2,861 research outputs found

    Aspect-oriented Modeling of Attacks in Automotive Cyber-Physical Systems

    Full text link
    This paper introduces aspect-oriented modeling (AOM) as a powerful, model-based design technique to assess the secu- rity of Cyber-Physical Systems (CPS). Particularly in safety- critical CPS such as automotive control systems, the pro- tection against malicious design and interaction faults is paramount to guaranteeing correctness and reliable opera- tion. Essentially, attack models are associated with the CPS in an aspect-oriented manner to evaluate the system under attack. This modeling technique requires minimal changes to the model of the CPS. Using application-specic metrics, the designer can gain insights into the behavior of the CPS under attack. Copyright 2014 ACM

    Combined automotive safety and security pattern engineering approach

    Get PDF
    Automotive systems will exhibit increased levels of automation as well as ever tighter integration with other vehicles, traffic infrastructure, and cloud services. From safety perspective, this can be perceived as boon or bane - it greatly increases complexity and uncertainty, but at the same time opens up new opportunities for realizing innovative safety functions. Moreover, cybersecurity becomes important as additional concern because attacks are now much more likely and severe. However, there is a lack of experience with security concerns in context of safety engineering in general and in automotive safety departments in particular. To address this problem, we propose a systematic pattern-based approach that interlinks safety and security patterns and provides guidance with respect to selection and combination of both types of patterns in context of system engineering. A combined safety and security pattern engineering workflow is proposed to provide systematic guidance to support non-expert engineers based on best practices. The application of the approach is shown and demonstrated by an automotive case study and different use case scenarios.EC/H2020/692474/EU/Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems/AMASSEC/H2020/737422/EU/Secure COnnected Trustable Things/SCOTTEC/H2020/732242/EU/Dependability Engineering Innovation for CPS - DEIS/DEISBMBF, 01IS16043, Collaborative Embedded Systems (CrESt

    Context-aware Security for Vehicles and Fleets: A Survey

    Get PDF
    Vehicles are becoming increasingly intelligent and connected. Interfaces for communication with the vehicle, such as WiFi and 5G, enable seamless integration into the user’s life, but also cyber attacks on the vehicle. Therefore, research is working on in-vehicle countermeasures such as authentication, access controls, or intrusion detection. Recently, legal regulations have also become effective that require automobile manufacturers to set up a monitoring system for fleet-wide security analysis. The growing amount of software, networking, and the automation of driving create new challenges for security. Context-awareness, situational understanding, adaptive security, and threat intelligence are necessary to cope with these ever-increasing risks. In-vehicle security should be adaptive to secure the car in an infinite number of (driving) situations. For fleet-wide analysis and alert triage, knowledge and understanding of the circumstances are required. Context-awareness, nonetheless, has been sparsely considered in the field of vehicle security. This work aims to be a precursor to context-aware, adaptive and intelligent security for vehicles and fleets. To this end, we provide a comprehensive literature review that analyzes the vehicular as well as related domains. Our survey is mainly characterized by the detailed analysis of the context information that is relevant for vehicle security in the future

    Security Evaluation of Cyber-Physical Systems in Society- Critical Internet of Things

    Get PDF
    In this paper, we present evaluation of security awareness of developers and users of cyber-physical systems. Our study includes interviews, workshops, surveys and one practical evaluation. We conducted 15 interviews and conducted survey with 55 respondents coming primarily from industry. Furthermore, we performed practical evaluation of current state of practice for a society-critical application, a commercial vehicle, and reconfirmed our findings discussing an attack vector for an off-line societycritical facility. More work is necessary to increase usage of security strategies, available methods, processes and standards. The security information, currently often insufficient, should be provided in the user manuals of products and services to protect system users. We confirmed it lately when we conducted an additional survey of users, with users feeling as left out in their quest for own security and privacy. Finally, hardware-related security questions begin to come up on the agenda, with a general increase of interest and awareness of hardware contribution to the overall cyber-physical security. At the end of this paper we discuss possible countermeasures for dealing with threats in infrastructures, highlighting the role of authorities in this quest

    Threat Assessment and Risk Analysis (TARA) for Interoperable Medical Devices in the Operating Room Inspired by the Automotive Industry

    Get PDF
    Prevailing trends in the automotive and medical device industry, such as life cycle overarching configurability, connectivity, and automation, require an adaption of development processes, especially regarding the security and safety thereof. The changing requirements imply that interfaces are more exposed to the outside world, making them more vulnerable to cyberattacks or data leaks. Consequently, not only do development processes need to be revised but also cybersecurity countermeasures and a focus on safety, as well as privacy, have become vital. While vehicles are especially exposed to cybersecurity and safety risks, the medical devices industry faces similar issues. In the automotive industry, proposals and draft regulations exist for security-related risk assessment processes. The medical device industry, which has less experience in these topics and is more heterogeneous, may benefit from drawing inspiration from these efforts. We examined and compared current standards, processes, and methods in both the automotive and medical industries. Based on the requirements regarding safety and security for risk analysis in the medical device industry, we propose the adoption of methods already established in the automotive industry. Furthermore, we present an example based on an interoperable Operating Room table (OR table)

    An Overview of Automotive Service-Oriented Architectures and Implications for Security Countermeasures

    Get PDF
    New requirements from the customers\u27 and manufacturers\u27 point of view such as adding new software functions during the product life cycle require a transformed architecture design for future vehicles. The paradigm of signal-oriented communication established for many years will increasingly be replaced by service-oriented approaches in order to increase the update and upgrade capability. In this article, we provide an overview of current protocols and communication patterns for automotive architectures based on the service-oriented architecture (SOA) paradigm and compare them with signal-oriented approaches. Resulting challenges and opportunities of SOAs with respect to information security are outlined and discussed. For this purpose, we explain different security countermeasures and present a state of the section of automotive approaches in the fields of firewalls, Intrusion Detection Systems (IDSs) and Identity and Access Management (IAM). Our final discussion is based on an exemplary hybrid architecture (signal- and service-oriented) and examines the adaptation of existing security measures as well as their specific security features
    • …
    corecore