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ABSTRACT 

 

The objective of this research is to test the hypothesis that manufacturing 

complexity can reliably predict product quality in mixed-model automotive assembly. 

Originally, assembly lines were developed for cost efficient mass-production of 

standardized products. Today, in order to respond to diversified customer needs, 

companies have to allow for an individualization of their products, leading to the 

development of the Flexible Manufacturing Systems (FMS). Assembly line balancing 

problems (ALBP) consist of assigning the total workload for manufacturing a product to 

stations of an assembly line as typically applied in the automotive industry. Precedence 

relationships among tasks are required to conduct partly or fully automated Assembly 

Line Balancing. Efforts associated with manual precedence graph generation at a major 

automotive manufacturer have highlighted a potential relationship between 

manufacturing complexity (driven by product design, assembly process, and human 

factors) and product quality, a potential link that is usually ignored during Assembly Line 

Balancing and one that has received very little research focus so far. The methodology 

used in this research will potentially help develop a new set of constraints for an 

optimization model that can be used to minimize manufacturing complexity and 

maximize product quality, while satisfying the precedence constraints. 

This research aims to validate the hypothesis that the contribution of design 

variables, process variables, and human-factors can be represented by a complexity 

metric that can be used to predict their contribution on product quality. The research will 

also identify how classes of defect prevention methods can be incorporated in the 
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predictive model to prevent defects in applications that exhibit high level of complexity. 

The manufacturing complexity model is applied to mechanical fastening processes which 

are accountable for the top 28% of defects found in automotive assembly, according to 

statistical analysis of historical data collected over the course of one year of vehicle 

production at a major automotive assembly plant. The predictive model is validated using 

mechanical fastening processes at an independent automotive assembly plant. 

This complexity-based predictive model will be the first of its kind that will take 

into account design, process, and human factors to define complexity and validate it 

using a real-world automotive manufacturing process. The model will have the potential 

to be utilized by design and process engineers to evaluate the effect of manufacturing 

complexity on product quality before implementing the process in a real-world assembly 

environment.  
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CHAPTER ONE 

 

1. RESEARCH OBJECTIVE AND MOTIVATION 

 

 

The objective of this research is to test the hypothesis that manufacturing 

complexity can reliably predict product quality in mixed-model automotive assembly. 

Originally, assembly lines were developed for cost efficient mass-production of 

standardized products. Today, in order to respond to diversified customer needs, 

companies have to allow for an individualization of their products, leading to the 

development of the Flexible Manufacturing Systems (FMS). Due to the high capital 

requirements when installing or redesigning an assembly line, its configuration planning 

is of great relevance for practitioners. Despite enormous academic effort in assembly line 

balancing (ALB) since the first mathematical formalization of ALB problem by Salveson 

in 1955 [1], there remains a considerable gap between requirements of real configuration 

problems and the status of research. Assembly line balancing problems (ALBP) consist 

of assigning the total workload for manufacturing a product to stations of an assembly 

line as typically applied in the automotive industry. Precedence relationships among tasks 

are required to conduct partly or fully automated Assembly Line Balancing. Efforts 

associated with manual precedence graph generation at a major automotive manufacturer 

have highlighted a potential relationship between manufacturing complexity (driven by 

product design, assembly process, and human factors) and product quality, a potential 

link that is usually ignored during Assembly Line Balancing and one that has received 

very little research focus so far. The methodology used in this research will potentially 

help develop a new set of constraints for an optimization model that can be used to 
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minimize manufacturing complexity and maximize product quality, while satisfying the 

precedence constraints. 

This research aims to validate the hypothesis that the contribution of design 

variables, process variables, and human-factors can be represented by a complexity 

metric that can be used to predict their contribution on product quality. The research will 

also identify how classes of defect prevention methods can be incorporated in the 

predictive model to prevent defects in applications that exhibit high level of complexity. 

The manufacturing complexity model is applied to mechanical fastening processes which 

are accountable for the top 28% of defects found in automotive assembly, according to 

statistical analysis of historical data collected over the course of one year of vehicle 

production at a major automotive assembly plant. The predictive model is validated using 

mechanical fastening processes at an independent automotive assembly plant. 

This complexity-based predictive model will be the first of its kind that will take 

into account design, process, and human factors to define complexity and validate it 

using a real-world automotive manufacturing process. The model will have the potential 

to be utilized by design and process engineers to evaluate the effect of manufacturing 

complexity on product quality before implementing the process in a real-world assembly 

environment. 

In order to fulfill the research objective, the following research questions need to 

be answered: 

 Research Question 1: How is manufacturing complexity defined in the general 

context of assembly operations?  
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 Research Question 2: How is product quality defined for assembly of 

components in mixed-model automotive assembly? What is the effect of 

manufacturing complexity on product quality? 

 Research Question 3: Several defect prevention methods are usually employed in 

practice. How can various classes of defect prevention methods be incorporated in 

the predictive model to lower complexity and minimize DPMO? 
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CHAPTER TWO 

2. BACKGROUND 

 

2.1. Basic Steps in Automotive Manufacturing 

 

Since the days of the Ford Model T, automobiles have been the primary mode of 

transportation around the world. What makes the automotive industry very attractive for 

engineers is the fact that an automobile is a complex product that brings several different 

manufacturing processes together on one platform. Automotive manufacturing activities 

can be analyzed on two levels: the manufacturing system and the process levels. The 

manufacturing system view is further investigated from three different perspectives: 

a. The structural aspect: Includes machinery and material handling equipment 

b. The transformational aspect: Includes processes used to convert raw materials 

into finished or semi-finished products  

c. The procedural aspect: Includes operating strategies, model-mix, sequencing 

etc. 

The following sections provide a brief introduction to the transformational aspect of the 

manufacturing activities which includes a series of manufacturing processes that a car 

goes through before rolling off the final assembly line. 

2.1.1. Stamping Process 

 

The Press Shop receives a coil of sheet metal (typically steel or aluminum) from 

the supplier. This material usually goes through an inspection process to verify 

dimensional accuracy, metallurgical analysis, and heat treatment evaluation. Once 

approved, the coil may get stored or staged for blanking. The blanks are then transferred 
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to large presses that use forming dies to convert the blanks into various vehicular panels. 

A typical body may consist of approximately 350 stamped pieces (e.g. trunk, under-body, 

A and B structural pillars, doors etc.) and the corresponding inner, middle and outer 

sections of these components. The stamping process requires mechanical and hydraulic 

presses with different capacities depending on the different panels that need to be formed. 

After stamping, the panels are stored and eventually get transported to the Body Shop, 

where they undergo the joining process. 

 

Figure 2.1: Sheet metal stamping press 

 

2.1.2. Joining Process 

 

In the Body Shop, various stamped panels are joined to form the body / shell. The 

joining process includes tack welding to temporarily hold the pieces together. This 

process is followed by permanent spot welds. A combination of robotic and manual 
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welders may weld approximately 5000 spots to join an average car body. Such robots are 

programmed to work with high accuracy and precision in tightly grouped cells. 

Programmable logic controllers (PLCs) are used to control and monitor these robots. The 

completed body also goes through a detailed dimensional verification process using laser 

illumination and charged coupled devices (CCD) camera system to monitor gaps between 

adjacent panels. This is an important quality characteristic that is closely monitored, 

especially in the premium car market. The completely welded car body (shell) is called 

the Body-in-White (BIW). 

 

Figure 2.2: Spot welding of body panels using robots in the Body Shop 

 

2.1.3. Painting Process 

 

The completed BIW gets transferred to the Paint Shop. The vehicle goes through 

several immersion tanks to thoroughly clean the sheet metal panels and eliminate any 

foreign particles or adhesives left over from the welding process. Then a layer of iron 

phosphate or zinc phosphate gets applied followed by an electro coat layer. Robots apply 

under-body wax and sealants to critical areas of the vehicle to make the cabin water-tight 

and reduce the level of external road noise entering the cabin. The subsequent paint 
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layers require curing through a combination of ovens. After the immersion process the 

body goes through paint booths that apply a primer, base coat, and a final clear coat. 

Several stages of inspection also take place in order to ensure that the painting process 

meets design specifications. After the painting process, the body enters the final assembly 

line. 

 

Figure 2.3: Car body being painted by robots in a Paint Booth 

 

2.1.4. Mixed-Model Final Assembly (MMFA) 

 

A paced assembly line is a flow-oriented production system that employs some 

kind of material transportation system like a conveyor belt to transfer work-pieces 

successively to various stations at a given rate, such that the total duration over all 

operations at a station is limited to a cycle time. 
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Figure 2.4: Conventional Assembly Line (Single Product) 

 

Since the days of the famous Model-T produced by Ford, assembly lines have 

been widely used in many industries for the mass production of standardized products. 

The goal of mass production was to lower the unit cost by distributing the depreciation 

cost of specialized equipment and tooling over a large number of identical parts and by 

reducing the number of changeovers. In the early days of mass production, the lower 

selling price made products more accessible to common man, thereby creating a 

favorable environment for mass production of relatively identical products with very little 

variety. It was a seller’s market in the early days of automotive manufacturing. The 

manufacturers assumed that whatever they built will get purchased promptly and hence 

they believed in the “push” system. Model changeover frequency was very low. The 

same model would run for days or sometimes weeks at a time. The two biggest 

downsides of this system were excess inventory and lack of flexibility.  

 The solution to this problem was developed by Toyota over the course of two 

decades and the comprehensive system was called the Toyota Production System (TPS). 

Toyota Production System is based on three basic principles [2]: Elimination of waste, 

Just-In-Time delivery, and Separation of worker from machine. These principles resulted 

OPERATOR

STATION
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in the ability to build customized products with a lot size of one on what is known today 

as the Mixed-Model Final Assembly (MMFA) line. 

As a consequence of the increasing individualization of consumer products in 

many industries, a lot of effort has been directed to increase the flexibility and versatility 

of assembly lines, such that the benefits resulting from the high degree of specialization 

of labor and its associated learning effects can also be exploited in the assembly of low 

volume, highly diversifiable products. The use of advanced production technologies, such 

as machining centers with automated tool-swaps and welding robots with swappable 

component grippers and tooling, allows the manufacture of different variants of a 

common base product on the same line in subsequent production cycles without 

noticeable setup times or costs (lot size of one). These mixed-model assembly lines are 

widely employed in assembly-to-order production systems and enable mass 

customization. Important practical fields of application for mixed-model assembly lines 

can be found in the final assembly of cars which deals with an especially dramatic 

diversity summing up to 10
32

 different car models on the same assembly line [3]. A block 

diagram of the basic steps followed while manufacturing a car is shown in Figure 2.5. 

Final Assembly department is usually a maze of several sections of smaller assembly 

conveyors connected by transfer stations. A block diagram with several dock doors for 

raw material delivery is shown in Figure 2.6. 
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Figure 2.5: Block-diagram of automotive assembly steps 

 

 

Figure 2.6: Block diagram showing product flow and parts supply 
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Each segment of an assembly line may have 20 to 25 stations, each of which may 

contain multiple takts (work-zones) where operators assemble components to the painted 

vehicle body. All conveyors are synchronized and move at a constant pace determined by 

the takt-time. Takt Time is defined as the ratio of total number of available seconds in a 

given work shift to the total number of products (vehicles) to be made, dictated by the 

demand of the end user.  

Total available time per shift (sec.)
Takt Time = 

Total product demand per shift
                 (1.1) 

 For example, a takt time at a major automotive assembly plant is 92.5 seconds. 

The takt time represents drop-off rate, which means every 92.5 seconds, one vehicle rolls 

off the end of the assembly line. This takt time is calculated as follows: 

9 hours x 3600 sec.
Takt Time = 92.5sec.

350 vehicles per shift
  (1.2) 

It is important to note that the denominator in this equation should be based on the 

rate at which the vehicles are sold to the final customer to maintain a Lean Supply Chain. 

Overproduction is a fundamental waste. The goal should be to produce the required 350 

vehicles per shift with the least number of operators. 

At each station, multiple assembly operators work in their respective zones of the 

vehicle as it travels on a constantly moving conveyor. The vehicle may be raised, lowered 

or tilted using programmable logic controllers to allow the operators to assemble 

components to the vehicle with the least ergonomic stress. Each associate has a set of 

tasks to be completed within the available takt time. This task assignment results in a 

non-polynomial (NP) hard problem called the Mixed-Model Assembly Line Balancing 



 12 

Problem which will be addressed separately in the Key Enabling Systems section of this 

document. At the end of the assembly segment, there may be a quality check station that 

focuses on critical assembly characteristics associated with the tasks completed in that 

segment. At the end of the assembly segment, the vehicles get transferred across the 

logistics aisle to the next segment to continue the assembly process. This process 

continues along a serpentine sequence of conveyors until the entire assembly is complete. 

After the assembly is complete, the vehicle is driven using its own power to the testing 

area. All vehicles get driven into a booth that has a Dynamometer. The vehicle gets 

accelerated to its maximum rated speed and a series of tests are done on the 

Dynamometer. Finally the vehicle goes through a Road Test which includes driving it on 

a specially developed surface prior to certifying the vehicle for final delivery.   

2.1.5. Real-World Example of MMFA 

 

The following data shows a typical range of values for key parameters that will 

give readers feasible ranges of performance for a real-world Mixed-Model Automotive 

Assembly (MMFA) line: 

a. Takt time: 60 to 125 seconds  

b. Assembly takts (multiple per station): 355 to 450 

c. Labor per vehicle (Joining, Paining, Assembly) = 25 to 30 hours 

d. In-process dedicated quality-check takts = 8 to 10 

e. Available labor hours per shift = 8 to 10 hours 

f. Vehicle built per shift (9 hours) = 260 @ 60 s. and 540 @ 125 s. 

g. Takt time utilization = 92% - 96% 
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h. Number of mixed base models assembled on a line = 2 to 3 

i. Number of variants of each base model assembled = 20 to 25 

j. Number of optional sub-assemblies per variant = 300 

Note: Takt time utilization for a given takt is the ratio of the sum of task times assigned to 

the takt to the total available takt time. The range of the % utilization shown above is an 

average utilization percentage across a typical automotive assembly plant. This metric 

will be explained in greater detail in the Assembly Line Balancing section of this 

document. 

Multiple base models may be assembled on the same assembly line. For example, 

a base model can be a small 5-seater Sports Utility Vehicle (SUV) and it can be 

assembled alongside another base model which can be a 7-seater large SUV. Each of 

these base models can have multiple variants such as Left-Hand Drive / Right-Hand 

Drive, choice of 2.5 liter gasoline engine / 3.0 liter larger gasoline engine or a turbo-

charged diesel engine, or it can be a market specific variant that meets regulations of a 

certain country where the vehicle will be shipped, and many others. We have observed 

approximately 20 to 25 different variants per base model in a modern automotive 

assembly plant. 

Option content refers to the possible option choices that customers have when 

they configure the vehicle. For example, a customer may be able to choose from up to 7 

different roof-rails for a vehicle, depending on the selected variant. 

The multiple base models, their variants, and the associated option content make 

Mixed-Model Final Assembly a challenging multi-disciplinary problem. 
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2.1.6. Key Enabling Systems 

 

Mixed-Model Final Assembly is feasible because the following key enabling 

systems function seamlessly in the background: 

Just-In-Time (JIT) Component Deliveries 

 

The goal of Just-In-Time deliveries is to have the required components at the 

required time in the required quantities in order to prevent accumulation. One of the 

fundamental pillars of the Toyota Production System is Waste Elimination. Although 

inspection, transportation, and storage of inventory are required elements of a 

manufacturing process, only the actual processing is value added. JIT aims at eliminating 

one of the primary waste sources which is storage of raw material and finished goods. 

Mixed-Model Final Assembly reduces or practically eliminates finished goods 

accumulation because the vehicles are produced just-in-time, directly based on the 

customer orders and the same strategy is applied to the raw material receiving side.  

Most automotive assembly plants that have implemented JIT deliveries have to 

place a tremendous focus on schedule and capacity. Some companies allow customers to 

place a completely customized vehicle order through a web-based configurator. These 

orders are then sequenced in the form of a production plan and broadcast to the respective 

vendors. On the other hand, some assembly plants operate on a sales forecast but divide 

their schedule into several layers. The top level master schedule is based on extensive 

market survey to estimate a relatively approximate demand for each model type. This 

high level planning is used to plan capacities in the plant and raw material suppliers. This 

estimate is given to the plants and vendors between 60 to 90 days in advance and firmed 



 15 

up usually 30 days before the planned production date. The firm numbers are used for the 

second level (weekly) and third level (daily) planning. A final leveled schedule is sent to 

the final assembly line which drives the demand using the kanban system. Kanban is a 

system of “pulling” components throughout the supply chain based on demand. Just-In-

Time (JIT) deliveries prevent inventory accumulation and thereby reduce the working 

capital invested in inventory.  

Instead of the long final assembly lines (Figure 2.6), the newer plants have a layout 

like the fingers of a hand (Figure 2.7). Just like airport layout planners would like to 

maximize the number of available gates, this floor layout allows the assembly plant to 

have a significant number of dock doors all along the various fingers for JIT deliveries of 

sub-assemblies and components directly at the point-of-use on the assembly line. This 

minimizes the need to move racks over long distances from the dock doors to the point-

of-use, using forklifts. 
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Figure 2.7: "Finger-Layout” with more dock doors for JIT part supply 

 

Single Minute Exchange of Dies (SMED) 

In order to support a Mixed-Model Final Assembly line, the Just-In-Time 

suppliers have to produce components in the same sequence as the final assembly line if 

they wish to operate in a lean manner. This would require the ability to produce parts in 

the same lot size (ideally one) as the Mixed-Model Final Assembly line. Another way to 

support the final assembly line would be to maintain high stock levels of each variety of 

supplied component and sequence it just before the components leave the supplier’s 

dock. The latter alternative would be very expensive for the supplier due to very high 

inventory holding costs and potential quality issues associated with stored components. 

Most suppliers run a lean operation on the principles of Single Minute Exchange of Dies 

(SMED), developed by Shigeo Shingo [4]. Following are some key definitions: 
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a) Changeover: A changeover or setup is a set of tasks that must be undertaken to 

prepare the equipment to produce the next lot with a different part than the one 

already produced. It also includes the tuning time that is required to adjust the 

equipment to produce parts that meet the product specification.  

b) Changeover Time: The total changeover time is defined as the time taken from the 

last good part of component A to the first good part of component B that follows 

component A in the production plan.  

c) Single Minute Exchange of Dies (SMED): SMED is a theory and set of techniques 

that make it possible to perform equipment setup and changeover operations in under 

10 minutes.  

This technique was first applied by Toyota to reduce the changeover time of 

conventional press dies, hence the acronym SMED has the word “Dies”. Since then, the 

basic principles have been applied to quick changeover across various processes beyond 

conventional press dies but the original term SMED has continued to be applied. Also, 

the term single refers to single digit time unit (less than 10 minutes).  

Fundamentally, SMED is based on waste elimination and careful separation of 

each and every changeover activity into two basic categories: 

a) Internal Setup: Changeover activities that can be done only when the machine has 

stopped producing parts and is shut down (e.g. the physical removal of the tooling 

from the equipment). 

b) External Setup: Changeover activities that can be done before the machine has 

stopped producing parts, in preparation for the changeover (e.g. having all the tooling 
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available at the machine within the operator’s reach, rather than looking for it once 

the machine stops producing parts). 

The SMED activities can be divided into three major areas: 

a) Distinguish Internal and External Setup Activities: This step includes a detailed 

recording of every step of the changeover and careful evaluation of each step to 

determine whether it is internal or external. An efficient way to carefully evaluate the 

steps is to record the entire operation using a video camera. Then the analyst and the 

experienced operator can review each step and note down the task, time required, 

tools required, and whether it was internal or external. The advantage of recording the 

entire changeover or setup is the ability to rewind and review the process as many 

times as required to understand the operation clearly.  

b) Convert Internal Activities to External: Once the difficult part of the process of 

distinguishing between internal and external activities is complete, the most value 

added process of converting internal to external activities begins. A checklist which is 

very similar to a Bill of Material should be used to list every single tool, process 

setting, and part specification to be maintained in the process. This checklist will 

allow the operator to stage all the required components within arm’s reach from the 

equipment to be changed over. An ideal technique to store these tools is by using a 

Shadow Board (      Figure 2.8). It is a board that has a specific location for each tool 

and an outline of the tool is drawn for each tool. That ensures that every tool has a 

fixed place and every tool is in its place. If there is a “shadow / tool outline” that is 
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visible, it signifies a missing tool which helps the operator locate it before the 

equipment is shut down for changeover.  

 

 

      Figure 2.8: Example of a Shadow Board 

 

Another important part of converting the steps to external type is by staging the die 

sets or tool that has to be physically changed over inside the equipment. Any time lost 

in transportation after the machine has stopped producing parts would be categorized 

as internal setup and accounts for lost time. An ideal staging technique in relatively 

small machines is to have the tooling on a turn-table or turret so that it can simply be 

turned by say 180 degrees and can be locked in place for operation. This will convert 

all transportation time from internal to external. One final component of this process 

is to simplify the adjustment required after the new tooling / die-set is installed in the 

machine. Analysis of changeovers from a steel machining plant and a winder set 

operation for a motor manufacturing plant shows that approximately 40% - 50% of 

the total changeover time is attributed to adjustments that need to be made before the 

first good part that meets specifications is produced. This is a significant contributor 

to the internal setup which occurs after the machine has stopped producing parts. 
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Every second of adjustment time costs money and cannot be directly converted to 

external setup like the transportation of dies or shadow boards for tool availability. 

The only real way to reduce or eliminate this waste is by developing standardized 

locating devices such as dowel pins and mistake proofing devices which allow only 

one way to locate the parts. This eliminates the alternatives offered to the setup 

technician and makes it simple. Use of limit switches and proximity sensors can also 

be made wisely so that the technician gets a clear confirmation when the die-set or 

tooling has been located in its correct position. The input from such devices can be 

tied into the programmable logic circuit of the machine to prevent the machine from 

cycling unless the tooling has been secured in the correct position. Such use of 

mistake-proofing systems reduces the changeover time and it also reduces or 

potentially eliminates scrap that is generated every time a new batch is run. 

c) Standardize the Setup / Changeover operation: When tooling or components 

related to a changeover are different, the operator has to make all those changes, 

usually with the machine completely shut down. This would be considered a waste of 

time as it is an internal set up and parts are not being produced. Those features that 

are directly interacting with the fixture in which the die set gets located, should be 

standardized. This also includes a set of standard shims that can be used to allow two 

or more different die sets to work with the same clamp height and shut height.  
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Figure 2.9: Standard Clamp height for all sets in the tooling family 

  

Depending on the complexity of the changeover, it may be beneficial to divide the 

tasks across multiple technicians who can then execute the changeover in parallel. For 

this to work efficiently, a standard list of tasks need to be made and each task should have 

one owner. Primarily, the savings are driven by the fact that one operator does not need to 

walk around the machine back and forth in order to complete the setup. Once again, this 

is applicable only in the case of relatively complex setups and large equipment.  

Use of standard settings using a mechanical or electronic controller would be 

beneficial. In the case of a resin trickle-oven used in motor manufacturing, when a 

changeover takes place from one frame size to another, the amount of trickle resin to be 

dispensed by each nozzle has to be altered in order to fill the armature winding per 

process specifications. If this was done manually each time and the armatures were 

weighed when they come out of the large oven, significant waste of time would occur. 

For example, at a motor manufacturing plant, a typical trickle oven with a capacity of 

about 100 armatures used to take about 90 minutes to changeover from the last good part 

of one batch to the first good part of the next batch. Multiple times the flow of resin 

would need to be adjusted and the armature would get sectioned using a band saw to 

observe the resin fill. To reduce the time required for this internal setup, a Lean Six 

Sigma Black Belt studied the operation by conducting a Design of Experiment (DOE) 
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and suggested the use of flow control valves with specific settings that were controlled 

using programmable logic circuits. Several confirmation runs were conducted to study 

the expected variation from batch to batch and once the process was confirmed to be 

capable, the settings were recorded in the process control documents. After the changes 

were implemented, a complete changeover could take place within 8 minutes and the new 

batch would be loaded in the oven with only one empty collet between the two lots 

signifying a changeover. This also eliminated the scrap associated with trial & error 

based adjustments that were required prior to standardizing the resin quantities and the 

flow control system. 

 In summary, Single Minute Exchange of Dies is a very effective technique to 

reduce the actual down time of the machine during changeovers and setups. It includes a 

systematic analysis of every step of the changeover, conversion of internal activities to 

external activities, and finally standardization of the improved processes in order to 

sustain the improvement long term. An overview of SMED has been included in this 

section because several simple changeovers are part of the operator’s routine work as part 

of the task. Such changeovers impact “Operator Choice Complexity” [5] which is based 

on the probability of choosing the correct tooling and components. We capture this input 

variable under human-factors in the generalized complexity model in Chapter 4. 

2.2. Assembly Line Balancing 

 

2.2.1. Introduction to Assembly Line Balancing (ALB) 

 

The distribution of tasks among the work stations such that the precedence 

constraints and possibly other restrictions are fulfilled, is called Assembly Line Balancing 
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(ALB). The high practical relevance of mixed-model assembly is also reflected by the 

vast amount of academic research in this field. With only a few exceptions, the majority 

of the numerous mixed-model assembly related research papers treat either one of the 

following two planning problems: 

1) The assembly line balancing problem constitutes a long-term to mid-term 

planning problem, which seeks to group the total number of assembly 

operations and assign them along with the required resources to the stations of 

the assembly line. 

2) The short-term sequencing problem of mixed-model assembly lines assigns all 

jobs of the given production plan (model-mix) to the production cycles in the 

planning horizon. 

The balancing and the sequencing problem are heavily interdependent. While the 

line balance decides on the assignment of tasks to stations and thus determines the work 

content per station and model, the production sequence of a given model mix is arranged 

on this basis with regard to minimum overloads. The amount of overload by itself is a 

measure of efficiency for the achieved line balance. That is why some authors have 

proposed a simultaneous consideration of both planning problems [6]. A simultaneous 

approach is, however, only viable under special conditions as both planning problems 

have completely different time frames, as explained above. Detailed forecasting of future 

model sales are often bound to inaccuracies, especially if the assembled products are in 

an early phase of their life cycle. It, thus, seems more meaningful to generally anticipate 
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the sequencing decision at the higher balancing level within a hierarchical planning 

approach. 

An assembly system performs a set of distinct minimum rational work elements 

for the assembly of products and it consists of a set of work locations linked together by a 

material handling mechanism and a detailed specification of how the assembly of the 

product flows from one station to another. Following are definitions of basic terms and 

the respective notation associated with Assembly Lines: 

1) Task is a smallest indivisible work element n. Set  1,...,V n . 

2) Station is a location along the flow line where the tasks are processed and it 

consists of operators and/or equipment. Set  1,...,k m . 

3) Performing a task j takes a task time tj and requires certain equipment and/or 

operators. 

4) The total workload necessary for assembling a work-piece is measured by the sum 

of task times tsum. 

5) The tasks cannot be assigned to stations arbitrarily because of technological 

sequencing requirements, known as precedence relations. The processing of a 

task may not start until certain tasks, i.e. its immediate predecessors have been 

processed. The precedence relations are represented schematically by an acyclic 

digraph called a precedence network/diagram whose nodes correspond to tasks 

and if a task i is an immediate predecessor of task j (i.e., if the processing of task j 

cannot start until after the completion of task i), this relation is represented by a 
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directed arc (i,j) in the precedence network/diagram, joining node i to node j. The 

set of precedence relations is simply a partial ordering of the tasks. 

6) The set Sk of tasks assigned to a station k constitutes its station load or work 

content. 

7) The cumulative task time ( )
k

k jj S
t S t


 is called station time. 

8) A certain set of operations is performed repeatedly on a workpiece which enters 

the station. The time span between two entries is referred to as cycle time. In a 

paced line, the cycle time of all stations is equal to the same value c. 

9) The series of stations and the material handling mechanism, usually a conveyor, is 

referred to as the Assembly Line. 

The decision problem of optimally partitioning (balancing) the assembly work 

among the stations with respect to some objective is known as the assembly line 

balancing problem (ALBP) [7].The first mathematical formalization of ALB was done by 

Salveson [1]. When a fixed common cycle time c is given, a line balance is feasible only 

if the station time of neither station exceeds c. In case of t (Sk) < c, the station k has an 

idle time of c - t (Sk) time units in each cycle. In order to ensure high productivity, any 

good balance should cause as few idle times as possible. 

 The basic ALBP can be distinguished into four types: 

1) Type 1: For a given cycle time, minimizing the sum of station idle times is 

equal to minimizing the number of opened stations. 

2) Type 2: Conversely, if the number of stations is given, the minimizing the 

cycle time guarantees minimum idle times. 
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3) Type 3: If both, number of stations and the cycle time, can be altered, the line 

efficiency E is used to determine the quality of a balance. The line efficiency 

corresponds to the productive fraction of the line’s total operating time tsum 

and is typically defined as E = tsum/(m.c). As the total idle time is equal to tsum 

- (m.c), a maximization of E also minimizes idle times. 

4) Type 4: Finally, the problem of finding a feasible balance for a given number 

of stations and a given cycle time falls under this category. 

Figure 2.10 shows a precedence graph with n = 9 tasks having task times between 

and 9 (time units).  

 
Figure 2.10: Precedence Graph 

 

The precedence constraints in Task 5 for example express that its processing 

requires the tasks 1 and 4 (direct predecessors) and 3 (indirect predecessor) be completed. 

The other way round, task 5 must be completed before its (direct and indirect) successors 

6, 8, 9, and 10 can be started. Any type of ALBP consists in finding a feasible line 

balance, i.e., an assignment of each task to a station such that the precedence constraints 

and further restrictions are fulfilled. For the example in Figure 2.10, a feasible line 

balance with cycle time c = 11 and m = 5 stations is given by the station loads S1 = {1,3}, 
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S2 = {2,4}, S3 = {5,6}, S4 = {7,8}, S5 = {9}. While no idle time occurs in station load 2, 

station loads 1, 3, 4, and 5 show idle times of 1, 2, 5, and 2 respectively.  

Assembly Line Balancing involves task assignments to various takts in order to 

maximize an objective such as Labor Utilization. Sequencing of tasks and Utilization are 

both input variables in the generalized complexity model that we will review in Chapter 

4. Our research shows that these have an impact on process driven complexity and can be 

valuable input variables that can contribute in predicting product quality. 

2.2.2. Manual Assembly Line Balancing 

 

The study related to this research project was conducted at a major automotive 

assembly plant on a pilot line where the electrical harnesses, floor insulation, and curtain 

head airbags get assembled into the vehicle [8]. Typically, on a monthly basis, depending 

on the change in model mix, the assembly team reviews the work distribution and 

changes task assignment as needed, in order to maximize the labor utilization. The 

current manual process of reviewing the various operations and rearranging the tasks to 

improve the average utilization of the operators is labor intensive. To baseline the current 

line balancing process, we (the author and his research team) participated in two line 

balancing workshops. These workshops included the following steps: 

 Generate a visual display of all takts in the assembly line,  

 Analyze tasks that will exceed the cycle / takt time based on projected volume of 

vehicles,  

 Re-balance each takt while ensuring that tooling / station / work zone constraints 

are not violated, 
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 Calculate the line utilization metrics,  

 Conduct trial runs to verify feasibility, and  

 Finalize the proposed line balance.  

In each workshop, a cross-functional team was comprised of 5 experienced individuals 

from assembly, Industrial Engineering, training, and quality departments. Distribution of 

the average labor hours taken for this exercise is shown in Figure 2.11. 

 

 
Figure 2.11: Distribution of Manual Line Balancing tasks (15 stations) 

 

During the course of such a line balancing workshop that is typically done two 

times per year, for each assembly line, each participant focuses 100% on the work 

content evaluation and line balancing process. Tasks are manually arranged until the team 

reaches consensus on the organization and then line trials are conducted. Similarly, on a 

monthly basis, line gets re-balanced to account for the volume changes that have been 

forecast for the following month. This exercise is usually done on a smaller scale than the 

workshop described above, and includes 2 experienced associates who conduct the 

planning and analysis in one day followed by line trials for two shifts. Although it seems 
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quite streamlined, this process relies heavily on the knowledge of the participants and 

during the workshops it was evident that several constraints that should have been taken 

into account were not easy to remember while making decisions manually, thereby 

requiring multiple iterations to correct the issues that were found. 

2.2.3. Constraints definition 

 

Besides balancing a new assembly line, a running one has to be re-balanced 

periodically or after changes in the production process or the production program have 

taken place. Balancing means assigning the tasks to the stations (workplaces) based on, 

among others, the precedence graph. In the automotive industry, typical information and 

planning system contains the description of tasks including their deterministic task times 

(derived by, for example a motion-time measurement MTM approach), the current 

assignment of tasks to takts and the execution sequences of tasks within each takt. 

However, almost no precedence relations are documented, not to mention an entire 

precedence graph. The huge manual input and the multitude of tasks (up to several 

hundreds or even thousands) prevent manufacturers from collecting and maintaining 

precedence relations [9].  

This absence of documented information on precedence relations is the main 

obstacle in applying well explored theoretical assembly line balancing methods in 

practice. In practice, planning, balancing and controlling assembly lines are based on 

subdividing the production processes and, hence, the assembly lines into segments. Each 

segment is managed by a dedicated human planner, who becomes an expert for this part 

of the system. Though some software systems provide a component for automatic line 
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balancing, the planners mostly balance their segments of the line by manually shifting 

tasks from one station to another, because precedence data is not available or existent 

data is not reliable. This is a very time-consuming and fault-prone job, which is solely 

driven by the experience and knowledge of planners. By appending the plans of 

succeeding line segments, the entire production plan is developed.  

This author along with his research group performed a pilot manual precedence 

mapping exercise on an assembly trim (segment) comprised of 15 assembly stations at a 

major automotive assembly plant where the roof rails, electrical harnesses, sub-woofer, 

floor insulation, and curtain head airbags etc. get assembled into the vehicle [8]. The 

primary purpose of this exercise was to understand the various constraints that would 

need to be captured for the decision support system that would be the primary data source 

for the optimization algorithm / construction heuristic. It was during this manual 

constraints mapping exercise that the author observed that product quality could have an 

impact based on the way tasks are arranged and therefore motivated the author to pursue 

research related to manufacturing complexity, which includes several assembly line 

related variables as key inputs. 

In order to understand the process instructions and the actual work content, the 

individuals who conducted this study underwent hands-on training on each assembly 

station involved on the pilot line. The key advantages of conducting this training were as 

follows: 

1) Visualization of Process Instructions. 

2) Understand precedence relationships. 
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3) Understand undocumented supporting tasks. 

4) Gain basic understanding of additional complexity due to high option content. 

5) Learn the effect of a work overload situation on operational metrics. 

6) Awareness of the constraints that must be incorporated into the optimization 

model. 

7) Experience the ergonomic impact of repetitive tasks. 

8) Understand the human behavior to adapt the required task to make it less 

strenuous and more effective. 

9) Gain input from assembly line associates based on their work experience. 

After a thorough understanding of the tasks and the complexity, the 

precedence mapping was manually undertaken in the following manner: 

1)  Stage 1: Each takt was evaluated to determine precedence relationships between 

tasks within each takt. 

2) Cross audit was conducted by multiple process experts to verify the precedence 

relationships  

3) Stage 2: Scope of the mapping exercise was expanded to the entire assembly line 

and relationships were mapped across takts. In several cases, entire groups of 

tasks were found to be predecessors of another group of tasks in a downstream 

takt. 

4) Data verification was done to ensure that cyclic relationships did not exist. A 

cycle refers to a relationship that points from task i to j and another points in the 

reverse direction, making j a predecessor for task i. 
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In addition to the basic task level precedence relationships, the following 

constraints were identified and recorded during Stage 1 precedence mapping: 

1. Product State constraint: The “Product State” can be defined as the physical 

state in which the product gets presented at a certain assembly station (Figure 

2.12).  

 

 

 

Figure 2.12: Product orientation for ergonomics [8] 

 

2. Assembly Zone constraint: In the assembly of certain large products such as an 

automobile or a large machine, it would be critical to capture the location of the 

assembly operator with reference to the product while conducting the specific 

task. With reference to this study, the automobile would be divided into 9 

assembly zones (Figure 2.13). This information needs to be captured as a 

constraint for each task so that the optimization algorithm takes the zone into 

account and prevents the assignment of multiple operators in the same assembly 

zone at the same time doing different tasks.  
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Figure 2.13: Top view of product showing 9 assembly zones [8] 

 

3. Ergonomic constraint: Every assembly task is assigned an ergonomic rating. 

When tasks are not designed appropriately in systems that depend on human 

operators, the system is particularly vulnerable to problems associated with 

worker health, production, quality, and increased training costs. It is important to 

capture this information as a constraint for the task distribution algorithm to be 

able to set an objective to maintain the average ergonomic rating for a specific 

assembly station below a pre-determined target. 

4. Tooling constraint: During the precedence & constraint mapping exercise, it is 

important to identify and record the specific tooling needed to execute a given 

task (e.g., overhead lift assist systems). Moving such capital equipment is 

expensive, so it should be kept at a certain station and included in the 

optimization algorithm as a constraint. 

The basic precedence mapping exercise required us to identify enabling 

predecessors (tasks that need to be done before commencing the successor tasks). In 

principle, as long as each one of those preceding tasks was completed, the dependent 

task could be done, as shown in the battery installation example in Figure 2.14. 

Figure 2: Top View showing 9 work zones
(Source: www.wikicars.org)
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Figure 2.14: Successor is independent of Predecessor Task Sequence [8] 

 

However, in reality there are tasks that need to happen immediately after a 

preceding task has taken place. For example, the windshield would needs to be 

assembled immediately after the adhesive is applied. This presents a challenge in 

terms of capturing the input data for the construction heuristic which is used for task 

distribution, as the intent is not to treat the preceding tasks as independent tasks. If 

treated independently, the task distribution process could potentially add several other 

tasks between the adhesive application and the windshield assembly operation in 

order to reduce idle time at each takt. From a process requirement standpoint, this 

would be unacceptable. A possible solution would be to group such tasks to ensure 

that they get executed in a sequence which would be pre-determined based on the 

design or process requirements (Figure 2.15). Such grouping is considered as an 

Adjacency Set. Another solution is to include time relations between tasks, such that 

minimum and maximum separation between tasks can be enforced. 

 

Figure 2.15: Task Grouping [8] 
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In summary, all these constraints were mapped for each takt during Stage 1 of 

precedence & constraint mapping. Once the precedence relationships and constraints for 

each takt were documented in Stage 1, the second stage included mapping the precedence 

relationships between tasks, across takts. It was important to review process sheets that 

had a detailed listing of every single task and the task time. The hands-on training was 

very beneficial to visualize the tasks and identify predecessors from stations that were not 

on adjacent stations. 

The comprehensive precedence map which included Stage 1 and Stage 2 data was 

then created using Microsoft
®
 Visio software to review the precedence relationships in a 

visual form. The visual representation was beneficial in highlighting circular references 

or “floating” processes that did not have any predecessors. In some cases, a large cluster 

of closely linked processes were found. This can occur when several small tasks such as 

individual wire connections are done at a specific station. As long as they are part of a 

sub-assembly (example, audio system), there was no additional advantage in trying to 

split each small task and set the precedence relationships to the upper level task which 

would in this case be the installation of the audio system. Instead it was found to be 

beneficial to link each of these tasks as an adjacency set and link the very first one to the 

preceding upper level task such as the audio system installation. This ensured that the 

small tasks did not get fragmented during the task distribution process.  

 Although generating a line balance based on precedence relationships and the 

above stated constraints could generate a potentially feasible sequence, an area not 
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explored by researchers is the impact of task sequencing and takt utilization on product 

quality. A negative impact on product quality would certainly require the experts to 

reverse the changes and re-balance the tasks. Therefore, in order to understand the impact 

of Assembly Line Balancing on product quality, we include task sequence and takt 

utilization as input variables in the complexity model, along with other variables that will 

be explained in the following sections. 

2.3. Complexity  

 

2.3.1. Definition and previous work 

 

Several scholars have attempted to define complexity at a manufacturing system 

level with limited success. This is primarily because there are a large number of 

contributors that prevent the functional objective from being achieved and depending on 

the application; authors have focused on limited number of variables and defined them as 

complexity drivers. A general definition of complexity is that a complex system is one 

which has a large number of elements, whose relationships are not simple [10]. Whereas 

static complexity describes the system structure at a defined point in time, dynamic 

complexity represents the change in system configuration in the course of time [11]. In 

order to understand how factors such as product variety, changing quality requirements or 

varying customer demand regarding packaging, or delivery service complicate 

manufacturing processes and in turn impact the performance of production systems, some 

research work has been conducted mainly in the investigation of the static manufacturing 

system complexity. Deshmukh et al. [12] derived an information-theoretic entropy 

measure of complexity for a given combination and ratio of part types to be produced in a 
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manufacturing system. ElMaraghy et al. [13] proposed a code-based structural 

complexity index to capture the amount of information in the manufacturing systems as 

well as another complexity measure to represent the probability of a manufacturing 

systems success in delivering the desired production capacity. Suh [14] defined 

complexity in the context of manufacturing system design ‘as the measure of uncertainty 

in achieving the functional requirements owing to a poor design or to the lack of 

understanding and knowledge about the system’. Suh introduced the Axiomatic Design 

(AD)-based complexity theory as a comprehensive approach to describe the mechanisms 

of a manufacturing system’s static and dynamic complexity and illustrated the concept of 

functional periodicity in a scheduling problem of a machine cluster to control the 

system’s time-dependent combinatorial complexity. 

The variety of products offered in mixed-model assembly lines has increased 

dramatically over the past decade. For example, in a typical automobile assembly plant, 

the number of different vehicles being assembled can reach tens of thousands in terms of 

the possible build combinations of options. In fact, BMW claims that, “Every vehicle that 

rolls off the belt is unique” and the number of possible automobile variations in the 

BMW 7 Series alone could reach 10
17

 [5]. Such an astronomical number of build 

combinations undoubtedly presents enormous difficulties in the design and operation of 

the assembly systems. In the case of automotive assembly, it has been shown by both 

empirical and simulation results [15, 16] that increased vehicle product variety has a 

significant negative impact on the performance of the mixed-model assembly process, for 

example, on quality and productivity. Such impact can result from assembly system 
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design as well as people performance under high variety. The effect from the latter 

persists since only limited automation can be implemented in the automobile final 

assembly [17, 18]. Thus, researchers have focused on this problem in two parts: how 

variety impacts people and system performance, and how to design assembly systems and 

organize production to allow high product variety without sacrificing quality and 

productivity. One of the possible approaches to assessing the impact of product variety on 

manufacturing system performance is to investigate how product variety complicates the 

mixed-model assembly process. However, only limited research has been done on 

defining manufacturing system complexity. For example, MacDuffie et al. [16] 

established an empirical relationship between complexity and manufacturing system 

performance. They defined product mix complexity by looking at product variety 

(product mix and its structure) in assembly plants. According to the differences in the 

levels of product variety, three types of product mix complexity were defined in terms of 

empirical scores: model mix complexity, part complexity, and option complexity. The 

result was based on the data from 70 assembly plants worldwide that participated in the 

International Motor Vehicle Program at MIT [16]. Besides empirical studies, attempts 

have also been made to analytically define complexity in manufacturing. For instance, 

complexity has once been associated with the amount of effort needed to make a part. 

The effort was quantified by a logarithmic function of the probability of achieving a 

certain geometric precision and surface quality in machining [19].The function is widely 

known as Shannon’s information entropy [20]. Similarly, Fujimoto and Ahmed [21] 

defined a complexity index for assembling. The index takes the form of entropy to 
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evaluate the assemblability of a product. The assemblability was defined as the 

uncertainty of gripping, positioning, and inserting parts in an assembly process. Also, 

complexity has been extended as a measure of uncertainty in achieving the specified 

functional requirements in an axiomatic design [22]. Recently, complexity has been 

defined in an analytical form for manufacturing systems as a measure of how product 

variety complicates the process. Fujimoto et al. [23] introduced a complexity measure 

based on product structure using information entropy in different assembly process 

planning stages. By reducing the complexity, they claimed that the impact of product 

variety on manufacturing systems could be reduced. However, the complexity measure 

does not incorporate the manufacturing system characteristics into the analysis. 

2.3.2. Introduction to Axiomatic Design Principles [14] 

 

Complexity theory based on Axiomatic Design (AD) was developed by Dr. Nam 

P. Suh. Therefore, it is important to provide a brief background on Axiomatic Design. 

AD theory is based on two fundamental axioms that eliminate the possibility of making 

mistakes when products – both hardware and software, are developed. The theory helps 

to overcome the shortcomings of the recursive product development process 

(design/build/test), which requires continuing modifications as issues are found through 

testing. There are several key concepts that are fundamental to AD. They are the 

existence of domains, mapping, axioms, decomposition by zigzagging between the 

domains, theorems and corollaries. 

a. The concept of domains: The world of design is made up of four domains – 

the customer domain, the functional domain, the physical domain, and the 
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process domain. The customer domain represents what ‘we want to achieve’, 

relative to the domain on the right, which represents the design solution, that 

is ‘how we propose to satisfy the requirements specified in the left domain’. In 

the functional domain, the customer needs are specified in terms of functional 

requirements (FRs) and constraints. FRs are a minimum set of independent 

requirements that completely characterize the functional needs of the product 

in the functional domain. In order to satisfy the FRs, we conceive design 

parameters (DPs) in the physical domain. DPs are the key physical variables 

in the physical domain that characterize the design that satisfies the specified 

FRs. Finally, we develop a process that is characterized by process variables 

(PVs) in the process domain, in order to produce the product specified in 

terms of DPs. 

 

Figure 2.16: Four domains in the design world [14] 

 

b. Mapping from domain to domain: Once the customer needs are identified 

and defined in the customer domain, these needs must be translated into the 

FRs in the functional domain. Dr. Nam P. Suh suggests that FRs must be 

defined without ever thinking about something that has already been designed 

or what the design solution should be [14]. After the FRs are chosen, they are 
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mapped into the physical domain to conceive a design with specific DPs that 

can satisfy the FRs. For a given FR, there can be many possible DPs. The 

right DP should then be chosen while making sure that other FRs are not 

affected by the chosen DP and that the FR can be satisfied within its design 

range. 

Axioms: Dr. Nam P. Suh defines axioms as truths that cannot be derived but for 

which there are no counter-examples or exceptions [14]. The basic postulate of AD 

theory is that there are fundamental axioms that define acceptable designs. The two 

axioms are: the Independence Axiom and the Information Axiom. 

a. Independence Axiom: This axiom states that the FRs should be independent 

of each other. When there are several FRs, the design must be such that FR 

can be satisfied without affecting any of the other FRs. The relationship 

between FRs is decided by the choice of DPs. It should be noted that FRs are 

independent from each other by definition. Therefore, we have to choose a 

correct set of DPs to be able to satisfy the FRs and maintain their 

independence. After the FRs are established, the next step involves 

conceptualization of the design solutions. This is a mapping process from 

‘what’ in the functional domain to ‘how’ in the physical domain. When there 

are many FRs, the design task may become difficult since the Independence 

Axiom may be violated. The mapping process between the design domains 

can be expressed mathematically in terms of two characteristic vectors as 

follows: 
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     FR DPA  (1.3) 

where  A is called the Design Matrix that relates FRs to DPs and 

characterizes the product design. Equation (1.3) is a design equation for the 

design of a product. For a design that has three FRs and three DPs, the design 

matrix is of the following form: 

  
11 12 13

21 22 23

31 32 33

A A A

A A A A

A A A

 
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
 
 
 

 (1.4) 

Equation (1.3) may be written in a differential form as: 

 

     dFR dDPA  (1.5) 

where the elements of the design matrix are given by: 

 

 
FR

DP

i
ij

j

A





 (1.6) 

For a linear design, As are constants; for a non-linear design, As are functions 

of the DPs. There are two special cases of this design matrix: 

1) The diagonal matrix, where all Aij = 0 except those where i = j. 
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 (1.7) 

2) The triangular matrix as shown below: 

 

  
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 (1.8) 
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For the design of processes involving mapping from the {DP} vector in the 

physical domain to the {PV} vector in the process domain, the design 

equation may be written as: 

 

     DP PVB  (1.9) 

where [B] is the design matrix that defines the characteristics of the process 

design and is similar in form to [A]. To satisfy the Independence Axiom, the 

design matrix must be either diagonal or triangular. When the matrix is 

diagonal, each of the FRs can be satisfied independently and such a design is 

called uncoupled design. When the matrix is triangular, the independence of 

FRs can be guaranteed if and only if the DPs are determined in a proper 

sequence. Such a design is called a decoupled design. Any other form of the 

design matrix is called a full matrix and results in a coupled design. Coupled 

designs are complex and cannot be decomposed readily because of the 

complicated relationships among the FRs. Therefore, when several FRs must 

be satisfied, designs must be developed in such a way that a diagonal or 

triangular design matrix can be created. 

b. The Information Axiom: This axiom states that the design with the 

minimum information content is the best design. There may be many designs 

that satisfy the Independence Axiom and the Information Axiom can be useful 

in selecting the best among those designs.  
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The information content Ii for a given FRi is defined in terms of the 

probability Pi of satisfying FRi: 

 2 2

1
log logi i

i

I P
P

    (1.10) 

The information content is expressed in bits of information. The logarithmic 

function is chosen so that the information content will be additive, which is 

useful when many FRs must be satisfied simultaneously. 

In the general case of m FRs, the information content for the entire system Isys 

is: 

 
 2logsys m

I P   (1.11) 

where P{m} is the joint probability that all m FRs are satisfied. 

When all FRs are statistically independent, as is the case for an uncoupled 

design, 
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1
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i
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

   (1.12) 

then Isys may be expressed as: 
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When all FRs are not statistically independent, as is the case for a decoupled 

design, 

   { }
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Where Pi|{j} is the conditional probability of satisfying FRi given that all other 

relevant (correlated) {FRj}j=1,…,i-1 are also satisfied. In this case, Isys may be 

expressed as: 

 2 |{ }

1

log  for { }={1,..., -1}
m

sys i j

i

I P j i


   (1.15) 

The Information Axiom states that the design with the smallest I is the best 

design, since it requires the least amount of information to achieve the design 

goals. When all probabilities are equal to 1, the information content is zero 

and, conversely, the information content requires is infinite when one or more 

probabilities are equal to zero. That is, if the probability is small, we must 

supply more information to satisfy the FRs. Dr. Nam P. Suh’s Information 

Axiom states that the FR must be satisfied within a specified range, which we 

define as the design range [14]. The probability of success is governed by the 

intersection of the design range defined by the designer to satisfy the FRs and 

the ability of the system to produce the part within the specified range. The 

probability of success can be computed by specifying the design range for the 

FR and by determining the system range that the proposed design can provide 

to satisfy the FR. To achieve a robust design, the system range should lie 

inside the design range, thus reducing the information content to zero. 

2.3.3. Complexity Theory based on Axiomatic Design [14] 

 

One of the major goals of engineering is to reduce complexity of engineered 

systems. Suh’s complexity theory based on AD provides a theoretical framework for 
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understanding and designing complicated systems. The theory gives guidelines for what 

is possible and desirable in these systems. 

Complexity is defined as a measure of uncertainty in achieving the specified FRs. 

The complexity is measured in the functional domain rather than in the physical domain. 

Complexity can be a function of time or can be independent of time. Therefore, it is 

classified into two primary groups – Time-dependent complexity or time-independent 

complexity. 

Time-independent complexity consists of two different types: real complexity and 

imaginary complexity. The information content defined by the Information Axiom is a 

measure of real complexity. It measures how well the design satisfied FR, i.e. the overlap 

between the design range and the system range. On the other hand, Imaginary complexity 

is not real complexity but appears complex due to the lack of knowledge about the 

design. 

For a system range that changes as a function of time, there are two types of time-

dependent complexity: time-dependent combinatorial and time-dependent periodic 

complexity. Combinatorial kind can lead to a chaotic situation if the number of 

combinations continues to grow as a function of time. On the other hand, time-dependent 

periodic complexity reduces the number of combinations to a finite set in a functional 

period and may reduce the complexity problem to a deterministic one. 

The introduction of functional periodicity into a system that has time-dependent 

combinatorial complexity may substantially reduce the uncertainty of satisfying the FR. 

Whenever a system with time-dependent combinatorial complexity is converted to a 
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system with time-dependent periodic complexity, uncertainty is reduced and the design is 

simplified. 

An example of time-dependent complexity is airline scheduling. If there is a 

snowstorm at a hub airport that prevents airplanes from landing and taking off, other 

airports will be affected. While the storm continues, the problem will get worse as time 

passes. If the storm clears, the problem can be solved by reinitializing the system. It is 

worth noting that as the airline schedule is periodic each day, all of the uncertainties 

introduced during the course of a stormy day end after a 24-hour cycle. Such a time-

dependent complexity falls under the periodic complexity category. 

2.3.4. Reduction of Complexity in Manufacturing Systems [14] 

 

To make a system robust and reliable by satisfying the FRs and constraints 

throughout the system’s life cycle, the complexity of the system should be reduced 

starting from the design stage. Following are three primary ways of reducing complexity: 

 Elimination of time-independent real complexity by making the design robust 

 Elimination of time-independent imaginary complexity by writing the design 

equation. 

 Transform time-dependent combinatorial complexity into a time-dependent 

periodic complexity by introducing a functional periodicity. 

The first step in introducing a functional periodicity is to decouple a coupled 

system to make sure that the FRs can be satisfied independently and the system obeys the 

Independence Axiom. For example, in the case of cellular manufacturing system, 

processes are grouped according to the sequence and operations needed to make a 
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product [24]. The cell is designed in a U-shape so that the workers can move from 

machine to machine, loading and unloading parts (Figure 2.17). The cell has one worker 

who can make a walking loop around the cell in 110 seconds. The machines in the cell 

have the capability to complete the desired processes untended, turning themselves off 

when the machining cycle is complete. The cell usually includes all the processing 

needed for a complete part or sub-assembly. If the machining time (MT) for a certain 

operation is greater than the necessary cycle time (CT), that process needs to be 

duplicated to ensure that MT < CT. By using multi-skilled operators, the need to balance 

the line is eliminated as these operators are capable of operating multiple operations and 

are motivated to provide support to every process in the cell that may need help. It is 

important to note that between such processes, several different types of decouplers may 

be placed. A decoupler may be designed to inspect the part before it gets picked up by the 

next process and feed the information back to the previous machining step if any 

corrective action is required. A decoupler may also help cool a heat-treated part before it 

gets picked up by the operator for the next process step. Thus, a manufacturing cell 

allows production of just enough parts to meet the production requirements without 

generating additional inventory. Based on the principles of axiomatic design and 

complexity reduction, functional periodicity is controlled in these cells by the removal of 

the product from the last machine of a manufacturing cell. This is in contrast to having a 

job shop type of a manufacturing system, where parts are pushed into the manufacturing 

system as soon as a machine becomes available. In such a system, the parts are moved to 

the next available machine. The number of combinations and permutations of processing 
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the parts through a set of processes in a job shop increases with time, thus constituting a 

combinatorial complexity problem. 

 

Figure 2.17: U-shaped cell with decouplers, [24] 

 

2.3.5. Operator Choice Complexity  

 

Variety has been shown to be a particularly important factor in error frequency. 

Gatchell [25] observed that operators with a choice of 10 parts made 46 percent more 
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errors and needed 13 percent more decision time than operators who could choose from 

only 4 parts. In Zhu et al. [5] the variety induced manufacturing complexity in manual 

mixed-model assembly lines is considered where operators have to make choices for 

various assembly activities. The authors propose a complexity measure called ‘operator 

choice complexity’ to quantify human performance in making choices. Operator choice 

complexity is defined as the average uncertainty or randomness in a choice process, 

which can be described by a function H in the following form (2.1): 

 1 2

1

( ) ( , ,..., ) log
M

m m m

m

H X H p p p C p p


     (2.1) 

Where, C is a constant depending on the base of the logarithm function chosen. If log2 is 

selected, C=1 and the unit of complexity is bit. 

There is a close similarity and connection between the theoretical properties of the 

complexity measure and the experimental results found in human cognitive studies. The 

experiments were conducted to assess human performance when making choices. 

Coincidentally, information entropy was found to be one of the effective measures. The 

performance of human choice-making activities was investigated by measuring average 

reaction times (RTs), i.e., how quickly a person can make a choice in response to a 

stimulus. One of the earliest studies was done by Merkei in 1885, described by 

Woodworth [26]. In the experiment, digits 1–5 were assigned to the fingers of the right 

hand and the Roman numbers I–V were assigned to the fingers of the left hand. On any 

given set of trials, the subject knew which of the set of stimuli would be possible (e.g., if 

there were three possible stimuli, they might be 3, 5, and V). Merkel studied the 
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relationship between the number of possible stimuli and the choice RT. His basic findings 

are presented in Figure 2.18, where the relationship between choice RT and the number 

of alternatives was not linear. This relationship in Figure 2.18 has been further studied by 

a number of researchers since Merkel’s original observations.  

 

 

Figure 2.18: Mean choice RT vs. stimulus-response alternatives [26] 

 

Among them, the most widely known one was Hick [27]. He discovered that the choice 

RT is linearly proportional to the logarithm of the number of stimulus alternatives if all 

the alternatives are equal (Figure 2.19), i.e.,  

 2Mean choice [log ]RT a b n   (2.2) 
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Where, n is the number of stimulus-response alternatives, and a and b are constants, 

which can be determined empirically by fitting a line to the measured data. This relation 

came to be known as Hick’s law, which was regarded as one major milestone in the 

area of cognitive ergonomics.  

 

Figure 2.19: Mean choice RT as a function of log of the # of alternatives [27] 

 

Coincidentally, the term (log2 n) is exactly the information entropy calculated in (2.1) if 

all the pm’s are equal, which follows from the experiment setting that the choice process 

is iid (independent and identically distributed) and all the alternatives likely occur 

equally. The above analogy was first discovered by Hyman [28], where he concluded that 

“the reaction time seems to behave, under certain conditions, in a manner analogous to 

the definition of information.” Hyman also realized that, according to Shannon’s 

definition of information entropy, he could change information content in the experiment 
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by other means. Thus, in addition to varying the number of stimuli and letting each one of 

them occur in Hick’s [27] experiment, he altered stimulus information content simply by: 

 Changing the probability of occurrence of particular choices  

 Introducing sequential dependencies between successive choices of alternatives 

(Figure 2.20).  

 

Figure 2.20: Choice RT vs. stimulus information H [27] 

 

Thus, we can use H to replace the (log2 n) term; (2.2) becomes: 

 Mean choice RT a bH   (2.3) 

Because of the significance of this generalization, Hick’s law is also referred to as the 

Hick–Hyman law. The H term in the above equation is one of the variants of Shannon’s 

information entropy [20] in the communication systems study. Thus, a fundamental 

assumption behind this analog is that the mental process of a human being is modeled as 

an information transmission process. Liu [29] suggested that at a level of mean RTs, a 

continuous-transmission fork-join network demonstrates the same logarithmic behavior 
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as that of experimental results in the Hick-Hyman law. Hence, the legitimacy of applying 

this equation is limited to situations where individuals are asked to respond promptly to a 

stimulus, and the decision to be made is very simple, requiring little conscious thought. In 

mixed-model assembly process, we observe a very similar situation that the line 

associates are asked to handle variety in a very tight cycle time without time for 

deliberating over the decisions.  

2.3.6. Cognitive Load Theory 

 

Cognitive Load is closely linked to the Operator Choice Complexity described 

above. The objective of cognitive load theory (CLT) is to predict learning outcomes by 

taking into consideration the capabilities and limitations of the human cognitive 

architecture [30]. The theory can be applied to a broad range of learning environments 

because it links the design characteristics of learning materials to principles of human 

information processing. CLT is guided by the idea that the design of effective learning 

scenarios has to be based on our knowledge about how the human mind works. Starting 

from this premise, different processes of knowledge acquisition and understanding are 

described in terms of their demands on the human cognitive system, which is seen as an 

active, limited-capacity information processing system. Taking into account the demands 

on cognitive resources induced by the complexity of the information to be learned, the 

way in which the instruction is presented to the learner, and the learner’s prior experience 

and knowledge, CLT aims to predict what makes learning successful and how learning 

can be effectively supported by teaching and instruction. A growing body of empirical 

research has become available in recent years that describes the relationships among 
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human cognitive architecture, the design of educational materials, and successful 

learning. Moreover, the research conducted in past years has led to a more detailed 

description of the theoretical components of CLT, including processes of schema 

acquisition, capacity limitations, and different causes for load, namely, intrinsic load 

(generated by the difficulty of the materials), extraneous load (generated by the design of 

the instruction and materials), and germane load (the amount of invested mental effort). 

In mixed-model automotive assembly lines, instruction about the option content 

to be assembled in a specific vehicle is relayed to the operator in multiple different ways: 
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 Bar-coded broadcast sheet placed on the vehicle body (Figure 2.21). 

 Visual display screen triggered by the radio frequency (RF) device on the 

vehicle (Figure 2.22). 

 Audio device coupled with the visual display to reduce the need for the 

operator to look at the screen to determine the option to be chosen. 

 

Figure 2.21: Broadcast sheet on vehicle (BMW, Leipzig) 
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Figure 2.22: Visual display of options to be installed in a specific vehicle 

 

In summary, several researchers have attempted to define complexity at a 

manufacturing system level. We now turn our attention to Automotive Assembly Quality 

before focusing on the correlation between Manufacturing Complexity and Quality. 

2.4. Introduction to Automotive Assembly Quality 

 

Buzzell et al [31] proclaimed that “Quality is King”, affirming its dominant role 

in market share and Return on Investment (ROI). The principle measure of Conformance 

Quality for products, as described by Garvin [32] is product yield in terms of defects 

generated by the manufacturing process. In the Automotive industry, quality has become 

increasingly important as customers have several alternatives to choose from the 

marketplace. Market research firms such as J. D. Power routinely measure number of 

defects per 100 vehicles and publish the results. This survey is constructed to reflect only 

those defects that an assembly plant can affect, i.e. omitting defects related to the 
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powertrain, while emphasizing defects related to the fit and finish of body panels, paint 

quality, and the integrity of electrical connections. On the other hand, Consumer Reports 

publishes reliability ratings for vehicles so that customers can evaluate the long term 

reliability of sub-systems inside the vehicle. Such readily available information has made 

vehicle manufacturers step up their internal quality measures and tie those metrics to 

ensure that the customer is delighted when he/she receives the delivery of a brand new 

car and more importantly to ensure that the customer stays loyal by enjoying the 

performance of the vehicle along with robust reliability. Several concepts and methods 

have evolved with the goal of improving conformance quality. Following is a brief 

review of the conventional quality control methodologies that are being used for the last 

several years and their respective limitations: 

2.4.1. Statistical Process Control (SPC) 

 

In virtually all manufacturing processes, the dimensions and quality of individual 

parts needs to be known and controlled to meet design specifications. If such dimensions 

are not controlled, costly delays and failures may result. Inspection strategy can fall into 

one of the three following categories: 

a. 100% inspection: Each and every part can be measured, manually or by some 

automated method 

b. Sampling: Some portion of the output can be measured by taking a sample lot of 

parts at a certain frequency 

c. No inspection: Under the assumption that everything that is manufactured meets 

required specifications, none of the parts get inspected 
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Usually, manufacturers choose one of the first two categories depending on the risk 

associated with a defective part. Sampling strategy involves looking at a certain 

percentage of the entire population of parts using statistical techniques. This is known as 

Statistical Process Control (SPC). The basic SPC techniques are the histogram and 

control charts. The x-axis would represent various ranges of a dimension (e.g. a shaft 

length) and the y-axis would represent the frequency at which these measurements were 

found. The natural process limits of the measured distribution can be compared with the 

engineering specifications to determine if the process is centered at the nominal value or 

requires an adjustment. The location of the tails of the histogram with reference to the 

design specification limits for a given dimension would show whether the parts being 

produced are within specification or a small population does not meet the requirements.  

Control charts for variables are used to monitor the output of a process by sampling, by 

measuring selected quality characteristics, by plotting the sample data on the chart, and 

then by making decisions about the performance of the process. Three common types of 

charts that are used in typical manufacturing processes are: 

1) X-bar chart: This chart tracks the aim / target (accuracy) of the process 

2) R chart: The range chart tracks the precision or variability of the process 

3) σ chart: The σ chart is used in place of R chart if the sample size is large 

It is important to know that sampling errors can occur. Two kinds of decision errors are 

always possible: 

1) Type I error: If the process is running well but the sample data indicates that an 

adjustment is required 
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2) Type II error: Contrary to the Type I error, in this type the sample data fails to 

indicate that something is wrong with the process, when indeed an adjustment is 

required 

Many manufacturing companies determine the size of the errors they are willing to accept 

according to the financial loss associated with making the error plus the cost of 

inspection.  

This conventional quality control method has two major shortcomings: 

1. This method is reactive by nature. When the point of detection is downstream 

from the defect source, the delay in responding to a process variation can 

result in a significant number of defects. 

2. SPC focuses on the manufacturing process and does not take product design 

into consideration. Although manufacturing process control plays a big role, 

several defects are caused due to a product design issue and this method does 

not take focus on the design. 

2.4.2. Taguchi’s Robust Design 

 

In contrast with the reactive SPC technique, Taguchi’s Robust Design considers 

defect issues relative to the product design as well as the manufacturing process. Quality 

Engineer – Genechi Taguchi must be credited with much of today’s interest in the use of 

factorial and fractional factorial designs on the part of the automotive and assembly 

industries [33]. Within these industrial environments, experiments are run to identify the 

settings of both product design parameters and process variables that will simultaneously 

provide a manufactured item whose response is robust to process variability while 
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meeting the customer’s product expectations and possible environmental challenges. The 

adaptation of statistical experimental design to these objectives has its origins in 

Taguchi’s early work in the communications industries in Japan in the 1950s. The 

strategy is called “parameter design” or “robust design”. The word “design” takes 

different connotations: product design, process design, and statistical design. 

A product’s response y is considered to be a function of “controllable” factors x 

and the “noise” factors z. The objective is to choose settings of x that will make the 

product’s response y insensitive to variability associated with both x and z and still meet 

target specifications with least variability. 

2.4.3. Six Sigma and Process Capability 

 

Six Sigma methodology seeks to reduce or eliminate defects caused by variation 

by assuring that design requirements have been established correctly in the design phase 

and that the manufacturing process capability meets these requirements. An important 

measure used in the Six Sigma methodology is the Process Capability index (Cp). For 

bilateral tolerances, this index is defined as: 

 
| | Tolerance width

6 Process capability
p

USL LSL
C




   (2.4) 

Where, 

USL = Upper Specification Limit 

LSL = Lower Specification Limit 

Standard Deviation of the production process 
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The process capability index can be used to predict how frequently the outcome of a 

process will exceed specification limits. This is a useful tool but focuses only on the 

design tolerances and ability of the process to manufacture parts consistently within those 

specifications. One of the drawbacks of analysis using these tools is that most quality 

engineers focus on the primary distribution followed by the data. For example, the data 

for a process could be normally distributed. In most cases, the tails of the distribution are 

not part of the consideration except for the defect rate estimation in Parts per Million 

(PPM). Understanding the nature of rare events and the limitations of statistical methods 

is particularly important when the goal is to achieve near-zero defect levels. 

2.4.4. Self and Source Inspection 

 

Shigeo Shingo has introduced several quality concepts that overcome some of the 

limitations of other methods. Self-inspection and source inspection have the goal of 

detecting and eliminating defects at their production source [34]. Self-inspection has the 

objective of detecting defects as close to the point of origination as possible or to reduce 

delays in feedback. By gauging tools, materials and activities upstream of the process, it 

is possible to eliminate any defects before they are created, using source inspection. 

However, like SPC, these methods are manufacturing focused and do not address design 

issues. 

2.4.5. Pokayoke and 100 % Inspection 

 

Shigeo Shingo makes an important distinction between human error and product 

defects. While errors are inevitable, defects are not. He has stated [34]: 
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“We should recognize that people are, after all, only human and as such, they will, on 

rare occasions, inadvertently forget things. It is more effective to incorporate a checklist, 

i.e. a pokayoke device into the operation so that if a worker forgets something, the device 

will signal that fact, thereby preventing defects from occurring. This, I think, is the 

quickest road leading to attainment of zero defects.”  

 Similarly, Rasmussen [35] concluded that the frequency of error derived from 

defect reports is dependent on the opportunity for people to detect and correct the errors 

immediately. No amount of vigilance or training will assure that unintentional errors will 

be recognized. Use of pokayoke is required to catch every single error and result in a 

defect free output. Using pokayoke devices, defect probabilities will be less than error 

probabilities. Consequently, defects are more likely to be related to the level of quality 

control than to the frequency of errors. Therefore, centering attention on error prevention 

and intervention is more productive than prediction of error rates for manufacturing 

problems.  

 In some cases, pokayoke has been incorporated in the design process, thereby 

preventing incorrect assembly [36]. However, pokayoke devices are generally used on 

the assembly line to prevent assembly defects rather than an available technique that can 

be incorporated into the product design.  

2.5. Correlating Complexity and Quality 

 

Efforts associated with manual precedence graph generation at a major 

automotive manufacturer have highlighted a potential relationship between 

manufacturing complexity (driven by product design, assembly process, and human 
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factors) and product quality, a potential link that is usually ignored during Assembly Line 

Balancing and one that has received very little research focus so far. 

Two models that have been developed based on assembly of home audio products 

and copier assembly have been summarized below: 

2.5.1. Hinckley Model 

 

Based on defect data of semiconductor products, Hinckley found that defect per 

unit (DPU) was positively correlated with total assembly time and negatively correlated 

with number of assembly operations [37]. He defined the assembly complexity factor 

(Cf) as follows: 
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In order to calibrate the correlations between these parameters, he incorporated 

the threshold assembly time (t0) which was defined as the time required to perform the 

simplest assembly operation. With this complexity index, Hinckley found that when 

plotting on a log-log scale, the complexity and the corresponding defect rate showed a 

positive linear correlation with each other, as in the following two equivalent equations: 
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where, C and k are constants. 

 

2.5.2. Shibata Model 
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Shibata [38] remarked that the Hinckley model did not take the assembly design 

factors into consideration and could not evaluate the defect rate for a specific 

workstation. Therefore, Shibata proposed a prediction model for a workstation based on 

two assembly complexity factors: the process-based complexity factor and the design-

based complexity factor. Assembly time was determined by Sony standard time, a 

commonly used time estimation tool for electronic products. Shibata used home audio 

products, a combination of CD player and a MiniDisc recorder/player as assembly cases. 

These had approximately 300 job elements and the total time was approximately 10 

minutes.  

The process-based complexity factor of workstation i is defined as: 
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Shibata used Sony standard time (SST), a commonly used time estimation tool, 

which is based on field studies and statistics. Home audio equipment served as a good 

vehicle for Shibata’s analysis because its assembly process contained almost every type 

of basic assembly operation that is present in consumer electronic products. 

Similar to the Hinckley Model, Shibata derived the following correlation between 

the process-based assembly complexity factor and DPU: 

 logDPU .log logi PiK Cf C   (2.8) 
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where C and K are constants. 

In addition to the process-based complexity, Shibata defined the design-based assembly 

complexity factor as: 
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where, KD is an arbitrary coefficient for calibration with process-based 

complexity; Di is called the ease of assembly of workstation i, evaluates based on the 

method of design for assembly/disassembly cost-effectiveness (DAC) developed in Sony 

Corporation. 

 Shibata found that the correlation between the design-based complexity and DPU 

can be expressed as follows: 
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where, a and b are constants. 

In response to the above model, Mendenhall and Sincich suggested that more 

independent variables can improve the accuracy and stability of the regression function. 

Shibata derived a bivariate prediction model by combining (2.8) and (2.11): 

    1 2log DPU . log .logi Pi Dik Cf k Cf C    (2.12) 

Su et al. [37] used the Shibata model to predict quality defects in a copier 

assembly operation and found the value of R-square in the regression model to be 0.257 
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versus a value of 0.7 reported by Shibata for the home audio products. This proved that 

the Shibata model was not appropriate for electromechanical products like copiers. One 

of the primary reasons was the fact that Sony standard time had a threshold assembly 

time of 2 seconds vs. 0.6 seconds in the case of the copier assembly. 

Following is a brief description of additional work that has been done by 

researchers to correlate certain elements of a manufacturing system with quality: 

2.5.3. Relationship between Ergonomics and Quality 

 

Knowledge from research or practical evidence, of the relationship between 

ergonomics and quality is limited [39]. The literature contains a large number of studies 

showing clear relationships between poor lighting, noise, unfavorable climatic conditions 

and the effects on people’s work in terms of increased error frequency. It has been 

observed that systematic quality work, as in quality circles for example, is also a method 

that can solve working environment problems [40]. Eklund [41] conducted a 

comprehensive study in a Swedish car assembly plant. The most physically demanding 

tasks, the tasks with the most difficult parts to assemble, and the most psychologically 

demanding tasks, were identified by interviews with experienced assembly workers. 

Designs involving difficult assembly accounted for the largest proportion of quality 

deficiencies, and psychologically demanding tasks showed the smallest proportion. The 

results showed that the quality deficiencies were three times as common for the work 

tasks with ergonomic problems, compared with other tasks. A quantifiable relationship 

using standardized ergonomics metrics and product quality has not been published.  

2.5.4. Associate Training 
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Associate training plays an important role in the complexity model. Hancock et al 

[42] did not correlate training with resulting quality but demonstrated that the cycle time 

per task decreases as experience, measured by the number of repeated cycles (x), 

increases. They described this phenomenon as the “Learning Curve” which has the form: 
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where,
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2.5.5. Human Error 

 

Although some authors have touched the topic of human error and variation, this 

distinction has not been accurately described in the literature. This is probably due to the 

fact that it is virtually impossible to accurately assess rare events using sampling 

methods. There are many types of error that can occur in an operation. While each of 

these are individually rare occurrences, collectively they can have a significant impact on 

conformance quality. Harris [43] concluded that 80 percent of the defects in complex 

systems could be attributed to human error. In an examination of 23,000 assembly 

defects, Rook [44] found that 82 percent of the defects were caused by human errors. 

Voegtlen [45] reported that 60 percent of product failures could be traced to 

workmanship defects. A recent study of automotive headlamps also showed that more 

than 70 percent of 6,600 observed defects were caused by assembly or handling errors. 

These studies point to human error as a significant contributor to the total defects. 
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2.5.6. Component & Assembly Quality  

 

The National Research Council [46] study presented a combinatorial model of 

defects. This method of combining the probability of many independent events is the 

basis for all modern reliability evaluations and essential element of a sound defect model. 

Two useful defect categories are: part defects and assembly defects. 

A part may contain material defects, or may not meet functional requirements due 

to variation or errors in processing or material handling. Variation can be due to process, 

gage response, tool wear, operator error, and multiple such factors. Hinckley [47] defined 

the probability of a part defect in the simplest terms consistent with the NRC model as: 
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Errors such as omitting a part, installing a wrong part, or placing the part in an 

incorrect orientation will result in defects. Several studies have shown that there is a 

correlation between an increased probability of an error and difficulty / time required to 

execute a task [48, 49]. 

Given that assembly operation involves the addition of a part, the part could 

contain a defect, the assembly operation could cause a defect, or both the part and 

assembly operation could result in defects. Thus, there are three separate ways of 

introducing one or two defects into a product when assembling a part. By contrast, there 

is only one way of having a defect free assembly – the part must be defect free and the 

assembly operation must not result in a defect. As a result, calculating the probability that 

an operation does not introduce a defect is much easier than calculating the probability 
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that it will cause a defect. Thus yield would basically be a combination of the two 

probabilities: the probability that the part is defect free and that the assembly operation 

did not result in a defect. 

2.5.7. Task (Assembly) Time and Quality 

 

In late 1990, Brannan [50] at Motorola published the data shown in Figure 2.23, 

which demonstrated that the number of defects per million parts decreased dramatically 

for increases in the manual assembly efficiency, an arbitrary measure used in the 

Boothroyd Dewhurst® [51] Design for Assembly (DFA) method.  

 

Figure 2.23: Observed DPMO vs. the Manual Assembly Efficiency [50] 

 

In general, as the assembly efficiency increases the number of assembly 

operations and the average time required to perform each operation decreases. Assuming 

a constant probability of human error per unit time, the defect rate should increase as the 

assembly time per operation or complexity increases. Thus, the relationship between 

defects and assembly efficiency observed by Motorola is intuitively sound, but was not 

explained at the time. The data provided by Motorola suggested that there may be a 

quantifiable link between a criterion describing assembly complexity and product defects. 
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Such a theory could be used to evaluate the product quality of product concepts even 

before tolerance studies are initiated.  

 The Boothroyd and Dewhurst evaluation centers on establishing the cost of 

handling and inserting component parts [52]. Regardless of the assembly system, parts of 

the assembly are evaluated in terms of, ease of handling, ease of insertion and a decision 

as to the necessity of the part in question. From this, time and cost is generated for the 

assembly of that part. Each part is entered into the worksheet. The first stage analysis is 

an attempt at part reduction. Each part is examined with respect to the following 

questions: 

1) During operation of the product, does the part move relative to all other parts 

already assembled? Only gross motion should be considered; small motions 

that can be accommodated by elastic hinges, for example, are not sufficient 

for a positive answer. 

2) Must the part be of a different material in order to be isolated from all other 

parts already assembled? Only fundamental reasons concerned with material 

properties are acceptable. 

3) Must the part be separate from all those already assembled because otherwise 

necessary assembly or disassembly of other separate parts would be 

impossible? 

The Design for Assembly (DFA) methodologies have been used by Barkan et al. 

[53] to predict assembly complexity using assembly time as a standard. They have shown 

that the predicted times are superior to the simplistic measures such as number of 
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components to be assembled and number of assembly operations. In general, for every 

factor that increases the difficulty of the action or the complexity of the assembly 

interface, there is an increase in the predicted time for execution. This approach is an 

evolution of Time and Motion studies that substantiate the general trend of increased 

execution time for increases in the difficulty and complexity of the assembly task. The 

DFA methods are better than the Predetermined Motion Time Systems (PMTS) for 

assessing assembly complexity because they are more directly related to product 

characteristics than production planning. Additionally, the DFA analysis can be done 

using drawings, without having to physically disassemble products or define each 

assembly motion. The databases and rules of use encourage a more consistent 

interpretation than can be achieved in a conventional tear-down analysis suggested by 

Womack [54]. 

2.6. Summary of Background Work 

 

In this chapter we provided a brief overview of the automotive manufacturing 

processes and mixed-model final assembly along with an introduction to key-enabling 

systems for MMFA. We also reviewed the Assembly Line Balancing Problem, 

constraints definition and a method of manually gathering that information to solve the 

problem. This manual exercise highlighted a potential link between manufacturing 

complexity and product quality. We then provided a literature review on Complexity, 

Axiomatic Design principles, Operator Choice Complexity, and Cognitive Load Theory. 

This section was followed by a brief overview of the common methods to control quality 

in manufacturing plants. Finally, the last section in the chapter focused on previous work 
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related to correlating Complexity and Quality. Researchers, Hinckley and Shibata 

focused on developing a global model for assembly complexity and product quality based 

on analysis of semiconductors and home audio appliances.  

In the following chapters, gaps in the currently published research work will be 

highlighted, followed by definition & development of a general complexity model and 

finally it will be applied to a controlled fastening process in a real-world mixed-model 

automotive assembly plant. 
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CHAPTER THREE 

3. GAPS IN CURRENT WORK AND RESEARCH PLAN 

 

3.1. Research Objective 

 

The objective of this research is to test the hypothesis that manufacturing 

complexity can reliably predict product quality in mixed-model automotive assembly.  

3.2. Research Gaps 

 

Several scholars have attempted to define complexity at a manufacturing system 

level with limited success. This is primarily because there are a large number of 

contributors that prevent the functional objective from being achieved and depending on 

the application; authors have focused on limited number of variables and defined them as 

complexity drivers. In order to reliably predict quality based on manufacturing 

complexity, we need to take into account an array of input variables that have the ability 

to statistically account for the variation in the resultant variable (product quality). 

Focusing on a few individual variables and prove that they have some impact on product 

quality would not be adequate in achieving the objective of this research.  

Seminal work in this area has been done by Hinckley [47], Shibata [38], and Su 

et. al. [37].  

The research gaps in the work done by these researchers are summarized as 

follows: 

1) Hinckley’s Model [47]: The mathematical model is as follows: 

 0Cf TAT t TOP    (2.15) 
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where,

DPU = Defects per unit

 & = ConstantsC K

 

Though this model enables us to grasp schematically the relative level of quality 

control among globally distributed manufacturing sites, a major shortcoming of 

the model is that it only reveals the product quality at an overall plant level. The 

model does not take the assembly design factors into consideration and could not 

evaluate the defect rate for a specific station. It does not assess process level 

complexity and its impact on quality. In order to reduce complexity, designers 

would need to know which part design produced increased levels of assembly 

complexity resulting in assembly defects. Also, Hinckley’s model takes into 

account average assembly time and the threshold assembly time but does not take 

into account variation in assembly times, an important input for the complexity 

model that we found based on our study. We discuss this in chapters 4 and 5. 

 In order to validate the model in the automotive assembly environment for 

total DPU, we used a simple example as shown below: 
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Table 3.1: Application of Hinckley Model to Vehicle Assembly 

 

 

Although the total assembly time is higher in the case of Model A, and the 

threshold time is 4 seconds, the complexity factor Cfpi is inversely proportional to 

the total assembly time and DPU (Figure 3.1). This contradicts the finding that 

Hinckley had when they applied it to semiconductor manufacturing which was 

perhaps a lot more repetitive in tasks as compared to automobile assembly tasks. 

 

Figure 3.1: Hinckley Model validation 

2) Shibata’s Model [38]: In contrast to a model based on global manufacturing 

plants that provides a high level overview of a correlation between complexity 
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and product quality, Shibata considered process and design contribution in the 

research. Following is the mathematical formulation of the Shibata Model: 
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Shibata characterized complexity for electronic products and divided 

complexity into design driven complexity and process driven complexity. Shibata 

limited his work to electronic products/processes and used Sony Standard Time 

(SST) as the assembly time estimation database. To validate the Shibata Model, 

we applied the method and the mathematical model to mechanical fastening 

process used in automotive assembly. We applied it to 18 different fastening 
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processes and found the regression analysis reveal a negligible R
2
 (adj.) value 

(Figure 3.2). 

 

Figure 3.2: Shibata Model validation with fastening processes 

 

Su and Whitney used the Shibata model and applied it to an 

electromechanical product – a copier. An alternative approach to complexity 

evaluation is required due to the following reasons: 

a. While most of the processes in Shibata’s study included simple inserting 

and soldering of small electronic components and electric wires on a 

printed circuit board, a multifunctional copier introduced a new level of 

challenges. A copier is 10 to 100 times larger in terms of size [37], weight 

or parts quantity compared to a Minidisk player or mini-stereo used by 

Shibata for his study. Differences in type or size of the products result in 
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significant differences in parts, materials, and mating methods of 

components. 

b. The Shibata model used a factor Di (ease of assembly of workstation i), 

evaluated based on the method of design for assembly / disassembly cost-

effectiveness (DAC) developed specifically by Sony Corporation. This 

was not applicable to a generalized model or specifically to the case of the 

copier studied by Su et al. because the criteria used in this method to 

evaluate ease of assembly were developed specifically based on electronic 

products and not on mechanical or electromechanical products like 

copiers. 

c. Shibata used Sony standard time (SST), a commonly used time estimation 

tool designed specifically for electronic component assembly, based on 

field studies and statistics. This time database is also not based on standard 

MTM analysis and hence prevents the model from being generalized. For 

instance, in SST, the threshold assembly time t0 is 2 seconds. However, in 

the case of copier assembly, the shortest adjustment action can be 

completed in 0.6 seconds according to standard time studies conducted at 

Fuji Xerox by Su et. al.  

3) Su and Whitney Model [37]: The research conducted by Su and Whitney 

focused on understanding operator induced assembly defects for a copier based on 

assembly complexity factors. They attempted to overcome some of the 

shortcomings of the Shibata and Hinckley models (listed above). The researchers 
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used Fuji Xerox standard time instead of Sony standard time (SST) to evaluate the 

process-based assembly complexity factor in order to make it more suitable for 

copier production. Secondly, as the DAC based approach used by Shibata was 

developed by Sony Corporation based on small electronic products, it was found 

to be inapplicable in the case of the copier. Su & Whitney used Ben-Arieh’s [55] 

fuzzy expert system approach for analyzing difficulty of assembly operations 

instead of using the DAC based design-complexity evaluation method used by 

Shibata. The researchers selected 11 parameters as the criteria for evaluating the 

design-based assembly complexity (part shape, force required, length of 

components, etc.). In order to obtain an integrated index, the weights of 11 criteria 

were allocated using the analytic hierarchy process (AHP) [56]. This approach is 

not suitable for a generalized complexity model for the following reasons: 

a. AHP has the advantage of permitting a hierarchical structure of the 

criteria, which provides users with a method to prioritize them based on 

assigned weights. One of the known issues with AHP is that a different 

structure may lead to a different ranking. Several authors [57, 58] have 

observed that criteria with a large number of sub-criteria tend to receive 

more weight than when they are less details.  

b. Second reason is that this model also uses a specific time standard – Fuji 

standard time. It would be beneficial to develop a model based on standard 

Methods-Time Measurement (MTM) analysis in order to make its 

applicability across several product types. 
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c. Based on the proposed model, for example, if a fixture is implemented to 

resolve an issue that is repetitive in nature, it could potentially add a few 

steps to the task. Additional steps would increase the process-complexity 

factor, which would result in a higher predicted failure rate. On the 

contrary, in reality, such fixtures reduce variation by improving 

repeatability of part location along with the stability of the component 

during the assembly process and generally reduce the defect rate. This 

shows that calculating process-complexity simply based on the number of 

tasks and task time is not adequate. Time variation should also be 

considered in complexity calculation.  

3.2.1. Summary  

In summary, in order to analyze the impact of manufacturing complexity on 

product quality in mixed-model assembly systems, a comprehensive approach needs to be 

taken to characterize and measure manufacturing complexity. To do so, one has to take 

into consideration product design characteristics, process characteristics, and finally 

human factors such as task ergonomics, operator training, and experience. Detailed 

analysis of assembly defects at a major automotive assembly plant has revealed that 

fastening of critical components using threaded fasteners is the number one driver of 

assembly defects and the top 28% of all in-process assembly defects can be attributed to a 

single type of controlled fastening process. Therefore, in order to study Manufacturing 

Complexity and its effect on Product Quality, first we define complexity, then develop a 

generalized model, use the controlled fastening process as a pilot process to validate the 
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model, and finally we show four case studies from real-world mixed-model automotive 

assembly. 

3.3. Research Questions (RQ) 

In order to validate the hypothesis that manufacturing complexity can reliably 

predict product quality in mixed-model automotive assembly, the following research 

questions need to be answered: 

3.3.1. Research Question 1 

 

How is manufacturing complexity defined in the general context of assembly 

operations (Figure 3.3)?  

Task 1-A: 

 Approach: Conduct literature review specifically focused on complexity across 

various domains and identify the sources of complexity applicable to assembly 

operations in mixed-model assembly system. Conduct a Process Failure Modes and 

Effects Analysis (PFMEA) to determine various sources of defects for a generalized 

assembly process. 

 Outputs: Ontology of manufacturing complexity related to the general assembly 

process and the corresponding ways to measure each source.  

Task 1-B: 

 Approach: Apply the Hinckley, Shibata, and Su & Whitney Models to the controlled 

fastening process to verify the validity of existing models and learn from the gaps 

observed. 
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 Outputs: Data driven understanding of the gaps in currently published research and a 

need to determine a new approach to defining and modeling manufacturing 

complexity, to ensure applicability across a wider array of general assembly 

operations. 

Task 1-C: 

 Approach: Develop a generalized model for assembly complexity based on the key 

inputs identified in Task 1-A. Apply the model to controlled fastening processes in 

real-world automotive assembly plant and determine whether the generalized model 

captures key variables observed in the fastening process. 

 Output: Applicability of comprehensive generalized manufacturing complexity 

modeling approach based on literature review and hands-on understanding of the 

assembly variables to the mixed-model assembly domain. 
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Figure 3.3: Flow of research tasks (RQ 1) 

 

3.3.2. Research Question 2  

 

How is product quality defined for assembly of components in mixed-model 

automotive assembly? What is the effect of manufacturing complexity on product 

quality (Figure 3.4)?  

Task 2-A:  

 Approach: Define important aspects of quality affected by complexity. Identify 

metrics to measure the effect on quality. 

 Output: Process Failure Mode and Effects Analysis (PFMEA) for controlled 

fastening process. Comparison with generalized PFMEA & complexity model to 
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identify any additional inputs related to the fastening process that were not captured 

by the generalized model. 

Task 2-B: 

 Approach: Collect and organize the defects data for the last 12 months for four 

mixed-model assembly lines. Using the historical quality data, identify the processes 

that had the greatest impact and lowest impact on quality for the four assembly lines, 

and collect input data to compute complexity metric. 

 Output: Controlled fastening processes and takts with the best and worst quality will 

be highlighted for detailed analysis of each complexity driving input. 

Task 2-C: 

 Approach: Using this information, conduct regression analysis with each source of 

manufacturing complexity as input and product quality as output to determine the 

effect of manufacturing complexity on product quality for 12 months of historical 

data from one automotive assembly plant.  

 Output: A comprehensive model based on regression analysis that shows the 

relationship between manufacturing complexity and product quality for a controlled 

fastening process used in automotive assembly. Propose rules, constraints, and 

guidelines for product design, process selection and ergonomics that would reduce or 

eliminate the quality defects for the takts that were analyzed. 

 Assessment: Apply the model to predict the quality of 20 processes in an 

independent automotive assembly plant. Compare the predicted values with actual 

results that were documented from historical data. Within limitations of technical 
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feasibility and plant approval, some of the proposed changes may be tried out on the 

assembly line for a limited period to evaluate the improvement in quality or identify 

the shortfalls of the predictive model. 

 

Figure 3.4: Flow of research tasks (RQ 1 and 2)  

 

3.3.3. Research Question 3 

Several quality defect prevention methods are usually employed in practice. 

How can these classes of defect prevention methods be incorporated to lower 

complexity and minimize DPMO (Figure 3.5)? 

Task 3-A:  

 Approach: Based on literature review, classify error-proofing systems generally used 

in large automotive assembly plants.  

 Output: A comprehensive understanding of the classes of mistake-proofing devices 

actually used in the automotive industry.  

Task 3-B:  
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 Approach: Incorporate mistake-proofing devices in the complexity model to enable 

prediction of Defects Per Million Opportunities (DPMO) based on the application of 

those devices.  

 Output: An enhanced model of manufacturing complexity and product quality that 

includes quality defect prevention classes as inputs (e.g. active / passive information 

systems). A data driven understanding of the defect prevention methods and their 

impact on product quality. 

Task 3-C:  

 Approach: Use the revised model to predict the effect of using these classes of 

mistake-proofing or assembly aid devices on specific processes, historically known to 

exhibit a higher defect rate. Practically implement these defect prevention methods 

and monitor the actual change in defect rate and compare it with that predicted by the 

model to assess the ability of the model to predict product quality as a function of 

manufacturing complexity. 

 Output: A case-study based data driven assessment of the validity of the predictive 

model and an assessment of the ability of classes of mistake-proofing devices to 

lower complexity and DPMO. 
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Figure 3.5: Flow of research tasks (RQ 1, 2, and 3) 

 

3.4. Summary of Research Questions and Tasks: 

 
Table 3.2: Summary of Research Questions & Tasks 

 

  

RQ1: How is 

Complexity defined in 

general context of 

assembly operations? 

RQ2: How is Product 

Quality defined? What 

is the effect of 

Complexity on 

Quality? 

RQ3: How can classes 

of defect prevention 

methods lower 

complexity and 

DPMO? 

Task 

A 

Literature review and 

PFMEA to define 

Complexity and its 

drivers 

PFMEA for fastening, 

compare with 

generalized model & 

determine gaps 

Identify defect 

prevention classes 

Task  

B 

Validate existing models 

and identify gaps 

Collect input data and 

compute complexity 

metric for highest and 

lowest DPMO processes 

Incorporate mistake-

proofing devices in the 

complexity model to 

predict impact on DPMO 

Task 

C 

Develop generalized 

complexity model; verify 

applicability to an 

assembly process 

Develop predictive 

model  

Input = Complexity 

Output = DPMO; 

Validate in independent 

assembly plant 

Conduct experimental 

runs. Assess validity of 

the model and ability of 

these methods to lower 

complexity and DPMO 

 



 89 

CHAPTER 4 

4. GENERALIZED COMPLEXITY MODEL FOR MANUFACTURING 

 

4.1. Complexity Measurement 

 

Based on extensive literature review and the gaps in currently published work, a 

comprehensive generalized complexity model has been proposed in this research. The 

sources of complexity are determined based on the following: 

a) Literature review  

i. Design factors [50-52, 59, 60] 

ii. Process factors [5, 24, 37, 38, 47, 60-64] 

iii. Human-factors [25, 37, 39, 43, 44, 60, 65-68] 

b) Lessons learned from the our involvement in constraints mapping related to 

assembly line balancing at a major US assembly plant [8, 69] 

c) Technical input from fastening process experts at the automotive assembly 

plant where this study was carried out [62] 

d) Heuristic input from operators who work in mixed-model automotive 

assembly 

All sources of complexity are then tested for statistical significance to quantify the 

ability of each input parameter (and its interaction) to account for the variation in the 

resultant variable (details in Chapter 5).   

Figure 4.1 shows an overview of the Product Realization Process. The scope of 

this research work is limited to Product Design and Manufacturing elements of this entire 

process.  
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Figure 4.1: Product Realization Process 

 

Based on the literature review on Design for Manufacturing (DFM), process 

factors, human-factors engineering (references noted in section 4.1), and complexity [5, 

14-16, 38, 47], we take a holistic view in defining complexity. We re-define 

manufacturing complexity as a measure of variability introduced by design factors, 

process factors, and human factors that can impact functional requirements. In our 

research, the functional requirements have been limited to product quality. 

 

Figure 4.2: Key drivers of Manufacturing Complexity 

 

4.1.1. Design Factors 

 

Product Design is an important input variable that can impact manufacturing 

complexity in a product. Using Design for Manufacturing (DFM) principles [51, 70], we 

determine the input variables that can introduce manufacturing complexity. Design for 

Manufacturing / Manufacturability (DFM) is a philosophy and a mind-set in which 
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manufacturing input is used at the earliest stages of design in order to design parts and 

products that can be produced more easily and more economically. Tooling costs, 

processing costs, assembly time, ergonomics, resulting product quality, and worker safety 

are examples of some of the objectives that are considered during the DFM driven design 

process [70].  

The DFM process includes the following steps: 

a. Determine the product characteristics 

i. Functional requirements and expected life 

b. Conduct Product Function Analysis 

i. Design quality into the product (mistake-proofing) 

ii. Reduce the number of parts 

c. Design for manufacturability and usability 

i. Determine materials and methods based on life expectancy 

ii. Define locating surfaces and eliminate need for special fixtures 

d. Define assembly process using Design for Assembly methodology 

Design for Assembly (DFA) found its beginnings in the late 1970s. Manufacturers 

realized that their designs were not suitable for automated assembly, and even very 

difficult for manual assembly. This became an important point as volumes and variety 

began increasing. Following is an example that lists a series of steps that show the 

manufacturing process and the impact of DFA: 

1) Purchase raw-material 

2) Incoming inspection 
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3) Place material in an inventory holding location 

4) Present parts to the operator or automated equipment for assembly 

5) An operator picks up the part, orients it, guides it into place into a fixture 

6) An operator picks up a fastener, orients it, and assembles it to the part 

7) An operator picks up a tool, orients the tool, and drives the fastener 

8) Final part is inspected for cross-threaded fastener, alignment etc. 

Integrating assembly features into the design of the components can help eliminate 

fastening components or minimize the number required. This approach would eliminate 

steps 6 and 7. Perhaps, step 8 could also be eliminated or greatly simplified. This is the 

basic principle of Design for Assembly (DFA). A design that is easier to assemble, is 

cheaper to assemble and should encounter fewer defects. Simplifying the design is 

therefore the core principle of DFA.  

 While using the Boothroyd and Dewhurst process [51], the following questions 

have to be asked:  

1) Does the part move relative to all the other parts in the assembly? Only large motions 

need to be considered valid. Small movements, deflections etc. can be ignored. 

2) Must this part be made of a different material from other parts in the assembly? Must 

this part be isolated from other parts in the assembly? Only fundamental reasons 

concerned with material properties are acceptable. 

3) Must this part be separate from other parts of the assembly in order to make 

assembly, disassembly or maintenance possible? 
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If the answer to any of these is No, then the part in question is a good candidate for 

elimination or combination. In our research, we consider number of components being 

assembled as a design complexity driver. 

 

Figure 4.3: Design for assembly (Press fit vs. Integral shaft) 

 

In Figure 4.3, there is a wheel pressed onto a shaft and an alternative design that 

has an integral shaft. There may be cost considerations in such a design decision but it 

shows how an assembly step can be completely eliminated. It is well known that threaded 

fasteners are penalizing in terms of assembly. They require more time than most other 

types of parts in assembly. Generally, designers recommend using snap fits for molded 

plastic parts and bend-over tabs in sheet metal parts instead of threaded fasteners 

wherever the functional requirements permit it. Wherever threaded fasteners must be 

used, it is recommended to integrate as many other joint accessories to be integrated in 

the interest of time (e.g. bolt, nut, washer, lock washer etc.). In several cases, designers 

use self-locking features in the fastener to eliminate the lock washer. 

Based on literature review (section 4.1), technical input from process experts in 

mixed-model automotive assembly, findings from research project at an automotive 

assembly plant [8, 69], and heuristic input from experienced operators, we categorize the 
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design driven complexity factors into four major categories of input variables. These can 

be used to define a design-driven complexity factor (Cd). Each category will be explained 

below and specific examples will be given to help the readers understand the context of 

the application and give them the ability to adapt this general model to their respective 

end-product / assembly being studied. 

1) Feature Design (Dfd): The process of design changes the state of information 

that exists about a designed object. Features are characteristics that define the 

geometry, function, and aesthetics of a component [70]. A complete design 

also includes the relationships among these features in terms of physical 

connection, arrangement, and configuration to make up a whole part. In the 

generalized complexity model, this input category includes geometric and 

functional features. Aesthetic features can be added if they have any 

interaction with other features or an impact on functional requirements of the 

part and final assembly in which the part is used. All the features of a 

component that are available should be collected in the first iteration of the 

all-inclusive model. Using statistical analysis and test for significance, if the 

impact of a specific feature (variable) on the resultant functional requirement 

is negligible, then it can be eliminated from further analysis. The input can be 

qualitative or quantitative. We will cover a brief explanation on methods to 

convert qualitative information to quantitative for mathematical analysis, in 

the following section. Following is an example of a feature design that could 

impact functional requirements such as number of hours of continuous work 
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possible using a powertool. The handle may have a textured soft-grip material 

to aid ergonomics or it may have a solid handle without the soft-grip (Figure 

4.4). 

 

Figure 4.4: DeWalt Tools without (L) & with (R) black soft-grip handle  

 

2) Assembly Design (Dad): The assembly process generally consists of two 

distinct operations: handling followed by insertion. Both these processes can 

be done either manually or automatically. In order to make the assembly 

process easier (which translates to reduced cost), Boothroyd [51] suggests 

three key guidelines – reduce the part count, reduce the manual handling time, 

and facilitate automatic handling of components. Assembly design impacts all 

three of these goals and therefore impacts manufacturing complexity. Part 

count can be reduced directly by achieving functional requirements with 

innovative designs and thereby eliminating components or by integrating 

multiple components into a larger single part by design. Manual handling time 

can be reduced by avoiding nesting of components (springs) because tangled 

components are difficult to grasp and manipulate with one hand. To facilitate 

ease of handling, parts should be designed with symmetry in mind. Parts that 
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do not require end-to-end orientation prior to insertion are easier to handle. 

Similarly, parts that have rotational symmetry take less time to orient than 

ones that have a flat feature (D-shape) because the latter would require 

alignment with another mating surface. Such end-to-end symmetry and 

rotational symmetry can also facilitate handling in an automated handling 

(bowl style component feeder). In our generalized complexity model, the 

input variables under this category can be a quantitative or qualitative that 

have been converted to a quantitative variable for mathematical modeling. For 

example, joint design variables such as clamp load or percentage visibility of 

a fastener would fall under the Assembly Design category. 

3) Component Accessibility (Dac): This input variable helps us capture the 

complexity introduced due to lack of direct access to the assembly area or 

components being assembled. We have included this variable in the study 

based on heuristic input from several experienced operators. Qualitative 

(subjective) measure of accessibility should be converted into a quantitative 

one based on the clear understanding of the components and the primary 

reason for lack of accessibility.  In the case of the fastening case study, if 

multiple layers of components are between the feature to be accessed by the 

associate’s hand-tool or an assembly device, then the number of layers of 

components can represent a quantifiable measure for component accessibility 

(Figure 4.5). 
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Figure 4.5: Layers of interference between tool and component 

 

4) Material characteristics (Dmc): When selecting a material, the primary 

concern of engineers is to ensure that the material properties are consistent 

with the operating conditions of the component. The various requirements of 

each component including life expectations and operating environment are 

first estimated or determined. These may include mechanical characteristics 

(strength, resistance to fracture, rigidity, or the ability to withstand vibrations), 

physical characteristics (weight, electrical conductivity, or appearance), and 

service requirements (ability operate under extreme temperature or resist 

corrosion). The selection of the appropriate engineering material is often 

based on the tabulated or recorded results of standardized tests [24]. A certain 

property that may be required due to the function of the part can introduce 

complexity in the assembly process due to other inherent properties. In 

automobiles, light weight material is used wherever possible without 

compromising on strength to achieve higher fuel efficiency. In the case of 

fastening processes, aluminum brackets used to assemble larger parts to the 
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vehicle, introduce complexity because aluminum bends easily due to its 

ductility. The dynamic change in joint gap during the fastening process can 

introduce defects. Therefore, on one hand, while a certain material property is 

required, it can introduce complexity in assembly that can impact an output of 

interest (product quality). In the generalized complexity model, we include 

quantitative material properties as input variables. 

4.1.2. Mathematical formulation 

 

In summary, four key input variables have been highlighted as contributors to 

Design Complexity. If there are additional variables within each of these categories or a 

new category is required for a unique process that does not fit this general model, 

additional variables can be defined using the same principle. Design Complexity Factor 

Cd can be mathematically expressed as follows: 

 1 2 3 4d fd ad ac mcC D D D D         (2.20) 
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Figure 4.6 shows a block diagram of the four key input variables that contribute to design 

complexity. 
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Figure 4.6: Input variables for design driven complexity 

 

4.1.3. Process Factors 

 

The goal of a process engineer is to design, develop, and implement a process that 

can manufacture components that meet design specifications consistently in a cost-

effective manner. All manufacturing process display some level of variability, referred to 

as inherent capability. The variability may have assignable causes such as operator errors, 

defective materials, or progressive wear in the tools during machining. That variability to 

which no cause can be assigned and which cannot be eliminated is inherent in the 

process. Sources of inherent variability include variation in material properties, vibration 

or chatter caused by tool wear, and operator variability. Therefore, process factors play a 

very important role in the manufacturing complexity model. In this research, we define 

five major categories of input variables that can be used to define a process-driven 

complexity factor (Cp). Each category will be explained below and specific examples will 

be given to help the readers understand the context of the application and give them the 
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ability to adapt this general model to their respective end-product / assembly being 

studied: 

1) Tooling / Fixture design (Ptf): The process engineer designs tooling and 

fixtures to hold the workpiece securely and present the workpiece to the 

machining tool or to the operator to enable processing in an efficient manner 

while meeting dimensional specification and cycle (takt) time. The design of 

the fixture can introduce dimensional variation if there is vibration, chatter or 

movement in the workpiece in a way that is not part of the planned process. 

This category of input variables is used to capture specific features of the 

tooling or fixture design used to assemble a set of components together. 

Tooling / fixture design is important especially in mass production as the 

repeatability of locating and securing the components to be assembled is 

critical. The tooling and fixture have to be designed in such a way that they 

can tolerate the allowable component variation and the resulting tolerance 

stack-up when multiple components are assembled together. This variable is 

usually quantitative in nature. Examples in the context of assembly include 

tool extension length, tool tip play, and process parameters. 

2) Assembly Sequence (Pas): This variable is binary and reflects whether a 

sequence in which components should be assembled is prescribed by the 

assembly planning team or not. Set the value of the variable equal to 1 if a 

sequence has been defined and set it equal to 0, if it has been left up to the 

operator to decide the sequence of assembly. In general, an assembly 
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sequence is defined in cases where there may be a locating reference 

associated with the first component or fastener that will be used by the 

subsequent components in the assembly process. For example, there are three 

bolt locations on the torsional cross-member of a Sports Utility Vehicle. One 

out of three holes is the locating hole and is round in shape. The other two 

holes are larger than the round hole and are usually oblong in shape to allow 

for tolerance stack up of multiple components in the assembly. Hole on the 

right is the locating hole (round) and the one on the left is the non-locating 

hole (oblong in shape). As a first step, a fastener would have to be assembled 

in the locating hole. This will help align the component with the base part. 

Once aligned, fasteners can be assembled in the remaining non-locating holes. 

Such requirements introduce manufacturing complexity in the assembly 

operation because the process requires the operator to follow a specific 

sequence of operations, without which the functional requirement of the 

assembly would not be achieved. Therefore, we include it in the generalized 

process model as a binary input variable. 

 

Figure 4.7: Assembly sequence driven by locating hole  
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3) Number of tasks in the takt (Pnt): This variable captures the number of 

individual tasks that have been assigned to the takt in which the assembly of 

interest is being carried out. Both the Hinckley Model and Shibata Model 

have shown a negative correlation between total number of assembly 

operations and manufacturing complexity, when applied to semiconductor 

manufacturing. A task is defined as the simplest element of work that can be 

done during assembly of components. Some examples of simple tasks are as 

follows: 

a. Pick component from rack 

b. Install component on primary sub-assembly 

c. Install plug (Note: If there are several such plugs to be assembled in a 

component, the installation of each plug would be considered as a 

task) 

4) Assembly Takt utilization (Ptu): Labor utilization is a metric that 

manufacturing plants use to monitor and maximize utilization of the available 

labor in each takt. The mathematical formulation of labor utilization or 

assembly takt utilization is as follows: 

 

Labor Utilization (%) = 

where,

Task that belongs to a set of tasks S

=Time required per task 

Number of stations ( 1,..., )

Takt time  

k

j

j s

k

j

t

m c

j

t j

m k m

c







 





 (2.21) 
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Although the objective of the production management team would be to 

maximize labor utilization, manufacturing plants usually strive to achieve 

between 92% - 96% average value. Especially in manufacturing systems that 

are mixed-model in nature like most automotive final assembly lines, there is 

a vast variety of option content (variety of different components to choose 

from). Utilization value is a result of an assembly line balancing activity as 

explained earlier in the background section. As the takt utilization % 

increases, the process becomes less forgiving because there is little to no time 

left for the operator to deviate from the tightly controlled routine. Any 

deviation would introduce delay and there is no room to recover the lost time 

as the assembly line operates continuously and the next product has to be 

assembled in the given takt time. Therefore, we include takt utilization % as a 

process input variable in the generalized complexity model. 

5) Assembly Time Variation (Pvt): Variability reflects lack of repeatability in 

completing a given task. If the same task is to be done over and over again, an 

operator gains experience over time and slowly improves the speed at which 

the same task gets done. In a mixed-model automotive assembly line, an 

operator deals with a variety of tasks, one after another. The time study 

analysis that helps determine how long a task takes is based on an average 

value. However, often the variation in time is not taken into consideration. In 

the generalized complexity model, this variable captures the time variation in 

the assembly process. The variance is calculated based on a statistically 
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significant data set of actual time taken to perform the assembly or 

manufacturing activity. In Shibata and Hinckley Models, work stations with 

the largest number of operations or the largest time duration per task were 

captured but this important input was not. From the current research, time 

variation has been observed to be a statistically significant contributor and 

therefore it is included in this proposed general complexity model. 

4.1.4. Mathematical formulation 

 

In summary, five key input variables have been highlighted as contributors to 

process driven Complexity. Although, every effort has been made to capture the sources 

of complexity in the general model, if there are additional variables within each of these 

categories or a new variable is required for a unique process that does not fit this general 

model, additional variables can be defined using the same principle. Process Complexity 

Factor Cp can be mathematically expressed as follows: 

 1 2 3 4 5p tf as nt tu vtC P P P P P           (2.22) 
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Figure 4.8 shows a block diagram of the six key input variables that contribute to process 

driven complexity. 
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Figure 4.8: Block diagram showing input variables for process driven complexity 

 

4.1.5. Human-Factors 

 

In cases where humans interact with systems, human-factors involves the study of 

factors and development of tools that facilitate improved performance, safety, and user 

satisfaction. It is important to note that some inputs may have tradeoffs. Results from 

Eklund’s work at a Swedish vehicle assembly plant shows that the quality deficiencies 

were three times as common for the work tasks with ergonomic problems, as compared 

with other tasks [41]. This work has motivated us to determine the factors that increase 

the ergonomic stress and thereby increase manufacturing complexity.  

In this research, we define five major categories of input variables that can be 

used to define a human-factors driven complexity factor (Ch). Each category will be 

explained below and specific examples will be given wherever necessary to help the 

readers understand the context of the application and give them the ability to adapt this 

general model to their respective end-product / assembly being studied: 
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1) Ergonomics (Her): Ergonomics examines the interaction between the worker and 

the work environment including such factors as machinery, the workstation, and 

climate [71]. If the match between worker and the work environment is poor, the 

worker’s ability to perform the job will be severely compromised. Over a short 

period of time, this poor match may lead to fatigue and worker discomfort. If 

conditions persist, physical injury, and disability may result. Ergonomics as an 

input variable can be represented by a percentage value. The value reflects the 

percentage of the total task time when the stress level on a certain part of the body 

exceeds a threshold value. For example, if an object has to be gripped by an 

operator in a given task. If the stress on the lower arms and wrists is less than 125 

N for up to 30% of the total task time, then it is considered acceptable. On the 

other hand, if the stress is between 190 and 285 N even for less than 5% of the 

total task time, actions need to be taken to reduce that stress. Stress is classified 

into multiple categories as shown in Figure 4.9. 

 

Figure 4.9: Stress on lower arms/wrists during gripping 

 

Similarly, there are several different ergonomic input variables that need 

to be taken into consideration as individual input variables using the methodology 
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used above. Given the scope of this research, we do not focus on the scoring 

methodology used in the ergonomic rating and rely on standards established at the 

Original Equipment Manufacturer (OEM) where this study was conducted. 

Potential users of this generalized model are advised to review the ergonomic 

standards related to their respective process and use them in the model. Following 

is a list of input variables tracked by the automotive assembly facility where the 

current research was conducted: 

a. Work height 

b. Stress on neck muscles 

c. Work above shoulder height 

d. Mobility of trunk 

e. Mobility of arms 

f. Stress on arms / shoulders 

g. Stress on wrists 

h. Stress on fingers 

i. Mobility of knee joints 

j. Standing, walking, sitting 

k. Handling of tools 

2) Training / Experience (Htr): Argote et al. showed that large increases in 

productivity are typically realized as organizations gain experience in production 

[72]. These learning curves have been found in many organizations. However, the 

rates at which organizations learn are different and therefore the impact on 
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productivity or quality can differ from organization to organization. Motivated by 

this finding, in our research, we include training / experience in the generalized 

complexity model. For an assembly process, training can be provided to operators 

in various ways. A new operator can be given basic exposure to the process by 

showing an audio-visual presentation that includes step by step breakdown of the 

process to be followed by the operator. After an initial introduction, the operator 

is typically allowed to train on an off-line training station to implement the key 

points learned by observing the process in the presentation. This step is followed 

by on-the-job training under expert supervision. In our generalized complexity 

model, this input category can consist of a quantitative term that refers to the 

physical number of hours an operator has worked on the type of process being 

studied. It is important to note that the user of this generalized model should make 

a data driven determination whether training / experience gained on other 

“similar” processes can be taken into consideration due to the process 

characteristics or not. An appropriate measure of experience should be used, such 

as number of hours, number of quarters (usually 4 per shift), or number of shifts.  

3) Cognitive Load (Hcl): The basic mechanisms by which humans perceive, think, 

and remember are generally grouped under the label of cognition. The human 

information-processing system is conveniently represented by the following three 

stages at which information gets transformed: 

a. Perception of information about the environment 

b. Central processing or transforming that information 
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c. Responding to that information 

The first and the second stages stated above are highlighted as the processes 

involved in cognition and most typically represented in the study of applied 

cognitive psychology [73].  

In a mixed-model assembly line, one of the variants from every feature is 

selected and assembled sequentially along the flow of the assembly line. For 

example, say a product has two features (Fi); each feature has several variants 

(e.g. Vij is the j
th

 variant of Fi). As depicted in Figure 4.10, V12 is chosen for F1 

and V22 is chosen for F2.  

 

Figure 4.10: Product Family Architecture and Mixed Model Assembly 

 

Operators at every station must make correct choices from a number of 

alternatives. The choices include choosing the right part, tool, fixture, and 

assembly procedure for the variant. To characterize the operator performance in 
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making choices, the term operator choice complexity is defined as follows: 

Choice complexity is the average uncertainty or randomness in a choice process, 

which can be described by a function H in the following form: 

 1, 2,...,

1

( ) ( ) log
M

M m m

m

H X H p p p C p p


     (2.23) 

Where C is a constant depending on the base of the logarithm function chosen. If 

log2 is selected, C=1 and the unit of complexity is bit. The properties of the 

function H are described in Ref. [20] and are suitable as a measure of choice 

complexity. 

 In this generalized model, we simplify operator choice complexity as a 

probability value. If the operator has to choose one object from a set of five 

variants, the probability of picking up the correct one out of the five variants 

would be 20%. 

4) Work environment (Hwe): Factors such as lighting, noise, motion, thermal 

conditions, and air quality contribute to the general category of Work 

Environment as a variable that can impact manufacturing complexity.  

a. Lighting: The amount of light energy that actually strikes the surface of 

the object being seen such as a component being assembled in a factory is 

described as illuminance and measured in units of lux or foot candles. 

How much illuminance an object receives depends on the distance of the 

object from the light source. As Figure 4.11 shows, the illuminance 

declines with the square of the distance from the source. This can be 
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quantitatively measured. In our research, gage repeatability and 

reproducibility showed that there was significant variation in the results. 

Therefore, we list this as an input variable for the generalized model but 

rely on the component visibility input variable that we capture as part of 

the process complexity factor. 

 

Figure 4.11: Illuminance declines as the square of the distance from the source 

 

b. Noise: The stimulus for hearing is sound, a vibration (compression and 

rarefaction) of the air molecules. The acoustic stimulus can be represented 

as a sine wave, with amplitude and frequency. These are typically plotted 

on a spectrum and the position of each bar along the spectrum represents 

the actual frequency, expressed in Hertz (Hz). The height of each bar 

reflects the amplitude of the wave and is typically plotted as a square of 

the amplitude, or the power. The frequency of the stimulus more or less 

corresponds to its pitch, and the amplitude corresponds to its loudness. 

When describing the effects on heading, the amplitude is typically 

expressed as a ratio of sound pressure, P, measured in decibels (dB). As 

shown in equation (2.24), the measure P2 is fixed at a value near the 

threshold of hearing (i.e., the faintest sound that can be heard under 
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optimal conditions). This is a pure tone of 1000 Hz at 20 micro 

Newtons/square meter [68]. In this context, decibels represent the ratio of 

a given sound to the threshold of hearing. 

 
1

Sound intensity (dB) = 20log
2

P

P

 
 
 

 (2.24) 

c. Motion: Stress effects of motion can result from either sustained motion 

or cyclic motion. Cyclic motion is also termed as vibration in the world of 

Human Factors. High frequency vibration may lead to performance 

decrements or repetitive motion disorders, and low-frequency vibration is 

usually a cause of motion sickness. The aversive long-term health 

consequences of the high-frequency vibration are well documented in the 

literature. Standard “dosage” allowances for exposure to different levels of 

vibration have also been established. Health consequences of full-body 

vibration have not been well documented [74]. However, such vibration 

has clear and noticeable effects on many aspects of human performance 

[66]. 

d. Thermal stress: Both excessive heat and excessive cold can produce 

performance degradation and health problems. A good context for 

understanding their effects can be appreciated by the representation of a 

comfort zone, which defines a region in the space of temperature and 

humidity and is one in which  most work appears to be most productive 

[75]. The temperature range is 73 deg. F to 79 deg. F in the summer and 
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68 deg. F to 75 deg. F in the winter. The zone is skewed such that less 

humidity is allowed (60 percent) at the upper temperature limit of 79 deg. 

F than at the lower limit of 68 deg. F (85 percent humidity allowed). 

e. Air Quality: Poor air quality is often a consequence of poor ventilation in 

closed working spaces like mines or ship tanks but also in environments 

polluted by smog or carbon monoxide. Any of these reductions in air 

quality can have relatively pronounced negative influences on perceptual, 

motor, and cognitive performance of an operator [76]. This variable has 

been highlighted in the generalized model for users that deal with 

environments that present conditions that may compromise air quality. 

Methods of quantifying this as a variable would need to be investigated 

and have not been considered within the scope of the current research. 

4.1.6. Mathematical formulation 

 

In summary, four key input variables have been highlighted as contributors to 

human-factors driven Complexity. Although, every effort has been made to capture the 

sources of complexity in the general model, if there are additional variables within each 

of these categories or a new variable is required for a unique process that does not fit this 

general model, additional variables can be defined using the same principle. Human 

Factors driven Complexity Factor Ch can be mathematically expressed as follows: 

 1 2 3 4h ef tr cl weC H H H H         (2.25) 
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Figure 4.12: Input variables for human-factors driven complexity 

 

4.2. Generalized Complexity Model 

 

The generalized complexity model consists of three primary categories: 

a. Design driven complexity 

b. Process driven complexity 

c. Human Factors driven complexity 

This research aims to validate the hypothesis that manufacturing complexity 

(defined by product design, assembly process, and human factors) can be represented by 

a complexity metric that can be used to predict the contribution of these variables on 

product quality. The generalized model correlating Product Quality (Defects per Million 
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Opportunities - DPMO) and manufacturing complexity drivers can be mathematically 

described as follows: 

 

1

0 2

3

DPMO .d p h

k

k C C C k

k

 
       
  

 (2.26) 
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DPMO Defects per million opportunities

Empirical process constant
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In conclusion, this chapter addresses the first research question related to defining 

complexity in the general context of assembly processes. In the following chapter, we use 

this generalized model and apply it to a specific process that is widely used in the 

automotive industry. We will then share multiple case studies related to the application of 

this model to various processes in mixed-model automotive assembly and the results 

achieved in each case. 
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CHAPTER FIVE 

5. APPLICATION OF MODEL TO CONTROLLED FASTENING PROCESS 

 

To validate the generalized complexity model and correlate it with product 

quality, we analyzed various automotive assembly processes. Our analysis was based on 

quality data gathered from one year worth of production. This eliminates any outliers 

(caused by unique assignable causes) that may have contributed to a localized increase in 

defect rate. Specific annual quantity is not disclosed due to confidentiality reasons. As 

shown in Figure 5.1, mechanical fastening process is the largest contributor to the defect 

rate of vehicles based on our study at a major OEM. Based on the data, we chose 

mechanical fastening process as the pilot process to validate the generalized 

manufacturing complexity model and the hypothesis that complexity can be used to 

reliably predict the defect rate observed in a real-world assembly line. 

 

Figure 5.1: Breakdown of quality defects by root cause 

 

5.1. Overview of mechanical fastening process 
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The automotive assembly processes rely on mechanical fastening and joining to a 

large extent to mount various components to the painted body. A major advantage of the 

mechanical joining process is the ability to remove and mount a new component when 

repair or replacement is required. Mechanical joining can also achieve an indirect way of 

joining dissimilar metals, hence avoiding the galvanic corrosion effects.  

A fastener is used to apply a clamp load to two or more components and maintain 

it during the designed life expectancy of the assembly. The primary goal is to maintain 

adequate joint clamp load that meets the design specification. The means to achieve this 

goal is by tightening the fastener to a specific torque value.  

 

Figure 5.2: Cross sectional view of a mechanical joint 

 

The tightening process is governed by a torque-tension relationship. The 

torque/tension relationship is shown in the Torque-Tension Curve [61]. 
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Figure 5.3: Torque - Tension curve [61] 

 

As the fastener assembly begins, the initial Rundown Zone is where the fastener rotates 

and axially advances (Figure 5.4). The Alignment or Snug Zone is where the two or more 

base components have come together as the fastener completes the initial rundown phase. 

The Elastic Zone is where the materials begin to experience load and the fastener 

experiences tension. Finally, the Yield Zone is where the fastener and its head begin to 

experience permanent change in dimensions / shape and do not return to their original 

dimension. This is where the torque application process ends and the clamp load meets 

the design specifications. 
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Figure 5.4: Tightening Zones 

 

5.2. Thread Nomenclature 

 

Common types of fasteners that are used in automotive applications are: 

1. Bolt 

2. Stud 

3. Cap screw 

4. Machine screw 

5. Set screw 

6. Nut 

Basic fastening terminology is defined below [59]: 

1. Major Diameter: Major diameter refers to the distance between crest to crest 

for an external thread and root to root for an internal thread. 
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2. Minor Diameter: This is the diameter of an imaginary cylinder that touches 

the roots of an external thread, or crests of an internal thread. 

3. Internal Thread: A screw thread that is formed inside an internal diameter, 

such as the hole in a nut. 

4. External Thread: A screw thread that is formed on an external cylinder, such 

as bolts, screws etc. 

5. Pitch: The nominal distance between two adjacent thread roots or crests. 

6. Thread Crest: The top part of the thread is called the Crest. For external 

threads, the crest is the region of the thread that is on its outer diameter. For 

internal threads, it is the region which forms the inner diameter. 

7. Thread Flank: The flank is the straight side that joins the thread roots to the 

crest. 

8. Thread Runout: The thread root is the bottom of the thread, on external 

threads the roots are usually rounded so that fatigue performance is improved. 

9. Thread Length: The portion of the fastener with threads is referred to as 

Threaded Length. 

10. Thread Lead: The thread lead is the axial movement of the screw once 

rotated one revolution. 

11. Thread Root: The thread root is the bottom of the thread. On external threads 

the roots are usually round so that the fatigue performance is improved. 

12. Shank: The portion of a bolt that is between the head and the threaded 

portion. 
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13. Bearing Stress: The surface pressure acting on a joint face directly as a result 

of the force applied by the fastener. 

 

Basic screw thread nomenclature is shown in Figure 5.5.  

 

 
 

Figure 5.5: Thread Nomenclature [59] 

 

 

 

ISO metric standards define the threads starting with the letter M, followed by the 

nominal diameter and the thread pitch, for example, an M8 x 1.5 is an ISO thread with 

diameter of 8 mm and a pitch of 1.5 mm. 

 An important parameter in the fastening process is the load-bearing surface area. 

This controls the fastener performance during the service life of the assembly. Typically, 

the average area can be defined based on an average diameter from the minor to the pitch 

diameters. It is numerically shown by the following relationship (2.27): 

 ( )
16

avg p rA d d


   (2.27) 

http://www.nomenclaturo.com/wp-content/uploads/ISO-metric-internal-and-external-thread-design-profiles.jpg
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Minor diameters (dr) and pitch diameter (dp) for ISO threads are defined in the following 

equations. The nominal diameter is represented by d in the following equations: 

 0.6495pd d p    (2.28) 

 

 1.2268rd d p    (2.29) 

 
0.6495

pd d
N

   (2.30) 

 
1.299

rd d
N

   (2.31) 

The required preload for non-permanent mechanical joints is given by: 

 0.75pre avg pF A    (2.32) 

Here, p  is defined as the proof strength of the bolt and can be estimated as 85% of the 

bold material yield strength. For the permanent joints, the 75% factor can be simply 

changed to 90% to obtain the preload needed. And finally, the most important practical 

parameter for this process is the Torque value. This equation utilizes a constant K that is 

dependent on the bolt material and its size (range: 0.16 to 0.3): 

 preT K F d   (2.33) 

Where,  

T = Torque 

Fpre=Preload 

d = nominal diameter  

5.3. Controlled Mechanical Fastening 
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In the automotive industry, several safety critical and quality critical components 

are assembled using electric assembly tools with intelligent controllers and associated 

monitoring devices. These tools offer operator guidance in the form of clear result 

feedback via on-board LEDs or audio signals. The monitoring system for each tool is part 

of a larger network that associates the torque and angle information for each fastener with 

the Vehicle Identification Number (VIN). This association can prove to be useful 

internally to verify that all the defects on a given vehicle have been corrected before it 

gets an “all-clear” to ship out from the assembly plant. These records can also prove to be 

useful in the long term if a defect is found in the field by an end-user and the 

manufacturing plant needs to verify that a certain component (e.g. airbag) was fastened 

correctly per the engineering specifications for a certain Vehicle Identification Number. 

5.3.1. Overview of equipment  

 

The primary components in a controlled mechanical fastening system are as 

follows: 

a. Tool (e.g. nutrunner or screwdriver): A nutrunner or a screwdriver 

is an electrical device that has a drive motor, internal bus connection 

for intelligent accessories such as a barcode reader, configurable LEDs 

and an optional integrated speaker for indicating via audio signals for 

operator feedback. It is also designed with an ergonomic sleeve to 

improve grip and comfort for the operator. Cordless drivers are also 

available and they have a battery as a power source and an on-board 

wireless device to communicate with the controller (Figure 5.6). 
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Figure 5.6: Atlas Copco Tools (Above: Corded, Below: Battery driven) 

 

b. Controller & Software: With the help of onboard software, this 

device provides monitoring and control of tightening operations. The 

software enables a user to communicate easily with the tool controller 

using a user interface. The controller also collects data continuously 

throughout the tightening process. 

 

Figure 5.7: Atlas Copco Controller unit 
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c. Display unit: The display unit shows multiple pieces of information to 

aid the operator, namely, torque value, angle through which the 

fastener turns beyond threshold torque, number of fasteners remaining 

to complete for a given vehicle, remaining task time, and most 

importantly a red or a green signal to provide a visual confirmation of 

incomplete or complete assembly to the operator. 

d. Electrical cords: In the case of corded electrical units, the electrical 

cord is connected to the tool on one end and the controller on the 

other. The cordset conducts electricity as a source of power for the tool 

and it also has a network cable that allows the tool to communicate 

with the controller. 

 

Figure 5.8: Electrical cord connects the tool with the controller 

 

e. Bits, Sockets, and Extensions: Sockets / Drivers are based on the 

type of fastener being assembled (bolt, nut, hexagonal head, internal 

torx-drive, external torx-drive etc.). Primary goal of the extension is to 

adapt the drive type from the tool to the socket (3/8”, ½” etc.) and to 
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allow the tool to access certain assembly areas depending on the 

component design. The extension also helps improve operator safety 

by avoiding the tool from being too close to the workpiece which may 

introduce a risk of pinching the operator’s finger between the tool and 

the workpiece. 

 

Figure 5.9: Apex Socket, Torx Drive Bit, and Extension 

 

 

5.3.2. Types of fasteners  

 

This section contains an overview of the types of fasteners and a brief overview of 

the manufacturing methods for each. Following are the primary types of fasteners and 

some of their variants: 

i) Bolts and Screws: Even though individual bolts and screws may be 

interchangeable, a bolt is intended to be used with a nut. A screw, on the other 

hand, mates with preexisting threads, or in some configurations such as self-

tapping screws, a screw can make its own threads in a component. Screws and 

bolts are both externally threaded fasteners that come in a variety of 

head/shoulder/shank/thread combinations, and are used to join separate 
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elements, or to fasten something into place. Bolt heads are generally made 

using either forging or machining. Due to economies of scale and grain flow 

properties resulting from forging, it is the preferred method. Cold or hot 

forging may be used depending on the formability of the fastener material. 

Machining is used for very large diameters (> 1.5”) or small production runs 

[63]. The disadvantage of machining is that the process cuts the grain flow, 

thus resulting in planes of weakness at the critical sections such as the fillet 

area. This can result in reduced tension performance resulting from fracture 

planes. A generous radius should be provided under the head in order to 

minimize the notch effect, without losing too much load bearing area under 

the head. 

ii) Bolt forms: Hexagon head bolts are available in two basic configurations: 

standard hex bolts, and heavy hex bolts. Heavy hex bolts have head 

dimensions that are approximately 1/8” wider than standard hex bolts 

throughout the range, thereby usefully increasing the bearing surface area. The 

material specification for both types is ASTM A307. 

iii) Nuts: The most common shapes for nuts are square and hex. Square nuts are 

more liberal in their tolerances compared to hex nuts and therefore they are 

restricted to lighter-duty applications. Hex nuts come in many configurations, 

in standard and heavy versions, and in thinner sizes known as jam nuts. Jam 

nuts are used as locking nuts. During our research conducted at an automotive 

OEM, we have come across only hex nuts and therefore those are within the 
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scope of our pilot application. For moderate temperatures and pressures, 

ASTM 194 Grade 2 nuts are recommended [63]. 

iv) Common screws, machine screw head and thread configurations: 

Hexagon head cap screws are the most commonly used screws. There are 

many standardized head configurations for machine screws. There are also 

many drive systems (Phillips head, slotted head, Torx, etc.). With the 

exception of the hex head screws, all machine screws have round heads when 

viewed from the top. Several types of head designs are available, such as, 

Binding Head, Cheese Head, Flat Countersunk Head, Hex Head, Hex Washer 

Head, Oval Countersunk Head, Pan Head, Round Head, Truss Head etc. In 

our research study, we have come across Cheese Head screws used for lighter 

duty curtain airbag assembly. For all these types, generally machine screws 

are available with UNC and UNF Class 2A threads, or UNRC and UNRF 

series threads. 

v) Self-tapping and thread cutting screws: As the name suggests, these screws 

have the ability to tap the threads in the component that they get assembled in. 

Type AB point and type B point are the ones that are commonly used. Type B 

thread forming tapping screw is used for sheet metal, nonferrous castings, 

plywood and plastics. It is essentially a flat end Type AB screw, and the 

metric version is covered by DIN 7940 and ISO 1478.  

vi) Socket screws: This type of screws was developed for applications with 

limited space. Their cylindrical head and internal wrenching features allow 
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their use in locations where externally wrenched fasteners would be 

impractical. The two most pertinent classes, for socket head screws, are 10.9 

and 12.9. The numerals used in Property Class designations refer to the 

nominal ultimate tensile strength and nominal percent yield strength. For 

example, a Property Class 10.9 fastener has 1000 MPa nominal strength, and a 

yield of 90% of ultimate. ASTM A574M provides additional information 

regarding metric, alloy steel socket head cap screws [63]. 

vii)  Retained nuts and speed nuts: These are “clip on” internally threaded 

fasteners that offer several advantages for assembly operations. Since they are, 

essentially, floating nuts, they do not require drilling in the fixture being 

attached, and they do not require drilling or tapping. This system of floating 

alignment does not require special tools either. Retained nuts actually use a 

threaded square nut mounted on a retaining clip, while speed nuts provide a 

hole that accommodates a tapping nut. 

5.3.3. Fastening Process Input Variables 

 

Based on the generalized complexity model, we conducted detailed analysis of the 

controlled fastening process. In addition to a review of published literature [8, 59, 63, 69, 

77], we consulted with fastening experts and technicians at the automotive assembly 

plant and gained hands-on assembly experience in order to identify and understand the 

input variables that can impact manufacturing complexity. Following section provides the 

description of each input variable. 

5.3.4. Design factors driven Complexity (Cd)  
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As described in the generalized complexity model, Feature Design, Assembly 

Design, Component Accessibility, and Material Characteristics are the primary categories 

of input variables that impact design driven complexity.  Figure 5.10 shows the input 

variables for design driven complexity related to the mechanical fastening process. 

 

Figure 5.10: Input variables - Design based mfg. complexity in Fastening 

 

Following is a brief description of each input variable: 
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a) Fastener type: In this study we categorize fasteners into two types – Nut 

and Bolt / Screw. In automotive fastening, there may be a stud that is 

welded to the body and the nut is the driven component. On the other 

hand, there may be a nut that is welded to the body or a component and 

the bolt / screw is driven into the welded nut.  

b) Fastener Head Design: In our study, we encountered four different head 

designs – Hexagonal (1), Internal Torx (2), and External Torx (3). The 

numbers in the parenthesis are what we use to numerically identify the 

type of head design in the complexity model. The head design dictates the 

type of bit or socket to be used and also has a direct effect on the tool bit / 

socket slipping off during torque application, which would result in a 

defect, requiring a second attempt or rework. This was added to the study 

to understand whether the head design has an effect on the complexity 

because hex nuts, hex bolts, and external torx are driven by a socket that 

encapsulates the head completely during the torque application. On the 

other hand, in the case of a fastener that does not have a hexagonal head 

allows the driving bit to slip off, thereby leading to a defect. 

c) Angle of Fastener: Angle of the fastener refers to the angle of the primary 

axis of the fastener as viewed from the direction of torque application, 

with reference to the vehicle floor. 
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Figure 5.11: Angle of fastener with ref. to the vehicle floor 

 

d) Coating: Fastener coatings usually protect against corrosion, can improve 

lubrication properties, and in some cases may be applied for appearance 

reasons to match with other parts being assembled. Electroplating and 

electro coating processes are used for coat application. Electrocoated 

fasteners offer good uniformity of coat application but are usually 

available in black. In contrast, electroplating offers good uniformity and 

multiple colors using various dyes and a top coat. From the corrosion 

standpoint, coated fasteners also reduce potential for galvanic corrosion in 

bimetallic assemblies. In Figure 5.12, five different B-7 Stud Bolts are 

shown after 2,000 hours of salt spray testing per ASTM B117, done by 

MetCoat the company that produces FluoroKote. Case A is coated with 
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FluoroKote, Case B with Zinc Plating, Case C with Cadmium plating, 

Case D was hot dip galvanized, and Case E was uncoated during this test. 

 

Figure 5.12: Effect of various coatings (Source: Metcoat) 

 

In our study, the only coating we have come across is Black Oxide. 

Therefore, to convert this attribute information to the variable form, we 

use 0 for no coating and 1 if coating exists. 

e) Lubricant: Thread galling is a common in applications where the joint is 

subjected to heavy load. During the tightening process, pressure builds up 

between the contacting thread surfaces and the protective coating can get 

broken down. Due to the absence of the oxide coating, the high points of 

the threads are exposed, which increases friction. This can lead to enough 

heat generation to fuse the nut and bolt together. Also, during tightening 

process, if the torque application is continued beyond the point of galling, 

the fastener head may get sheared off or the threads may get stripped. 

Galling can be minimized by thread lubrication. In several applications, a 

wax based coating is pre-applied to the fastener on the threads. This helps 
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reduce friction but it can dissipate over time due to heat. In our study, we 

came across 25% processes that had a lubricant involved. Therefore, to 

convert this attribute information to the variable form, we use 0 for no 

lubricant and 1 if a lubricant exists. 

f) Locking Features: Locking features are either designs in the fastener or 

are added in the form of an adhesive on the threaded region. Depending on 

the function of the joint and the assembly, locking features may or may 

not be required. If the assembly is going to be exposed to vibration in 

regular service, then locking features may be recommended to prevent the 

fastener from losing clamping load. 

g) Thread diameter: Major diameter refers to the distance between crest to 

crest for an external thread and root to root for an internal thread. In our 

research, we measured this variable for each fastener with a micrometer. 

The unit of measurement was micrometer. 

h) Fastener Engagement Length: As the name suggests, this refers to the 

actual length along which the screw and nut are engaged and can bear the 

load of the assembled joint. In our research, we measured this variable for 

each fastener with a pair of vernier calipers. The unit of measurement was 

micrometer. 

i) Torque: Torque is the product of the magnitude of force and the 

perpendicular distance from the force to the axis of rotation (i.e. the pivot 

point). The SI unit of torque is Newton-meter (Nm). This value is 
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specified for every joint and was recorded in our study as a numerical 

value in Newton-meter. 

j) Tolerance Range: The tolerance range shows the total allowable range 

that the torque can vary across. This value is also specified by the joint 

designers and was recorded in our study as a numerical value in Newton-

meter. 

k) Fastener Visibility: If a fastener is not clearly visible to an operator, then 

it adds to the complexity of the operation and the operator would rely on 

experience to guide him/her due to the lack of visibility. This situation can 

occur either due to the way the joint is designed or due to poor 

illumination of the workspace. In this category under the design-driven 

complexity, we focus on the % visibility due to the way the joint is 

designed. The value is recorded in the form of percentage and can range 

from 0% in case of a completely obscured joint and 100% in the case of a 

completely visible fastener, as viewed by the operator during assembly. In 

our study, each joint was studied by 6 operators and an average value was 

recorded as the % visibility for a given joint. The operators were trained 

prior to the study to ensure that adequate repeatability and reproducibility 

existed statistically in their findings. 

l) Number of components assembled: This variable captures the number of 

components assembled by a single fastener. As the number of components 



 136 

to be assembled by a single fastener increases, variability associated with 

the thickness of each component also increases.  

m) Layers of Interference: We included this variable based on observation 

of the processes. This refers to the number of surfaces related to other 

components that the operator must pass the tool through in order to access 

the fastener to be assembled. It is a numerical value based on CAD data 

and manual observation done during the study. We have observed as many 

as 2 layers of interference in our study. 

n) Tensile Strength: It is the maximum tension-applied load that the fastener 

can support prior to fracture. The tensile load that a fastener can withstand 

is determined as follows: 
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where,

 =Tensile load (N)

Tensile strength (MPa)
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Tensile strength can be found for a particular bolt by referring to 

Mechanical Properties table, typically provided by the fastener 

manufacturer. The guide may also provide tensile stress area directly in 

the form of charts. It is important to give significant consideration to the 

definition of tensile stress area, As. When a standard threaded fastener fails 

in pure tension, the threaded portion is usually the one that fractures as it 

has the smallest cross sectional area. Therefore, usually this area is 
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calculated through an empirical formula involving the nominal diameter of 

the fastener and the thread pitch. Due to confidentiality reasons associated 

with the OEM where the study was conducted, we were unable to gain 

access to design documents that describe the material used to manufacture 

fasteners. Therefore, we do not consider Tensile Strength, Shear Strength, 

and Hardness in the complexity model at this point in time. We believe 

that these are important inputs and should be used in future work where 

the generalized model is applied to the fastening process or other 

processes; therefore we include a brief description here. 

o) Shear Strength: It is defined as the maximum load that can be supported 

prior to fracture, when load is applied perpendicular to the axis of the 

fastener. Load occurring in one transverse plane is known as single shear. 

Double shear is a condition when load is applied in two planes and the 

fastener could get sheared into three pieces. When no shear strength is 

given, for common carbon steels with hardness up to 40 HRC, 60% of the 

ultimate tensile strength of the bolt is typically used as acceptable shear 

strength.  

p) Hardness: Hardness is a measure of the material’s ability to resist 

abrasion and indentation. For carbon steels, Brinell and Rockwell hardness 

testing can be used to estimate the tensile strength properties of the 

fastener.  

5.3.5. Process factors driven Complexity (Cp) 
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As shown in the generalized complexity model, Tooling & Fixture Design, 

Assembly Sequence, Number of tasks in takt, Assembly Takt Utilization, and Assembly 

Time Variation are the primary categories of process factors driven complexity. Figure 

5.13 shows the input variables for process driven complexity related to the mechanical 

fastening process.  

 

Figure 5.13: Input variables - Process based mfg. complexity in Fastening 

 

Following is a brief description of each input variable: 

a. Tool Extension length: Primary goal of an extension is to adapt the drive 

type from the tool to the socket (3/8”, ½” etc.) and to allow the tool to access 

certain assembly areas depending on the component design. The extension 

also helps improve operator safety by avoiding the tool from being too close 



 139 

to the workpiece which may introduce a risk of pinching the operator’s finger 

between the tool and the workpiece. The tool extension length is defined as 

the total distance from the end of the output shaft of the tool to the other end 

that touches the fastener. During our study, we have observed tool extensions 

that range from 0.5 inches to 24 inches in length. A longer extension can 

introduce a significant amount of wobble at the tip, therefore this information 

is recorded in the complexity model.  

 

Figure 5.14: Extension and Socket 

 

b. Total Tip Play: Every tool extension introduces multiple sources of play in 

the fastening system. There is some play due to the clearance between the 

output side of the tool and the driven side of the extension. Similarly, there is 

additional play due to the clearance between the output side of the extension 

and the driven side of the socket. At both these locations, there is a pin or a 

ball joint that secures the components. Longer the tool, the effective play 

increases at the tip, thereby introducing a potential wobble when the fastener 

is being driven. 
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Figure 5.15: Tool extension - Total Tip Play 

 

c. Angle of extension w.r.t. fastener axis: This variable refers to the effective 

angle of the extension with ref. to the axis of the fastener due to the play and 

angle at which the fastener is located with reference to the vehicle.  

 

Figure 5.16: Effective angle of extension w.r.t. fastener axis 
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A schematic view of the angle of the extension with reference to the 

fastener axis is shown in Figure 5.17. This angle can be computed as 

follows: 

 

max
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Figure 5.17: Schematic diagram showing effective extension angle 

 

d. Tool Trigger type: This variable helps us capture the type of tool trigger 

mechanism. There are two types of mechanisms that we have observed: A 

trigger that needs pulled with one finger and another one that is larger paddle 

type trigger that allows the operator to pull it with four fingers. When the 

operator uses this several hundred times in a given shift, that can be a variable 
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that impacts the number of trigger slip-offs. We capture this information 

numerically by using the digit 1 for one finger type activation and 2 for 

multiple finger paddle type activation. 

 

Figure 5.18: Tool activation trigger: 1 finger vs. Multi-finger 

 

e. Hand / Tool Start: This variable captures whether a fastener is hand-started 

or tool-started with a low torque tool before applying higher torque with a 

conventional tool, or not. Starting the fastener with a low torque (by hand or 

low speed, low torque tool) significantly reduces the probability of cross-

threading the fastener when torque is applied with a conventional tool. We 

capture this as a binary input – 0 for no hand-start and 1 for hand-start. 

 

Figure 5.19: Hand-starting a fastener to prevent cross-threading 
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f. Tool Speeds (Initial and Final stages): Typically in a controlled torque 

application, the tool is programmed to complete the torque application in two 

stages. The tool runs at a faster initial speed (e.g. 300 RPM) during the run-

down stage (Figure 5.20) and once a designed threshold torque is achieved 

(e.g. 25 Nm), the speed is dropped (e.g. 100 RPM) until the fastener reaches 

the designed torque specification (e.g. 45 Nm). In our study both these speeds 

have been recorded for each joining process in Rotations per Minute (RPM). 

 

Figure 5.20: Torque-Tension evolution with time in a mechanical joint 

 

g. Fastening Sequence: For certain component assemblies, a fastening sequence 

is required or recommended. This is usually because there is a locating hole in 

a component which needs to be aligned first using a fastener and then 

remaining fasteners can follow. In figure, a cross member of a Sports Utility 

Vehicle is shown. The hole on the far right (marked with the digit 1) is a 

round hole which locates the component with reference to the body and the 

remaining three holes (2a, 2b, and 2c) are oblong and these are designed to 
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allow for variation associated with tolerances of multiple components. In our 

study, we capture this information as a binary variable as well. The digit 0 for 

no recommended sequence and the digit 1 for joints where a specific sequence 

has been recommended by process engineers. 

 

Figure 5.21: Example showing recommended sequence of fastening 

 

h. Number of tasks in takt: As assembly line is a flow oriented production 

system where parts are assembled together to form an end product at work 

stations situated along the line. A station is a location on the assembly line 

where work is performed on the product. Each station may contain multiple 

takts defined by some criteria (e.g. 9 work zones on a station for car 

assembly). A task is the smallest, indivisible, and rational work element of the 

total work content. There can be multiple tasks assigned to an operator who 

works in a given takt. The process engineer’s goal is to assign as many tasks 

as possible to a given takt (Figure 5.22), while ensuring that various 
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constraints such as task precedence, tooling availability, available takt time 

etc. are satisfied. In this study we capture the total number of tasks that an 

operator is assigned, in addition to the controlled fastening operation in a 

given takt. This information was captured for each takt where the fastening 

operations that were studied, took place.  

 

Figure 5.22: Assembly line showing stations, takts, and tasks 

 

i. Max. # of fasteners to assemble in same task: This variable captures the 

total number of fasteners of the same type to be assembled by an operator to 

assemble a given component. During our study, we have observed 

components where up to 7 fasteners are assembled by an associate. This 

repetitive task impacts manufacturing complexity and product quality in an 

interestingly counter-intuitive way. The details will be discussed in the 

following sections along with regression analysis. 

j. Takt utilization %: Takt utilization refers to a labor utilization metric that is 

generally followed by manufacturing plants to maximize the use of available 

takt time (cycle time) in each takt. Mathematically, labor utilization can be 

calculated as follows: 
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Labor Utilization = 

where,

Task that belongs to a set of tasks 
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In our research, we have recorded takt utilization as a % value for each takt in 

which the fastening operations were carried out. 

k. Avg. time per fastener (non-defective): This metric shows the average time 

actually taken by operators to complete assembly of one fastener per the 

required process specifications. The controlled fastening process captures the 

exact duration of the process by tracking the exact time when the trigger first 

gets pulled to the time when the torque and angle specifications reach their 

specified target values. The average values were computed from several 

thousand data points that represented processes carried out over several shifts 

by various operators, and utilized a large population of components, including 

fasteners. Data is captured in the form of a numerical value for each process in 

milliseconds. 

l. Assembly time variance: This is an important variable that has not been used 

by researchers in modeling complexity, to the best of our knowledge. 

Although task time has been used by several researchers as a primary driver, 

we have observed that the variation in the time taken to complete the fastening 

process is a significant input variable in the complexity model. Similar to the 
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method we used to capture average time per fastener, we used the same data 

set, although the only difference being the inclusion of all data points 

(defective and non-defective fastening cycles). Capturing those data points 

that reflect the struggle that the operator had in order to meet specification, is 

very important. Time variance is captured as the square of standard deviation 

calculated from the large population of data points for each process. 

5.3.6. Human factors driven Complexity (Ch)  

As shown in the generalized complexity model, Ergonomics, Training / 

Experience, Cognitive Load, and Work Environment are the primary categories of input 

variables that impact human-factors driven complexity. Figure 5.23 shows the input 

variables for human-factors driven complexity related to the mechanical fastening 

process.  

 

Figure 5.23: Input variables - Human-factors based mfg. complexity in Fastening 
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For this analysis, we used the ergonomic inputs that were recorded by the OEM 

for each fastening task based on standard OSHA regulations that apply to the automotive 

industry. Following is a brief description of each input variable and the acceptance 

criteria for each variable that the OEM follows. We have used this information to 

compare and contrast various fastening processes and have not considered challenging 

their validity to be within the scope of this research. 

a. Work height: It is defined as the height at which the operator assembles the 

part with reference to the surface on which he/she is standing. This 

information is recorded in terms of linear height in centimeters. 

Ergonomically, work height between 85 cm and 120 cm is considered to be 

acceptable. Anything below or above would need improvement (Figure 5.24).  

 

Figure 5.24: Work Height - Acceptance criteria 

 

b. Stress on neck: Static stress and extensive deflection is recorded as a 

percentage of total time when the operator experiences it. Below 5% of total 

task time is considered acceptable. Between 5% to 30% is considered as an 
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opportunity for improvement and above 30% of the total task time is 

considered unacceptable.  

 

Figure 5.25: Stress on Neck Muscles - Acceptance criteria 

 

c. Work above shoulder height: Working above shoulder height during 

fastening (e.g. working on sunroof or curtain airbag assembly from inside the 

passenger cabin in a car) can be difficult for the operator and can cause 

fatigue. It is important to note that the effort (load) also has to be considered 

along with the % of task time that the operator conducts work above shoulder 

height. For loads less than 10N, task time below 5% of total is considered 

acceptable. Between 5% to 30% is considered as an opportunity for 

improvement and above 30% of the total task time is considered unacceptable. 

Working in a lasting static posture is unacceptable above 5% of the time. 

 

Figure 5.26: Work above shoulder height 
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d. Mobility of trunk: Fastening tasks that involve mobility of trunk are recorded 

using the following conditions: 

1. Turning < 15 and/or bending 15 to < 30: Acceptable upto 30% of 

total task time 

2. Turning ≥ 15 and/or bending ≥ 30 to < 90: Acceptable upto 5% of 

total task time 

3. Bending ≥ 90 and or turning in difficult conditions: Considered 

unacceptable 

 

Figure 5.27: Mobility of trunk 

 

e. Mobility of arms: This ergonomic variable helps us identify if the arm 

movement including shoulder joint exceeds 60 cm radius during the fastening 



 151 

operation. Less than 5% of the total task time is acceptable. If it is between 

6% to 30%, it needs to be improved and greater than 30% is unacceptable. 

 

Figure 5.28: Mobility of the arms 

 

f. Stress on lower arms and wrists: Gripping a component or tool while 

fastening can cause stress on the lower arms and wrists. If the stress on the 

lower arms/wrists is less than 125 N for up to 30% of the total task time, then 

it is considered acceptable. On the other hand, if the stress is between 190 and 

285 N even for less than 5% of the total task time, actions need to be taken to 

reduce that stress. Stress is classified into multiple categories as shown in 

Figure 5.29. 

 

Figure 5.29: Stress on lower arms / wrists - Acceptance criteria 
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g. Stress on fingers: This ergonomic variable is important from the standpoint 

of dexterity related to hand-starting fasteners. If the force applied is less than 

15N, the stress level is small and considered acceptable. Between 15 and 20 

N, the stress level is considered medium and should be improved. Stress level 

above 20N is considered high and unacceptable.  

 

Figure 5.30: Stress on fingers during hand-starting of fasteners 

 

h. Quarters of experience: For ergonomic reasons, a given shift is divided into 

four work-quarters. Operators do different tasks in each quarter in order to 

exercise a variety of muscles / body parts and reduce the impact of repetitive 

work. Every operator signs into a tracking system that associates the operators 

ID number with the takt where a specific task gets done. Access to this system 

allowed us to identify the number of quarters of applied experience that each 

operator has. In this study, we use the average quarters of work experience the 

operators have and use that as an input variable in the complexity model. 

i. Probability of selecting the correct fastener: In several cases, an operator 

may be required to select a fastener from a variety of alternatives because the 
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remaining fasteners are used at that takt for some other fastening operation. 

Mathematically, this probability can be expressed as follows: 

1

where,

Probability of selecting the correct fastener

 Number of available alternative fasteners are the same takt
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j. Work environment: Under this category, we consider Noise, Lighting, 

Humidity, and Temperature. As noise, humidity, and temperature were quite 

similar in the manufacturing facility where the processes were studied, we do 

not consider them in the complexity model specifically for this pilot study. 

We consider lighting and as explained in Chapter 4, the term illumination 

characterizes the lighting quality of a given working environment. How much 

illuminance an object receives depends on the distance of the object from the 

light source. An alternative method is based on analysis of photographs to get 

a relatively subjective input from the operators and convert it to a numerical 

value on a relative scale. Pictures of the assembly process to be studied can be 

taken consistently with the same camera while maintaining the same average 

distance between the assembly and the operator’s eyes. These photographs 

can be studied by various operators who are trained to work on similar 

assemblies and a score can be assigned on a pre-determined scale to compare 

the level of illumination for each assembly process being studied. 

5.4. Application of proposed model to pilot process 
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In this section, we will focus on applying the proposed complexity model to the 

pilot process to calculate manufacturing complexity and correlate it with product quality. 

The data for this research project has been collected at a major automotive assembly plant 

that builds approximately 300,000 vehicles per year across three product families. 

Historical quality data for 12 months representing approximately 150,000 vehicles was 

analyzed (Figure 5.31).  

 

Figure 5.31: Analysis of defect data (Representing 1 year of production) 

 

As observed, mechanical fastening is the top driver of defects on the assembly 

line. Although the mechanical fastening process has shown a first-time pass rate (FTP) of 

98.6% on an average, the sheer number of total fasteners per vehicle makes the 1.4% 

defect rate very prominent to the assembly line. 46 processes representing a wide 

spectrum of joints were selected for the study out of a total 150 controlled mechanical 

fastening processes that are utilized in building a completely assembled vehicle. With this 
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data, we develop a regression based predictive model to predict defects and validate the 

model in an independent automotive assembly plant. 

5.4.1. Quality Measurement 

 

There are four key fastening process control strategies to the best of our 

knowledge. Table 5.1 shows the key characteristics and the potential variation that can be 

expected from each strategy.  

Table 5.1: Fastening Process Control Strategies 

 

 

In the processes we studied, Torque and Angle Control strategies were being 

used. The closed loop control and monitoring process provides immediate feedback to the 

associate whether or not the fastener (joint) has met specified torque and angle 

requirements through LEDs that are mounted on the tool and also on another visual 

display that is connected to the tool and controller. The controller also records torque and 

angle values dynamically for each fastener and stores it for offline analysis. Figure 5.32 

shows a plot with torque (N.m.) along the Y-axis and angle (deg.) along the X-axis. The 
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red line shows the dynamic torque and angle values as the fastening operation progresses. 

The black dot at the intersection of 4 N.m. and a few degrees past 1,000 along the X-axis 

refers to a threshold torque. This is set up by the process engineer and the tool starts 

monitoring angle beyond that point until the final torque and angle specifications are 

reached. The secondary X-axis shown in red font reflects the angle value starting at 0 

degrees, once the threshold value is reached.  

 

Figure 5.32: An example of a defective fastening operation (torque-angle plot) 

 

The green box shows the allowable tolerance window for torque and angle. In this 

case, the torque value crossed 4 N.m. but the fastener was unable to gain more torque and 

eventually dropped off as shown by the red line. This is typically associated with a large 

joint gap that the fastener is unable to close during the operation. Such a fastening 

process would be considered as defective. The tool would register it and that defect stays 

associated with the vehicle until it gets cleared manually by a re-worker on the assembly 

line. The vehicle cannot get shipped unless all defects are cleared from the system. The 
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primary goal of process and quality engineers is to understand the root cause of such 

failures and systematically implement mistake-proofing systems to prevent them from 

recurring.  

The quality defect rate can be computed as follows: 

 

6# of defects
DPMO = 10

# of opportunities

where,

DPMO = Defects per million opportunities



 (2.38) 

In this equation, the number of opportunities is defined as the total number of attempts 

(successful and unsuccessful) to assemble the fastener. For example, if on a given vehicle 

to be assembled, an associate has to assemble 9 fasteners. If the operator comes across 

one failure and has to make an extra attempt to complete the 9 assemblies, the total 

number of opportunities that the operator had = 9 + 1 = 10.  

 

61
DPMO = 10 100,000

(9+1)

where,

DPMO = Defects per million opportunities

 

 (2.39) 

In a similar manner, 12-months of historical data was collected for all the processes that 

were studied. 

5.4.2. Identification of significant input factors 

 

A total of 36 input variables were recorded for 40 fastening process along with the 

respective Defects Per Million Opportunities (DPMO) for each process. Statistical 

analysis was conducted using Minitab. For regression analysis, the response variable in 



 158 

our study is DPMO and predictor variables are the 36 input variables that represent 

design, process and human factors driven complexity. 

Analysis of variance (ANOVA) gives p-values for each input variable (Figure 

5.33). P-value determines the appropriateness of rejecting the null hypothesis in a 

hypothesis test. The p-value is the probability of obtaining a test statistic that is at least as 

extreme as the calculated value if the null hypothesis is true. In our study, we use the 

standard alpha level of 0.05. If the p-value of a test statistic is less than the alpha, we 

reject the null hypothesis. The null hypothesis in this regression study is that the input 

variable does not have a significant effect on the response variable (DPMO), which 

means the coefficient for that variable will equal zero in the regression equation. If the p-

value is less than 0.05, we can statistically conclude that the variable has a significant 

effect on the response variable and the coefficient is significantly different from zero.  
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Figure 5.33: P-value distribution for 36 input variables (Alpha value 0.05) 

 

Following table shows the reference number used in the plot, complexity factor of each 

input variable, names of input variables, and the corresponding p-value.  

Table 5.2: Input variables and the corresponding p-value (ascending order) 
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Following is a brief explanation and plots showing relationships of those individual input 

variables that have shown a R
2
 (adj.) value of greater than 5% with Defects Per Million 

Opportunities (DPMO) as a resultant variable: 

Order Factor Input Variable p-value

1 C d No. of components to be assembled 0.000        

2 C d Thread diameter (OD) 0.000        

3 C h Probability of choosing correct fastener 0.000        

4 C p Max. # of fasteners in same task 0.000        

5 C d Fastener head design 0.000        

6 C h Stress on neck 0.000        

7 C d Locking features 0.000        

8 C p Assembly Time Variance 0.000        

9 C p Tool speed (final stage) 0.000        

10 C d Fastener engagement length 0.001        

11 C d Fastener type 0.001        

12 C p Takt utilization 0.002        

13 C d Lubricant 0.002        

14 C h Work above shoulder height 0.003        

15 C d Fastener visibility 0.006        

16 C p Tool speed (initial stage) 0.010        

17 C h Stresses on fingers 0.012        

18 C p Avg. assly. time per fastener 0.039        

19 C p Hand / Tool start 0.052        

20 C h Stresses on lower arms 0.091        

21 C p Fastening sequence 0.120        

22 C p Effective Tip Play 0.167        

23 C d Coating 0.181        

24 C h Mobility of arms 0.206        

25 C p Tool trigger type 0.207        

26 C d Layers of interference 0.208        

27 C d Tolerance range 0.264        

28 C d Angle of fastener 0.284        

29 C p Angle of extension w.r.t. fastener 0.285        

30 C h Work height 0.286        

31 C p No. of tasks in takt 0.319        

32 C p Total tip play 0.393        

33 C d Torque 0.458        

34 C h Mobility of trunk 0.722        

35 C h Stresses on arms 0.750        

36 C p Tool extension length 0.759        
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a) Probability of choosing the correct fastener: A fitted line plot (Figure 5.34) 

shows that as the probability of choosing the correct fastener increases, the 

potential for defects goes down, as intuitively expected. R
2
 (adj.) value was 

11.5%. In the data set, we encountered two processes with the least probability of 

correct choice (33.3%), where the associate had three fasteners with 

interchangeable thread size and design. An incorrect choice would result in a 

torque defect because the process specifications would fall outside specifications. 

Several more processes had a 50% probability as shown in the plot and most 

stations had only one choice of fastener which resulted in 100% probability.  
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Figure 5.34: Probability of choosing the correct fastener vs. DPMO 

 

b) Assembly time variance: Assembly time variance is an input variable that has 

not been highlighted before by Shibata [38] and Hinckley [47], who developed 
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complexity models based on task time and number of operations. In our research, 

we calculated the standard deviation of time taken to assemble a fastener that 

meets specifications. In this calculation, we have excluded the data points for 

those fasteners that were linked to defects because clearly the processes that have 

more defects would have shown a correlation of the time variance vs. DPMO. 

From the analysis, we found that a quadratic fitted line plot shows a low R
2
 (adj.) 

value but still significant compared to the < 1.6% R
2
 (adj.) value that we observed 

with time and number of operations (Figure 5.35).  
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Figure 5.35: Assembly time Std. Deviation vs. DPMO (Quadratic) 

 

c) Fastener engagement length: A linear fitted line plot (Figure 5.36) shows that as 

the engagement length increases, the potential for defects is higher. We came 

across a higher concentration of joints that had less than 10 mm total engagement 
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length but there were several others with higher torque specifications that ranged 

between 15 to 40 mm. We found one process where several threaded components 

were stacked together and the total engagement length was 66 mm. The linear 

fitted line plot shows an R
2
 (adj.) value of 15% and a quadratic fitted line plot 

shows a R
2
 (adj.) value of 16.2% (Figure 5.37). As the benefit of using a quadratic 

model is very small in this case, we choose to use the linear relationship in the 

final regression model. 
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Figure 5.36: Fastener engagement length vs. DPMO (Linear) 
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Figure 5.37: Fastener engagement length vs. DPMO (Quadratic) 

 

d) Takt Utilization: As highlighted in the research motivation section, when our 

research group was working on an Assembly Line Balancing project at a mixed-

model assembly plant, we observed the potential need to understand 

manufacturing complexity and product quality because the way tasks are arranged 

on an assembly line may bear an effect on product quality. Labor utilization is one 

of the primary objectives of Assembly Line Balancing. Fitted line plots of linear, 

quadratic, and cubic models show R
2
 (adj.) values of 6.9%, 9.3%, 11.2% 

respectively (Figure 5.38). As utilization drops below 80%, the corresponding 

DPMO is higher. This may be due to interaction with other variables. 



 165 

120.0%110.0%100.0%90.0%80.0%70.0%60.0%

120000

100000

80000

60000

40000

20000

0

-20000

-40000

Utilization

A
c
tu

a
l 

D
P

M
O

S 18561.4

R-Sq 16.0%

R-Sq(adj) 11.2%

Regression

95% CI

95% PI

Fitted Line Plot
Actual DPMO =  1424092 - 4275515 Utilization

+ 4327086 Utilization**2 - 1449062 Utilization**3

 

Figure 5.38: Takt utilization vs. DPMO (Cubic model) 

 

e) Work above shoulder height (% of task time): Our study included a wide 

spectrum of mechanical fastening processes across the entire automotive 

assembly plant. We intentionally looked for processes that would give us a wide 

range of input variables such as work above shoulder height. In our data, we came 

across only 4 processes in which operators worked for 65% of their respective 

task times, above shoulder height. As shown in the fitted line plot for a linear 

model, the R
2
 (adj.) value was found to be 10.0% (Figure 5.39). A quadratic 

model marginally increases it to 11.2%. However, there was a strong 

concentration of processes in which the work content above shoulder height was 

limited to 20% of the task time. Therefore, the decreasing trend of DPMO as the 

% of time increases may be limited to this data set alone and may not be valid 
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across the entire range of processes. Also, there may be an interaction with 

another variable that explains why the DPMO drops with higher percentage of 

work above shoulder height. 
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Figure 5.39: Work above shoulder height (% of task time) vs. DPMO (Linear) 

f) Tool speed (initial stage): The torque application process is divided into two 

parts. The rotational speed of the tool is higher in the first part and once the 

threshold torque is reached, the speed drops to a lower value. This variable tracks 

the initial tool speed. As shown in the fitted line plot (Figure 5.40) using a 

quadratic model, the R
2
 value is 8.3% and except for 4 processes on the low end 

below 225 RPM, the general tendency is for the DPMO to be lower as the speed 

increases. 
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Figure 5.40: Tool Speed (Initial phase) vs. DPMO (Quadratic) 

 

g) Average assembly time per fastener: Average assembly time is an input 

variable that was highlighted by Shibata [38] and Hinckley [47], who developed 

complexity models based on task time and number of operations. The general 

tendency is for defect rate to drop as the time taken to assemble a fastener is 

longer. This trend contradicts what was found in previous research associated 

with semi-conductor assembly and audio-players. In our study, average time per 

fastener was based on approximately 18,000 to 42,000 data points (fasteners) per 

process. The number of data points (fasteners) varied based on the quantity used 

per assembled vehicle. Using a quadratic model (Figure 5.41), the R
2
 value was 

found to be 7.1%. 



 168 

70006000500040003000200010000

100000

80000

60000

40000

20000

0

-20000

Time per Fastener

A
c
tu

a
l 

D
P

M
O

S 18979.9

R-Sq 10.5%

R-Sq(adj) 7.1%

Regression

95% CI

95% PI

Fitted Line Plot
Actual DPMO =  51720 - 12.54 Time per Fastener

+ 0.001333 Time per Fastener**2

 

Figure 5.41: Average time per fastener assembly vs. DPMO (Quadratic) 

 

h) Work height: In our study, most of the processes were conducted by operators 

between 100 cm to 140 cm. There were 4 processes that were conducted at 160 

cm. with reference to the level at which the operators were standing. Although the 

quadratic fitted line plot shows the tendency for the DPMO to drop as work height 

increases beyond 140 cm, the available data may not be statistically sufficient to 

draw that conclusion. This should be noted as the framework of this model is 

applied to other processes in future. The R
2
 (adj.) value was found to be 7.5% 

using a quadratic model (Figure 5.42). 
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Figure 5.42: Work height vs. DPMO (Quadratic) 

 

i) Tool extension length: In our study, we were able to capture a very wide range of 

tool extension lengths (5mm to > 400 mm). The general tendency of the process is 

to have higher level of defects as the length increases because of the increased tip 

play (wobble) associated with the inherent vibration of the output spindle that is 

multiplied by the length of the extension. This causes slip-offs, a condition where 

the tool jumps off the fastener head and causes an intermittent drop in torque 

value or a complete shutdown of the process. The fitted line plot shows a R
2
 (adj.) 

value of 5.3% using a quadratic model (Figure 5.43). The linear model and cubic 

model generate a R
2
 (adj.) value of 2.3% and 6.8% respectively.  
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Figure 5.43: Tool extension length vs. DPMO (Quadratic) 

 

In summary, these individual fitted line plots show some interesting correlation 

between these individual variables and product quality (DPMO). We gain a better 

understanding of the process using this information and develop a predictive model, 

details of which are shared in the next section. 

5.4.3. Development of predictive model 

 

Based on the statistical analysis, we know the factors that have a significant 

impact on product quality measured as DPMO. We conduct regression analysis to 

investigate the model the relationship between the response variable (DPMO) and the 

predictors (input variables). We perform Ordinary Least Squares (OLS) regression [78]. 

In OLS regression, the estimated equation is calculated by determining the equation that 

minimizes the sum of the squared distances between the sample’s data points and the 
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values predicted by the equation. OLS regression will provide precise, unbiased estimates 

only when the following assumptions are met: 

1) The regression model is linear in the coefficients. Least squares can model 

curvature by transforming the variables (rather than the coefficients). 

Functional form of the equation needs to be specified in order to model the 

curvature. In our data, linear model was sufficient. 

2) Residuals have a mean of zero. Inclusion of a constant in the model will force 

the mean to equal zero. 

3) All predictors are uncorrelated with the residuals. 

4) Residuals are not correlated with each other (serial correlation). 

5) Residuals will have a constant variance. 

6) No predictor variable is perfectly correlated with another predictor variable. 

7) Residuals are normally distributed. 

Because OLS regression will provide the best estimates only when these 

assumptions are met, it is important to test them. Common methods include examining 

residual plots and using lack of fit tests. 

In regression analysis, R
2
 (R-sq) is the coefficient of determination. It indicates 

how much variation in the response variable is explained by the model. The higher the R
2
 

value, the better the model fits the data set of predictor variables. 
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where,
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Best Subsets regression is a method that is used to identify the subset models that 

produce the highest R
2
 values from a full set of predictor variables [79]. It offers an 

efficient way to identify models that achieve the goals with as few predictors as possible. 

Minitab examines all possible subsets of the predictors, beginning with all models 

containing one predictor, and then all models containing two predictors, and so on. The 

two best models for each number of predictors are displayed. It also displays a Mallows’ 

Cp value for each predictor set. Mallows Cp is a measure of goodness-of-prediction. The 

formula is as follows: 
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 (2.41) 

where,

SSE Sum of squares error for the model

MSE Mean square error for the model with all predictors

number of observations

number of terms in the model, incl. constant

p
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n

p






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For analysis, we want to look for models where the Mallow’s Cp is small and 

close to the number of predictor variables. A small Cp indicates that the model is 

relatively precise (has less variance) in estimating the true regression coefficients and 

predicting future responses. Models with poor predictive ability and bias have values of 

Cp larger than the number of predictors. 
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Three different cases of regression based predictive models are described below. 

5.4.4. Regression Model – Iteration 1 (6 variables) 

We conducted analysis of statistical-significance (p-value) and regression analysis 

with all the variables. Although the p-value for Work Height, Total Tip Play, Torque, 

Tool Extension Length, and Fastening Sequence was greater than the 0.05 threshold 

(Table 5.2), we observed an impact on the net R
2
 (adj.) value, therefore we included them 

in the best-subsets analysis.  

 Table 5.3 shows a summary of top two subsets for each number of predictor 

variables. A total of 16 factors have the ability to account for 77% of the variation in 

DPMO. For ease of explanation, we have limited the best-subsets table to 77% (or 16 

variables). Increasing the total number of variables to 24 increases the R
2
 (adj.) value to 

93% but we will cover this in iteration # 3. In this iteration, we select the subset with 6 

variables that can account for 53.1% of the DPMO variation. Although the Mallows’ Cp 

is significantly higher than the number of predictor variables, we select it as a baseline 

iteration that explains 50% of the DPMO variation (R
2
-adj. value). 
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Table 5.3: Best-Subsets Analysis 
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 Using these predictor variables, we construct a regression model. Following are 

the equations for each complexity factor: 

1) Design driven complexity factor (Cd):  

 
     
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_ _ _
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2) Process driven complexity factor (Cp):  
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 (2.43) 

3) Human-factors driven complexity factor (Ch): 
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4) Correlating Complexity to DPMO: 

 DPMO = 56600.2 + d p hC C C   (2.45) 

 

where,

DPMO = Defects per million opportunities
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The following plots show the residual analysis based on the regression model with 

6 input variables, applied to the 39 fastening processes. The normality plot shows that the 

p-value is significantly smaller than the threshold alpha value of 0.05 which shows that 

the residuals (Figure 5.44) are not normally distributed. Similarly, the histogram (Figure 

5.45) shows a different view of the same data and shows the outlier with a large residual 

value of 36,000. Clearly, this shows that although we have a model that can account for 

50% of the variability in the resultant DPMO, the model needs to be improved. 
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Figure 5.44: Normality plot of residual values (Iteration 1) 
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Figure 5.45: Histogram of Residuals (Iteration 1) 

 

5.4.5. Regression Model – Iteration # 2 (16 variables) 

Based on the best subsets analysis (Table 5.3), in this iteration we choose the 

subset with 16 variables. The estimated R2 (adj.) value is 77% and the corresponding 

Mallows Cp value is 17, which is very close to the total number of predictor variables in 

this model.  

Using these predictor variables, we construct a regression model. Following are 

the equations for each complexity factor: 

1) Design driven complexity factor (Cd):  
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2) Process driven complexity factor (Cp): 
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3) Human-factors driven complexity factor (Ch): 
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where,

Ergonomics - Work height (cm)

Ergonomics - Stress on neck (% of task time x 100)
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4) Correlating Complexity to DPMO: 

 



 179 

 DPMO = 33381.1 + d p hC C C   (2.49) 

 

where,

DPMO = Defects per million opportunities
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Figure 5.46: Normality plot of Residuals (Iteration 2) 
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Figure 5.47: Histogram of Residuals (Iteration 2) 

5.4.6. Regression Model - Iteration # 3 (24 variables) 

Based on the analysis of statistical significance (p-value) and multiple regression 

analysis iterations, it was found that the following input variables consistently have a 

strong impact on the resultant variable (DPMO): 
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Table 5.4: List of statistically significant input variables (p-value < 0.05) 

 

 

Therefore, in the best subsets analysis, we keep these predictor variables in all models. 

Best subsets analysis produced the following output (Table 5.5): 

 

 

 

 

 

 

 

Order Factor Input Variable p-value

1 C d No. of components to be assembled 0.000        

2 C d Thread diameter (OD) 0.000        

3 C h Probability of choosing correct fastener 0.000        

4 C p Max. # of fasteners in same task 0.000        

5 C d Fastener head design 0.000        

6 C h Stress on neck 0.000        

7 C d Locking features 0.000        

8 C p Assembly Time Variance 0.000        

9 C p Tool speed (final stage) 0.000        

10 C d Fastener engagement length 0.001        

11 C d Fastener type 0.001        

12 C p Takt utilization 0.002        

13 C d Lubricant 0.002        

14 C h Work above shoulder height 0.003        

15 C d Fastener invisibility 0.006        

16 C p Tool speed (initial stage) 0.010        

17 C h Stresses on fingers 0.012        

18 C p Avg. assly. time per fastener 0.039        

19 C p Hand / Tool start 0.052        
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Table 5.5: Results of Best Subsets analysis (preferred subset in red) 

 

 

As explained above, we choose the subset with 5 variables because it produced 

the highest R
2
 (adj) value and the difference between the number of predictors (5) and the 

Mallows’ Cp is the least. R
2
 indicates how much variation in the response variable is 

explained by the model. If a relatively lower value is acceptable to get an estimated 

prediction with a higher level of uncertainty, less number of variables can be chosen. 

However, in the subset with 2 variables, the difference between the number of variables 

and Mallows’ Cp is very high which means the model would not be very precise. 

 Using these predictor variables, we construct a regression model. Following are 

the equations for each complexity factor: 

a) Design driven complexity factor (Cd):  
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1 84.8 76.1 59.6 9,623   X

1 82.8 72.9 69.5 10,250 X

2 89.3 82.7 39.7 8,185   X X

2 89.3 82.6 40.1 8,209   X X

3 92.2 87.1 27.6 7,083   X X X

3 92.1 86.8 28.4 7,158   X X X

4 93.1 88.2 25.4 6,777   X X X X

4 93.0 88.0 25.7 6,809   X X X X

5 94.0 89.3 23.2 6,443   X X X X X

5 93.7 88.8 24.5 6,578   X X X X X

6 94.2 89.4 24.0 6,414   X X X X X X

6 94.0 88.9 25.2 6,548   X X X X X X

7 94.2 89.0 26.0 6,521   X X X X X X X

7 94.2 89.0 26.0 6,521   X X X X X X X

8 94.2 88.6 28.0 6,635   X X X X X X X X
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  (2.50) 

_

_

_

_

where,

Assembly design - Assly. Component qty. (number)

Feature design - Thread Diameter (mm)

Feature design - Fastener head design (number)

Feature design - Locking (binary
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fd OD
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D






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_

_

_

_

)

Feature design - Thread engagement length (mm)

Feature design - Fastener type (number)

Feature design - Lubricant (binary)
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_
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Assembly design - Tolerance range (Nm)
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Assembly design - Tool speed final (RPM)
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



 

 

b) Human-Factors driven complexity factor (Ch):  
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_
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where,

Ergonomics - Stress on neck (% of task time x 100)

Ergonomics - Work above shoulder height (% of task time x 100)

Ergonomics - Stress on fingers (% of task time x 100)

er nec
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_

Ergonomics - Stress on lower arms (% of task time x 100)

Cognitive load - Probability of correct choice (%)
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cl proH





 

 

c) Process driven complexity factor (Cp):  
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where,

Tooling & fixture design - Extension length (mm)

Tooling & fixture design - Tool speed initial (RPM)

Tooling & fixture design - Tool speed final (RPM)

Tooling & fixt

tf len

tf sp

tf sp

tf tip

P

P

P

P









_

_

_

_

ure design - Total tip play (mm)

Tooling & fixture design - Hand start (binary)

Tooling & fixture design - Sequence (binary)

Number of fasteners in takt (number)

Assly. Tak

tf han

as seq

nt qty

tu utl

P

P

P

P









_

_

t utilization (%)

Assly. Time variation - Avg. time per fastener (ms)

Assly. Time - Standard Deviation (ms)

vt avg

tf len

P

P





 

 

d) Complete complexity model: 

 DPMO = 135822 + d p hC C C   (2.53) 

where,

DPMO = Defects per million opportunities

Design driven complexity factor

Process driven complexity factor

Human factors driven complexity factor

d

p

h

C

C

C







 

 

5.4.7. Residual Analysis 

 

Results of regression analysis show that the R
2
 value was 91.7% and R

2
 (adj.) was 

91.5%, using a linear model. The linear model accounts for 91.5% of the variation in the 

resultant variable (DPMO). Confidence and predictor intervals are shown by red and 

green dashed lines, respectively in Figure 5.48. Histogram of residuals shows a normally 



 185 

distributed data set and no outliers, in Figure 5.49. We conduct a normality test for 

residual values and it shows a p-value of 0.389 which shows that the data is normally 

distributed (Figure 5.50).  

 

Figure 5.48: Fitted line plot based on 39 fastening processes (Linear) 
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Figure 5.49: Histogram of residuals (Iteration 3) 
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Figure 5.50: Normal probability plot of residual values (Iteration 3) 

 



 187 

Plot of residual vs. predicted DPMO shows a random pattern, which suggests that 

the residuals have constant variance. The scatter plot of residuals (Figure 5.51) and the 

residuals vs. order plot do not show a pattern which means there is no time-related effect 

or non-random error in the data (Figure 5.52). 
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Figure 5.51: Scatter plot of residuals vs. Predicted DPMO (Iteration 3) 
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Figure 5.52: Residuals vs. Observation order (Iteration 3) 

 

In summary, the predictive model based on regression analysis is statistically 

acceptable and can be used to predict defect rate. The next section covers the validation 

process of this predictive model. 

5.4.8. Model validation using independent data set 

 

In order to validate the model, we conducted analysis of similar mechanical 

fastening processes at an independent automotive assembly plant. Based on the 

experience gained in the source plant, we chose 18 processes that were representative of a 

larger population of processes across the automotive assembly plant.  

We collected the input data for all the factors that were found statistically 

significant in the original analysis of 39 fastening processes at the source plant where the 
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model was developed. The complexity model that we developed in each iteration was 

used to predict the DPMO and compare it versus the actual DPMO.  

a) Validation using model from Iteration 1 with 6 variables: 

A linear fitted line plot shows the predicted DPMO vs. actual DPMO with a 

R
2
 value of 54% and R

2
 (adj.) value of 51.2% (Figure 5.53). Although only 6 

variables could account for this variation, the model clearly needs to be 

improved. 
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Figure 5.53: Validation on 18 processes at independent plant (Iteration 1) 

 

b) Validation using model from Iteration 2 with 16 variables: 

The linear fitted line plot shows the predicted DPMO vs. actual DPMO with a 

R
2
 value of 85.1% and R

2
 (adj.) value of 84.2%. There are no outliers outside 

the 95% prediction interval line shown in the plot (Figure 5.54). This model 



 190 

with 16 variables shows a significant improvement as compared to the model 

in iteration 1 with 6 variables. 
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Figure 5.54: Validation on 18 processes at independent plant (Iteration 2) 

 

c) Validation using model from Iteration 3 with 24 variables: 

The fitted line plot shows the predicted DPMO vs. actual DPMO with a R
2
 

value of 93.7% and R
2
 (adj.) value of 93.3%. There is one outlier outside the 

green 95% prediction interval line shown in the plot (Figure 5.55).  
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Figure 5.55: Validation on 18 processes at independent plant (Iteration 3) 

 

The histogram shows one potential outlier in the data (Figure 5.56). The 

normal probability plot shows a linear pattern, consistent with a normal 

distribution, again with the same outlier highlighted above (Figure 5.57). The 

plot of residual versus fitted values shows a random pattern, which suggests 

that the residuals have constant variance (Figure 5.58). Also, the residual 

versus order plot shows the order in which the data was collected. It does not 

display a pattern which means there is no evidence of non-random error 

(Figure 5.59). 
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Figure 5.56: Histogram of residuals (Source: 18 fastening processes) 

 

150001000050000-5000-10000

99

95

90

80

70

60

50

40

30

20

10

5

1

Residuals

P
e

rc
e

n
t

Mean 1638

StDev 5377

N 18

AD 0.320

P-Value 0.506

Normality Plot (Residuals)
Normal 

 
 

Figure 5.57: Normal probability plot of residual values (p-value = 0.506) 
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Figure 5.58: Scatter plot of residuals vs. predictor DPMO  
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Figure 5.59: Residuals vs. Observation Order plot 
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In summary, the model with 16 variables generated a R
2
 value of 84.2% (iteration 

2) and the model with 24 variables generated a slightly higher R
2
 value of 93.3% 

(iteration 3). Both models were validated successfully at an independent plant that used 

mechanical fastening processes for mixed-model automotive assembly.  

5.5. Limitations in application of the Hinckley Model to the pilot process 

 

Based on defect data of semiconductor products, Hinckley found that defect per 

unit (DPU) was positively correlated with total assembly time and negatively correlated 

with number of assembly operations [37]. He defined the assembly complexity factor (Cf) 

as follows: 

 

0

0

where,

=Total assembly time for the entire product

=Total number of assembly operations

Threshold assembly time

fC TAT t TOP

TAT

TOP

t

  



 (2.54)  

In order to calibrate the correlations between these parameters, Hinckley 

incorporated the threshold assembly time (t0) which was defined as the time required to 

perform the simplest assembly operation. With this complexity index, Hinckley found 

that when plotting on a log-log scale, the complexity and the corresponding defect rate 

showed a positive linear correlation with each other, as in the following two equivalent 

equations: 

  

log log logf

k

f

DPU k C C

C
DPU

C

  


 (2.55) 

where, C and k are constants. 
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 One of the drawbacks of the Hinckley model is that the predicted quality is for an 

entire product. This would enable comparison of complexity and product quality across 

multiple entire products. A hypothetical application of the Hinckley Model to two 

different vehicles with different total assembly times has been shown in Table 5.6. Model 

A requires 26.2 hours for complete assembly and model B requires 24.1 hours for 

complete assembly. In Table 5.6, TOP refers to Total number of operations, TAT is the 

total assembly time in hours and in seconds, t0 is the threshold time, and Cfpi is the 

complexity factor. 

Table 5.6: Application of the Hinckley Model to automotive assembly 

 

 

An example of the complexity calculation has been shown below for Model A: 

 (93,600) (4 10,000)

53,600

fpi o

fpi

fpi

C TAT t TOP

C

C

  

  



 (2.56) 

According to Hinckley, there is a linear correlation between log(Cfpi) and log(DPU), 

where DPU stands for Defects per Unit. However, as shown in Table 5.6, actual DPU for 

Model B is 0.7 and that for Model A is 1.2. That is inversely proportional to the 

complexity factor that has been calculated for these two models. A modified version of 

this model can be applied at a process level, where the time is associated with a certain 

process instead of the entire product assembly and the defect rate is associated with the 

Ref. 
TOP 

(#)

Takt 

Time 

(s)

TAT 

(hr)

TAT 

(s)

t 0 

(s)

C fpi 

(#)
log (C fpi)

Actual 

DPU
log (DPU)

Model A   13,920 100  26.2 94,320  4  38,640      4.59       1.2 0.079

Model B   11,620 120  24.1 86,760  4  40,280      4.61       0.7 -0.155
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defects caused by a particular process. That is what Shibata has shown in his research. 

Validation using the Shibata model will be covered in the next section. 

 

 

Figure 5.60: Hinckley model applied to vehicle assembly 

 

5.6. Limitations in application of the Shibata Model to the pilot process 

 

Shibata [38] remarked that the Hinckley model did not take the assembly design 

factors into consideration and could not evaluate the defect rate for a specific 

workstation. Therefore, Shibata proposed a prediction model for a workstation based on 

two assembly complexity factors: the process-based complexity factor and the design-

based complexity factor. Assembly time was determined by Sony Standard Time (SST), a 

commonly used time estimation tool for electronic products. Shibata used home audio 

products, a combination of CD player and a MiniDisc recorder/player as assembly cases. 
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These had approximately 300 job elements and the total time was approximately 10 

minutes.  

The process-based complexity factor of workstation i is defined as: 

 

0

1

0

.

where,

=number of job elements in workstation ;

time spent on job element  in workstation ;

threshold assembly time

aiN

Pi ij ai

j

ai

ij

Cf SST t N

N i

SST j i

t



 







 (2.57) 

Home audio equipment served as a good vehicle for Shibata’s analysis because its 

assembly process contained almost every type of basic assembly operation that is present 

in consumer electronic products. 

Similar to the Hinckley Model, Shibata derived the following correlation between 

the process-based assembly complexity factor and DPU: 

 logDPU .log logi PiK Cf C   (2.58) 

 
 

DPU

K

Pi

i

Cf

C
  (2.59) 

where C and K are constants. 

We apply the Shibata model to the mechanical fastening process to understand the 

applicability and gaps, if any. Data for 18 processes from the independent validation 

plant is used for this experiment. 
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Table 5.7: Application of Shibata model to mechanical fastening processes 

 

 

The complexity factor was calculated per the Shibata model. For example, Cfpi for 

process number 1 is calculated as follows: 

 

0

1

.

(113.9) (3 16)

65.9

aiN

fpi ij ai

j

fpi

fpi

C SST t N

C

C



 
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 (2.60) 

As shown in Figure 5.61, the linear model is unable to explain the variation in the 

resulting variable (DPMO). Figure 5.62, shows a cubic relationship and that model has a 

negligible R
2
 value as well. Similarly, a quadratic relationship also produced a negligible 

R
2 

value. This shows that although the Shibata model was developed based on data from 

several factories where Sony products were built, the model seems to have limited 

application to small electronic products such as a MiniDisk Player [37, 38]. The 

Ref.
No of tasks 

in takt (N ai)

Takt 

Utilization 

%

Opport

unities 

per car

Actual 

DPMO

Actual 

DPU

Takt 

Time 

(s)

Sum of 

time 

spent in 

takt (s)

t 0

(s)
C fpi log (C fpi)

log 

(Actual 

DPU)

1 16 94.9% 4 44,380 0.18     120 113.9 3 65.9 1.82 -0.75

2 17 66.1% 1 82,799 0.08     120 79.3 3 28.3 1.45 -1.08

3 17 93.6% 1 15,459 0.02     120 112.3 3 61.3 1.79 -1.81

4 17 93.6% 1 22,007 0.02     120 112.3 3 61.3 1.79 -1.66

5 11 87.7% 4 54,350 0.22     120 105.2 3 72.2 1.86 -0.66

6 19 86.7% 5 19,831 0.10     120 104.1 3 47.1 1.67 -1.00

7 25 99.9% 3 24,947 0.07     120 119.8 3 44.8 1.65 -1.13

8 11 95.9% 3 16,465 0.05     120 115.0 3 82.0 1.91 -1.31

9 11 95.9% 3 31,045 0.09     120 115.0 3 82.0 1.91 -1.03

10 17 92.9% 1 58,953 0.06     120 111.4 3 60.4 1.78 -1.23

11 17 92.0% 1 69,390 0.07     120 110.4 3 59.4 1.77 -1.16

12 21 89.7% 5 14,175 0.07     120 107.7 3 44.7 1.65 -1.15

13 18 86.9% 5 28,430 0.14     120 104.3 3 50.3 1.70 -0.85

14 21 95.9% 5 28,834 0.14     120 115.1 3 52.1 1.72 -0.84

15 16 80.6% 1 20,190 0.02     120 96.7 3 48.7 1.69 -1.69

16 15 99.2% 1 30,009 0.03     120 119.0 3 74.0 1.87 -1.52

17 15 99.2% 1 69,314 0.07     120 119.0 3 74.0 1.87 -1.16

18 10 87.7% 4 37,002 0.15     120 105.3 3 75.3 1.88 -0.83

SHIBATA MODEL
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electronics assembly processes are by no means considered low on the complexity scale 

but perhaps the repeatable tasks such as soldering components on printed circuit boards 

present a unique set of processes to which this model can be applied and quality can be 

reliably predicted. 
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Figure 5.61: Fitted Line Plot – Shibata Model (linear) 
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Figure 5.62: Fitted Line Plot - Shibata Model (Cubic) 

 

In published literature [37], we also found a case-study in which Su, Liu, and Whitney 

applied the Shibata model to a Fuji photocopier and found R
2
 values ranging from 0.153 

to 0.169 (15.3% to 16.9%). It was found that the Sony Standard Time (SST) database was 

not suitable for analyzing the copier production. For instance, the threshold time t0 is 2 

seconds in SST while the shortest adjustment action can be completed in 0.6 seconds in 

the case of the copier assembly. They also concluded that, “the evaluation method of the 

assembly complexity factors should be redesigned to better match the characteristics of a 

copier.”  

 In our study, we also came across an interesting situation that contradicts the 

findings from Shibata model. We added a fixture to a fastening operation. Using the new 
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fixture increased the total time. The takt utilization in case 5 [Table 5.7], went up from 

87.7% to 93.3%. This increased the Cfpi value from 72.2 to 79. This should have 

increased the defect rate. However, the fixture improved the repeatability of the process 

and thus reduced the assembly time variation. This finding prompted us to include 

Assembly Time Variation as one of the input variables in our complexity model.  

5.7. Comparison with proposed Complexity Model 

 

Based on literature review and the gap analysis based on application of existing 

models, we defined complexity from a broader view point and included design variables, 

process variables, and human-factors. Details of each input variable and the final model 

have been described in section 5.4.8. Comparison of the proposed complexity model 

(current research) with the complexity factors calculated using the Shibata Model is 

shown in Table 5.9.  

Linear, quadratic, and cubic regression models were applied to the data and 

following R
2
 values were obtained: 

Table 5.8:  Summary of R-Sq. values using various regression models 

 

 

Based on this data, we choose the linear regression model. The fitted line plot is 

shown in Figure 5.63. 

Regression Model R
2

R
2
 (adj)

Linear 91.9% 91.4%

Quadratic 92.0% 90.9%

Cubic 92.0% 90.3%
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Table 5.9: Application of Shibata model and Antani Model (current research) 
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Fitted Line Plot: Using current prediction model
log(DPU) =  0.03480 + 1.008 log(Constant + Cd + Cp + Ch)

 
 

Figure 5.63: Fitted line plot showing application of Antani model 

 

No

No of tasks 

in takt 

(TOP)

Takt 

Utilization 

%

Opport

unities 

per car

Actual 

DPMO

Actual 

DPU
C fpi log (C fpi)

log 

(Actual 

DPU)

Predicted 

DPMO

Predicted 

DPU

log(Pred. 

DPU)

1 16 94.9% 4 44,380 0.18     65.9 1.82 -0.75 44,172      0.18          -0.8

2 17 66.1% 1 82,799 0.08     28.3 1.45 -1.08 83,789      0.08          -1.1

3 17 93.6% 1 15,459 0.02     61.3 1.79 -1.81 19,525      0.02          -1.7

4 17 93.6% 1 22,007 0.02     61.3 1.79 -1.66 18,611      0.02          -1.7

5 11 87.7% 4 54,350 0.22     72.2 1.86 -0.66 45,276      0.18          -0.7

6 19 86.7% 5 19,831 0.10     47.1 1.67 -1.00 21,686      0.11          -1.0

7 25 99.9% 3 24,947 0.07     44.8 1.65 -1.13 20,561      0.06          -1.2

8 11 95.9% 3 16,465 0.05     82.0 1.91 -1.31 23,317      0.07          -1.2

9 11 95.9% 3 31,045 0.09     82.0 1.91 -1.03 24,045      0.07          -1.1

10 17 92.9% 1 58,953 0.06     60.4 1.78 -1.23 60,624      0.06          -1.2

11 17 92.0% 1 69,390 0.07     59.4 1.77 -1.16 65,678      0.07          -1.2

12 21 89.7% 5 14,175 0.07     44.7 1.65 -1.15 9,208        0.05          -1.3

13 18 86.9% 5 28,430 0.14     50.3 1.70 -0.85 28,326      0.14          -0.8

14 21 95.9% 5 28,834 0.14     52.1 1.72 -0.84 30,650      0.15          -0.8

15 16 80.6% 1 20,190 0.02     48.7 1.69 -1.69 17,654      0.02          -1.8

16 15 99.2% 1 30,009 0.03     74.0 1.87 -1.52 34,488      0.03          -1.5

17 15 99.2% 1 69,314 0.07     74.0 1.87 -1.16 68,916      0.07          -1.2

18 10 87.7% 4 37,002 0.15     75.3 1.88 -0.83 21,558      0.09          -1.1

SHIBATA MODEL ANTANI MODEL
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In summary, we tested the hypothesis that manufacturing complexity can predict product 

quality in mixed-model automotive assembly. The generalized model can be applied to 

other processes by identifying the relevant input variables under each of the categories 

listed under design complexity, process complexity, and human-factors driven 

complexity. 

5.8. Error-proofing the process 

 

An important element of process planning is the concept of designing the product 

and/or process to be error-free by using Poka-Yoke devices. Poka-Yoke is a Japanese 

word that means mistake-proofing and is a key element of the Toyota Production System. 

An error-proofing system is economical if it can do the following: 

a) Prevent defects that human beings (operators) would otherwise make due 

to lack of knowledge, understanding or inadvertence. 

b) Provide a solution that would otherwise require significant re-training of 

many operators. 

c) Bypass complex analysis for causes by finding a solution even though the 

cause of the defects remains a mystery [64]. 

5.8.1. Methods of error-proofing 

 

Some of the usual forms of error-proofing systems / devices are summarized below: 

 

a) Fail-Safe Devices: These devices consist of the one of the following or a 

combination of the following mechanisms / systems: 

a. Interlocking sequences: Mechanical or electrical logic that ensures that 

operation A is performed and subsequent operation B occurs only if 
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operation A has been completed. For example, operation B locates based 

on a hole machined in operation A. 

b. Alarms and cutoffs: Mechanical or electrical devices that monitor a 

certain variable and produce an audible alarm when the monitored variable 

falls outside the specification limits or physically stops a process if 

programmed as a cutoff device or signal. The alarm would be considered 

passive as it still requires intervention to stop the process that can 

potentially cause a defect. A cutoff device or signal would be an active 

system that can stop the process without additional intervention. 

c. All-clear signal: A signal of this nature monitors one or more variables 

and provides an audible, visual, or an electrical signal that allows the next 

step or process from taking place. 

d. Mistake-proof fixtures: These are mechanical devices that may or may 

not be integrated with additional sensors (electronic, hydraulic, pneumatic) 

that monitor variables such as part features or quality from preceding 

operations and allow the next steps of the process to continue only if the 

monitored variables meet the specifications. Fixtures may also have 

features that prevent the release of a part unless the monitored variable 

meets the specifications in the process that was carried out in that specific 

process. Manual intervention would be required to release the part, thereby 

forcing the operator to recognize that an error has occurred.  
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e. Limiting mechanisms: These devices prevent a monitored variable from 

exceeding the predetermined specifications. For example, a slipping-

torque wrench that prevents over-tightening.  

b) Magnification of senses: Unlike the fail-safe devices listed above, these types of 

devices improve or extend the ability of a human operator to respond before an 

error occurs. For example, remote-control monitoring of a closed chamber to 

permit viewing despite distance, process temperature, or fumes. Another device in 

this category would be one that give multiple signals to improve likelihood of 

recognition and response. An example of such an audiovisual signal would be 

simultaneous ringing of bells and flashing of lights. 

c) Redundancy: This consists of additional work performed purely as a quality 

safeguard. “Layered checks” fall under this category in the automotive assembly 

industry. Multiple checks are conducted as the vehicle progresses down the 

assembly line to catch the same problem if it exists. 

d) Audible countdown: Countdowns are arranged by structuring sensing and 

information procedures to parallel the operating procedures so that the operational 

steps are checked against the sensing and informational needs [64]. For example, 

in a manual welding process that requires 18 spot welds, the tool would provide 

an audible countdown so that the operator knows clearly when all 18 spot welds 

are completed. 

5.8.2. Error-Proofing Principles 
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In a classic study, Nakajo and Kume [80] discuss five principles of error-proofing 

developed from an analysis of about 1000 examples collected from assembly lines. The 

principles, objective, and an example of each are shown in Table 5.10. 

Table 5.10: Error-proofing principles 

 

 

5.8.3. Error-Proofing methods in automotive assembly 

 

Various error-proofing methods are used in automotive assembly based on the 

five principles highlighted above. The most common ones are explained below: 

1) Visual Display: These are visual monitors that are synchronized with the 

database that consists of information about option content and the sequence of 

vehicles on the mixed-model assembly line. When the operator has to select a 

particular part from a part family of several options, these monitor help the 

operator see a number that refers to the part that needs to be assembled in the 

vehicle that is at the operator’s station. The monitor can also include a picture 

Figure 5.64, color coded logo or any other visual identifier that would help the 

operator distinguish the part to be installed from the others on the storage 

rack. 

Principle Objective Example

Elimination Eliminate possibility of error Redesign process / product

Replacement Substitute current process with a reliable process Robotics in welding

Facilitation Simplify the work Color coded parts

Detection Detect error before further processing Closed loop monitoring and part release

Mitigation Minimize the effect of error Utilize fuses for overloaded circuits
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Figure 5.64: Visual display to aid component selection 

 

2) Audio Device: An audio device plays a similar role as a visual display by 

announcing the component name or code of the part that needs to be installed 

in the vehicle that is at the operator’s station. It is also linked to the vehicle 

sequencing and option content database. In some cases, quality engineers pair 

the audio device along with the visual display and provide an audio-visual 

alert to the operator if one of the two is not sufficient to prevent errors. 

3) Pick-to-Light system: These systems are typically installed on part racks to 

aid selection of the correct part from a set of bins (part containers). The 

system is connected to the option content and sequencing database like the 

audio-visual systems. A light flashes on top of the bins from where the 

components need to be picked up. A sensor is installed on top of every bin to 
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sense the operators hand going into the bin. When a part gets picked up, the 

light stops flashing. When all the lights on the rack stop flashing the operator 

knows that all the components that needed to be picked up have been removed 

from the respective bins Figure 5.65. There are several different variants of 

this basic system. 

 

Figure 5.65: Pick-to-light error-proofing system 

 

4) Error-proofing fixtures: As described in the earlier section, fixtures are 

generally custom built to develop the error-proofing functionality depending 

on the type of error that needs to be prevented. In this research, we designed 

and implemented a fixture that reduces tool extension tip play (wobble), 

thereby reducing variability in the assembly process. A case-study 

highlighting its application will be described in the next chapter. 
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5) Closed-Loop Monitoring: Specifically in the case of controlled mechanical 

fastening processes, as described in section 5.3.1, various process parameters 

are tracked. Variables such as number of fasteners assembled, torque, angle, 

Vehicle Identification Number (VIN), and time stamp are captured by the 

monitoring system. When the torque and angle are within specifications, 

confirmation LEDs on the tool and the visual display screen turn green, in 

order to provide a clear confirmation to the operator about the status of the 

assembled fastener. If an error occurs, the operator can attempt the process 

one more time. If it fails again, the error code stays associated with the vehicle 

and is displayed at the end of every assembly line, all the way to the end of the 

final assembly process. Once the fastener is re-worked by the offline operator, 

the error needs to be cleared manually from the system to allow final shipment 

of the car from the assembly plant.  

5.8.4. Incorporating error-proofing systems into predictive model 

 

Process and Quality Engineers in automotive assembly plants focus on processes 

that are key drivers of the DPMO metric. Their primary goal is to implement error-

proofing devices to eliminate or significantly reduce the potential for error in those 

processes. In our research, we studied various error-proofing devices and their impact on 

the predictive model. If the error-proofing device completely eliminates a type of error, 

then the input variables associated with that error would basically be reduced to zero. We 

conducted various experiments on real-world processes using the predictive model. 
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Highlights of these experiments have been covered in the form of case-studies in the 

following chapter. 

In conclusion, this chapter addressed research questions two and three. We 

developed a generalized model to predict quality based on complexity and applied it to a 

specific controlled fastening process. We also determined classes of defect prevention 

devices used in automotive assembly and used the model to lower complexity and 

improve quality. 
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CHAPTER SIX 

 

6. CASE STUDIES 

 

6.1. Experimental Setup 

 

In order to truly validate the complexity model, we conducted several experiments 

to reduce manufacturing complexity. Experiments were done by varying or eliminating 

the impact of complexity driving input variables offline on a new test and training station. 

This test and training station was developed specifically for this research project with all 

the standard equipment used on an assembly line for mechanical fastening.  

 

Figure 6.1: Test Set-up for experimentation and Off-line Training Station 
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Two case-studies have been shown here to highlight the quality improvements 

that were made by taking specific steps to reduce complexity driven by design, process, 

and human-factors. The results shown here have been sustained for over 6 months since 

the time they were first implemented as a trial run on the final assembly line. A third 

case-study shows how the model applies to a fully-automated mechanical fastening 

process where the human-factors do not play a role. 

6.2. Case Study 1: Seat Adapter Assembly Process 

6.2.1. Overview of the Seat Adapter assembly process 

 

Seat Adapter is a light weight, hard Styrofoam component that is assembled to the 

body inside the passenger cabin. The leather or cloth seat that passengers physically use 

gets mounted on top of the Seat Adapter. The tool extension has to be long because it is 

used to apply torque to multiple fasteners, including ones that are in the middle of the 

seat and are located in deep sockets inside the Styrofoam Seat Adapter (Figure 6.2).  

 

 
 

Figure 6.2: Seat Adapter assembly process 
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6.2.2. Problem Description 

By nature of the mechanism inside the fastening tool, the output shaft of the tool 

vibrates. This vibration is propagated along the length of the extension and results in a 

significant amount of play (wobble) at the end of the extension that physically contacts 

the torx profile of the fastener. This tip play prevents the operator from aligning the tool 

into the head of the fastener promptly and more importantly, results in tool slip-off. This 

is a condition in which the tool momentarily loses alignment with the fastener and 

thereby drops torque instantaneously (Figure 6.3).  

 

Figure 6.3: Defect caused due to tool slip-off 

 

A diagram showing the total tip play (Pmax) is representative of the fastening process for 

the Seat Adapter Figure 6.4.  



 214 

 
 

Figure 6.4: Seat Adapter - Tool Tip Play (Pmax) 

6.2.3. Complexity and Quality measurement 

 

Total Tip Play is an input variable under the Tooling and Fixture Design category 

which falls under the process driven complexity. In the complexity model, Total Tip Play 

is captured in millimeters (mm). The coefficient of Total Tip Play in the equation is 

690.1.  

Values of key parameters before improvement were as follows: 

a. DPMO = 76,320 

b. Length of extension and driving bit = 241.3 mm 

c. Total Tip Play (Pmax)= 51 mm 

d. Contribution of Total Tip Play to DPMO = 690.1(51) = 35,195 

6.2.4. Implementation of revised process and results 

 

In order to reduce Total Tip Play (wobble), we designed a supporting sleeve with 

a needle bearing. This sleeve had a threaded end that would directly fit the threaded end 

of the tool where the output shaft is located. The other end of the sleeve had a needle 
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bearing that would support the extension. After three iterations, we developed a sleeve in 

the local machine shop that resulted in a Total Tip Play of 2 mm (a reduction of 49 mm). 

The operators on the assembly line noticed the difference right away during the trial runs. 

We validated the new sleeve offline on the training station and then implemented it on 

the assembly line for 2 working shifts (approximately 650 vehicles x 3 fasteners each).  

Values of key parameters after improvement were as follows: 

a. Length of extension and driving bit = 241.3 mm (un-changed) 

b. Total Tip Play = 2 mm 

c. Reduction in Total Tip Play = 51 – 2 = 49 mm 

d. Predicted DPMO reduction = 690.1 (49) = 33,815 

e. Predicted DPMO = 76,230 – 33,815 = 42,415 

f. Actual DPMO = 39,280 

 

Figure 6.5: Before and After Process Improvement 

6.2.5. Summary 
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This case-study represented a practical implementation of process driven 

complexity reduction. The resulting reduction of 48% in DPMO was predicted well by 

the complexity model. The improvement was monitored over a period of 6 months and 

was successfully sustained. 

6.3. Case Study 2: Roof-Rail Assembly Process 

6.3.1. Overview of Roof-Rail Assembly Process 

Roof-Rails are assembled on top of the roof of a vehicle to hold luggage racks or 

other specially designed containers (Figure 6.6).  

 

Figure 6.6: Roof-Rail assembly 

In our study, each roof-rail was assembled using three fasteners. The roof-rail 

sub-assembly would arrive from the supplier to the final mixed-model vehicle assembly 

plant with integrated fasteners. The painted vehicle body has holes in which the roof-rail 

is placed. One hole near the A-pillar (hole # 1) of the car is the locating hole, therefore it 

is round in shape. There is another hole past the B-pillar (hole # 2) and the third one is 

between the C-pillar and the D-pillar (hole # 3). The roof-rail is placed from the top of 

the roof by an operator in those three holes. Another operator assembles a nut to each 
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fastener from below the roof and secures the roof-rail to the body, using a mechanical 

fastening process.  

6.3.2. Problem definition 

In the case of the fastener that is closest to the back of the vehicle (# 3), the 

fastener visibility is negligible. This is due to the distance between the end of the fastener 

and point where the fastening nut has to be installed by the operator from under the roof. 

The inner body panel curves away from the roof line which causes the increased distance 

resulting in negligible visibility. An actual view of the access hole with a fastener is 

shown in Figure 6.7.   

 

Figure 6.7: Actual view of blind hole  

 

The operator uses a tool with a long extension that has a magnetic socket on 

which the nut is placed. As the bolt attached to the roof-rail is not visible at all, the 

operator uses the long extension to estimate the location of the bolt and drive the nut. 

This increases the potential for cross-threading because the nut may not be aligned with 

the threads on the bolt. The end result is a torque and angle value that is outside the 

specification, causing a defect. 
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6.3.3. Complexity and Quality measurement 

 

Values of key parameters before improvement were as follows: 

a. Actual DPMO = 26,210 

b. % of fastener invisibility = 100 % (completely blind) 

c. Coefficient of fastener visibility variable = 421.6 

d. Contribution of lack of fastener visibility to DPMO = 421.6(100) = 

42,160 

6.3.4. Implementation of revised process and results 

 

In this case the complexity was clearly driven by design factors. Due to limited 

access in that area of the vehicle, improving lighting would not improve the ability of the 

operator to improve fastener alignment. Therefore, we pursued this as a fastener design 

change. In collaboration with the design engineering team, we extended the unthreaded 

length of the fastener to provide a guidance path for the tool and nut (Figure 6.8).  

 

Figure 6.8: Fastener design - Before and After Improvement 
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We conducted trial runs with longer fasteners and found that the location ability 

and repeatability significantly increased. Therefore, based on feedback from the 

operators, we requested the design change.  

Values of key parameters after improvement were as follows (Figure 6.9): 

a. % of fastener invisibility = 50 % (reduced from 100%) 

b. Coefficient of fastener visibility variable = 421.6 (unchanged) 

c. Predicted DPMO reduction = 421.6(50) = 21,080 

d. Predicted DPMO = 26,210 – 21,080 = 5,130 

e. Actual DPMO reduction = 26,210 – 6,570 = 19,640 

 

Figure 6.9: Before and After design improvement 

6.3.5. Summary 

This case-study represented a practical implementation of design driven 

complexity reduction. The resulting reduction of 74% in DPMO was predicted well by 



 220 

the complexity model. The improvement was monitored over a period of 11 months and 

was successfully sustained. 

6.4. Case Study 3: Fully automated mechanical fastening process 

The complexity model in our research is based on design, process, and human-

factors. In a fully automated mechanical fastening process executed by a robot, there 

would not be any human intervention unless there is a maintenance issue. This case-study 

highlights how the current model applies to a fully automated process if we eliminate the 

ergonomic factors which clearly do not apply. 

6.4.1. Overview of automated mechanical fastening process 

In the automotive assembly world, process of assembling the powertrain and 

chassis to the body is called “marriage.” The powertrain and axles are placed on a special 

conveying device which has locators to align it to the body. The body is gradually 

lowered on the powertrain and the conical locators help align the critical points to ensure 

alignment per the required specifications.  

 

Figure 6.10: Fully automated mechanical fastening (powertrain & body) 

 

Once aligned, automated tools assemble 10 critical fasteners on the new assembly 

to secure it before allowing it to move to the next station. For our analysis, we choose one 
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sample process in which an automated tool assembles the fastener from the underside of 

the body. 

6.4.2. Complexity and Quality measurement 

 

We collected all the input variables that we use for the general model (design and 

process), with the only exception being ergonomic factors which do not apply to this 

process.  

The only factor that does apply from the human-factors driven complexity is the 

probability of choosing a correct fastener. That value would be 100% as the automated 

tool does not have to choose from multiple different varieties of fasteners.  

Based on this information, complexity driven by human-factors is calculated as: 

Ch = 0 (Ergonomic variables) – 666.7(Hcl_pro) 

Where,  

Ch is the complexity driven by human-factors 

Hcl_pro = Probability of choosing the correct fastener 

Coefficient related to Hcl_pro = -666.7  

This results in the following predicted value: 

 

 
 

_Predicted DPMO  Constant –  666.7

= 135,822 - 81245 + 20348 - 666.7 100

= 8,255

d p cl proC C H  

 (2.61) 
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Figure 6.11: Actual vs. Predicted DPMO (Fully Automated Process) 

 

6.4.3. Summary 

This case-study represented a practical application of the complexity model to a 

process that was different than the other mechanical fastening processes that were 

studied. This process was fully automated; therefore the ergonomic factors did not apply 

to prediction of DPMO using the complexity model. The predicted DPMO value was 

8,255 versus an actual historical average DPMO value of 9,217. The difference is 

statistically negligible and therefore it validates the robustness of the complexity model 

from the application standpoint. 
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CHAPTER SEVEN 

 

7. CONCLUSIONS AND FUTURE WORK 

 

7.1. Summary and Conclusions 

 

In this research we successfully tested the hypothesis that manufacturing 

complexity can reliably predict product quality in mixed-model automotive assembly. 

We proposed a measure of manufacturing complexity that incorporates variables driven 

by design, process, and human-factors. In this research, we used controlled mechanical 

fastening as a pilot process to demonstrate that manufacturing complexity can reliably 

predict product quality in a real-world automotive assembly plant and validated the 

mathematical model in an independent assembly plant.  

7.1.1. Intellectual Merit 

 

To the best of our knowledge, based on extensive literature review, this is the first 

attempt at defining manufacturing complexity using variables driven by design, process, 

and human-factors as one comprehensive measure and correlating it to product quality in 

a real-world mixed-model assembly system.  

The significance of this research includes: 

a) Mathematical models  that reveal the mechanisms that contribute to 

manufacturing complexity in mixed-model assembly systems 

b) Assembly time variance as a new measure of complexity versus previous attempts 

of considering assembly time and number of assembly operations in a product as 

key indicators of product quality 
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c) Application to a real-world process in mixed-model assembly and a research 

framework to apply it to another process efficiently 

d) Identified a new set of quality driven precedence constraints that will enable 

robust assembly line balancing  

e) Framework for managing complexity during the design phase for new products as 

well as continuous improvement phase in the case of mature products 

7.1.2. Broader Impact 

The predictive model has the potential to be utilized by design and process 

engineers to evaluate the effect of product, process, and human factors on product quality 

before implementing the process in a real-world assembly environment. The 

methodology used in this research can potentially help develop a new set of constraints 

for an optimization model that can be used to minimize manufacturing complexity or 

maximize product quality, while satisfying the precedence constraints. 

7.2. Future Research 

Future research opportunities include the following: 

a) Validation of the complexity model and predictive ability by applying this 

framework to electrical defects in mixed-model assembly. Electrical defects are 

second in line after mechanical fastening based on historical analysis of defects 

over one year of production at an assembly plant based in the United States. 

b) Although we have shown successful application of this model to fully-automated 

mechanical fastening in case-study # 3 (Section 6.4), validating this model across 
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a statistically large sample of fully-automated processes could lead to interesting 

outcomes. 

c) Test the hypothesis that Assembly Line Balancing with manufacturing complexity 

reduction as an objective function results in improved product quality 

d) Application of axiomatic design principles to minimize complexity in mixed-

model automotive assembly 

7.3. Tools Developed as Part of Research Project 

The following tools were developed / built as part of this research work: 

a) Mechanical Tools: 

i. Training station with closed-loop Atlas Copco torque and angle 

monitoring system.  

ii. Fixture for the training station to test repeatability of a proposed process 

change before implementing it on the assembly line 

iii. Sleeve with needle bearing to reduce tip play of the tool extension as 

shown in case-study # 1 (section 6.2) 

b) Software Tools: 

i. VBA based tool to efficiently pre-process defect data for individual 

processes from 12 months of historical data 

ii. VBA based tool to link defect time stamp with operator / station sign-in 

data to identify operator experience level 

The mechanical tools that were developed as part of this research are currently being 

used by the sponsoring automotive assembly plant where this research was conducted. 
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The software tools will be converted to include a user-friendly user interface and 

transferred to the IT department at the sponsoring assembly plant for future use. 

7.4. List of Publications 

 

i. Book Chapters: 

– Antani, K., “Advances in Mixed-Model Assembly,” in Lean Engineering, 

Black, J T., Phillips, D., (Ed.),  (ISBN: 978-1621373438) (2013) 

ii. Journal Publications: 

– Antani, K., Mears, L., Funk, K., Kurz, M., Mayorga, M., 2013, “Manual 

Precedence Mapping and Application of a Novel Precedence Relationship 

Learning Technique to Real-World Automotive Assembly Line 

Balancing,” (J. Manuf. Sci. Eng. – Submitted) 

iii. Peer Reviewed Conference Proceedings: 

– Antani, K., Pearce, B., Mears, L., K., Kurz, M., Schulte, J., 2014, 

“Application of System Learning for Precedence Graph Generation for 

Assembly Line Balancing,” Proceedings of the ASME 2014 Intl. Mfg. 

Science and Eng. Conference, Detroit, Michigan, 2014-3906 (accepted) 

– Antani, K., Mears, L., Funk, K., Kurz, M., Mayorga, M., 2013, “Manual 

Precedence Mapping and Application of a Novel Precedence Relationship 

Learning Technique to Real-World Automotive Assembly Line 

Balancing,” Proceedings of the ASME 2013 Intl. Mfg. Science and Eng. 

Conference, Wisconsin, 2013-1235  
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– Antani, K., Mears, L., Funk, K., Kurz, M., Mayorga, M., 2012, “Robust 

Work Planning and Development of a Decision Support System for Work 

Distribution on a Mixed-Model Automotive Assembly Line,” Proceedings 

of the ASME 2012 Intl. Mfg. Science and Eng. Conference, Indiana, 

2012-7350  

– Antani, K., Black J T., 1999, “Machinability of Gray and Ductile Irons (An 

Orthogonal Approach of Experimentation),” SAE Technical Paper, 1999-

01-3378 

– Antani, K., Black J T., 1999, “Cellular Manufacturing Insights in Lean 

Production Systems,” SAE Technical Paper, 1999-01-3380 

iv. Planned Journal Publications (2014-15): 

– Antani, K., Mears, L., Kurfess, T., Kurz, M., Mayorga, M., Schulte, J., 

2014, “Effect of manufacturing complexity on product quality in mixed-

model automotive assembly,” (J. Manuf. Sci. Eng.- Submission target 

May, 2014) 

– Antani, K., Mears, L., Salandro, W., Schulte, J., 2014, “Complexity based 

predictive model for assembly of electrical components in powertrain 

assembly,” (SAE Intl. J. of Matl. and Mfg.- Submission target Dec, 2014) 

– Antani, K., Pearce, B., Mears, L., Kurz, M., Schulte, J., 2014, “Assembly 

line balancing to minimize manufacturing complexity and maximize 

product quality,” (J. Manuf. Sci. Eng. – Submission target Dec, 2014) 
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– Antani, K., Mears, L., Brooks, J., Schulte, J., 2015, “Human-factors driven 

process improvements in high-option powertrain assembly,” (SAE J. of 

Matl. and Mfg. – Submission target Mar, 2015) 

– Antani, K., Mears, L., Schulte, J., 2014, “Application of axiomatic design 

principles to minimize complexity in mixed-model automotive assembly,” 

(J. Manuf. Sci. Eng. – Submission target Jul, 2015) 
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