775 research outputs found

    A Clinical Prognostic Framework for Classifying Severe Liver Disorders (SLDs) and Lungs’ Vulnerability to Virus

    Get PDF
    Most severe liver diseases (SLDs) are attributed to increased risk for cancer, and cirrhosis, through which the manifestation of fibrotic tissues and scars tends to affect liver function The role of liver is indispensable, as inner organ performing services that ranges from metabolism, immune guide, energy producer and digestive aid, just to mention a few. Prevalence of classification problem and the need for automated prognosis is the continual drive to apply data mining techniques and/or machine learning algorithms in medical diagnosis and clinical support systems. Computational scientists and researchers in the field of artificial intelligence have recorded notable efforts with existing methods/models for diagnosis or prognosis, yet their effectiveness and functional performance is not without drawback due to ambiguity of medical information and selected features in patients’ data to tell the future course. In this paper, a novel hybridized machine learning model was provided (Fuzzy c-BC) for clinical classification of Severe Liver Disorders (SLDs) and to determine Lungs Vulnerability (LV) to virus; by incorporating individual strength of fuzzy cluster means (FCM) and naive Bayes classifier (NBC) for projecting future course of every categorized liver disease (LD) and its implication to aggravate lungs infection if preventive measures are not taken in timely manner

    Deep neuro‐fuzzy approach for risk and severity prediction using recommendation systems in connected health care

    Get PDF
    Internet of Things (IoT) and Data science have revolutionized the entire technological landscape across the globe. Because of it, the health care ecosystems are adopting the cutting‐edge technologies to provide assistive and personalized care to the patients. But, this vision is incomplete without the adoption of data‐focused mechanisms (like machine learning, big data analytics) that can act as enablers to provide early detection and treatment of patients even without admission in the hospitals. Recently, there has been an increasing trend of providing assistive recommendation and timely alerts regarding the severity of the disease to the patients. Even, remote monitoring of the present day health situation of the patient is possible these days though the analysis of the data generated using IoT devices by doctors. Motivated from these facts, we design a health care recommendation system that provides a multilevel decision‐making related to the risk and severity of the patient diseases. The proposed systems use an all‐disease classification mechanism based on convolutional neural networks to segregate different diseases on the basis of the vital parameters of a patient. After classification, a fuzzy inference system is used to compute the risk levels for the patients. In the last step, based on the information provided by the risk analysis, the patients are provided with the potential recommendation about the severity staging of the associated diseases for timely and suitable treatment. The proposed work has been evaluated using different datasets related to the diseases and the outcomes seem to be promising

    Novel hybridized computational paradigms integrated with five stand-alone algorithms for clinical prediction of HCV status among patients: A data-driven technique

    Get PDF
    The emergence of health informatics opens new opportunities and doors for different disease diagnoses. The current work proposed the implementation of five different stand-alone techniques coupled with four different novel hybridized paradigms for the clinical prediction of hepatitis C status among patients, using both sociodemographic and clinical input variables. Both the visualized and quantitative performances of the stand-alone algorithms present the capability of the Gaussian process regression (GPR), Generalized neural network (GRNN), and Interactive linear regression (ILR) over the Support Vector Regression (SVR) and Adaptive neuro-fuzzy inference system (ANFIS) models. Hence, due to the lower performance of the stand-alone algorithms at a certain point, four different novel hybrid data intelligent algorithms were proposed, including: interactive linear regression-Gaussian process regression (ILR-GPR), interactive linear regression-generalized neural network (ILR-GRNN), interactive linear regression-Support Vector Regression (ILR-SVR), and interactive linear regression-adaptive neuro-fuzzy inference system (ILR-ANFIS), to boost the prediction accuracy of the stand-alone techniques in the clinical prediction of hepatitis C among patients. Based on the quantitative prediction skills presented by the novel hybridized paradigms, the proposed techniques were able to enhance the performance efficiency of the single paradigms up to 44% and 45% in the calibration and validation phases, respectively.Operational Research Centre in Healthcare, Near East University, North Cyprus, Mersin-10, Turkiy

    Artificial intelligence methodologies and their application to diabetes

    Get PDF
    In the past decade diabetes management has been transformed by the addition of continuous glucose monitoring and insulin pump data. More recently, a wide variety of functions and physiologic variables, such as heart rate, hours of sleep, number of steps walked and movement, have been available through wristbands or watches. New data, hydration, geolocation, and barometric pressure, among others, will be incorporated in the future. All these parameters, when analyzed, can be helpful for patients and doctors' decision support. Similar new scenarios have appeared in most medical fields, in such a way that in recent years, there has been an increased interest in the development and application of the methods of artificial intelligence (AI) to decision support and knowledge acquisition. Multidisciplinary research teams integrated by computer engineers and doctors are more and more frequent, mirroring the need of cooperation in this new topic. AI, as a science, can be defined as the ability to make computers do things that would require intelligence if done by humans. Increasingly, diabetes-related journals have been incorporating publications focused on AI tools applied to diabetes. In summary, diabetes management scenarios have suffered a deep transformation that forces diabetologists to incorporate skills from new areas. This recently needed knowledge includes AI tools, which have become part of the diabetes health care. The aim of this article is to explain in an easy and plane way the most used AI methodologies to promote the implication of health care providers?doctors and nurses?in this field

    The application of biomedical engineering techniques to the diagnosis and management of tropical diseases: A review

    Get PDF
    This paper reviews a number of biomedical engineering approaches to help aid in the detection and treatment of tropical diseases such as dengue, malaria, cholera, schistosomiasis, lymphatic filariasis, ebola, leprosy, leishmaniasis, and American trypanosomiasis (Chagas). Many different forms of non-invasive approaches such as ultrasound, echocardiography and electrocardiography, bioelectrical impedance, optical detection, simplified and rapid serological tests such as lab-on-chip and micro-/nano-fluidic platforms and medical support systems such as artificial intelligence clinical support systems are discussed. The paper also reviewed the novel clinical diagnosis and management systems using artificial intelligence and bioelectrical impedance techniques for dengue clinical applications

    A Machine Learning-Based Framework for Accurate and Early Diagnosis of Liver Diseases: A Comprehensive Study on Feature Selection, Data Imbalance, and Algorithmic Performance

    Get PDF
    The liver is the largest organ of the human body with more than 500 vital functions. In recent decades, a large number of liver patients have been reported with diseases such as cirrhosis, fibrosis, or other liver disorders. There is a need for effective, early, and accurate identification of individuals suffering from such disease so that the person may recover before the disease spreads and becomes fatal. For this, applications of machine learning are playing a significant role. Despite the advancements, existing systems remain inconsistent in performance due to limited feature selection and data imbalance. In this article, we reviewed 58 articles extracted from 5 different electronic repositories published from January 2015 to 2023. After a systematic and protocol-based review, we answered 6 research questions about machine learning algorithms. The identification of effective feature selection techniques, data imbalance management techniques, accurate machine learning algorithms, a list of available data sets with their URLs and characteristics, and feature importance based on usage has been identified for diagnosing liver disease. The reason to select this research question is, in any machine learning framework, the role of dimensionality reduction, data imbalance management, machine learning algorithm with its accuracy, and data itself is very significant. Based on the conducted review, a framework, machine learning-based liver disease diagnosis (MaLLiDD), has been proposed and validated using three datasets. The proposed framework classified liver disorders with 99.56%, 76.56%, and 76.11% accuracy. In conclusion, this article addressed six research questions by identifying effective feature selection techniques, data imbalance management techniques, algorithms, datasets, and feature importance based on usage. It also demonstrated a high accuracy with the framework for early diagnosis, marking a significant advancement

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    Disease diagnosis in smart healthcare: Innovation, technologies and applications

    Get PDF
    To promote sustainable development, the smart city implies a global vision that merges artificial intelligence, big data, decision making, information and communication technology (ICT), and the internet-of-things (IoT). The ageing issue is an aspect that researchers, companies and government should devote efforts in developing smart healthcare innovative technology and applications. In this paper, the topic of disease diagnosis in smart healthcare is reviewed. Typical emerging optimization algorithms and machine learning algorithms are summarized. Evolutionary optimization, stochastic optimization and combinatorial optimization are covered. Owning to the fact that there are plenty of applications in healthcare, four applications in the field of diseases diagnosis (which also list in the top 10 causes of global death in 2015), namely cardiovascular diseases, diabetes mellitus, Alzheimer’s disease and other forms of dementia, and tuberculosis, are considered. In addition, challenges in the deployment of disease diagnosis in healthcare have been discussed

    Comparative Study of the Symptoms of Impending Huma n Heart, Kidney and Liver Failures Based on Blood Sam ples

    Get PDF
    While all the organs of the human body works togeth er for the proper functioning of the entire human s ystem, the significant roles played by the heart, kidney and l iver in the lives of humans cannot be overemphasize d. The heart, kidney and liver shares one thing in common, namely: the blood from where several parameters that defines the sta te of human health can be deduced or inferred. This paper is on the compar ative study of the possible symptoms of impending h uman heart, kidney and liver failures based on blood samples that coul d be used to infer the state of human health with a view for the development of an online real-time electronic health (e-health) monitoring system. The comparative study considere d in this work identified 19 vital measurable blood-related parameters that c an be classified as follows: 1). Heart: heart beat, mean arterial blood pressure, systolic blood pressure, diastolic blood pressure; 2). Kidney: packed cell volume/blood cells, erythropoietin, electrolyte Na + , electrolyte Cl - , electrolyte Ca 2+ , vitamin D; and 3). Liver: Ceratine, glucose fasting, glucose random, urea, direct bilirubin, total bilirubim (direct and indir ect), ammonia level, alpha-feto protein. Detailed d iscussion on the functions, tests and diagnosis of each of heart, kidney and li ver as well as the causes, symptoms, failures, cons equences (acute or chronic adverse effects) are also presented. Finally, some preliminary medical advice and suggestions on possi ble ways to circumvent, reduce and/or manage any impending symptoms of fail ures of the heart, kidney and/or liver based on the nominal values as well as the minimum and maximum values of the menti oned 19 parameters are given
    corecore