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Abstract: Recent research efforts attempt to combine multiple feature selection 

techniques instead of using a single one. However, this combination is often made 

on an “ad hoc” basis, depending on the specific problem at hand, without 

considering the degree of diversity/similarity of the involved methods. Moreover, 

though it is recognized that different techniques may return quite dissimilar 

outputs, especially in high dimensional/small sample size domains, few direct 

comparisons exist that quantify these differences and their implications on 

classification performance. This paper aims to provide a contribution in this 

direction by proposing a general methodology for assessing the similarity between 

the outputs of different feature selection methods in high dimensional 

classification problems. Using as benchmark the genomics domain, an empirical 

study has been conducted to compare some of the most popular feature selection 

methods, and useful insight has been obtained about their pattern of agreement.  

Keywords: Feature Selection, Similarity Measures, High-Dimensional Data. 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Cagliari

https://core.ac.uk/display/54595477?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1   Introduction 

Feature selection techniques are critical to the analysis of high dimensional 

datasets coming from a number of application areas such as text processing, 

combinatorial chemistry and bioinformatics. In the context of classification 

problems, the objective of feature selection is three-fold (Guyon and Elisseeff, 

2003): improving prediction performance, providing faster and more cost-

effective predictors, and achieving a better knowledge of the underlying domain. 

Feature selection techniques can be broadly divided into three classes, depending 

on how they interact with the classifier (Saeys et al., 2007). Filter methods look at 

the intrinsic properties of the data, independently of the classifier design, and 

provide a feature weighting, ranking or feature subset as output. In contrast, 

wrapper methods perform a search in the space of feature subsets, guided by the 

outcome of a classification model. They often give better results than filter 

methods, but at the price of a greater computational cost. Finally, embedded 

methods use the internal parameters of a classification model to perform feature 

selection, often achieving a good trade-off between performance and 

computational cost. 

Instead of choosing one particular feature selection method, and accepting its 

outcome as the final subset, different methods can be combined using ensemble 

approaches (Saeys et al., 2008). Indeed, it is recognized that (Yang et al., 2005) 

there is not a single universally optimal feature selection technique and that 

(Yeung et al., 2005) more than one subset of features may discriminate the data 

equally well, especially in high dimensional/small sample size domains. 

Moreover, different algorithms may select feature subsets that can be considered 

local optima in the space of feature subsets, and ensemble approaches might give 

a better approximation to the optimal subset or ranking of features (Saeys et al., 

2008). 

A crucial issue in designing an ensemble strategy for feature selection is the 

degree of diversity among the selectors to be combined (Dietterich, 2000). 

However, research efforts that exploit multiple feature selection methods instead 

of using a single one are mainly built on an “ad hoc” basis (Dessì and Pes, 2009; 

Dutkowski and Gambin, 2007; Leung and Hung, 2010; Tan et al., 2006; Yang et 

al., 2010), depending on the specific classification problem at hand. There is a 

lack of systematic studies aiming at proving insight on which methods should be 



combined, and how this combination should be made, based on the degree of 

diversity/similarity of the different methods. Moreover, though it is recognized 

that different techniques may return quite dissimilar outputs when applied to high 

dimensional/small sample size domains, few direct comparisons exist that 

quantify these differences and their implications on classification performance. 

This paper aims to provide a contribution in this direction by proposing a general 

methodology for assessing the similarity between the outputs of different feature 

selection methods in high dimensional classification problems. Specifically, we 

focus on selection methods that produce a ranking of features based on some 

scoring criterion that measures the importance of each feature for the predictive 

task at hand. The resulting ranked list, where features appear in descending order 

of relevance, can be cut at a proper threshold point in order to produce a subset of 

highly predictive features. Leveraging on a number of similarity measures 

proposed in literature, our methodology enables a systematic comparison of the 

subsets produced by different selection methods, for different values of the cut-off 

threshold, as to derive a similarity trend for feature subsets of increasing size. 

The proposed approach has been evaluated on high dimensional/small sample size 

datasets from the genomics domain. Specifically, we worked with benchmark 

datasets deriving from DNA micro-array experiments. An empirical study has 

been conducted to compare some of the most popular feature selection methods, 

and useful insight has been obtained about their pattern of agreement. 

The paper is organized as follows. Section 2 describes the proposed methodology. 

Section 3 gives details on datasets and methods used in the empirical study. 

Experimental results are presented and discussed in section 4. Finally, section 5 

contains some final remarks as well as future research directions. 

2   The Proposed Approach 

As previously mentioned, our methodological approach focuses on feature 

selection methods that output a ranked list of features. The degree of similarity 

between lists produced by different methods can be assessed in terms of how 

consistently the features are ordered in these lists. In particular, when two lists are 

cut at a given threshold point, the similarity of the resulting feature subsets can be 

evaluated in terms of their degree of overlapping: a number of similarity measures 

have been proposed (Kuncheva, 2007; Saeys et al., 2008) that basically compare 



two feature subsets by evaluating the number of elements that they have in 

common and by introducing some normalization factor. 

The methodology adopted for the analysis is illustrated in Fig. 1 and further 

detailed by the pseudocode in Fig.2. It has as input a dataset D of N features, a set 

Met = {Met1, Met2, … , MetM} of feature selection methods, a set Thr = {Thr1, 

Thr2, …, ThrT} of threshold values, and a similarity measure I. 

As a first step, each method Metm (m = 1, …, M) is applied to D in order to 

produce a ranked list where the N features appear in descending order of 

relevance.  This process is carried out independently for each method resulting in 

M distinct ranked lists {Ranked1, Ranked2, … , RankedM}, each expressing a 

different ordering of the N features (lines 2-4). 

Then, we set a threshold value Thrt (t = 1, …, T) (line 5) and consider only the 

first Thrt features from each list Rankedm (m = 1, …, M), thus obtaining M sub-

lists, i.e. feature subsets, of size Thrt (lines 6-9). The subset resulting from the m-

th list in correspondence of the t-th threshold value is denoted as FStm, while the 

set {FSt1, FSt2, …, FStM} containing the M subsets of size Thrt is denoted as 

FSsett. 

Afterwards, the M subsets in the FSsett are compared, in pairs, using the similarity 

measure I that provides, as previously mentioned, a criterion to evaluate the 

degree of overlapping between two subsets. Specifically, it assumes values in the 

range [0, 1], where 0 means the absence of similarity (no features in common) and 

1 the maximum similarity (identical subsets). Leveraging on I, we build a 

similarity matrix SMt, of size M×M, that stores the similarity value for each pair 

of the M subsets {FSt1, FSt2, …, FStM} of size Thrt. Specifically, the element 

SMt[j][k] of the matrix represents the similarity between FStj and FStk, as 

measured by I. Since the matrix is symmetric (SMt[j][k] = SMt[k][j]), only the 

positions in the upper-right triangular block are considered (lines 10-14). 

Finally, to have an overall evaluation of the degree of similarity between the M 

subsets in the FSsett, an average similarity value St is calculated on the matrix SMt 

(lines 15-16) as follows:  
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i.e. as the average over all pairwise similarity comparisons between the M subsets 

in the FSsett. 

This analysis is performed for different threshold values Thrt (t = 1, …, T) and, 

for each of these, we obtain the corresponding FSsett, SMt and St. As a 

consequence, the outputs of our procedure are a list of T FSsets, a list of T 

similarity matrices and a list of T average similarity values. This way we can 

easily derive a similarity trend for feature subsets of increasing size. 

3   Empirical Study: Methods and Datasets 

Consistently with the methodology described in the previous section, an empirical 

study has been conducted to compare some popular feature selection techniques in 

the context of high dimensional classification problems. The settings for the 

analysis have been established as follows. 

Feature Selection Methods. With regard to the set Met = {Met1, Met2, …, MetM}, 

we considered M = 7 techniques representative of different classes of selection 

methods. In particular, we chose to experiment with both univariate methods, that 

rank each feature separately, and multivariate methods, that take into account 

feature dependencies. For all of them we used the implementation provided by the 

WEKA machine learning environment (Hall et al., 2009).  

Among the univariate techniques, we considered: Chi Squared (χ
2
) (Liu and 

Setiono, 1995) as representative of statistic methods; Information Gain (IG) 

(Quinlan, 1986), Symmetrical Uncertainty (SU) (Press et al., 1998), and Gain 

Ratio (GR) (Quinlan, 1993) as representative of entropic methods; and finally 

OneR (OR) (Holte, 1993) as representative of methods that incorporate a 

classification technique (in this case, a simple rule-based classifier).  

Among the multivariate techniques, we considered ReliefF (RF) (Kononenko, 

1994) and SVM_RFE (SVM) (Guyon et al., 2002). The basic idea of ReliefF is to 

estimate the relevance of features based on their ability to distinguish between 

instances that are near to each other. As representative of embedded techniques, 

SVM_RFE uses a linear SVM classifier to derive the weights of features. Then, 

based on these weights, the least important features are removed and the 

procedure is iteratively repeated on the remaining features. 



Similarity Measures.  As concerns the similarity measure I, we chose to validate 

our methodology with three well known metrics: the Overlap index (Stiglic and 

Kokol, 2010), the Jaccard index (Saeys et al., 2008) and the Kuncheva index 

(Kuncheva, 2007), that are calculated as follows: 
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where FStj and FStk are feature subsets of size Thrt, obtained from a dataset of 

dimensionality N. Basically, the above measures evaluate the amount of 

overlapping between the two subsets.  

In particular, the Overlap index is calculated by simple counting of the features 

that are present in both the subsets and dividing them by the subset size. The 

Jaccard index divides the number of features that are present in both the subsets 

by the number of features obtained by the union of the two subsets. Both Overlap 

and Jaccard measures have a tendency to increase when the size of subsets 

approaches the total number of features N. To avoid this behavior, the Kuncheva 

index introduces a correction term that takes into account the probability that a 

feature is selected by chance: this ensures that the similarity has high value only if 

it exceeds the similarity by chance (or by design). 

Threshold values. For the set Thr = {Thr1, Thr2, …, ThrT}, we considered 

numerous threshold values starting from 1 and reaching values that are close to N 

(i.e. the dataset dimensionality). To best detail the similarity trend for low 

thresholds, i.e. feature subsets of small size, we used an increasing grain to choose 

the elements in Thr. 

Datasets. We chose to perform the analysis on three datasets deriving from DNA 

micro-array experiments. These are significant examples of high 



dimensional/small sample size datasets, as they usually store thousands of gene 

expression profiles measured on a few dozen of samples. The limited number of 

samples is typical of this domain, and it is due to the high cost associated with the 

data extraction procedure.  

As detailed in Table 1, we worked with: Leukemia (Golub et al., 1999), containing 

7129 features and 72 samples belonging to patients suffering from acute myeloid 

leukemia (AML) and acute lymphoblastic leukemia (ALL); Colon (Alon et al., 

1999) containing 2000 features and 62 samples distinguished between tumor and 

normal colon tissues; Prostate (Singh et al., 2002), containing 12600 features and 

102 samples differed between healthy and tumor prostate tissues. Features 

correspond to levels of expression of different genes and are continuous. 

4   Results and Discussion 

In this section we present a summary of the most significant experimental results. 

The focus here is on the systematic comparison of different ranked lists for 

different threshold values: setting a given threshold means to set the size of the 

feature subset that results from cutting a list in correspondence of that threshold. 

Hence, by spanning a wide range of threshold values, we can derive the pattern of 

agreement between different ranking methods in terms of the similarity of the 

resulting feature subsets. 

Firstly, we show one of the similarity matrices obtained for Leukemia dataset 

(Table 2.a), Colon dataset (Table 2.b) and Prostate dataset (Table 2.c). For the 

sake of space, only the matrices based on the Overlap index are shown, in 

correspondence of the threshold value of 20: we are comparing here, in pairs, 

seven subsets of the same size (20 features) as produced by the ranking methods 

presented in section 3, i.e. Chi Squared (χ
2
), Information Gain (IG), Symmetrical 

Uncertainty (SU), Gain Ratio (GR), OneR (OR), ReliefF (RF) and SVM_RFE 

(SVM). Different shades of gray are used to highlight different similarity ranges: 

the darker the gray, the higher the similarity values. 

Results in Table 2 give useful insight about the pattern of agreement of the 

considered methods. As regards the univariate approaches (χ
2 

, IG, SU, GR, OR), 

where each feature is evaluated independently from the others, a first evidence is 

that the χ
2 

statistic produces results quite similar to entropic methods IG and SU 

(the degree of overlapping among the resulting feature subsets is superior to 0.75 



for all the datasets). The other entropic method, i.e. GR, turns out similar to IG 

and SU in Leukemia (Table 2.a) and Prostate (Table 2.c) datasets, but exhibits a 

different behavior in the Colon dataset (Table 2.b) which is recognized as a more 

noisy benchmark. Globally, the univariate methods are more similar to each other 

than to the multivariate approaches, i.e. RF and SVM_RFE, that work differently 

since take into account feature dependencies. Indeed, both RF and SVM_RFE 

produce feature subsets that overlap to a lesser extent with the subsets selected by 

other methods. These findings are confirmed by the matrices (here omitted) 

derived using different threshold values and different metrics (Jaccard and 

Kuncheva indexes). 

Interestingly, the method that gives the most dissimilar results, i.e. SVM_RFE, 

turns out very effective in identifying highly predictive features, as witnessed by 

literature (Guyon et al., 2002; Zhou and Tuck, 2007) as well as by some 

experiments we performed to evaluate the classification accuracy trend for feature 

subsets of increasing size. Specifically, for each of the considered feature 

selection methods, we cut the resulting ranked list in correspondence of different 

threshold values and, for each threshold, we evaluated the accuracy achieved by a 

K-NN classifier on the resulting feature subset (using a 10-fold cross-validation 

setting). Fig. 3 shows, for each of the considered datasets, a comparison among 

the accuracy on the subsets selected by SVM_RFE and those selected by OR and 

IG (as representative of different classes of selection methods). As we can see, 

when feature selection is performed by SVM_RFE, a small number of features is 

sufficient to reach a very high accuracy: 100% for Leukemia with a threshold (i.e. 

subset size) of 20; 94% for Colon with a threshold of 10; 98% for Prostate with a 

threshold of 30. In the same threshold conditions, the other selection methods 

result in a lower classification performance, as witnessed by IG and OR curves in 

Fig. 3 (as well as by curves relative to χ
2
, SU, GR and RF, omitted in the figure 

for more readability). 

It is not a novelty in literature that (Saeys et al., 2007) there not exists a threshold 

value (i.e. subset size) “optimal” for all the ranking methods and that, in 

correspondence of the same threshold, different methods can result in a different 

predictive performance. The added value of our approach is to help explain these 

differences in terms of the degree of similarity/dissimilarity between the subsets 

selected, for a given threshold, by different methods.  



To globally evaluate the pattern of agreement between the seven methods here 

considered (i.e. χ
2
, IG, SU, GR, OR, RF, SVM_RFE), we systematically 

investigated the overall similarity trend for feature subsets of increasing size. In 

more detail, according to the methodology stated in section 2, we explored a wide 

range of threshold values and, for each of these, we derived a similarity matrix 

(where the subsets selected by the considered methods are compared in pairs) and 

the corresponding average similarity (obtained as the average over all the pairwise 

comparisons between the involved subsets). Results on the average similarity are 

summarized in Fig. 4 and Fig. 5.  

Specifically, curves in Fig 4.a, Fig. 4.b and Fig. 4.c show (for Leukemia, Colon 

and Prostate respectively) the overall similarity trend obtained for different 

similarity measures, i.e. Overlap, Jaccard and Kuncheva. In all the datasets, the 

Overlap and the Jaccard curves exhibit an analogous behavior (though the Jaccard 

index results in lower similarity values due to a different normalization factor). In 

particular, both these measures have a drawback: they tend to increase as the size 

of subsets approaches the total number of features. The Kuncheva curve, instead, 

coincides with the Overlap curve for low threshold values (meaning feature 

subsets of small size) but exhibits a very different behavior for higher threshold 

values, due to the correction introduced for the probability that a feature is 

selected by chance (see section 3): this probability obviously grows as the subset 

size approaches the dimensionality of the original dataset. Results in Fig. 4 clearly 

show the effectiveness of the correction term used in the Kuncheva approach. 

We also observe that, in all the datasets, the Kuncheva curve reaches a peak in 

correspondence of a threshold value (1025 for Leukemia, 135 for Colon, 2228 for 

Prostate) after which χ
2
 and entropic methods assign a null weight to features. 

Moreover, all the similarity curves reach a maximum in the range of very low 

threshold values: in the neighborhood of 10 for Leukemia and Colon, while for 

Prostate we can see a peak at threshold 2 and another local maximum in the range 

14-18. 

The behavior at low threshold values, most interesting when looking at small 

subsets of highly informative features, is best highlighted in Fig. 5 where only the 

Overlap curve is shown. These results seem to suggest that, for small subset sizes, 

it is possible to identify a threshold point (or a range of thresholds) where the 



different feature selection methods reach, on average, a higher agreement, despite 

the specific behavior of every single method. 

5  Concluding Remarks and Future Work 

A general methodology has been presented for assessing the similarity between 

the outputs of different feature selection methods in high dimensional 

classification problems. Leveraging on a number of metrics from literature, the 

proposed approach allows to derive a similarity trend for feature subsets of 

increasing size, obtained cutting the original ranked lists at different threshold 

points. 

Through an empirical evaluation on the genomics domain, useful insight has been 

obtained about the pattern of agreement of some popular feature selection 

techniques. For example, the considered multivariate methods, i.e. SVM_RFE and 

ReliefF, turn out quite dissimilar to each other as well as to the considered 

univariate methods. Furthermore, among the entropic univariate methods, the 

Gain Ratio is the one that exhibits the greatest differences. However, despite the 

specific behavior of every single technique, a range of threshold values can be 

identified where the different techniques reach a higher consensus. 

As regards the choice of the similarity measure, our experimental results confirm 

the effectiveness of the Kuncheva index in evaluating the degree of consistency 

between a pair of feature subsets with a proper correction for the probability that a 

feature is included in those subsets purely by chance. Hence, it can be regarded as 

a suitable choice when evaluating the similarity between the outputs of two 

feature selection processes. 

The similarity analysis presented in this study can be preliminary to properly 

devising an ensemble strategy for feature selection. When aggregating the outputs 

of different methods (e.g. for deriving a consensus feature subset containing the 

most frequently selected features) we cannot prescind from considering the degree 

of diversity/similarity of the involved methods. Indeed, combining two or more 

feature selection techniques that give almost identical results would not be 

beneficial. In an ensemble perspective, the aim should be to reach a consensus 

result among methods that are capable of giving different and complementary 

representations of the considered domain. In our opinion, the approach presented 

in this paper might represent an useful contribution to this issue. 



For future work, we plan to extend our research in two main directions. First, 

ensemble feature selection will be empirically explored by examining different 

ways of combining feature ranking techniques on the basis of their degree of 

similarity/dissimilarity, as assessed according to the methodology here proposed.  

As a second research direction, further experiments will be performed on different 

application domains. In particular, text categorization is a very challenging 

classification task (Joachims, 1998; McCallum and Nigam, 1998): in this context 

documents are represented by a bag-of-words, that is a vector whose elements are 

frequency-based weights of the words in the text. The vector dimension, 

corresponding to the size of the considered vocabulary, can be in the order of 

hundreds of thousands of words, making it imperative to apply suitable feature 

selection strategies in order to achieve good classification performance.  

Inspired by the success in the text categorization field, the bag-of-words 

representation has become one of the most popular methods for representing 

image content (Zhang et al., 2010) and has been successfully applied to visual 

categorization and object recognition problems (Csurka et al., 2004; Sivic and 

Zisserman, 2003). In this context, local image features are clustered into “visual 

words” to be used for classification/recognition purposes (the feature values are 

the normalized histogram bin counts of the visual words). The accuracy of the 

bag-of-words classifiers, however, is often limited by the presence of 

uninformative features extracted from the background or irrelevant image 

segments. Hence, as witnessed by recent studies (Creusen et al., 2009; Liu et al., 

2008; Naikal et al., 2011; Turcot and Lowe, 2009), feature selection can 

significantly improve the accuracy achieved in categorization and recognition 

tasks.  

Despite their specificities, the aforementioned application domains can all benefit 

from the availability of different feature selection techniques as well as of a 

methodology, as the one here presented, to compare the outputs of these 

techniques. Our future experiments will be then focused on comparing and 

combining several selection methods in application areas different from the 

genomics domain explored in this paper. In such experimental studies, it could be 

interesting to consider a larger number of selection methods, including novel 

learning algorithms such as (Prinzie and Van den Poel, 2008; Ting et al., 2010) 



that are specifically designed to handle high-dimensional feature spaces and 

include the automatic relevance detection of features in those spaces.  
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Table 1. Micro-array datasets used in the empirical study. 

Dataset 
No. of  

samples 

Distribution  

among classes 

No. of  

features 
Reference 

Leukemia 72 47 ALL + 25 AML 7129 Golub et al., 1999 

Colon 62 40 tumor + 22 normal 2000 Alon et al., 1999 

Prostate 102 52 tumor + 50 normal 12600 Singh et al., 2002 

 

 

 

 

Table 2. Similarity matrices for Leukemia dataset (a), Colon dataset (b), and Prostate dataset (c); 

results are obtained with the Overlap index, in correspondence of the threshold value (i.e. subset 

size) of 20 

(a) 

 X2 IG SU GR OR RF SVM 

X2 1 0.85 0.80 0.75 0.70 0.45 0.40 

IG 0.85 1 0.90 0.70 0.70 0.40 0.40 

SU 0.80 0.90 1 0.80 0.70 0.45 0.35 

GR 0.75 0.70 0.80 1 0.60 0.45 0.35 

OR 0.70 0.70 0.70 0.60 1 0.50 0.40 

RF 0.45 0.40 0.45 0.45 0.50 1 0.45 

SVM 0.40 0.40 0.35 0.35 0.40 0.45 1 

 

(b) 

 X2 IG SU GR OR RF SVM 

X2 1 0.80 0.80 0.40 0.65 0.50 0.20 

IG 0.80 1 0.95 0.40 0.55 0.35 0.20 

SU 0.80 0.95 1 0.45 0.55 0.35 0.20 

GR 0.40 0.40 0.45 1 0.40 0.35 0.15 

OR 0.65 0.55 0.55 0.40 1 0.45 0.20 

RF 0.50 0.35 0.35 0.35 0.45 1 0.25 

SVM 0.20 0.20 0.20 0.15 0.20 0.25 1 

 

(c) 

 X2 IG SU GR OR RF SVM 

X2 1 0.85 0.75 0.65 0.70 0.45 0.10 

IG 0.85 1 0.90 0.80 0.60 0.50 0.15 

SU 0.75 0.90 1 0.90 0.55 0.45 0.15 

GR 0.65 0.80 0.90 1 0.45 0.40 0.20 

OR 0.70 0.60 0.55 0.45 1 0.45 0.15 

RF 0.45 0.50 0.45 0.40 0.45 1 0.30 

SVM 0.10 0.15 0.15 0.20 0.15 0.30 1 

 

 

 

 

 

 



Fig.1. The methodology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig.2. Pseudocode describing the methodology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input: 

D – Dataset of N features 

Met – Set of M filter methods: Met = {Met1,Met2,…,MetM} 

Thr – Set of T threshold values: Thr = {Thr1,Thr2,…,ThrT} 

I – Similarity measure 

 

1  begin 

2  for m: 1 to M 

3    Rankedm = rank the N features according to Metm 

4  end for 

5  for t: 1 to T 

6    // create FSset 

7    for m: 1 to M 

8      FStm = select the first Thrt features from Rankedm 

9    end for 

10   // create matrix 

11   for j: 1 to M 

12     for k: j+1 to M 

13       SMt[j][k] = evaluate similarity between FStj and FStk 

      using I 

12     end for 

14   end for 

15   // calculate average similarity 

16   St = calculate average similarity on SMt 

17 end for 

18 end 

 

Output: 

List of T FSset 

List of T similarity matrices SM 

List of T average similarity values S 

 



Fig. 3. Classification accuracy vs threshold (i.e. subset size) for Leukemia dataset 

(a), Colon dataset (b) and Prostate dataset (c). 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 4. Average similarity vs threshold (i.e. subset size) for Leukemia dataset (a), 

Colon dataset (b) and Prostate dataset (c). 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 5. Average similarity vs threshold (i.e. subset size) in the range of low 

threshold values, for Leukemia dataset (a), Colon dataset (b) and Prostate dataset 

(c). 

 

 

 

 

 


