19,792 research outputs found

    Automatic assembly design project 1968/9 :|breport of economic planning committee

    Get PDF
    Investigations into automatic assembly systems have been carried out. The conclusions show the major features to be considered by a company operating the machine to assemble the contact block with regard to machine output and financial aspects. The machine system has been shown to be economically viable for use under suitable conditions, but the contact block is considered to be unsuitable for automatic assembly. Data for machine specification, reliability and maintenance has been provided

    Assembly Line

    Get PDF
    An assembly line is a manufacturing process in which parts are added to a product in a sequential manner using optimally planned logistics to create a finished product in the fastest possible way. It is a flow-oriented production system where the productive units performing the operations, referred to as stations, are aligned in a serial manner. The present edited book is a collection of 12 chapters written by experts and well-known professionals of the field. The volume is organized in three parts according to the last research works in assembly line subject. The first part of the book is devoted to the assembly line balancing problem. It includes chapters dealing with different problems of ALBP. In the second part of the book some optimization problems in assembly line structure are considered. In many situations there are several contradictory goals that have to be satisfied simultaneously. The third part of the book deals with testing problems in assembly line. This section gives an overview on new trends, techniques and methodologies for testing the quality of a product at the end of the assembling line

    Optimal Configuration of Inspection and Rework Stations in a Multistage Flexible Flowline

    Get PDF
    Inspection and rework are two important issues of quality control. In this research, an N-stage flowline is considered to make decisions on these two issues. When defective items are detected at the inspection station the items are either scrapped or reworked. A reworkable item may be repaired at the regular defect-creating workstation or at a dedicated off-line rework station. Two problems (end-of-line and multistage inspections) are considered here to deal with this situation. The end-of-line inspection (ELI) problem considers an inspection station located at the end of the line while the multistage inspection (MSI) problem deals with multiple in-line inspection stations that partition the flowline into multiple flexible lines. Models for unit cost of production are developed for both problems. The ELI problem is formulated for determining the best decision among alternative policies for dealing with defective items. For an MSI problem a unit cost function is developed for determining the number and locations of in-line inspection stations along with the alternative decisions on each type of defects. Both of the problems are formulated as fractional mixed-integer nonlinear programming (f-MINLP) to minimize the unit cost of production. After several transformations the f-MINLP becomes a mixed-integer linear programming (MILP) problem. A construction heuristic, coined as Inspection Station Assignment (ISA) heuristic is developed to determine a sub-optimal location of inspection and rework stations in order to achieve minimum unit cost of production. A hybrid of Ant-Colony Optimization-based metaheuristic (ACOR) and ISA is devised to efficiently solve large instances of MSI problems. Numerical examples are presented to show the solution procedure of ELI problems with branch and bound (B&B) method. Empirical studies on a production line with large number of workstations are presented to show the quality and efficiency of the solution processes involved in both ELI and MSI problems. Computational results present that the hybrid heuristic ISA+ACOR shows better performance in terms of solution quality and efficiency. These approaches are applicable to many discrete product manufacturing systems including garments industry

    SALBPGen - A systematic data generator for (simple) assembly line balancing

    Get PDF
    Assembly line balancing is a well-known and extensively researched decision problem which arises when assembly line production systems are designed and operated. A large variety of real-world problem variations and elaborate solution methods were developed and presented in the academic literature in the past 60 years. Nevertheless, computational experiments examining and comparing the performance of solution procedures were mostly based on very limited data sets unsystematically collected from the literature and from some real-world cases. In particular, the precedence graphs used as the basis of former tests are limited in number and characteristics. As a consequence, former performance analyses suffer from a lack of systematics and statistical evidence. In this article, we propose SALPBGen, a new instance generator for the simple assembly line balancing problem (SALBP) which can be applied to any other assembly line balancing problem, too. It is able to systematically create instances with very diverse structures under full control of the experiment's designer. In particular, based on our analysis of real-world problems from automotive and related industries, typical substructures of the precedence graph like chains, bottlenecks and modules can be generated and combined as required based on a detailed analysis of graph structures and structure measures like the order strength. We also present a collection of new challenging benchmark data sets which are suited for comprehensive statistical tests in comparative studies of solution methods for SALBP and generalized problems as well. Researchers are invited to participate in a challenge to solve these new problem instances.manufacturing, benchmark data set, assembly line balancing, precedence graph, structure analysis, complexity measures

    Manufacturing Systems Line Balancing using Max-Plus Algebra

    Get PDF
    In today\u27s dynamic environment, particularly the manufacturing sector, the necessity of being agile, and flexible is far greater than before. Decision makers should be equipped with effective tools, methods, and information to respond to the market\u27s rapid changes. Modelling a manufacturing system provides unique insight into its behavior and allows simulating all crucial elements that have a role in the system performance. Max-Plus Algebra is a mathematical tool that can model a Discrete Event Dynamic System in the form of linear equations. Whereas Max-Plus Algebra was introduced after the 1980s, the number of studies regarding this tool and its applications is fewer than regarding Petri Nets, Automata, Markov process, Discrete Even Simulation and Queuing models. Consequently, Max-Plus Algebra needs to be applied and tested in many systems in order to explore hidden aspects of its function and capabilities. To work effectively; the production/assembly line should be balanced. Line balancing is one of the manufacturing functions that tries to divide work equally across the production flow. Car Headlight Manufacturing Line as a Discrete Manufacturing System is considered which is a combination of manufacturing and assembly lines composed of different stations. Seven system scenarios were modeled and analyzed using Max-Plus to balance the car headlights production line. Key Performance Indicators (KPIs) are used to compare the various scenarios including Cycle Time, Average Deliver Rate, Total Processing Lead Time, Stations\u27 Utilization Rate, Idle Time, Efficiency, and Financial Analysis. FlexSim simulation software is used to validate the Max-Plus models results and its advantages and drawbacks compared with Max-Plus Algebra. This study is a unique application of Max-Plus Algebra in line balancing of a manufacturing system. Moreover, the problem size of the considered model is at least twice (12 stations) that of previous studies. In the matter of complexity, seven different scenarios are developed through the combination of parallel stations and buffers. Due to that the last scenario is included four parallel stations plus two buffers Based on the findings, the superiority of scenario 7 compared to other scenarios is proved due to its lowest system delivering first output time (14 seconds), best average delivery rate (24.5 seconds), shortest cycle time (736 seconds), shortest total processing lead time (11,534 seconds), least percentage of idle time (12%), lowest unit cost ($6.9), and highest efficiency (88%). However, Scenario 4 has the best utilization rate at 75%

    Lean manufacturing in complex electronic assembly line

    Get PDF
    The present work results from a curricular internship developed at Bosch Ovar, Security Systems. Manual assembly lines are usually deeply studied before implementation, nevertheless, several problems upsurge when the product needs to be slightly changed. This is very common in complex electric and electronic devices usually produced in small batches, where the customers are demanding more and more features and the product needs to be continuously updated. However, these updates sometimes create huge difficulties for the previously installed assembly line, generating as well, line unbalancing and wastes of time regarding the initial situation. In this paper, a deep study of an adjusted assembly line of electronic devices was carried out using Value Stream Mapping (VSM) method to fully understand and document the different tasks and operations. The Lean Line Balancing (LLB) was also applied in order to reduce the line bottleneck by balancing the Task Time (TT) of each workstation so that there are no delays, and nobody is overburden with their task. Standardized processes and standardized work were also applied. During the line layout development stage, assembly fixtures, wastes reductions and visual management techniques were applied as well, different concepts were generated and, finally, the best solutions were selected. Throughout the study, many benefits for the studied manual assembly line were found, which can be considered as a strong motivation to apply Lean Manufacturing (LM) tools for better line efficiency and production rate

    Towards a flexible future ? The nature of organisational response in the clothing industry.

    Get PDF
    In this contribution, the central questions concern the need for structural transformation, the diffusion of innovative organisational practices, and the dominance of particular organisational models in the Belgian clothing industry. In order to answer these questions, the results of two Trend Study surveys are used, covering a total of 104 companies : a 1995 survey among companies employing more than 50 workers and a 1996 survey in the segment of companies employing between 20 and 50 workers.Industry;

    A Business Process Management System based on a General Optimium Criterion

    Get PDF
    Business Process Management Systems (BPMS) provide a broad range of facilities to manage operational business processes. These systems should provide support for the complete Business Process Management (BPM) life-cycle (16): (re)design, configuration, execution, control, and diagnosis of processes. BPMS can be seen as successors of Workflow Management (WFM) systems. However, already in the seventies people were working on office automation systems which are comparable with today’s WFM systems. Recently, WFM vendors started to position their systems as BPMS. Our paper’s goal is a proposal for a Tasks-to-Workstations Assignment Algorithm (TWAA) for assembly lines which is a special implementation of a stochastic descent technique, in the context of BPMS, especially at the control level. Both cases, single and mixed-model, are treated. For a family of product models having the same generic structure, the mixed-model assignment problem can be formulated through an equivalent single-model problem. A general optimum criterion is considered. As the assembly line balancing, this kind of optimisation problem leads to a graph partitioning problem meeting precedence and feasibility constraints. The proposed definition for the "neighbourhood" function involves an efficient way for treating the partition and precedence constraints. Moreover, the Stochastic Descent Technique (SDT) allows an implicit treatment of the feasibility constraint. The proposed algorithm converges with probability 1 to an optimal solution.BPMS, control assembly system, stochastic optimisation techniques, TWAA, SDT

    A Study of the Effects of Manufacturing Complexity on Product Quality in Mixed-Model Automotive Assembly

    Get PDF
    The objective of this research is to test the hypothesis that manufacturing complexity can reliably predict product quality in mixed-model automotive assembly. Originally, assembly lines were developed for cost efficient mass-production of standardized products. Today, in order to respond to diversified customer needs, companies have to allow for an individualization of their products, leading to the development of the Flexible Manufacturing Systems (FMS). Assembly line balancing problems (ALBP) consist of assigning the total workload for manufacturing a product to stations of an assembly line as typically applied in the automotive industry. Precedence relationships among tasks are required to conduct partly or fully automated Assembly Line Balancing. Efforts associated with manual precedence graph generation at a major automotive manufacturer have highlighted a potential relationship between manufacturing complexity (driven by product design, assembly process, and human factors) and product quality, a potential link that is usually ignored during Assembly Line Balancing and one that has received very little research focus so far. The methodology used in this research will potentially help develop a new set of constraints for an optimization model that can be used to minimize manufacturing complexity and maximize product quality, while satisfying the precedence constraints. This research aims to validate the hypothesis that the contribution of design variables, process variables, and human-factors can be represented by a complexity metric that can be used to predict their contribution on product quality. The research will also identify how classes of defect prevention methods can be incorporated in the predictive model to prevent defects in applications that exhibit high level of complexity. The manufacturing complexity model is applied to mechanical fastening processes which are accountable for the top 28% of defects found in automotive assembly, according to statistical analysis of historical data collected over the course of one year of vehicle production at a major automotive assembly plant. The predictive model is validated using mechanical fastening processes at an independent automotive assembly plant. This complexity-based predictive model will be the first of its kind that will take into account design, process, and human factors to define complexity and validate it using a real-world automotive manufacturing process. The model will have the potential to be utilized by design and process engineers to evaluate the effect of manufacturing complexity on product quality before implementing the process in a real-world assembly environment

    Using lean thinking principles to reduce wastes in reconfiguration of car radio final assembly lines

    Get PDF
    Assembly lines are production systems designed to be oriented to the product and well known to be highly productive. Nevertheless, during this time-frame the product volumes could decrease and the assembly lines, previously very productive and efficient, becomes unproductive and inefficient. This happens in the car electronics components company where this study took place that due to customer's demand decrease, produced volumes also decreased and provoked the appearance of wastes related with too much occupied space, unbalanced workstations, more capacity than needed, outdated standard work sheets, bottlenecks, to conclude, too many non-added value activities. This paper presents a reconfiguration proposal for two final assembly lines with the goal of adapt physically the lines to the actual production volumes and eliminate the existing wastes. The proposed reconfiguration translates into very positive gains for the company, namely, the release of 22% of the space occupied by the production lines, a reduction in the number of operators, a 50% increase in productivity for each of the lines and an increase in the utilization rate (23% for line 1 and 13% for line 2). In total, the monetary gains associated with these improvements were, approximately, of 125,600 m.u. per year.Special thanks to engineer Hugo Moreira for all the advice given for the development of this project. Also, thanks to the company for all the cooperation and opportunity to apply knowledge acquired during the academic years. This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2019
    corecore