5 research outputs found

    Measuring and modelling evapotranspiration in a South African grassland: Comparison of two improved Penman-Monteith formulations

    Get PDF
    Accurately measuring evapotranspiration (ET) is important in the con-text of global atmospheric changes and for use with climate models. Direct ET measurement is costly to apply widely and local calibration and validation of ET models developed elsewhere improves confidence in ET derived from such models. is study sought to compare the per-formance of the Penman-Monteith-Leuning (PML) and Penman-Monteith-Palmer (PMP) ET models, over mesic grasslands in two study sites in South Africa. The study used routine meteorological data from a scientific-grade automatic weather station (AWS) to apply the PML and PMP models. The PML model was calibrated at one site and validated in both sites. On the other hand, the PMP model does not require cali-bration and hence it was validated in both sites

    Measuring and modelling evapotranspiration in a South African grassland : comparison of two improved Penman-Monteith formulations

    Get PDF
    CITATION: Gwate, O., et al. 2018. Measuring and modelling evapotranspiration in a South African grassland : comparison of two improved Penman-Monteith formulations. Water SA, 44(3):482-492, doi:10.4314/wsa.v44i3.16.The original publication is available at http://www.wrc.org.zaAccurately measuring evapotranspiration (ET) is important in the context of global atmospheric changes and for use with climate models. Direct ET measurement is costly to apply widely and local calibration and validation of ET models developed elsewhere improves confidence in ET derived from such models. This study sought to compare the performance of the Penman-Monteith-Leuning (PML) and Penman-Monteith-Palmer (PMP) ET models, over mesic grasslands in two study sites in South Africa. The study used routine meteorological data from a scientific-grade automatic weather station (AWS) to apply the PML and PMP models. The PML model was calibrated at one site and validated in both sites. On the other hand, the PMP model does not require calibration and hence it was validated in both sites. The models were validated using ET derived from a large aperture scintillometer (LAS). The PML model performed well at both sites with root mean square error (RMSE) within 20% of the mean daily observed ET (R2 of 0.83 to 0.91). Routine meteorological data were able to reproduce fluxes calculated using micrometeorological techniques and this increased the confidence in the use of data from sparsely distributed AWSs to derive reasonable ET values. The PML model was better able to simulate observed ET compared to the PMP model, since the former models both transpiration and soil evaporation (ES), while the latter only models transpiration. Hence, the PMP model systematically underestimated ET in a context where the leaf area index (LAI) was < 2.5. Model predictions in the grasslands could be improved by incorporating the ES component in the PMP model while the PML model could be improved by careful choice of the number of days to be used in the determination of the fraction of ES.https://www.watersa.net/article/view/6640Publisher's versio

    Assessing Inter-Sensor Variability and Sensible Heat Flux Derivation Accuracy for a Large Aperture Scintillometer

    No full text
    The accuracy in determining sensible heat flux (H) of three Kipp and Zonen large aperture scintillometers (LAS) was evaluated with reference to an eddy covariance (EC) system over relatively flat and uniform grassland near Timpas (CO, USA). Other tests have revealed inherent variability between Kipp and Zonen LAS units and bias to overestimate H. Average H fluxes were compared between LAS units and between LAS and EC. Despite good correlation, inter-LAS biases in H were found between 6% and 13% in terms of the linear regression slope. Physical misalignment was observed to result in increased scatter and bias between H solutions of a well-aligned and poorly-aligned LAS unit. Comparison of LAS and EC H showed little bias for one LAS unit, while the other two units overestimated EC H by more than 10%. A detector alignment issue may have caused the inter-LAS variability, supported by the observation in this study of differing power requirements between LAS units. It is possible that the LAS physical misalignment may have caused edge-of-beam signal noise as well as vulnerability to signal noise from wind-induced vibrations, both having an impact on the solution of H. In addition, there were some uncertainties in the solutions of H from the LAS and EC instruments, including lack of energy balance closure with the EC unit. However, the results obtained do not show clear evidence of inherent bias for the Kipp and Zonen LAS to overestimate H as found in other studies

    Modelling plant water use of the grassland and thicket biomes in the Eastern Cape, South Africa: towards an improved understanding of the impact of invasive alien plants on soil chemistry, biomass production and evapotranspiration

    Get PDF
    It is imperative to understand the strong coupling between the carbon capture process and water use to sustainably manage rangelands. Woody encroachment is undermining rangelands grass production. Evapotranspiration (ET) highlights the links between ecosystem carbon capture process and water use. It forms the biggest flux of the hydrological cycle after precipitation yet it is not well understood. The Grassland and the Albany Thicket (AT) biomes in the Eastern Cape, South Africa, provide an interesting space to study the dynamics in rangelands biomass production and the associated water use. Therefore, the main purpose of this study was to contribute towards management of rangelands by understanding the dynamics in rangeland grass production and water use. To achieve this aim, the impact of Acacia mearnsii, an invasive alien plant, on soil chemical properties and rangelands grass production was investigated. This was achieved by analysing the biophysical attributes of A. mearnsii as they related to grass production. Secondly, selected soil variables that could be used as a prognosis for landscape recovery or deterioration were evaluated. In addition, aboveground grass biomass was measured in areas cleared of A. mearnsii and regression equations were prepared to help model aboveground grass biomass in areas cleared of A. mearnsi. The thesis also explored dynamics in water vapour and energy fluxes in these two biomes using an eddy covariance system. Consequently, water vapour and energy fluxes were evaluated in order to understand landscape water use and energy partitioning in the landscape. The study also tested the application of Penman-Monteith equation based algorithms for estimating ET with micrometeorological techniques used for validation. Pursuant to this, the Penman- Monteith-Leuning (PML) and Penman-Monteith-Palmer (PMP) equations were applied. In addition, some effort was devoted to improving the estimates of ET from the PMP by incorporating a direct soil evaporation component. Finally, the influence of local changes in catchment characteristics on ET was explored through the application of a variant of the Budyko framework and investigating dynamics in the evaporative index as well as applying tests for trends and shifts on ET and rainfall data to detect changes in mean quaternary catchment rainfall and ET. Results revealed that A. mearnsii affected soil chemical properties and impaired grass production in rangelands. Hence, thinning of canopies provided an optimal solution for enhanced landscape water use to sequestrate carbon, provide shade, grazing, and also wood fuel. It was also shown that across sites, ET was water limited since differences between reference ET and actual ET were large. ET was largely sensitive to vapour pressure deficit and surface conductance than to net radiation, indicating that the canopies were strongly coupled with the boundary layer. Rangeland ET was successfully simulated and evaporation from the soil was the dominant flux, hence there is scope for reducing the so-called ‘unproductive’ water use. Further, it was shown that the PML was better able to simulate ET compared to the PMP model as revealed by different model evaluation metrics such as the root mean square error, absolute mean square error and the root mean square observations standard deviation ratio. The incorporation of a soil evaporation component in the PMP model improved estimates of ET as revealed by the root mean square error. The results also indicated that both the catchment parameter (w) and the evaporative index were important in highlighting the impacts of land cover change on ET. It was also shown that, despite changes in the local environment such as catchment characteristics, global forces also affected ET at a local scale. Overall, the study demonstrated that combining remote sensing and ground based observations was important to better understand rangeland grass production and water use dynamics
    corecore