5 research outputs found

    Assessing similarity of feature selection techniques in high-dimensional domains

    Get PDF
    Recent research efforts attempt to combine multiple feature selection techniques instead of using a single one. However, this combination is often made on an “ad hoc” basis, depending on the specific problem at hand, without considering the degree of diversity/similarity of the involved methods. Moreover, though it is recognized that different techniques may return quite dissimilar outputs, especially in high dimensional/small sample size domains, few direct comparisons exist that quantify these differences and their implications on classification performance. This paper aims to provide a contribution in this direction by proposing a general methodology for assessing the similarity between the outputs of different feature selection methods in high dimensional classification problems. Using as benchmark the genomics domain, an empirical study has been conducted to compare some of the most popular feature selection methods, and useful insight has been obtained about their pattern of agreement

    An Evaluation of Feature Selection Robustness on Class Noisy Data

    Get PDF
    With the increasing growth of data dimensionality, feature selection has become a crucial step in a variety of machine learning and data mining applications. In fact, it allows identifying the most important attributes of the task at hand, improving the efficiency, interpretability, and final performance of the induced models. In recent literature, several studies have examined the strengths and weaknesses of the available feature selection methods from different points of view. Still, little work has been performed to investigate how sensitive they are to the presence of noisy instances in the input data. This is the specific field in which our work wants to make a contribution. Indeed, since noise is arguably inevitable in several application scenarios, it would be important to understand the extent to which the different selection heuristics can be affected by noise, in particular class noise (which is more harmful in supervised learning tasks). Such an evaluation may be especially important in the context of class-imbalanced problems, where any perturbation in the set of training records can strongly affect the final selection outcome. In this regard, we provide here a two-fold contribution by presenting (i) a general methodology to evaluate feature selection robustness on class noisy data and (ii) an experimental study that involves different selection methods, both univariate and multivariate. The experiments have been conducted on eight high-dimensional datasets chosen to be representative of different real-world domains, with interesting insights into the intrinsic degree of robustness of the considered selection approaches

    Exploiting the ensemble paradigm for stable feature selection: A case study on high-dimensional genomic data

    Get PDF
    Ensemble classification is a well-established approach that involves fusing the decisions of multiple predictive models. A similar “ensemble logic” has been recently applied to challenging feature selection tasks aimed at identifying the most informative variables (or features) for a given domain of interest. In this work, we discuss the rationale of ensemble feature selection and evaluate the effects and the implications of a specific ensemble approach, namely the data perturbation strategy. Basically, it consists in combining multiple selectors that exploit the same core algorithm but are trained on different perturbed versions of the original data. The real potential of this approach, still object of debate in the feature selection literature, is here investigated in conjunction with different kinds of core selection algorithms (both univariate and multivariate). In particular, we evaluate the extent to which the ensemble implementation improves the overall performance of the selection process, in terms of predictive accuracy and stability (i.e., robustness with respect to changes in the training data). Furthermore, we measure the impact of the ensemble approach on the final selection outcome, i.e. on the composition of the selected feature subsets. The results obtained on ten public genomic benchmarks provide useful insight on both the benefits and the limitations of such ensemble approach, paving the way to the exploration of new and wider ensemble schemes

    A framework for feature selection in high-dimensional domains

    Get PDF
    The introduction of DNA microarray technology has lead to enormous impact in cancer research, allowing researchers to analyze expression of thousands of genes in concert and relate gene expression patterns to clinical phenotypes. At the same time, machine learning methods have become one of the dominant approaches in an effort to identify cancer gene signatures, which could increase the accuracy of cancer diagnosis and prognosis. The central challenges is to identify the group of features (i.e. the biomarker) which take part in the same biological process or are regulated by the same mechanism, while minimizing the biomarker size, as it is known that few gene expression signatures are most accurate for phenotype discrimination. To account for these competing concerns, previous studies have proposed different methods for selecting a single subset of features that can be used as an accurate biomarker, capable of differentiating cancer from normal tissues, predicting outcome, detecting recurrence, and monitoring response to cancer treatment. The aim of this thesis is to propose a novel approach that pursues the concept of finding many potential predictive biomarkers. It is motivated from the biological assumption that, given the large numbers of different relationships which are possible between genes, it is highly possible to combine genes in many ways to produce signatures with similar predictive power. An intriguing advantage of our approach is that it increases the statistical power to capture more reliable and consistent biomarkers while a single predictor may not necessarily provide important clues as to biological differences of interest. Specifically, this thesis presents a framework for feature selection that is based upon a genetic algorithm, a well known approach recently proposed for feature selection. To mitigate the high computationally cost usually required by this algorithm, the framework structures the feature selection process into a multi-step approach which combines different categories of data mining methods. Starting from a ranking process performed at the first step, the following steps detail a wrapper approach where a genetic algorithm is coupled with a classifier to explore different feature subspaces looking for optimal biomarkers. The thesis presents in detail the framework and its validation on popular datasets which are usually considered as benchmark by the research community. The competitive classification power of the framework has been carefully evaluated and empirically confirms the benefits of its adoption. As well, experimental results obtained by the proposed framework are comparable to those obtained by analogous literature proposals. Finally, the thesis contributes with additional experiments which confirm the framework applicability to the categorization of the subject matter of documents

    Heuristic ensembles of filters for accurate and reliable feature selection

    Get PDF
    Feature selection has become increasingly important in data mining in recent years. However, the accuracy and stability of feature selection methods vary considerably when used individually, and yet no rule exists to indicate which one should be used for a particular dataset. Thus, an ensemble method that combines the outputs of several individual feature selection methods appears to be a promising approach to address the issue and hence is investigated in this research. This research aims to develop an effective ensemble that can improve the accuracy and stability of the feature selection. We proposed a novel heuristic ensemble of filters (HEF). It combines two types of filters: subset filters and ranking filters with a heuristic consensus algorithm in order to utilise the strength of each type. The ensemble is tested on ten benchmark datasets and its performance is evaluated by two stability measures and three classifiers. The experimental results demonstrate that HEF improves the stability and accuracy of the selected features and in most cases outperforms the other ensemble algorithms, individual filters and the full feature set. The research on the HEF algorithm is extended in several dimensions; including more filter members, three novel schemes of mean rank aggregation with partial lists, and three novel schemes for a weighted heuristic ensemble of filters. However, the experimental results demonstrate that adding weight to filters in HEF does not achieve the expected improvement in accuracy, but increases time and space complexity, and clearly decreases stability. Therefore, the core ensemble algorithm (HEF) is demonstrated to be not just simpler but also more reliable and consistent than the later more complicated and weighted ensembles. In addition, we investigated how to use data in feature selection, using ALL or PART of it. Systematic experiments with thirty five synthetic and benchmark real-world datasets were carried out
    corecore