heterogeneity.  

 

B.1. Basic Concepts in Large Deformation Solid Mechanics 

B.1.1. Kinematics and Configurations 
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 Typically, a continuum body (Figure B.1) at the initial time (𝑡 = 0) is undeformed, thus 

the configuration was chosen as the initial or reference configuration (Ω0), equivalently 

represented by the coordinates (𝑿) of the continuum. After it is deformed in a motion (𝜒), the new 

configuration at time (𝑡) was defined as the current or spatial configuration (Ω), equivalently 

represented by the new coordinates (𝒙). The motion 𝜒 is assumed to be uniquely invertible, and 

the inverse motion is denoted by 𝜒−1.  

 

Figure B.1: Illustration of the configurations and motion of a continnum body [93], modified with 

permission from Springer Nature. 

 

 If all field quanties are descibed in the reference configuration (𝑿), then the description is 

referred to as the Lagrangian or material or referential description. The Eulerian or spatial 

description is used to describe these fields in the spatial configuration (𝒙). In solid mechanics, 

constitutive relations are preferentially derived using the referential description, so all quantities 

need to be applied a push-forward operation (𝜒∗) to obtain the spatial description. The opposite 

operation that maps the quantities in the spatial configuration back to the reference configuration 

is called a pull-back operation (𝜒∗
−1). 
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 As a primary measure of deformations, the deformation gradient (𝑭) is introduced to 

characterize the behavior of motion in the neighborhood of a point, from the reference 

configuration to the spatial configuration, 

𝑑𝒙 = 𝑭𝑑𝑿 (B.1) 

 Provided a fiber located at 𝑿 in the reference configuration has the inital length 𝑑𝑙0 

(𝑑𝑙0 ≪ |𝑿|) and the inital direction 𝒂0, the fiber can be represented by a vector 𝑑𝑿 = 𝑑𝑙0𝒂0. 

After a deformation, the fiber moves to a new location 𝒙 with a new length 𝑑𝑙 (𝑑𝑙 ≪ |𝒙|) and a 

new direction 𝒂, so it is represented by 𝑑𝒙 = 𝑑𝑙𝒂. Subsituting 𝑑𝑿 = 𝑑𝑙0𝒂0 and 𝑑𝒙 = 𝑑𝑙𝒂 into 

Equation B.1, 

𝑑𝑙𝒂 = 𝑭𝑑𝑙0𝒂0 (B.2) 

 The strecth ratio 𝜆 =
𝑑𝑙

𝑑𝑙0
 is introduced to descibe the change in the fiber length. Therefore, 

an important relation was obtained, 

𝜆𝒂 = 𝑭𝒂0 (B.3) 

 If the fiber direction (𝒂) in the spatial configuration is known, Equation B.3 can be 

reformulated to calculate the fiber direction (𝒂0) in the reference configuration, 

𝒂0 =
𝑭−1𝒂

|𝑭−1𝒂|
 (B.4) 

 Equation B.4 can be used to pull back the fiber orientation from the spatial configuration 

to the reference configuration. According to the definition in Equation B.1, the deformation 

gradient (𝑭) can be written as, 

𝑭 =
𝜕𝒙

𝜕𝑿
= 𝑰 +

𝜕𝒖

𝜕𝑿
= 𝑰 + Grad 𝒖 (B.5) 

where 𝒖 = 𝒙 − 𝑿 is the displacement from the reference configuration (𝑿) to the spatial 

configuration (𝒙). 𝑰 = 𝛿𝑖𝑗𝒆𝑖⊗𝒆𝑗 is the identity tensor with the components expressed by the 

Kronecker delta symbol (𝛿𝑖𝑗).  
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B.1.2. Numeric Deformation Gradient 

 In most commercial FE solvers, the deformation gradient (𝑭) is not an output, but it can 

be numerically computed for each element using a procedure reported by Wriggers (2016). For 

the 8-node hexahedral element, the element displacement field (𝒖𝑒) and the element coordinates 

(𝑿𝑒) in the reference configuration are approximated using tri-linear shape functions based on the 

isoparametric concept, 

𝒖𝑒 =∑𝑁𝑖(𝜉, 𝜂, 𝜁)𝒖𝑖

8

𝑖=1

= [𝑁1 𝑁2 … 𝑁8]1×8 [

𝑢1 𝑣1 𝑤1
𝑢2 𝑣2 𝑤2
⋮ ⋮ ⋮

𝑢8 𝑣8 𝑤8

]

8×3

 (B.6) 

𝑿𝑒 =∑𝑁𝑖(𝜉, 𝜂, 𝜁)𝑿𝑖

8

𝑖=1

= [𝑁1 𝑁2 … 𝑁8]1×8 [

𝑋1 𝑌1 𝑍1
𝑋2 𝑌2 𝑍2
⋮ ⋮ ⋮

𝑋8 𝑌8 𝑍8

]

8×3

 (B.7) 

where 𝒖𝑖 and 𝑿𝑖 are the nodal displacements and coordinates of the 8-node element. 𝑁𝑖(𝜉, 𝜂, 𝜁) 

are the shape functions given by, 

𝑁𝑖(𝜉, 𝜂, 𝜁) =
1

8
(1 + 𝜉𝑖𝜉)(1 + 𝜂𝑖𝜂)(1 + 𝜁𝑖𝜁), 𝑖 = 1, 2,⋯ ,8 (B.8) 

where 𝜉𝑖, 𝜂𝑖 and 𝜁𝑖 are the nodal coordinates of the element in the isoparametric formulation 

[132]. For the 8-node linear hexahedral elements without extra shape functions (ANSYS MAPDL 

15.0 Theory Reference), 𝜉𝑖, 𝜂𝑖 and 𝜁𝑖 are shown in Table B.1.  

 

Table B.1: The nodal coordinates of 𝜉𝑖, 𝜂𝑖 and 𝜁𝑖 of 8-node linear hexahedral elements. 

 

Node 𝜉𝑖 𝜂𝑖 𝜁𝑖 

1 -1 -1 -1 

2 +1 -1 -1 

3 +1 +1 -1 

4 -1 +1 -1 

5 -1 -1 +1 

6 +1 -1 +1 

7 +1 +1 +1 

8 -1 +1 +1 
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 Using the chain rule of differentiation, the deformation gradient (as show in Equation B.5) 

of each element can be expressed in terms of the nodal displacements and coordinates, 

𝑭𝑒 = 𝑰 + Grad 𝒖𝑒 = 𝑰 +
𝜕𝒖𝑒
𝜕𝑿𝑒

= 𝑰 +
𝜕𝒖𝑒
𝜕𝜩

𝜕𝜩

𝜕𝑿𝑒
= 𝑰 +

𝜕𝒖𝑒
𝜕𝜩

𝑱𝑒
−1 (B.9) 

where 𝑱𝑒 =
𝜕𝑿𝑒

𝜕𝜩
 is the Jacobian matrix of transformation from the non-dimensional coordinates 𝜩 

to the actual element coordinates 𝑿𝑒. Here, 
𝜕𝒖𝑒

𝜕𝜩
 and 𝑱𝑒 =

𝜕𝑿𝑒

𝜕𝜩
 can be derived by taking derivatives 

of Equations B.6 and B.7, 

𝜕𝒖𝑒
𝜕𝜩

=

[
 
 
 
 
 
 
𝜕𝑁1
𝜕𝜉

𝜕𝑁2
𝜕𝜉

…
𝜕𝑁8
𝜕𝜉

𝜕𝑁1
𝜕𝜂

𝜕𝑁2
𝜕𝜂

…
𝜕𝑁8
𝜕𝜂

𝜕𝑁1
𝜕𝜁

𝜕𝑁2
𝜕𝜁

…
𝜕𝑁8
𝜕𝜁 ]

 
 
 
 
 
 

3×8

[

𝑢1 𝑣1 𝑤1
𝑢2 𝑣2 𝑤2
⋮ ⋮ ⋮

𝑢8 𝑣8 𝑤8

]

8×3

 (B.10) 

𝑱𝑒 =
𝜕𝑿𝑒
𝜕𝜩

=

[
 
 
 
 
 
 
𝜕𝑁1
𝜕𝜉

𝜕𝑁2
𝜕𝜉

…
𝜕𝑁8
𝜕𝜉

𝜕𝑁1
𝜕𝜂

𝜕𝑁2
𝜕𝜂

…
𝜕𝑁8
𝜕𝜂

𝜕𝑁1
𝜕𝜁

𝜕𝑁2
𝜕𝜁

…
𝜕𝑁8
𝜕𝜁 ]

 
 
 
 
 
 

3×8

[

𝑋1 𝑌1 𝑍1
𝑋2 𝑌2 𝑍2
⋮ ⋮ ⋮

𝑋8 𝑌8 𝑍8

]

8×3

 (B.11) 

where the derivatives of the shape functions (as shown in Equation B.8) with respect to the non-

dimensional coordinates 𝜩 = {𝜉, 𝜂, 𝜁} can be trivially obtained. 

 

B.1.3. Stress Tensor and Elasticity Tensor 

 In this study, a continuum approach [93] will be implemented to develop a transversely 

isotropic hyperelastic constitutive material model for the annulus fiber lamellae, and investigate 

the nonlinear mechanics of the IVD in large deformation. Based on the assumption that the 

macroscopic nature of materials can be described as continua, the material responses can be 
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formulated by proposing an appropriate strain energy function (𝛹). Hence, the resulting 

constitutive material model is also called a phenomenological model.  

 According to the second law of thermodynamics, the internal dissipation (𝐷𝑖𝑛𝑡) is 

reduced to zero for perfectly elastic material, 

𝐷𝑖𝑛𝑡 = 𝑤𝑖𝑛𝑡 − 𝛹̇ = 0 (B.12) 

where 𝑤𝑖𝑛𝑡 =
1

2
𝑺: 𝑪̇ is the stress power (the rate of internal mechanical work per unit reference 

volume), defined by a work conjugate pair consisting of the second Piola-Kirchhoff stress tensor 

(𝑺) and the material time derivative of the right Cauchy-Green tensor (𝑪). 𝛹̇ = 𝛹̇(𝑪) is the 

material time derivative of the strain energy function (𝛹). Using the chain rule of differentiation, 

𝛹̇ =
𝜕𝛹

𝜕𝑪
: 𝑪̇, Equation B.12 can be expressed as, 

(
1

2
𝑺 −

𝜕𝛹(𝑪)

𝜕𝑪
) : 𝑪̇ = 0 (B.13) 

 Equation B.13 must hold at every point of the continuum body and for all times during 

the process. Therefore, the second Piola-Kirchhoff stress tensor (𝑺) is deduced in terms of the 

right Cauchy-Green tensor (𝑪), 

𝑺 = 2
𝜕𝛹(𝑪)

𝜕𝑪
 (B.14) 

 Furthermore, the 4th-order elasticity tensor (ℂ) that characterizes the gradient of 𝑺 in 

terms of 𝑪 was introduced in the concept of linearization, measuring the change in stress which 

results from a change in strain, 

ℂ = 2
𝜕𝑺(𝑪)

𝜕𝑪
= 4

𝜕2𝛹(𝑪)

𝜕𝑪𝜕𝑪
 (B.15) 

 It is noted that Equations B.14 and B.15 are derived based on the reference configuration. 

They are mapped to the spatial configuration using the Piola transformation, which is defined as a 

push-forward operation (𝜒∗) times a factor of 𝐽−1. Here, 𝐽 = det(𝑭) measuring the volume ratio 
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is the determinant of the deformation gradient (𝑭). Therefore, the Cauchy stress (𝝈) and the 

elasticity tensor (𝕔) in the spatial configuration are expressed as, 

𝝈 = 𝐽−1𝜒∗(𝑺) = 𝐽
−1𝑭𝑺𝑭𝑇 (B.16) 

𝕔 = 𝐽−1𝜒∗(ℂ), 𝑐𝑎𝑏𝑐𝑑 = 𝐽
−1𝐹𝑎𝐴𝐹𝑏𝐵𝐹𝑐𝐶𝐹𝑑𝐷𝐶𝐴𝐵𝐶𝐷 (B.17) 

 For material constitute model development, the frame indifference (objectivity) must be 

satisfied by introducing objective stress rates. In fact, the objectivity of the material response 

using above formulations have been satisfied, since the elasticity tensor 𝕔 in Equation B.16 is 

with respect to the objective Oldroyd stress rate of the Kirchhoff stress tensor 𝝉 = 𝐽𝝈,  

Oldr(𝝉) = 𝐽𝕔: 𝒅 (B.18) 

where 𝒅 is the rate of deformation tensor. However, in ANSYS (see Mechanical APDL 

Technology Demonstration Guide Chapter 40), the user material is formulated in a co-rotational 

frame, thus the objective Jaumann rate of the Cauchy stress is adopted. Using the Jaumann rate 

(𝝈∇), the constitutive response in the co-rotated frame is given by, 

𝝈∇ = 𝕔𝐽: 𝒅 (B.19) 

where 𝕔𝐽 is the Jaumann tangent stiffness tensor, which is associated with the Cauchy stress (𝝈) 

in Equation B.16 and the elasticity tensor (𝕔) in Equation B.17. Using the index notation, the 

Jaumann tangent stiffness tensor (𝑐𝑖𝑗𝑘𝑙
𝐽

) can be expressed as [133], 

𝑐𝑖𝑗𝑘𝑙
𝐽

= 𝑐𝑖𝑗𝑘𝑙 +
1

2
(𝛿𝑖𝑘𝜎𝑗𝑙 + 𝛿𝑖𝑙𝜎𝑗𝑘 + 𝛿𝑗𝑘𝜎𝑖𝑙 + 𝛿𝑗𝑙𝜎𝑖𝑘) (B.20) 

where 𝜎𝑖𝑗 is the Kronecker delta. Derivation of the Cauchy stress tensor (𝝈) in Equation B.16 and 

the tangent stiffness tensor (𝕔𝐽) with respect to the Jaumann rate in Equation B.20 is a crucial task 

for development of a user material using ANSYS USERMAT FORTRAN subroutine. For 

hyperelastic materials, the total 36 components in 𝑐𝑖𝑗𝑘𝑙
𝐽

 have only 21 independent components 

according to the major and minor symmetries [134]. 
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B.2. Development of User Material Subroutine for Annular Lamellae 

 A user material subroutine (ANSYS USERMAT subroutine) was developed to simulate 

the fiber reinforced annular lamellae. The main task of user material development is to derive the 

Cauchy stress tensor (𝝈, Equation B.16) and the tangent stiffness tensor (𝑐𝑖𝑗𝑘𝑙
𝐽

, Equation B.20) 

with respect to the Jaumann rate, both of which are required in Newton-Raphson nonlinear 

numerical method. The strain energy function of the AF composite material is:  

𝛹𝐴𝐹(𝐽, 𝐼1̅, 𝜆1, 𝜆2) = 𝛹𝑣𝑜𝑙
𝐴𝐹(𝐽) + 𝛹𝑖𝑠𝑜

𝐴𝐹(𝐼1̅) + 𝛹𝑓𝑖𝑏
𝐴𝐹(𝜆𝒂) + 𝛹𝑓𝑖𝑏

𝐴𝐹(𝜆𝒈) (B.21) 

where, 

𝛹𝑣𝑜𝑙
𝐴𝐹(𝐽) =

𝜅

2
(𝐽 − 1)2 (B.22) 

𝛹𝑖𝑠𝑜
𝐴𝐹(𝐼1̅) = 𝑐1(𝐼1̅ − 3) + 𝑐2(𝐼1̅ − 3)

2 (B.23) 

𝛹𝑓𝑖𝑏
𝐴𝐹(𝜆) =

{
 
 

 
 

0, 𝜆 < 1

𝑐3 {
1

𝑐4
[𝑒𝑐4(𝜆−1) − 1] − (𝜆 − 1)} , 1 ≤ 𝜆 < 𝑐5

𝐸∗

2
(𝜆 − 𝑐5)

2 + 𝑇∗(𝜆 − 𝑐5) + 𝛹
∗, 𝜆 ≥ 𝑐5

 (B.24) 

 The calculus calculation results of stress tensors and elasticity tensors of the AF 

composite were presented as follows. 

 

B.2.1. Volumetric Part, 𝛹𝑣𝑜𝑙
𝐴𝐹(𝐽) 

 According to Equation B.22, the derived stresses and elasticity tensors of the volumetric 

part were listed below, 

𝑺𝑣𝑜𝑙
𝐴𝐹 = 2

𝜕𝛹𝑣𝑜𝑙
𝐴𝐹(𝐽)

𝜕𝑪
= 𝜅𝐽(𝐽 − 1)𝑪−1 (B.25) 

𝝈𝑣𝑜𝑙
𝐴𝐹 = 𝐽−1𝜒∗(𝑺𝑣𝑜𝑙

𝐴𝐹 ) = 𝜅(𝐽 − 1)𝑰 (B.26) 

ℂ𝑣𝑜𝑙
𝐴𝐹 = 2

𝜕𝑺𝑣𝑜𝑙
𝐴𝐹

𝜕𝑪
= 𝜅𝐽[(2𝐽 − 1)𝑪−1⊗𝑪−1 − 2(𝐽 − 1)𝑪−1⊙𝑪−1] (B.27) 
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𝕔𝑣𝑜𝑙
𝐴𝐹 = 𝐽−1𝜒∗(ℂ𝑣𝑜𝑙

𝐴𝐹 ) = 𝜅𝐽[(2𝐽 − 1)𝑰 ⊗ 𝑰 − 2(𝐽 − 1)𝕀] (B.28) 

where 𝑰 = 𝛿𝑖𝑗𝒆𝑖⊗𝒆𝑗 is the unit tensor with the components expressed by the Kronecker delta 

symbol (𝛿𝑖𝑗). The operation 𝑪−1⊙𝑪−1 =
1

2
(𝐶𝐼𝐾

−1𝐶𝐽𝐿
−1 + 𝐶𝐼𝐿

−1𝐶𝐽𝐾
−1) results into a 4th-order tensor, 

which is pushed forward to obtain a 4th-order unit tensor 𝕀 = 𝜒∗(𝑪
−1⊙𝑪−1) =

1

2
(𝛿𝑖𝑘𝛿𝑗𝑙 +

𝛿𝑖𝑙𝛿𝑗𝑘). 

 

B.2.2. Isochoric Part, 𝛹𝑖𝑠𝑜
𝐴𝐹(𝐼1̅) 

 According to Equation B.23, the derived stresses and elasticity tensors of the isochoric 

part were listed below, 

𝑺𝑖𝑠𝑜
𝐴𝐹 = 2

𝜕𝛹𝑖𝑠𝑜
𝐴𝐹(𝐼1̅)

𝜕𝑪
= 2𝐽−2/3[𝑐1 + 2𝑐2(𝐼1̅ − 3)](𝑰 −

𝐼1
3
𝑪−1) (B.29) 

𝝈𝑖𝑠𝑜
𝐴𝐹 = 𝐽−1𝜒∗(𝑺𝑖𝑠𝑜

𝐴𝐹 ) = 2𝐽−1[𝑐1 + 2𝑐2(𝐼1̅ − 3)](𝒃̅ −
𝐼1̅
3
𝑰) (B.30) 

ℂ𝑖𝑠𝑜
𝐴𝐹 = 2

𝜕𝑺𝑖𝑠𝑜
𝐴𝐹

𝜕𝑪
= 8𝑐2𝐽

−4/3 (𝑰 ⊗ 𝑰 −
𝐼1
3
𝑰 ⊗ 𝑪−1 −

𝐼1
3
𝑪−1⊗ 𝑰 +

𝐼1
2

9
𝑪−1⊗𝑪−1)

+
4

3
𝐽−2/3[𝑐1 + 2𝑐2(𝐼1̅ − 3)](−𝑰⊗ 𝑪−1 − 𝑪−1⊗ 𝑰 + 𝐼1𝑪

−1⊙𝑪−1

+
𝐼1
3
𝑪−1⊗𝑪−1) 

(B.31) 

𝕔𝑖𝑠𝑜
𝐴𝐹 = 𝐽−1𝜒∗(ℂ𝑖𝑠𝑜

𝐴𝐹)

= 8𝑐2𝐽
−1 (𝒃̅ ⊗ 𝒃̅ −

𝐼1̅
3
𝒃̅ ⊗ 𝑰 −

𝐼1̅
3
𝑰⊗ 𝒃̅ +

𝐼1̅
2

9
𝑰⊗ 𝑰) +

4

3
𝐽−2/3[𝑐1

+ 2𝑐2(𝐼1̅ − 3)](−𝒃̅ ⊗ 𝑰 − 𝑰⊗ 𝒃̅ + 𝐼1𝕀 +
𝐼1
3
𝑰 ⊗ 𝑰) 

(B.32) 

where 𝐼1 = tr(𝑪) is the first invariant of the right Cauchy-Green tensor. The modified left 

Cauchy-Green tensor is defined as 𝒃 = 𝑭 𝑭
𝑇

, in which 𝑭 = 𝐽−1/3 𝑭 such that det(𝑭) = 1. 
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B.2.3. Reinforcing Fiber Part, 𝛹𝑓𝑖𝑏
𝐴𝐹(𝜆𝒂) and 𝛹𝑓𝑖𝑏

𝐴𝐹(𝜆𝒈) 

 According to Equation B.24, the derived stresses and elasticity tensors of the reinforcing 

fiber part 𝛹𝑓𝑖𝑏
𝐴𝐹(𝜆𝒂) with the fiber direction 𝒂 were listed below, 

𝑺𝑓𝑖𝑏
𝐴𝐹 (𝜆𝒂) = 2

𝜕𝛹𝑓𝑖𝑏
𝐴𝐹(𝜆𝒂)

𝜕𝑪
=
1

𝜆𝒂

𝜕𝛹𝑓𝑖𝑏
𝐴𝐹(𝜆)

𝜕𝜆
|
𝜆=𝜆𝒂

𝒂0⊗𝒂0 (B.33) 

𝝈𝑓𝑖𝑏
𝐴𝐹 (𝜆𝒂) = 𝐽

−1𝜒∗ (𝑺𝑓𝑖𝑏
𝐴𝐹 (𝜆𝒂)) =

𝜆𝒂
𝐽

𝜕𝛹𝑓𝑖𝑏
𝐴𝐹(𝜆)

𝜕𝜆
|
𝜆=𝜆𝒂

𝒂⊗ 𝒂 (B.34) 

ℂ𝑓𝑖𝑏
𝐴𝐹 (𝜆𝒂) = 2

𝜕𝑺𝑓𝑖𝑏
𝐴𝐹 (𝜆𝒂)

𝜕𝑪

=
1

𝜆𝒂
2 (
𝜕2𝛹𝑓𝑖𝑏

𝐴𝐹(𝜆)

𝜕𝜆2
|
𝜆=𝜆𝒂

−
1

𝜆𝒂

𝜕𝛹𝑓𝑖𝑏
𝐴𝐹(𝜆)

𝜕𝜆
|
𝜆=𝜆𝒂

)𝒂0⊗𝒂0⊗𝒂0⊗𝒂0 

(B.35) 

𝕔𝑓𝑖𝑏
𝐴𝐹 (𝜆𝒂) = 𝐽

−1𝜒∗ (ℂ𝑓𝑖𝑏
𝐴𝐹 (𝜆𝒂))

=
𝜆𝒂
2

𝐽
(
𝜕2𝛹𝑓𝑖𝑏

𝐴𝐹(𝜆)

𝜕𝜆2
|
𝜆=𝜆𝒂

−
1

𝜆𝒂

𝜕𝛹𝑓𝑖𝑏
𝐴𝐹(𝜆)

𝜕𝜆
|
𝜆=𝜆𝒂

)𝒂⊗ 𝒂⊗ 𝒂⊗ 𝒂 

(B.36) 

It is worth noting that both projection tensors 𝒂0⊗𝒂0 and 𝒂⊗ 𝒂 in Equations B.33 and B.34 

indicate that the stress states of the fibers are uniaxial tension in both the reference and spatial 

configurations.  

 Similarly, the stress tensors (Equations B.33 and B.34) and elasticity tensors (Equations 

B.35 and B.36) of another reinforcing fiber part 𝛹𝑓𝑖𝑏
𝐴𝐹(𝜆𝒈) in the fiber direction 𝒈 can be written 

by replacing 𝒂 by 𝒈 and 𝜆𝒂 by 𝜆𝒈, as presented below: 

𝑺𝑓𝑖𝑏
𝐴𝐹 (𝜆𝒈) = 2

𝜕𝛹𝑓𝑖𝑏
𝐴𝐹(𝜆𝒈)

𝜕𝑪
=
1

𝜆𝒈

𝜕𝛹𝑓𝑖𝑏
𝐴𝐹(𝜆)

𝜕𝜆
|
𝜆=𝜆𝒈

𝒈0⊗𝒈0 (B.37) 

𝝈𝑓𝑖𝑏
𝐴𝐹 (𝜆𝒈) = 𝐽

−1𝜒∗ (𝑺𝑓𝑖𝑏
𝐴𝐹 (𝜆𝒈)) =

𝜆𝒈

𝐽

𝜕𝛹𝑓𝑖𝑏
𝐴𝐹(𝜆)

𝜕𝜆
|
𝜆=𝜆𝒈

𝒈⊗𝒈 (B.38) 
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ℂ𝑓𝑖𝑏
𝐴𝐹 (𝜆𝒈) = 2

𝜕𝑺𝑓𝑖𝑏
𝐴𝐹 (𝜆𝒈)

𝜕𝑪

=
1

𝜆𝒈
2 (

𝜕2𝛹𝑓𝑖𝑏
𝐴𝐹(𝜆)

𝜕𝜆2
|
𝜆=𝜆𝒈

−
1

𝜆𝒈

𝜕𝛹𝑓𝑖𝑏
𝐴𝐹(𝜆)

𝜕𝜆
|
𝜆=𝜆𝒈

)𝒈0⊗𝒈0⊗𝒈0⊗𝒈0 

(B.39) 

𝕔𝑓𝑖𝑏
𝐴𝐹 (𝜆𝒈) = 𝐽

−1𝜒∗ (ℂ𝑓𝑖𝑏
𝐴𝐹 (𝜆𝒈))

=
𝜆𝒈
2

𝐽
(
𝜕2𝛹𝑓𝑖𝑏

𝐴𝐹(𝜆)

𝜕𝜆2
|
𝜆=𝜆𝒈

−
1

𝜆𝒈

𝜕𝛹𝑓𝑖𝑏
𝐴𝐹(𝜆)

𝜕𝜆
|
𝜆=𝜆𝒈

)𝒈⊗𝒈⊗𝒈⊗𝒈 

(B.40) 

 

B.2.4. Resultant Stress Tensor and Elasticity Tensor of Annular Lamellae 

 In summary, the Cauchy stress 𝝈𝐴𝐹  of the AF composite material is the superposition of 

each Cauchy stress part (Equations B.26, B.30, B.34 and B.38): 

𝝈𝐴𝐹 = 𝝈𝑣𝑜𝑙
𝐴𝐹 + 𝝈𝑖𝑠𝑜

𝐴𝐹 + 𝝈𝑓𝑖𝑏
𝐴𝐹 (𝜆𝒂) + 𝝈𝑓𝑖𝑏

𝐴𝐹 (𝜆𝒈) (B.41) 

 The elasticity tensor 𝕔𝐴𝐹 with respect to Oldroyd stress rate of the AF composite material 

is the superposition of each elasticity tensor (Equations B.28, B.32, B.36 and B.40): 

𝕔𝐴𝐹 = 𝕔𝑣𝑜𝑙
𝐴𝐹 + 𝕔𝑖𝑠𝑜

𝐴𝐹 + 𝕔𝑓𝑖𝑏
𝐴𝐹 (𝜆𝒂) + 𝕔𝑓𝑖𝑏

𝐴𝐹 (𝜆𝒈) (B.42) 

 Substituting the Cauchy stress tensor (Equation B.41) and the Oldroyd elasticity tensor 

(Equation B.42) into Equation B.20, the Jaumann tangent stiffness tensor of the AF composite 

material is obtained [133, 134]: 

𝑐𝑖𝑗𝑘𝑙
𝐽 𝐴𝐹

= 𝑐𝑖𝑗𝑘𝑙
𝐴𝐹 +

1

2
(𝛿𝑖𝑘𝜎𝑗𝑙

𝐴𝐹 + 𝛿𝑖𝑙𝜎𝑗𝑘
𝐴𝐹 + 𝛿𝑗𝑘𝜎𝑖𝑙

𝐴𝐹 + 𝛿𝑗𝑙𝜎𝑖𝑘
𝐴𝐹) (B.43) 

 

B.3. Element Patch Test of Continuum and Discrete Material Models 

 To validate the two-family fiber reinforced material subroutine, smear reinforcing 

elements (REINF265) in ANSYS were employed to model the equivalent composite with 

crossing patterned fiber layers (Figure B.2), using a reported modeling technique [35, 97]. The 
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matrix element (SOLID185) was assigned the modified Yeoh material properties (Equations B.22 

and B.23) using the material model provided by ANSYS. Since REINF265 is a 1-D material 

element (ANSYS Mechanical APDL 15.0 Element Reference), a 1-D material subroutine using 

the formulation of the reinforcing fiber part (Equations B.24) was developed to model the single 

lamellar material behavior.  

 

Figure B.2: Modeling of fiber reinforced composite using reinforcing elements (REINF265) [35], 

modified with permission from Springer Nature. 

 

 In a three-element patch test (Figure B.3), material properties (𝜅 = 73.521 MPa, 𝑐1 = 

38.793 kPa, 𝑐2 = 55.049 MPa, 𝑐3 = 0.015, 𝑐4 = 206.661, 𝑐5 = 1.018) of the outermost annular 

lamellae at the disc anterior fitted from experimental data [19, 38] were assigned to both the 

continuum material model (two-family fiber reinforced material subroutine) and the discrete 

material model (solid matrix elements + reinforcing elements).  

 

Figure B.3: Modeling of fiber reinforced composite using reinforcing elements (REINF265). 
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 The fiber angles with respect to the X-Z plane were chosen as 0 °, 23.2°, 46.6°, 60° and 

90°, respectively. Especially, 23.2° and 46.6° correspond to the fiber angles within the anterior 

and posterior annular lamellae of lumbar discs, respectively, according to previously reported in-

vitro measurements [19]. During loading and unloading, a displacement in the Y direction was 

applied on the top of the patch model, and the normal displacements at the planes of X = 0, Y = 0 

and Z = 0 were constrained. 

 The element patch test (Figure B.4) demonstrates that the force-displacement behaviors 

using the continuum material model exactly match those using the well-established ANSYS 

material models and elements. For the fiber angle of 0 ° and 23.2°, the continuum material model 

has a better convergence capability, since fewer iterations were performed. It is worth noting that 

fibers in 23.2° (the fiber angle measured at the anterior lamellae in the in-vitro experiment) are 

not capable of reinforcing the matrix using both material models, as compared with fibers in 0°.  

 

Figure B.4: Comparison of the material responses in loading and unloading using different 

material modeling techniques. 
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Appendix C: Artificial Neural Network Based Multiobjective Optimization Algorithm 

 

 In a traditional design optimization algorithm, finite element (FE) analysis is performed 

in each optimization iteration in order to provide a black-box cost function. Generally, 

evolutionary optimization algorithms (e.g., gradient descent algorithm or BFGS algorithm) 

require the gradient of the cost function with respect to each design variable. Although it can be 

approximated using the finite difference method in an optimization algorithm, the implementation 

of the numerical gradient typically causes a computational cost multi-fold higher than that using 

the analytical gradient.  

 Moreover, it is difficult to ensure the convergence of FE analysis in each optimization 

iteration. Therefore, additional measures, such as assigning a large value to the cost function 

when FE analysis fails, need to be taken to prevent the termination of the optimization program. 

However, it may cause an inaccurate numerical gradient, which is a concern for the optimal 

solution.  

 At last but not least, multiple local optimums may exist in a non-convex cost function. To 

estimate the global optimum, it is essential to run the optimization program many times by 

random initialization of design variables. When the computational cost of FE analysis in each 

optimization iteration is expensive, it would be extremely time-consuming to run design 

optimization many times. In our previous work, we employed a workstation with 2 processors 

and 384 GB RAM. A single-objective optimization spent approximately 1 week, in which each 

iteration (FE analysis) took 30 min. To fit a 2-D Pareto curve, 10 optimizations were performed, 

and spent about 10 weeks. Thus the traditional design optimization method is not suitable for tri-
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objective optimization, where 50-300 optimizations need to perform depending on the grid 

density of the 3-D Pareto frontier.  

 These problems have been well addressed by developing a neural network based 

surrogate model to fit the response surface of FE analysis. Furthermore, we formulated the 

analytical gradient of a feed-forward neural network, which was incorporated into a 

multiobjective optimization algorithm to generate the complete Pareto frontier. 

 

C.1. Artificial Neural Network Architecture and Related Formulations 

  Machine learning using an artificial neural network (NN) is inherently a multiobjective 

task [135]. Therefore, multiobjective optimization and multi-output neural network would be a 

good combination. A feed-forward three-layer neural network was employed to fit a vector-

valued objective function (𝒚) of a design variable vector (𝒙) in multiobjective optimization. 

Theoretically, a three-layer NN can fit any continuous functions. We also hypothesized that the 

NN accuracy for a multivariate, multi-output regression problem would not be compromised, if 

there was a correlation among the NN outputs. 

 

C.1.1. Formulation of a Single Neuron 

 The representation of a single neuron in a NN is shown in Figure C.1. Each neuron is 

allowed to receive multiple inputs but only yield one output. The output (𝑜𝑗
(𝑘)

) of a neuron is a 

nonlinear activation of the linear combination of outputs (𝑜𝑖
(𝑘−1)

) at the former layer. The output 

of a neuron 𝑗 at layer 𝑘 can be expressed as: 

𝑜𝑗
(𝑘)

= 𝑎(𝑧𝑗
(𝑘)
) (C.1) 

where the superscript 𝑘 in a parenthesis indicates the layer, and the subscript 𝑗 the neuron at the 

layer 𝑘. 𝑎(•) is an element-wise activation function. For the purpose of introducing nonlinearity, 
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it is often chosen to be a nonlinear function, such as the sigmoid function or hyperbolic tangent 

function. Particularly, the activation can be chosen as an identity function, such that 𝑜𝑗
(𝑘)

= 𝑧𝑗
(𝑘)

, 

meaning no activation.  

 

Figure C.1: Illustration of a single neuron at layer 𝑘, that processes the multiple outputs of the 

neurons at layer 𝑘 − 1, where the orange neuron represents the bias neuron. 

 

 The activation function is applied to the linear combination of outputs (𝑜𝑖
(𝑘−1)

) at the 

former layer (𝑘 − 1), which is denoted by 𝑧𝑗
(𝑘)

, 

𝑧𝑗
(𝑘)

= ∑ 𝑤𝑗𝑖
(𝑘)
𝑜𝑖
(𝑘−1)

𝑟𝑘−1

𝑖=0

= 𝑤𝑗0
(𝑘)
𝑜0
(𝑘−1)

+ ∑ 𝑤𝑗𝑖
(𝑘)
𝑜𝑖
(𝑘−1)

𝑟𝑘−1

𝑖=1

= 𝑏𝑗
(𝑘)
+ ∑ 𝑤𝑗𝑖

(𝑘)
𝑜𝑖
(𝑘−1)

𝑟𝑘−1

𝑖=1

 (C.2) 

where 𝑤𝑗𝑖
(𝑘)

 is NN weights of outputs (𝑜𝑖
(𝑘−1)

) at the former layer (𝑘 − 1). By holding the output 

of the bias neuron always equal to 1, i.e., 𝑜0
(𝑘−1)

≡ 1, we introduced a bias term, 𝑏𝑗
(𝑘)

, 

representing the constant intercept of the linear combination. Therefore, the bias term is always 

equal to the weight of the bias neuron, 

𝑏𝑗
(𝑘)

= 𝑤𝑗0
(𝑘)

 (C.3) 

 

C.1.2. Formulation of a Three-layer Multi-output Feed-forward Neural Network 
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 For a feed-forward NN, information always moves toward the direction of outputs, and 

never goes backwards. The architecture of a three-layer multi-output feed-forward NN was 

presented in Figure C.2. It consists of an input layer (𝑘 = 0) with 𝑟0 neurons, a hidden layer 

(𝑘 = 1) with 𝑟1 = 𝑟ℎ neurons, and an output layer (𝑘 = 2) with 𝑟2 neurons. For regression 

problems, nonlinear activation functions (e.g., sigmoid / hyperbolic tangent functions) are 

adopted in neurons at the hidden layer. However, the identity activation function was used in both 

the input layer and the output layer, thus causing no activation.  

 

Figure C.2: The architecture of a three-layer multi-output feed-forward NN. 

 

 In this study, each neuron at the hidden layer was assigned a hyperbolic tangent 

activation function. The expressions of the hyperbolic tangent function and its derivative are 

shown below: 

𝑎(𝑥) = tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (C.4) 

𝑎′(𝑥) =
dtanh(𝑥)

d𝑥
= 1 − 𝑎2(𝑥) (C.5) 

 Using Equations C.1 and C.2, we can derive the outputs (predictions) of the NN (Figure 

C.2) as a function of the NN inputs along the inverse direction from the output layer to the input 

layer, 
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𝑦𝑘 = 𝑜𝑘
(2)
=∑𝑤𝑘𝑗

(2)
𝑜𝑗
(1)

𝑟1

𝑗=0

= 𝑏𝑘
(2)
+∑𝑤𝑘𝑗

(2)
𝑜𝑗
(1)

𝑟1

𝑗=1

= 𝑏𝑘
(2)
+∑𝑤𝑘𝑗

(2)
𝑎(∑𝑤𝑗𝑖

(1)
𝑜𝑖
(0)

𝑟0

𝑖=0

)

𝑟1

𝑗=1

 

= 𝑏𝑘
(2)
+∑𝑤𝑘𝑗

(2)
𝑎(𝑏𝑗

(1)
+∑𝑤𝑗𝑖

(1)
𝑜𝑖
(0)

𝑟0

𝑖=1

)

𝑟1

𝑗=1

= 𝑏𝑘
(2)
+∑𝑤𝑘𝑗

(2)
𝑎(𝑏𝑗

(1)
+∑𝑤𝑗𝑖

(1)
𝑥𝑖

𝑟0

𝑖=1

)

𝑟1

𝑗=1

 

(C.6) 

Alternatively, with the vectorized implementation, we have: 

𝒚 = 𝒃(2) +𝒘(2)𝑎(𝒃(1) +𝒘(1)𝒙) (C.7) 

In Equation C.6 or C.7, it is noted that both the input layer and the output layer has no activation. 

The element-wise hyperbolic tangent activation function (Equation C.4) was only applied to the 

hidden layer with 𝑟1 neurons. 

 

C.1.3. Formulation of the Gradients of the NN Outputs with respect to the NN Inputs 

 A numeric optimization program, such as the gradient descent algorithm or BFGS 

algorithm, can be efficiently executed, only when the analytic gradients of the cost functions with 

respect to the design variables are provided. Moreover, due to the existence of local optimums for 

a nonconvex cost function, an optimization needs to be performed many times, in order to 

estimate the global optimum. According to Equation C.6, it can be observed that the NN outputs 

with respect to the inputs are continuously differentiable, so their derivatives or gradients exist. 

 We further write the NN outputs (Equation C.6) with respect to the inputs using the index 

notation, as we have adopted in Chapter 3 to conduct the tensor calculus, 

𝑦𝑘 = 𝑏𝑘
(2)
+ 𝑤𝑘𝑗

(2)
𝑎(𝑏𝑗

(1)
+ 𝑤𝑗𝑖

(1)
𝑥𝑖) (C.8) 

 By taking derivatives of Equation 8, the gradients of the NN outputs with respect to the 

NN inputs is obtained, 

𝜕𝑦𝑘

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖
[𝑤𝑘𝑗

(2)
𝑎(𝑏𝑗

(1)
+ 𝑤𝑗𝑖

(1)
𝑥𝑖)] = 𝑤𝑘𝑗

(2) 𝜕

𝜕𝑥𝑖
𝑎(𝑏𝑗

(1)
+ 𝑤𝑗𝑖

(1)
𝑥𝑖)  

= 𝑤𝑘𝑗
(2)
[𝑎′ (𝑧𝑗

(1)
)
𝜕

𝜕𝑥𝑖
(𝑧𝑗

(1)
)] = 𝑤𝑘𝑗

(2)
[𝑎′ (𝑧𝑗

(1)
)𝑤𝑗𝑖

(1)
] 

(C.9) 
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where for simplicity, we let 𝑧𝑗
(1)
= 𝑏𝑗

(1)
+𝑤𝑗𝑖

(1)
𝑥𝑖. The underline blew the subscript 𝑗 indicates 

the element-wise multiplication, i.e., the repeated index does not undergo the summation 

contraction. 𝑎′(•) is the derivative of the element-wise hyperbolic tangent activation function 

(Equation C.5). 

 Alternatively, with the matriculated implementation, 

grad 𝒚(𝒙) =
𝜕𝒚

𝜕𝒙
= 𝒘(2)[𝑎′(𝒃(1) +𝒘(1)𝒙)⊗ 𝒆𝑟1 ∘ 𝒘

(1)] (C.10) 

where ⊗ denotes the outer product. ∘ denotes the component-wise product (no summation 

contraction). 𝒆𝑟1  is a vector of all ones with the dimension of 𝑟1, and 𝑟1 is the number of neurons 

at the hidden layer. 

 

C.1.4. Data Scaling 

 As shown in Figure C.3, the derivative of the hyperbolic tangent active function vanishes, 

outside the range between -2 and +2. It causes a slow NN training (i.e., optimization of the NN 

weights using the error function which is derived from the error backpropagation procedure; for 

the NN architecture in this study, please be referred to [136]), due to the small sensitivity of the 

error function to the change in NN weights. Here, we scaled both the NN inputs and 

outputs/predictions to [-1, +1] during NN training. After training, the normalized 

outputs/predictions (Equation C.6) were converted back to the true scale. Correspondingly, it 

should be noted that a difference in the formulation of gradients (Equation C.9) exists between 

using true scale and using normalized scale. 
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Figure C.3: The plot of the hyperbolic tangent function in Equation C.4.  

  

 The sample size (the number of input-output pairs or feature-target pairs or examples) in 

the training dataset is denoted by 𝑝. The dimension of each feature is 𝑛, equal to the number of 

NN inputs, i.e., 𝑛 = 𝑟0. The dimension of each target/label is 𝑚, equal to the number of NN 

outputs, i.e., 𝑚 = 𝑟2. Therefore, we can define a feature matrix (𝑋) and a target matrix (𝑇) to 

describe the training dataset. 

𝑿 = [𝒙(1) 𝒙(2) ⋯ 𝒙(𝑝)] =

[
 
 
 
 𝑥1
(1)

𝑥1
(2)

⋯ 𝑥1
(𝑝)

𝑥2
(1)

𝑥2
(2)

⋯ 𝑥2
(𝑝)

  ⋮    ⋮    ⋱    ⋮  

𝑥𝑛
(1)

𝑥𝑛
(2)

⋯ 𝑥𝑛
(𝑝)
]
 
 
 
 

 (C.11) 

𝑻 = [𝒕(1) 𝒕(2) ⋯ 𝒕(𝑝)] =

[
 
 
 
 𝑡1
(1)

𝑡1
(2)

⋯ 𝑡1
(𝑝)

𝑡2
(1)

𝑡2
(2)

⋯ 𝑡2
(𝑝)

  ⋮    ⋮    ⋱    ⋮  

𝑡𝑚
(1)

𝑡𝑚
(2)

⋯ 𝑡𝑚
(𝑝)
]
 
 
 
 

 (C.12) 

 The maxima and minima of the feature are written as, 

𝒙max = max
row

𝑿 , 𝒙min = min
row

𝑿 (C.13) 

where max
row

 and min
row

 indicate the operation to calculate the maxima and minima of a matrix by 

rows, thus generating column vectors. 

 The maxima and minima of the target are written as, 

𝒕max = max
row

𝑻 , 𝒕min = min
row

𝑻 (C.14) 

 Now, we scale both the NN inputs and outputs to [-1, +1],  
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𝒙̃ =
2(𝒙 − 𝒙𝑚𝑖𝑛)

𝒙𝑚𝑎𝑥 − 𝒙𝑚𝑖𝑛
− 1 𝑜𝑟 𝒙 =

𝒙𝑚𝑎𝑥 − 𝒙𝑚𝑖𝑛
2

𝒙̃ + 𝒙𝑚𝑖𝑛 + 1 (C.15) 

𝒚̃ =
2(𝒚 − 𝒕𝑚𝑖𝑛)

𝒕𝑚𝑎𝑥 − 𝒕𝑚𝑖𝑛
− 1 𝑜𝑟 𝒚 =

𝒕𝑚𝑎𝑥 − 𝒕𝑚𝑖𝑛
2

𝒚̃ + 𝒕𝑚𝑖𝑛 + 1 (C.16) 

where 𝒙, 𝒚 and 𝒙̃, 𝒚̃ the NN inputs and outputs on the true scale and the normalized scale, 

respectively. It is worth noting that all operations in Equations C.15 and C.16 are element-wise 

vector operations.  

 Correspondingly, the relationship between the gradients (Equation C.9) on the true scale 

(
𝜕𝒚

𝜕𝒙
) and the normalized scale (

𝜕𝒚̃

𝜕𝒙̃
) can be established, 

𝜕𝒚

𝜕𝒙
=
(𝒕𝑚𝑎𝑥 − 𝒕𝑚𝑖𝑛) ⊗ 𝒆𝑛
𝒆𝑚⊗ (𝒙𝑚𝑎𝑥 − 𝒙𝑚𝑖𝑛)

𝜕𝒚̃

𝜕𝒙̃
 (C.17) 

where the division and multiplication are the component-wise operations for the matrices with the 

dimension of 𝑚 × 𝑛, after the outer products (⊗) of vectors are computed. 𝒆𝑚 and 𝒆𝑛 are the 

vectors whose elements are all ones with the dimension of 𝑚 and 𝑛, respectively. 

 

C.1.5. Numerical Gradients 

 To validate the derivation of analytic gradients (Equation C.17), they can be compared 

with the numerical gradients. Using the two-sided finite difference method, the numerical 

gradients of the NN outputs/predictions (𝑦𝑗) with respect to the NN inputs (𝑥𝑖) can be calculated, 

𝜕𝑦𝑗

𝜕𝑥𝑖
≈
𝑦𝑗(𝑥1, 𝑥2,  ⋯ , 𝑥𝑖 + 𝜀,⋯ , 𝑥𝑛) − 𝑦𝑗(𝑥1, 𝑥2,  ⋯ , 𝑥𝑖 − 𝜀,⋯ , 𝑥𝑛)

2𝜀
 (C.18) 

where the NN outputs/predictions are denoted by 𝑦𝑗(𝑥𝑖), 𝑗 = 1, 2, ⋯, 𝑚 and 𝑖 = 1, 2, ⋯, 𝑛. 𝜀 is a 

very small number; here, it was set to be 𝜀 = 10−4. If the analytical gradient is correctly 

formulated, the difference from the numerical gradient should be smaller than 10−9. 

 

C.2. Complete Pareto Frontier Multiobjective Optimization Algorithm 
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C.2.1. Statement of Generic Multiobjective Optimization Problem 

 The generic multiobjective optimization (MOO) problem can be stated as follows [88, 

119, 137]: 

min
𝒙
𝒚 (𝒙) (C.19) 

subject to 

𝒙𝑙𝑏 ≤ 𝒙 ≤ 𝒙𝑢𝑏 (C.20) 

𝒈(𝒙) ≤ 𝟎 (C.21) 

𝒉(𝒙) = 𝟎 (C.22) 

where min denotes multiobjective optimization, instead of simultaneously / individually 

minimizing each objective. 𝒚 is an 𝑚-dimensional (𝑚-D) vector of design objectives in the 

objective space (ℝ𝒚
𝑚). 𝒙 is an 𝑛-dimensional (𝑛-D) vector of design variables in the design space 

(ℝ𝒙
𝑛), with a lower boundary (𝒙𝑙𝑏) and upper boundary (𝒙𝑢𝑏), respectively. 𝒈 and 𝒉 are inequality 

and equality constraint vectors in the MOO problem, respectively. The set of design variables that 

satisfy Equations C.20, C.21 and C.22 is the feasible design space (𝛺𝒙), corresponding to the 

feasible objective space (𝛺𝒚). In this study, continuously differentiable objective/cost functions 

𝒚(𝒙) are fitted using the neural network described in the previous section. Therefore, the design 

variables (𝒙) and design objectives (𝒚) exactly match the NN inputs and outputs/predictions 

(Equation C.6). 

 In this study, we combined the previously reported normal-boundary intersection (NBI) 

algorithm [118] and the normal constraint (NC) algorithm [88, 137] to develop a MOO algorithm, 

which enables an even representation of the complete Pareto frontier. 

 

C.2.2. Basic Concepts in Multiobjective Optimization 

1) Anchor Points 
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 Using single-objective optimization, the optimal solutions (𝒙𝑗∗) of the design variables in 

the feasible design space (𝛺𝒙) corresponding to respective individual objectives (𝑦𝑗) can be 

obtained. The corresponding points in the feasible objective space (𝛺𝒚) are defined as the anchor 

points (𝒚𝑗∗), 

𝒚𝑗∗ = 𝒚(𝒙𝑗∗) = [𝑦1(𝒙
𝑗∗) 𝑦2(𝒙

𝑗∗) ⋯ 𝑦𝑚(𝒙
𝑗∗)]𝑇 , 𝑗 = 1, 2,⋯ ,𝑚 (C.23) 

For example, in a three-dimensional (3-D, 𝑚 = 3) objective space (Figure C.4a), there are three 

anchor points (𝒚1∗, 𝒚2∗, and 𝒚3∗).  

 

Figure C.4: Illustration of the Utopian polygon in the 3-D feasible objective space, modified from 

[88] with Dr. Achille Messac’s permission. (a) The Utopian plane defined by the triangle section 

consisting of three anchor points in the 3-D objective space; (b) Unobtainable Pareto solutions 

(hatched regions) which are located outside the normal projection of the Utopian polygon. The 

view direction has been rotated such that it is normal to the Utopian plane. 

 

2) Utopian Plane 

 By sequentially connecting anchor points (𝒚𝑗∗), a Utopian polygon is formed on a plane 

which is termed as the Utopian plane. In a 3-D objective space, the Utopian plane is determined 

by a triangle consisting of the three anchor points (Figure C.4a).  

 

3) Pay-off Matrix 

 We defined a 𝑚 ×𝑚 matrix whose components are the coordinates of anchor points in 

the objective space. This matrix is sometimes known as the pay-off matrix (𝜱). 
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𝜱 = [𝒚1∗ 𝒚2∗ ⋯ 𝒚𝑚∗] =

[
 
 
 
𝑦1
1∗ 𝑦1

2∗ ⋯ 𝑦1
𝑚∗

𝑦2
1∗ 𝑦2

2∗ ⋯ 𝑦2
𝑚∗

  ⋮    ⋮    ⋱    ⋮  
𝑦𝑚
1∗ 𝑦𝑚

2∗ ⋯ 𝑦𝑚
𝑚∗]
 
 
 

 (C.24) 

 

4) Utopia Point 

 The Utopia point (𝒚𝑈) is a point in the objective space when all objectives are 

simultaneously at their best values, corresponding to the diagonal components of the pay-off 

matrix, 

𝒚𝑈 = [𝑦1(𝒙
1∗) 𝑦2(𝒙

2∗) ⋯ 𝑦𝑚(𝒙
𝑚∗)]𝑇 (C.25) 

 

5) Pseudo Nadir Point 

 The pseudo Nadir point (𝒚𝑃) is defined as a point in the objective space, each of whose 

coordinates is the maximum of the components in each row of the pay-off matrix. 

𝒚𝑃 = max
row

 𝜱 (C.26) 

 

6) Nadir Point 

 Differently, the Nadir point (𝒚𝑁) is located where all objectives are simultaneously at 

their worst values in the objective space, 

𝒚𝑁 = [𝑦1
𝑁 𝑦2

𝑁 ⋯ 𝑦𝑚
𝑁]𝑇 (C.27) 

where each coordinate, 𝑦𝑗
𝑁, is defined as the maximum of the 𝑗th objective which is obtained 

using single-objective optimization, 

𝑦𝑗
𝑁 = max

𝒙
𝑦𝑗(𝒙) = min

𝒙
[−𝑦𝑗(𝒙)] , 𝑗 = 1, 2,⋯ ,𝑚 (C.28) 

subject to Equations C.20, C.21 and C.22. 
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 Since we have introduced neural network, we can compute NN predictions (𝒀) given by 

features (𝑿) with a sufficiently large sample size (𝑝). By the matriculated implementation of 

Equation C.6 or 7.7, we can compute multiple NN predictions in parallel: 

𝒀 = 𝒃(2)⊗𝒆𝑝 +𝒘
(2)𝑎(𝒃(1)⊗𝒆𝑝 +𝒘

(1)𝑿) (C.29) 

where 𝒆𝑝 is a vector of all ones with the dimension of 𝑝. As a result, 𝒀 can be written as, 

𝒀 = [𝒚(1) 𝒚(2) ⋯ 𝒚(𝑝)] =

[
 
 
 
 𝑦1
(1)

𝑦1
(2)

⋯ 𝑦1
(𝑝)

𝑦2
(1)

𝑦2
(2)

⋯ 𝑦2
(𝑝)

  ⋮    ⋮    ⋱    ⋮  

𝑦𝑚
(1)

𝑦𝑚
(2)

⋯ 𝑦𝑚
(𝑝)
]
 
 
 
 

 (C.30) 

 Therefore, the Nadir point can be estimated using the maximum NN predictions for a 

large sample: 

𝒚𝑁 = max
row

 𝒀 (C.31) 

 

C.2.3. Discretization of Utopian Plane Covering Complete Pareto Frontier 

 In a high-dimensional (𝑚 ≥ 3) objective space, the entire set of Pareto solutions cannot 

be completely covered by the normal projection of the Utopian polygon consisting of anchor 

points [119], as illustrated by an example in the 3-D objective space in Figure C.4b. To address 

the problem, the Utopian polygon needs to be enlarged, such that a sufficiently large Utopian 

plane can cover the complete Pareto frontier (the entire set of Pareto solutions).  

 By implementing a parameterization method [88], a point (𝒚𝑢𝑡𝑝) on the extended Utopian 

plane section can be written as, 

𝒚𝑢𝑡𝑝 = 𝜱𝜼 𝑜𝑟 𝑦𝑖
𝑢𝑡𝑝

= 𝛷𝑖𝑗𝜂𝑗 (C.32) 

where 𝜱 is the 𝑚 ×𝑚 square pay-off matrix with the components, 𝛷𝑖𝑗. 𝜼 is a non-dimensional 

parameter vector with its elements, 𝜂𝑗. The non-dimensional parameter 𝜂𝑗 is required to satisfy: 

𝜂𝑗
𝑙𝑏 ≤ 𝜂𝑗 ≤ 𝜂𝑗

𝑢𝑏 , 𝑗 = 1, 2,⋯ ,𝑚 (C.33) 
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and 

∑𝜂𝑗

𝑚

𝑗=1

= 1 (C.34) 

 In a 3-D objective space, all points (𝒚) that satisfy Equations C.32, C.33 and C.34 form a 

discrete Utopian hexagon that enlarges the Utopian triangle consisting of the three anchor points, 

as shown in Figure C.5.  

 

Figure C.5: The discrete Utopian hexagon that enlarged the Utopian triangle in a 3-D objective 

space. 

 

To save computational cost in MOO, it is necessary to determine the lower boundary (𝜂𝑗
𝑙𝑏) 

and upper boundary (𝜂𝑗
𝑢𝑏) of the non-dimensional parameters, as well as filter out redundant 

points that must be projected to dominated regions along the normal of the Utopian plane, such 

that a discrete polygon region enlarged to the appropriate size on the Utopian plane is obtained, as 

shown in Figure C.6. These optimization techniques that eliminate unnecessary regions of the 

Utopian plane section and check of point usefulness have been proposed and well-documented in 

the publication of Messac and Mattson (2004). To avoid repetition, we will not reiterate them 

here. 
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Figure C.6: Illustration of how to select an appropriate Utopian polygon to eliminate unnecessary 

regions, modified from [88] with Dr. Achille Messac’s permission. (a) Enlargement of the 

Utopian triangle comprising the three anchor points; (b) Projection of a hypercube defined by 𝑦𝑈 

and 𝑦𝑃 to determine the Utopian polygon. 

 

 The lower boundary (𝜂𝑗
𝑙𝑏) and upper boundary (𝜂𝑗

𝑢𝑏) of the non-dimensional parameters 

actually depend on how we define the range of the feasible objective space. Therefore, the 

selection of either pseudo Nadir point (𝒚𝑃) or Nadir point (𝒚𝑁) will correspondingly influence the 

optimal size of the Utopian polygon region (Figure C.6). Here, we further introduce a concept of 

the mixed Nadir point (𝒚𝑃/𝑁) whose coordinates can be arbitrarily chosen from either pseudo 

Nadir point (𝒚𝑃) or Nadir point (𝒚𝑁). Using the mixed Nadir point (𝒚𝑃/𝑁), it allows us to more 

flexibly control the size of the Utopian polygon (Figure C.6). For example, the Utopian polygons 

(Figure C.7) represent three cases when the pseudo Nadir point (𝒚𝑃), the Nadir point (𝒚𝑁) or a 

mixed Nadir point (𝒚𝑃/𝑁 = [𝑦1
𝑁 𝑦2

𝑃 𝑦3
𝑁]𝑇) is adopted. 
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Figure C.7: Different Utopian polygons in the objective space. They are controlled by the pseudo 

Nadir point (𝒚𝑃) (a), the Nadir point (𝒚𝑁) (b) and a mixed Nadir point (𝒚𝑃/𝑁 = [𝑦1
𝑁 𝑦2

𝑃 𝑦3
𝑁]𝑇) 

(c), respectively. 

 

C.2.4. Discretization of Slicing Intersection Line on Utopian Plane 

 A complex 3-D curved surface can be better understood using 2-D contours. Similarly, 

the author proposed an algorithm to slice the 3-D Pareto frontier. As illustrated in Figure C.8, an 

intersection line can be obtained by slicing the Utopian plane using a plane. Here, we consider a 

slicing plane parallel to the 𝑦2–𝑦3 coordinate plane located at 𝑦1
𝑠𝑙𝑐. Without loss of generality, the 

size of the slicing plane is regulated by the coordinates of either pseudo Nadir point or Nadir 

point, 𝑦2
𝑃/𝑁

 and 𝑦3
𝑃/𝑁

 in this case. 

 

Figure C.8: The graphic representation of the discretization of a slicing intersection line (yellow) 

between the Utopian plane and a slicing plane. 
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 The equation of the Utopian plane can be expressed in terms of the coordinates (𝑦1, 𝑦2, 

𝑦3 when 𝑚 = 3) of the objective space: 

𝑎𝑦1 + 𝑏𝑦2 + 𝑐𝑦3 + 𝑑 = 0 (C.35) 

where 𝑎, 𝑏, 𝑐, 𝑑 are unknown parameters which need to be solved. It is noted that the Utopian 

plane can be completed determined by the three anchor points (𝒚1∗, 𝒚2∗, 𝒚3∗, when 𝑚 = 3), with 

an additional notion that [𝑎 𝑏 𝑐]𝑇 is the vector normal to the Utopian plane. The unit vector (𝒏𝑢𝑡𝑝) 

normal to the Utopian plane can be obtained by, 

𝒏𝑢𝑡𝑝 = [𝑎 𝑏 𝑐]𝑇 =
𝒗2 × 𝒗1
|𝒗2 × 𝒗1|

 (C.36) 

where 𝒗1 = 𝒚
2∗ − 𝒚1∗ and 𝒗2 = 𝒚

3∗ − 𝒚2∗. By substituting 𝒏𝑢𝑡𝑝 (Equation C.36) and any one of 

anchor points (e.g., 𝒚1∗) into Equation C.35, the remaining parameter 𝑑 is obtained, 

𝑑 = −𝒏𝑢𝑡𝑝 ∙ 𝒚1∗ (C.37) 

 The equation of the slicing intersection line can be obtained by combing the equations of 

the Utopian plane (Equation C.35) and the slicing plane (𝑦1 = 𝑦1
𝑠𝑙𝑐),  

𝑦2 = 𝛼𝑦3 + 𝛽 (C.38) 

where  

𝛼 = −
𝑐

𝑏
, 𝛽 = −

𝑎𝑦1
𝑠𝑙𝑐 + 𝑑

𝑏
 (C.39) 

 The slicing intersection line can be discretized by substituting evenly spaced coordinates 

(e.g., 𝑦2). Since the size of the slicing plane is regulated by 𝑦2
𝑃/𝑁

 and 𝑦3
𝑃/𝑁

, we have the 

following inequalities (Equation C.40): 

{
𝑦2
𝑈 ≤ 𝑦2 ≤ 𝑦2

𝑃/𝑁

𝑦3
𝑈 ≤ 𝑦3 ≤ 𝑦3

𝑃/𝑁
 (C.40) 

Alternatively, 

{
𝑦2
𝑈 ≤ 𝑦2 ≤ 𝑦2

𝑃/𝑁

𝛼𝑦3
𝑈 + 𝛽 ≤ 𝑦2 ≤ 𝛼𝑦3

𝑃/𝑁
+ 𝛽

 (C.41) 
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Therefore, the evenly spaced coordinates of 𝑦2 should be chosen from the range below: 

max (𝑦2
𝑈 , 𝛼𝑦3

𝑈 + 𝛽) ≤ 𝑦2 ≤ min (𝑦2
𝑃/𝑁

, 𝛼𝑦3
𝑃/𝑁

+ 𝛽) (C.42) 

 

C.2.5. Implementation of Normal-boundary Intersection Optimization Algorithm 

 In this study, we are interested in the boundary (𝜕𝛺𝒚) of the feasible objective space (𝛺𝒚, 

Figure C.4a), which is represented by evenly spaced boundary points. The boundary points can be 

obtained by projecting the discretized Utopian plane to the boundary. The technique is well 

known as the normal-boundary intersection (NBI), which was proposed by Das and Dennis 

(1998). It is an efficient approach to address the generic MOO problem (Equation C.19). 

 The NBI can be stated as an optimization problem, in which the solution is the design 

variable vector (𝒙) corresponding to points on the boundary (𝜕𝛺𝒚) of the feasible objective space 

(𝛺𝒚): 

max
𝒙,𝜌

 𝜌 ⇒ min
𝒙,𝜌

 (−𝜌) (C.43) 

subject to 

𝒚𝑢𝑡𝑝 + 𝜌𝒏̂ = 𝒚(𝒙) (C.44) 

and Equations C.20, C.21, and C.22. 

where an auxiliary scalar variable (𝜌 ∈ [−∞,∞]) is introduced. 𝒚𝑢𝑡𝑝 represents a point on the 

Utopian plane, which has been introduced Equation C.32. 𝒏̂ is the unit projection vector in a 

direction towards the boundary (𝜕𝛺𝒚). 𝒚(𝒙) is a point within the feasible design space (𝛺𝒚), 

which is fitted using NN (Equation C.7). Therefore, the physical meaning of the NBI is that the 

point (𝒚𝑢𝑡𝑝) on the Utopian plane is moved along the direction of 𝒏̂ as far as possible within the 

feasible objective space (𝛺𝒚); the farthest location where 𝒚𝑢𝑡𝑝 can arrive represent a point on the 

boundary (𝜕𝛺𝒚). 
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 To project the point (𝒚𝑢𝑡𝑝) on the Utopian plane onto the boundary (𝜕𝛺𝒚) of the feasible 

objective space, the projection vector (𝒏̂) can be chosen as the unit vector (𝒏𝑢𝑡𝑝) normal to the 

Utopian plane, 

𝒏̂ = 𝒏𝑢𝑡𝑝 (C.45) 

where 𝒏𝑢𝑡𝑝 has been obtained in Equation C.36. 

 Similarly, a boundary slice can be obtained by projecting the discretized intersection line 

(Figure C.8) on the onto the boundary (𝜕𝛺𝒚) using the NBI method as well. However, it requires 

an additional condition that the projection vector (𝒏̂) should be within the slicing plane. By 

denoting the unit normal vector of the slicing plane as 𝒏𝑠𝑙𝑐, we can define the projection vector 

for the specific implementation: 

𝒏̂ = (𝑰 − 𝒏𝑠𝑙𝑐⊗𝒏𝑠𝑙𝑐)𝒏𝑢𝑡𝑝 (C.46) 

where 𝑰 is the identity tensor.  

 

C.2.6. Pareto Filtering 

 The non-dominated boundary known as the Pareto frontier is a subset of the boundary 

(𝜕𝛺𝒚) of the feasible objective space under the extended Utopian polygon (Figure C.6). It cannot 

be guaranteed that the boundary (𝜕𝛺𝒚) generated by the NBI method is non-dominated / Pareto-

optimal. The non-dominated and dominated boundaries can be well explained considering an 

example of bi-objective optimization, as shown in Figure C.9. When the boundary (𝜕𝛺𝒚) under 

the Utopian plane (the connection line between the two anchor points 𝒚1∗ and 𝒚2∗ in the 2-D 

objective space) is convex, the boundary is naturally non-dominated (Figure C.9a). However, a 

concave region of the boundary is typically dominated (Figure C.9b). Therefore, after executing 

the NBI algorithm, it is essential to filter out the dominated points to represent the non-dominated 

boundary or Pareto frontier. 
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Figure C.9: Illustration of non-dominated (or Pareto) boundary and dominated boundary. (a) A 

convex boundary; (b) A boundary consisting of convex and concave regions. 

 

 A Pareto filtering algorithm for tri-objective optimization is widely available in the 

literature [88, 119]. Essentially, the dominated points defined below need to be excluded from the 

set of points on the boundary (𝜕𝛺𝒚), such that the remaining boundary points represent the Pareto 

frontier.  

{𝒚 ∈ 𝜕𝛺𝒚 | 𝑦1 > 𝑦1
′  or 𝑦2 > 𝑦2

′  or 𝑦3 > 𝑦3
′ , for all 𝒚′ ∈ 𝜕𝛺𝒚} (C.47) 

 More generally, these dominated points can be defined as, 

{𝒚 ∈ 𝛺𝒚 | 𝑦1 > 𝑦1
′  or 𝑦2 > 𝑦2

′  or 𝑦3 > 𝑦3
′ , for all 𝒚′ ∈ 𝛺𝒚} (C.48) 

where 𝛺𝒚 is the feasible objective space. 

 

C.2.7. Normalization of Design Variables and Design Objectives 

 Similar to the normalization of the NN inputs and outputs, the design variables and deign 

objectives in MOO were also normalized in order to enhance the optimization efficiency. Here, 

we scale the design variables to [0, 1], and the design objectives to [0, 𝐶], 𝐶 ≥ 1 due to using the 

pseudo Nadir point (𝒚𝑃) instead of the Nadir point (𝒚𝑁). By denoting the normalized design 

variables and design objectives as 𝒙 and 𝒚 in MOO, we have the following relationships: 

𝒙 =
𝒙 − 𝒙𝑙
𝒙𝑢 − 𝒙𝑙

𝑜𝑟 𝒙 = (𝒙𝑢 − 𝒙𝑙)𝒙 + 𝒙𝑙 (C.49) 
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𝒚 =
𝒚 − 𝒚𝑈

𝒚𝑃 − 𝒚𝑈
𝑜𝑟 𝒚 = (𝒚𝑃 − 𝒚𝑈)𝒚 + 𝒚𝑈 (C.50) 

where all operations are element-wise vector operations. 

 The normalization of design variables and design objectives causes a change in the 

conversion of gradients between using the true scale and the normalized scale, 

𝜕𝒚

𝜕𝒙
=
𝒆𝑚⊗ (𝒙𝑢 − 𝒙𝑙)

(𝒚𝑃 − 𝒚𝑈) ⊗ 𝒆𝑛

𝜕𝒚

𝜕𝒙
 (C.51) 

where the division and multiplication are the component-wise operations for the matrices with the 

dimension of 𝑚 × 𝑛, after the outer products (⊗) of vectors are computed. 𝒆𝑚 and 𝒆𝑛 are the 

vectors whose elements are all ones with the dimension of 𝑚 and 𝑛, respectively. It should be 

noted that 
𝜕𝒚

𝜕𝒙
 has been obtained according to the continuous differentiability of the NN (Equation 

C.9). In the MOO algorithm described above, we have used normalized design variables and 

normalized design objectives. When implementing the MOO algorithm, all solutions should be 

scaled back to the true scale after finishing the algorithm execution. 
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Appendix D: Sensitivity Analyses of Lumbar Motion Segment Finite Element Models 

 

D.1. Convergence Study of the Contact Element Size on Metal-on-Polyethylene Articulation 

 In design optimization of the biconcave-core TDA, the peak polyethylene contact 

pressure was chosen as a performance metric, thus a convergence study for the contact element 

size was performed to ensure accurate simulation results. As depicted in Figure D.1, the PE core 

of a biconcave-core TDA design with design variables listed in Table D.1 was meshed using 20-

node brick elements and assigned J2 plasticity material properties. Superior and inferior MoP 

articulations were modeled by contact with a coefficient of friction of 0.02 [73, 101, 122]. The 

average size of contact elements on the superior and inferior surfaces of the PE core was set to 

1.2, 1.0, 0.8, and 0.6 mm. A postoperative L3-L4 lumbar segment FE model implanted by the 

biconcave TDA (Figure D.1) was applied a compressive follower preload of 500 N along the 

curve of the lumbar, followed by followed by a moment linearly ramping up to 7.5 Nm in flexion, 

extension, lateral bending and axial torsion. To save computational cost, lumbar vertebrae and 

TDA metallic endplates both were modeled as rigid bodies. 

 

Table D.1: Design variables (mm) of the parametric biconcave-core TDA design (Section 5.3) 

used in the mesh convergence study. 

 

𝑟𝑠 𝑟𝑖 𝑑𝑠 𝑑𝑖 𝑔𝑎 𝑔𝑙 𝑔𝑝 

12.97 14.05 3.80 3.90 1.25 0.30 0.43 
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Figure D.1: Illustration of a postoperative L3-L4 lumbar motion segment FE model, into which a 

biconvex-core TDA was inserted. To save computational cost, lumbar vertebrae and TDA 

metallic endplates were modeled as rigid bodies. 

 

 As shown in Figure D.2, simulated polyethylene contact pressure (PCP) distributions 

(element solutions) on the superior and inferior of the biconcave PE core in different loading 

scenarios at 7.5 Nm became more continuous, as the size of contact elements was refined from 

1.2 to 0.6 mm. No distinct difference in PCP distributions was observed between the PE cores 

with element sizes of 0.8 and 0.6 mm. For maximum PCPs (Figure D.3), they converged when 

the contact element size was decreased to 0.8 mm in flexion and lateral bending, but kept 

changing as the contact element size was decreased from 0.8 to 0.6 mm in extension and axial 

torsion. In terms of computational cost, the total time for simulation of the follower preload and 

four loading scenarios was exponentially increased from 31 to 106 minutes, as the contact 

element size was decreased from 0.8 to 0.6 mm (Table D.2). Since design optimization typically 

required 200 ~ 300 iterations (each iteration performed simulation of preload plus 4 loading 

scenarios), the element size of PE contact elements was chosen as 0.8 mm for the biconcave-core 

TDA to balance the computation cost and prediction accuracy. 
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Figure D.2: Simulated contact pressure distributions (MPa) on the superior (left) and inferior 

(right) of the biconcave PE core in different loading scenarios at 7.5 Nm, while the size of contact 

elements was changed from 1.2 to 0.6 mm. 
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Figure D.3: Maximum polyethylene contact pressures (PCPs) in flexion, extension, lateral 

bending and axial torsion, while the size of contact elements was changed from 1.2 to 0.6 mm. 

 

Table D.2: Computational cost of the lumbar segment FE model for different mesh sizes of PE 

contact elements.  

 

Mesh size 

(mm) 

Time for simulation of the 

follower preload (min) 

Time for in-parallel simulation of 

4 loading scenarios (min) 

Total time 

(min) 

1.2 2.38 8.50 10.88 

1.0 3.53 17.05 20.58 

0.8 4.32 26.70 31.02 

0.6 8.12 98.15 106.27 
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D.2. Comparison of Using Deformable versus Rigid Lumbar Segment Finite Element 

Models 

 To save computational cost in TDA design optimization, lumbar vertebrae and TDA 

metallic endplates were simplified to rigid bodies. Here, we scrutinize the effect of the rigid body 

simplification on simulated mechanical responses of the L3-L4 lumbar segment, including range 

of motion (ROM), facet joint force (FJF) and polyethylene contact pressure (PCP), which are 

required to formulate proposed TDA performance metrics in design optimization. Deformable 

and rigid FE models of intact and treated segments were presented in Figure D.4. Without loss of 

generality, both deformable and rigid treated segments (Figure D.4c,d) were modeled using a 

commercially available biconvex-core TDA with a dome radius of curvature of 10 mm and a rim 

thickness of 2.5 mm. 
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Figure D.4: Different L3-L4 lumbar segment finite element models. (a) Deformable intact 

segment model; (b) Rigid intact segment model; (c) Deformable treated segment model; (d) Rigid 

treated segment model. 

 

 In general, rigid intact and treated segment models constantly resulted in greater ROMs 

(Figure D.5) and FJFs (Figure D.6) in all loading scenarios, compared to deformable segment 

models. It was observed that PCPs in rigid segment models were always larger than those in 

deformable segment models during flexion and extension, as the moment applied increased, but 

lacked consistency in lateral bending and axial torsion (Figure D.7). Furthermore, the simulation 

time to run the rigid TDA-treated segment model (128 min) was distinctly shorter than that using 

the deformable treated segment model (325 min), as listed in Table D.3. Therefore, the vertebrae 
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and TDA metallic endplates were modeled as rigid bodies in the treated segment model, which 

was used in TDA design optimization. 

 

Figure D.5: Ranges of motion of segment models in different loading scenarios (0 Nm represents 

preloading). 
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Figure D.6: Facet joint forces in segment models in different loading scenarios (0 Nm represents 

preloading). It is noted that no facet joint forces occur during flexion for all segment models. 
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Figure D.7: Maximum PE contact pressures in TDA-treated segment models during different 

loading scenarios (0 Nm represents preloading).  

 

Table D.3: Comparison of computational cost using deformable and rigid segment models. 

 

Segment Models 
Time for simulation of the 

follower preload (min) 

Time for in-parallel simulation of 

4 loading scenarios (min) 

Total time 

(min) 

Flexible Intact 22.17 65.50 87.67 

Rigid Intact 0.92 3.07 3.99 

Flexible Treated 26.00 298.62 324.62 

Rigid Treated 6.38 122.05 128.43 
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D.3. Sensitivities of Lumbar Segment Responses to Changes in Tensile Properties of Spinal 

Ligaments 

 Spinal ligaments play a role in the maintenance of spinal stability. However, it is not well 

known whether the inter-subject material properties of spinal ligaments cause a distinct difference 

in the spinal responses (ROM, FJF, and PCP) after TDA. Here, previously developed rigid L3-L4 

intact and TDA-treated segment FE models (Figure D.8) were employed to investigate the 

sensitivities of these responses to changes in tensile properties of spinal ligaments in various 

loading scenarios (flexion, extension, lateral bending, and axial torsion). For the treated segment 

model (Figure D.8b), the best-trade-off biconcave TDA design obtained using multiobjective 

optimization (Chapter 6) was implanted. 

 

Figure D.8: The L3-L4 intact (a) and treated (b) FE segment models, in which vertebrae and TDA 

metallic endplates were modeled as rigid bodies.  

 

 As shown in Figure D.9a, the calibrated tensile curves of seven spinal ligaments (Section 

4.2.3) were chosen as the baseline tensile curves. To simulate the inter-subject variation in tensile 

properties of spinal ligaments, the baseline tensile curve of each ligament was stiffened or 

softened in a 25% increment, by multiplying by a scale factor (𝜆 = 50%, 75%, 125%, and 150%), 

as formulated in Equation D.1: 

𝐹′(𝐷) = 𝜆 ∙ 𝐹(𝐷) (D.1) 
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where 𝐹(𝐷) and 𝐹′(𝐷) represent the baseline and varied force-deflection curves, respectively. 

The resulting tensile curves varied in a 25% increment are illustrated in Figure D.9b. 

 

Figure D.9: The baseline and varied ligament tensile curves. (a) The calibrated tensile (force-

deflection) curves of 7 spinal ligaments (Section 4.2.3). (b) Different ligament tensile curves 

yielded by elevating or declining the calibrated (baseline) tensile curve in a 25% increment. Here, 

only the resulting tensile curves of the anterior longitudinal ligament (ALL) are presented. 

 

 For the intact segment model, our simulation results showed that the decline of ligament 

tensile curves increased both ROMs (Figure D.10 and Table D.4) and FJFs (Figure D.11 and 

Table D.5) in all loading scenarios; the opposite changes in ROMs and FJFs occurred when 

ligament tensile curves elevated. Moreover, it was noticed that changes in ligament tensile 

properties resulted in more distinct changes in ROMs and FJFs in flexion and extension, whereas 

only slight changes in ROMs and FJFs occurred in lateral bending and axial torsion. 
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Figure D.10: The effect of changes in tensile properties of spinal ligaments on segmental ROMs 

simulated by the rigid intact segment model in different loading scenarios (“0 Nm” represents 

preloading). 

 

Table D.4: The resulting changes in ROMs of the rigid intact segment model in response to 50% 

decline and elevation of ligament tensile curves in different loading scenarios, when the moments 

applied were ramped up to 7.5 Nm. 

 

Loading Scenarios 50% Decline of Tensile Curves 50% Elevation of Tensile Curves 

Flexion +15.9% -10.0% 

Extension +11.7% -6.7% 

Lateral Bending +2.0% -1.7% 

Axial Torsion +4.1% -2.8% 
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Figure D.11: The effect of changes in tensile properties of spinal ligaments on FJFs simulated by 

the rigid intact segment model in different loading scenarios (“0 Nm” represents preloading). It is 

noted that no FJF exists during flexion. 

 

Table D.5: The resulting changes in FJFs of the rigid intact segment model in response to 50% 

decline and elevation of ligament tensile curves in different loading scenarios, when the moments 

applied were ramped up to 7.5 Nm. It is noted that no FJF exists during flexion. 

 

Loading Scenarios 50% Decline of Tensile Curves 50% Elevation of Tensile Curves 

Extension +14.6% -9.1% 

Lateral Bending +4.7% -2.8% 

Axial Torsion +3.1% -2.6% 
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 Similar to the intact segment model, the decline and elevation of ligament tensile curves 

caused an increase and decrease in both ROMs (Figure D.12 and Table D.6) and FJFs (Figure 

D.13 and Table D.7) during all loading scenarios, respectively, after the best-trade-off biconcave 

TDA design was implanted. Simulated ROMs are more sensitive to changes in ligament tensile 

properties in flexion and axial torsion. Extension was the only loading scenario that led to a 

distinct difference in FJFs due to varied ligament tensile properties. For PCPs (Figure D.8 and 

Table D.8), only consistent changes in response to varied ligament tensile properties were 

observed in lateral bending and axial torsion; that is, PCPs relieved as ligaments were stiffened. 

In flexion and extension, the trends of PCP changes as ligament tensile properties changed were 

unpredictable. The main reason was that the contact region on the biconcave PE core changed in 

different rotation angles in each loading scenario. For example, the decline of ligament tensile 

curves from the baseline to 50% gradually increased the ROM from 5.0○ to 5.6○ in flexion; at 5.6○ 

in flexion, the superior metallic endplate contacted the superior edge of the PE core, thus the 

maximum PCP soared to 19.8 MPa, compared to 8.4 MPa using the baseline ligament curves. 
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Figure D.12: The effect of changes in tensile properties of spinal ligaments on segmental ROMs 

simulated by the rigid treated segment model in different loading scenarios (“0 Nm” represents 

preloading). 

 

Table D.6: The resulting changes in ROMs of the rigid treated segment model in response to 50% 

decline and elevation of ligament tensile curves in different loading scenarios, when the moments 

applied were ramped up to 7.5 Nm. 

 

Loading Scenarios 50% Decline of Tensile Curves 50% Elevation of Tensile Curves 

Flexion +11.6% -12.7% 

Extension +4.3% -2.8% 

Lateral Bending +1.7% -1.4% 

Axial Torsion +16.6% -9.4% 
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Figure D.13: The effect of changes in tensile properties of spinal ligaments on FJFs simulated by 

the rigid treated segment model in different loading scenarios (“0 Nm” represents preloading). It 

is noted that no FJF occurs during flexion and lateral bending for the best-tread-off biconcave 

TDA design. 

 

Table D.7: The resulting changes in FJFs of the rigid treated segment model in response to 50% 

decline and elevation of ligament tensile curves in different loading scenarios, when the moments 

applied were ramped up to 7.5 Nm. It is noted that no FJF occurs during flexion and lateral 

bending for the best-tread-off biconcave TDA design. 

 

Loading Scenarios 50% Decline of Tensile Curves 50% Elevation of Tensile Curves 

Extension +8.0% -7.6% 

Axial Torsion +0.5% -0.8% 
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Figure D.14: The effect of changes in tensile properties of spinal ligaments on PCPs simulated by 

the rigid treated segment model in different loading scenarios (“0 Nm” represents preloading).  

 

Table D.8: The resulting changes in PCPs of the rigid treated segment model in response to 50% 

decline and elevation of ligament tensile curves in different loading scenarios, when the moments 

applied were ramped up to 7.5 Nm.  

 

Loading Scenarios 50% Decline of Tensile Curves 50% Elevation of Tensile Curves 

Flexion +135.3% +1.8% 

Extension +12.9% -8.0% 

Lateral Bending -3.7% +2.6% 

Axial Torsion -0.8% +1.6% 
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