
 Coventry University

DOCTOR OF PHILOSOPHY

Systematic threat assessment and security testing of automotive over-the-air updates

Mahmood, Shahid

Award date:
2021

Awarding institution:
Coventry University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of this thesis for personal non-commercial research or study
 • This thesis cannot be reproduced or quoted extensively from without first obtaining permission from the copyright holder(s)
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 28. Aug. 2021

https://pureportal.coventry.ac.uk/en/studentthesis/systematic-threat-assessment-and-security-testing-of-automotive-overtheair-updates(658284cb-9440-4ee2-bb7b-a1de76f9c51a).html

Coventry University
Institute for Future Transport and Cities

Systematic Threat Assessment and

Security Testing of Automotive

Over-The-Air Updates

Shahid Mahmood

A thesis submitted in partial fulfilment of the University’s requirements
for the degree of Doctor of Philosophy

July 27, 2021

Certificate of Ethical Approval
Applicant:

Shahid Mahmood

Project Title:

An Automated Cybersecurity Assessment Framework for Automotive OTA

This is to certify that the above named applicant has completed the Coventry
University Ethical Approval process and their project has been confirmed and
approved as Low Risk

Date of approval:

 10 February 2020

Project Reference Number:

P102815

iv

This thesis is dedicated to the memories of my parents and especially to my dearest
elder sister for her continued, unwavering support and encouragement to reach my
goals. She has been a great source of inspiration for me, and there are no words to
describe her contributions in my life.

Acknowledgement

Foremost, I would like to express my sincere gratitude to Allah Almighty for granting
me the ability, strength, health and motivation to undertake and successfully accom-
plish this huge task. May the peace and blessings be on our beloved prophet Muham-
mad, his family and all of his companions.

I would like to offer my special thanks to my Director of Studies, Dr Hoang Nga
Nguyen for his continuous support, patience, wisdom, and impressive knowledge and
expertise that helped me immensely throughout my doctoral studies as well as during
the process of producing this thesis. Without his persistent guidance and support, this
thesis would not have been possible.

I am indebted to Prof. Siraj Shaikh for his highly useful, timely and invaluable guid-
ance, expert and practical advice, and constructive criticism that I received throughout
my research work. I have been impressed with his distinguished leadership and manage-
ment skills. My heartiest appreciation goes to him for his incredible support, kindness,
and encouragement.

My gratitude to all my (former and current) colleagues, friends, and well wishers
who have assisted me throughout my studies over the years. I am particularly grateful
for the insightful comments and suggestions offered by Dr. Jeremy Bryans.

Finally, I owe my deepest gratitude to my family for their unconditional love, pa-
tience, and most importantly their faith and confidence in my abilities that kept me
motivated.

v

Abstract

Modern cars host numerous special-purpose, sophisticated computing and connectivity
devices facilitating the correct functioning of various in-vehicle systems. These devices
in the connected cars host complex software systems with more than 100 million lines
of code, requiring regular and timely updates for functional enhancements and most
importantly for fixing security-related bugs that could be exploited by adversaries to
compromise the security of the vehicle. To replace the old mechanism for updating
in-vehicle software which is expensive and inefficient for carmakers and inconvenient
for the customers, Over-The-Air (OTA) software update system has emerged as an effi-
cient, cost-effective and convenient solution for delivering software updates to automo-
biles remotely. While OTA offers several benefits, it introduces new security challenges
that warrant immediate attention to carry out in-depth security analysis, as attackers
can maliciously use the software update systems as attack vectors to undermine the
vehicle security and safety. There are numerous studies investigating various aspects
of the automotive cybersecurity; however, security testing of automotive OTA has not
been covered adequately, with most of the prior work focusing on proposing improved
techniques for securing automotive OTA updates. In order to ensure these update
systems are effectively secure, thorough security assessment needs to be performed.
To the best of our knowledge, there is currently no study that proposes or employs a
systematic security testing approach for evaluating the security of automotive OTA up-
date systems. This thesis closes this gap by presenting an in-depth security evaluation
of Uptane framework, by using a structured threat analysis approach to constructing
attack trees and employing a model-based security testing approach for generating ef-
fective security test cases. We implement a software tool that generates the security
test cases by analyzing the structure of the attack trees and ultimately executing those
test cases against the target system. We carried out several experiments mounting
various attacks on the reference implementation of Uptane framework. While many
of the experimental results showed that the framework is secure, providing effective
protection against different threats and cyberattacks, some findings suggest that the
reference implementation is vulnerable to the denial-of-service and eavesdropping at-
tacks that can cause the system to fail in responding to legitimate update requests
from clients and disclose sensitive information to malicious entities, respectively.

vi

Contents

1 Introduction 1
1.1 Research Motivation . 1
1.2 Research Questions, Aims and Objectives 2
1.3 The Contributions of this Thesis . 5
1.4 Thesis Structure and Overview . 7
1.5 Publications . 9
1.6 Chapter summary . 11

2 Background 12
2.1 Automotive OTA Security . 12

2.1.1 Overview . 12
2.1.2 Vulnerabilities and Threats . 13
2.1.3 Security Requirements . 15
2.1.4 Secure OTA Update Methods and Techniques 15

2.2 In-Vehicle Networks and Systems . 29
2.2.1 CAN Bus . 29
2.2.2 LIN . 31
2.2.3 FlexRay . 31
2.2.4 MOST . 32
2.2.5 In-vehicle Infotainment . 32
2.2.6 Onboard Diagnostic (OBD) Port 33

2.3 Attack Trees . 33
2.3.1 Series Parallel (SP) Graph Semantics 36

2.4 Threat Modeling . 38
2.4.1 CORAS . 38
2.4.2 PASTA . 38
2.4.3 T-MAP . 39
2.4.4 STRIDE . 39
2.4.5 Threat Modeling Tool . 39

2.5 Risk Assessment . 40
2.5.1 Assessment Approaches . 40
2.5.2 OWASP Risk Assessment Tool 42

2.6 Model-Based Security Testing . 43

vii

CONTENTS viii

2.7 Chapter summary . 44

3 Literature Review 45
3.1 Automotive Cybersecurity: State of the Art 45

3.1.1 CAN Vulnerabilities and Mitigations 46
3.1.2 IVI Vulnerabilities and Mitigations 48
3.1.3 OBD Vulnerabilities and Mitigations 50

3.2 Testbeds for Security Evaluation of Connected Cars 50
3.2.1 Open Car Testbed and Network Experiments (OCTANE) 52
3.2.2 A Mobile Testing Platform . 53
3.2.3 A Cyber Assurance Testbed for Heavy Vehicle Electronic Controls 53
3.2.4 Testbed for Automotive Cybersecurity 54
3.2.5 Testbed for Security Analysis of Modern Vehicles 55
3.2.6 Portable Automotive Security Testbed with Adaptability: PASTA 57
3.2.7 Hardware-in-loop based Automotive Embedded Systems Cyber-

security Evaluation Testbed . 58
3.3 Comparative Analysis of Automotive Cybersecurity Testbeds 59

3.3.1 An Overview of Supported Network Protocols 60
3.3.2 Supported Attack Surfaces, Types of Attacks, and Attack Goal . 60
3.3.3 Adaptability . 63
3.3.4 Portability . 63
3.3.5 Fidelity . 65
3.3.6 Cost . 65
3.3.7 Safety Implications . 65

3.4 Testing Approaches in Automotive Cybersecurity 66
3.4.1 Automotive Fuzz Testing (Fuzzing) 67
3.4.2 Automotive Vulnerability Scanning 68
3.4.3 Automotive Penetration Testing 68

3.5 Chapter summary . 70

4 Methodology 71
4.1 Systematic Security Testing Approach 71

4.1.1 Inspirations and Adaptations 72
4.2 Information Gathering . 73

4.2.1 System Decomposition . 74
4.2.2 Automotive In-Vehicle Infotainment: Example of System Decomposition 75

4.3 Threat Assessment . 77
4.3.1 Threat Enumeration . 78
4.3.2 IVI System: Example of Threat Enumeration 78
4.3.3 Threat Modeling . 79

4.4 Test Case Generation and Execution 82
4.5 Chapter summary . 82

CONTENTS ix

5 Constructing Attack Trees 83
5.1 A Step-by-Step Approach for Constructing Attack Trees 83
5.2 Adaptive Cruise Control System: Examples of Constructing Attack Trees 85
5.3 Chapter summary . 93

6 Generating Test Cases 94
6.1 Test Case Generation . 94
6.2 Test Case Generation Algorithm . 99
6.3 Sequence Semantics . 103
6.4 Correctness of the Test-Case Derivation Approach 106
6.5 Test Case Generation in Action . 107

6.5.1 Anatomy of an Executable Security Test Case 107
6.5.2 Example Security Test Cases . 108

6.6 Chapter summary . 111

7 Experimental Security Analysis of Uptane Framework 112
7.1 Assumptions . 113
7.2 Experimental Setup . 113
7.3 Uptane Framework: System Decomposition 115
7.4 Uptane Framework: Threat Enumeration 116
7.5 Uptane Framework: Attack-Tree Construction 118
7.6 Results . 134

7.6.1 Key Findings . 148
7.6.2 Limitations . 154

7.7 Chapter summary . 155

8 Countermeasures 156
8.1 Protection against Information Disclosure 156

8.1.1 How to Stop Unauthorised Update Downloads 156
8.1.2 Preventing Data Flow Sniffing 157

8.2 Strategies for Dealing with Denial of Service Attacks 159
8.2.1 Mitigations against DoS Attacks on OTA Backend Servers . . . 159
8.2.2 Mitigations against DoS Attacks on In-Vehicle Components . . 163

8.3 Chapter Summary . 167

9 Conclusion and Future Work 168
9.1 Summary of the Study . 168
9.2 Summary of the contributions of this research 169
9.3 Beneficiaries of this Research . 171

9.3.1 Research Community in Automotive Cybersecurity 172
9.3.2 Stakeholders form the Automotive Industry 172

9.4 Future Work . 173
9.5 Chapter summary . 173

CONTENTS x

Appendices 187

A Test Case Generator: Source code 188

B XML Source Code for Attack Trees 191

C Threat Modeling Reports 203
C.1 Uptane Framework Threat Modelling Report 203
C.2 Adaptive Cruise Control Threat Modeling Report 214
C.3 In-Vehicle Infotainment System Threat Modeling Report 235

D Ethics Documentation 264

List of Figures

1.1 This figure presents the traditional old-fashioned update process widely
used, indicating some of its shortcomings. 2

1.2 This figure presents the modern, futuristic approach to update delivery:
over-the-air updates. 3

1.3 This figure shows the key questions that helped identify the core activi-
ties and outputs for performing a systematic threat analysis and security
testing of the automotive OTA. 4

1.4 Contribution 1: Overview of the threat analysis approach leading to the
construction of an attack tree systematically. 5

1.5 Contribution 2: Overview of the model-based security testing approach
for generating test cases by attack tree analysis. 6

1.6 Graphical overview of the thesis. 10

2.1 Graphical overview of major threats to OTA Update System along with
corresponding attacks. 14

2.2 An overview of the AiroDiag architecture. 17
2.3 An overview secure automotive OTA updates systems using enhanced

cryptography and image stenography techniques. 18
2.4 Blockchain-based automotive OTA Architecture for ensuring the confi-

dentiality, integrity of software updates as well as protecting the privacy
of the users. 20

2.5 An overview of the Uptane Framework, illustrating the interconnections
and flow of information among the Time Server, Image Repository, Di-
rector Repository, Primary ECU and Secondary ECU. 21

2.6 This diagram provides a graphical representation of the full verification
(usually performed by the Primary ECU) of the metadata. 28

2.7 CAN 2.0A data frame structure. 29
2.8 An illustration of the CAN bus with some typical ECUs found in a

modern car. 30
2.9 FlexRay Frame Format (redrawn from [1]). 31
2.10 This example attack tree depicts a root, two children, and four different

leaf nodes. 34

xi

LIST OF FIGURES xii

2.11 An example SAND attack tree constructed following the grammar de-
fined above. This overall SAND aims at delivering a malicious update
to ta an IoT device. 35

2.12 An example SP graph, with the source represented by s and sink repre-
sented by z. 37

2.13 An example AND with two different subtrees. See associated SP se-
mantics above. 38

2.14 This figure shows different symbols used in Microsoft’s Threat Modeling
Tool for drawing Data Flow Diagrams in order to enumerate various
potential threats. 41

2.15 OWASP Risk Assessment Tool. 42

3.1 Graphical Overview of the Chapter. 46
3.2 OCTANE: Software package architecture. 52
3.3 Conceptual diagram of the testbed showing the isolation of the modules

from the backbone. 54
3.4 Five-layer software architecture of the remote interface to the testbed. . 55
3.5 High-level architecture of the testbed for modern vehicle security analysis. 56
3.6 Simplified architectural view of the proposed hardware-in-the-loop based

testbed. 58

4.1 An overview of the threat assessment and security testing approach. . . 72
4.2 Overview of the Penetration Testing and Executing Standard (PTES)

Methodology. 73
4.3 A graphical overview of the system decomposition approach. 74
4.4 High-level graphical view of the in-vehicle infotainment system. 75
4.5 The IVI decomposed into subsystems, represented as five different layers. 76
4.6 A Component-level overview of the IVI by decomposing its subsystems

into components. 77
4.7 Example data flow diagram depicting the infotainment system and its

associated components identified in the previous phase. 79
4.8 A summary page extracted from the Threat Report generated by the

Threat Modeling Tool. To view complete threat report, please see Ap-
pendix C. 80

4.9 Page two extracted from the Threat Report generated by the Threat
Modeling Tool, showing details of various identified threats for the IVI
system. 81

5.1 A graphical overview of the attack tree construction approach. 84
5.2 Simplified graphical overview of some of the in-vehicle networked com-

ponents. 85
5.3 Data flow diagram of the Adaptive Cruise Control and other components. 86

LIST OF FIGURES xiii

5.4 Applying the attack-tree construction approach to build the first attack
tree. 89

5.5 Attack tree depicting the threat aiming at spoofing the radar signals to
trick the adaptive cruise control ECU to cause the vehicle to perform an
emergency brake. 90

5.6 A SAND attack tree with an OR subtree, representing an attack on
Adaptive Control Unit. 91

5.7 This attack tree represents the threat involving denial-of-service (DoS)
attack on the adaptive cruise control ECU in order to cause it to stop
working. 92

6.1 An example attack tree with an (OR) subtree representing a subgoal
that helps achieving the overall attack goal of the attacker. 96

6.2 An example (AND) attack tree with the overall goal of compromising
the system by installing spyware (e.g. keylogger) and a backdoor for
persistent unauthorised access to the system for carrying out further
exploitation. 97

6.3 An example attack tree with a (SAND) subtree representing a subgoal
that helps achieving the overall attack goal of the attacker. 98

6.4 An example overall SAND attack tree with an OR and an AND sub-
tree representing different subgoals. 99

6.5 This flowchart is a graphical representation of the algorithm. 102

7.1 OTA testbed schematic, providing a graphical overview of the major
components and communication links. 114

7.2 The Testbed for OTA Updates Security Testing. 114
7.3 This diagram provides a detailed architectural view of the Uptane Frame-

work depicting the repositories, clients and the information flows. . . . 116
7.4 Uptane Framework Sequence Diagram depicting Over-The-Air Update

interactions between Uptane OTA Server-Side and In-Vehicle Primary
and Secondary ECUs. 117

7.5 Data Flow Diagram of the Uptane Framework Backend Servers and in-
vehicle components, showing various communication links. 118

7.6 Graphical overview of the number of identified threats to OTA update
system in each category of STRIDE threat classification model. 120

7.7 This attack tree represents Threat 6 that involves downloading firmware
images. 121

7.8 This attack tree represents Threat 7 that involves monitoring and cap-
turing information exchange between Uptane servers and clients. 122

7.9 This attack tree represents the Threat 9 that involves blocking the de-
livery of updates to the ECUs. 123

7.10 This attack tree represents Threat 10 that involves blocking the delivery
of updates to the ECUs. 125

LIST OF FIGURES xiv

7.11 This attack tree represents Threat 11 that involves causing the Primary
ECU to crash; thus, resulting in the failure of normal update operations. 126

7.12 This attack tree represents Threat 12 that involves causing the Time
Server to crash. 127

7.13 This attack tree represents Threat 21.1 that involves delivering a mali-
cious update to the target ECU. 128

7.14 This attack tree represents Threat 21.2 that involves delivering a mali-
cious update to the target. 129

7.15 This attack tree represents Threat 21.3 that involves delivering a mali-
cious update to the ECU. 130

7.16 This attack tree represents Threat 22.1 that involves delivering a mali-
cious update to the ECU. 131

7.17 This attack tree represents the Threat 22.2 that involves sending mali-
cious updates to the clients by compromising the Image repository. . . 132

7.18 This attack tree represents the Threat 26 as enlisted in Table 7.2 that
involves delivering an update containing a huge amount of data in order
to overwhelm the target ECU. 133

7.19 This attack tree represents a variation of the Endless Data attack pre-
sented above that involves delivering an update containing a huge amount
of data to overwhelm the ECU. 133

7.20 This SAND attack tree represents the Rollback Attack (Threat 27 in
Table 7.2) that involves delivering an old but valid firmware image to
the ECU. 134

7.21 This SAND attack tree represents the mix-and-match attack that in-
volves delivering an update containing valid but incompatible versions
of software updates. 136

7.22 This figure presents a comprehensive overview of all the threats compro-
mising Uptane Framework. 137

8.1 Attack defence tree depicting the countermeasure to mitigate the threat. 158
8.2 Attack defence tree depicting the countermeasure for ensuring confiden-

tiality of the information. 159
8.3 Attack defence tree depicting the countermeasures for ensuring the avail-

ability of critical services provided by Director Repository. 161
8.4 Attack defence tree depicting the countermeasures for ensuring the avail-

ability of critical services provided by Image Repository. 162
8.5 Attack defence tree depicting the countermeasures for ensuring the avail-

ability of services provided by Time Server. 164
8.6 Attack defence tree depicting the recommended countermeasure for en-

suring the availability of functionality provided by Primary ECU. . . . 166

List of Tables

2.1 Automotive OTA update security threats and vulnerabilities. Adapted
from [2]. 14

2.2 A summary of the automotive OTA update system security require-
ments for each of the major components. While this table presents key
requirements for the automotive OTA update, it is not exhaustive by
any means. 16

2.3 This table summarizes the four different types of metadata used by the
Uptane Framework. 25

2.4 An overview of the STRIDE model summarizing threat categories and
relevant affected security proprieties. 40

3.1 Attack surfaces and security threat associated with In-Vehicle Infotain-
ment interfaces. 49

3.2 Types of Automotive Cybersecurity Testbeds 51
3.3 Overview of what types of in-vehicle network protocols are supported

by each testbed for cybersecurity testing. 61
3.4 An overview of the types of exposed attack surfaces, types of attacks,

target and/or goal of the attacks supported by each testbed. 62
3.5 A comparative overview of the reviewed testbeds based on adaptability,

portability, fidelity, safety and cost . 64

5.1 A summary of the 52 threat instances identified by the Threat Modeling
Tool. 88

6.1 An attack tree represented in XML format. 95
6.2 This table presents the derived test cases from the attack tree. 108
6.3 This table presents the derived test cases from the SAND attack tree. 109
6.4 This table presents the SAND attack tree shown in Figure 5.6 (see

Section 5.2). 110

7.1 A summary of the hardware and software components used for building
the security testing environment shown in the Figure 7.2. 115

7.2 This table presents a summary of the threats identified by the threat
modeling tool. 119

xv

LIST OF TABLES xvi

7.3 Security testing results at a glance. 135
7.4 Summarizes the results of Threat 6 - Updates Could Be Downloaded. . 136
7.5 Summarizes the results of Threat 7 - Data Flow Sniffing. 139
7.6 Summarizes the results of Threat 9 - Cause the Director Repository to

Crash or Stop Remotely. 140
7.7 Summarizes the results of Threat 10 - Cause the Image Repository to

Crash or Stop Remotely. 141
7.8 Summarizes the results of Threat 11 - Cause the Primary ECU (TCU)

to Crash or Stop Remotely. 142
7.9 Summarizes the results of Threat 12 - Cause the Time Server to Crash

or Stop Remotely. 143
7.10 Summarizes the results of Threat 21.1 - Compromise Director Repo in

Order to Deliver Malicious Update (without compromised keys). 144
7.11 Summarizes the results of Threat 21.2 - Compromise Director Repo in

Order to Deliver Malicious Update (with compromised keys) 145
7.12 Summarizes the results of Threat 21.3 - Compromise Image and Director

Repositories in Order to Deliver Malicious Updates (with compromised
keys). 146

7.13 Summarizes the results of Threat 22.1 - Compromise Image Repository
in Order to Deliver Malicious Updates (without compromised keys). . . 147

7.14 Summarizes the results of Threat 22.2 - Compromise Image Repository
in Order to Deliver Malicious Updates (with compromised keys). 148

7.15 Summarizing the results of Threats 26.1 and 26.2 - Endless Data Attack. 149
7.16 Summarizing the results of Threats 26.2 - Endless Data Attack (inserting

contents). 150
7.17 Summarizing the results of Threat 27 - Rollback Attack. 151
7.18 Summarizing the results of Threat 28 - Mix and Match Attack. 152

8.1 Service failure response and recovery plan. 165

Abbreviations and Acronyms

ACC Adaptive Cruise Control.

ACK Acknowledgement.

AES Advanced Encryption Standard.

AOM Aspect-Oriented Modeling.

AUTOSAR Automotive Open Software Architecture.

BC Blockchain.

CAN Controller Area Network.

CPS Cyber-Physical Systems.

CRC Cyclic Redundancy Check.

CSP Communicating Sequential Processes.

DFD Data Flow Diagram.

DoS Denial-of-Service.

ECDSA Elliptic Curve Digital Signature Algorithm.

ECU Electronic Control Unit.

EOF End of Frame.

FOTA Firmware Over-The-Air.

FTP File Transfer Protocl.

HARA Hazard Analysis and Risk Assessment.

HTTP Hyper Text Transfer Protocol.

xvii

Abbreviations and Acronyms xviii

HTTPS Hyper Text Transfer Protocol Secure.

ID Identifier.

IDE Identifier Extension.

IFS Inter-Frame Space.

IVI In-Vehicle Infotainment.

KES Keyless Entry System.

LIN Local Interconnect Network.

MAC Message Authentication Code.

MBST Model-Based Security Testing.

MITM Man-In-The-Middle.

MOST Media Oriented Systems Transport.

NIST National Institute of Standards and Technology.

OBD Onboard Diagnostic.

OCTANE Open Car Testbed and Network Experiments.

OEM Original Equipment Manufacturer.

OTA Over-The-Air.

PASTA Portable Automotive Security Testbed with Adaptability.

PBAC Policy-Based Access Control.

PTES Penetration Testing and Execution Standard.

RBAC Role-Based Access Control.

Repo Repository.

RSA Rivest–Shamir–Adleman.

RTR Remote Transmission Request.

SAND Sequential AND.

Abbreviations and Acronyms xix

SDL Secure Development Lifecycle.

SecOC Secure Onboard Communication.

SFTP Secure File Transfer Protocol.

SIM Subscriber Identity Module.

SOF Start of Frame.

SOTA Software Over-The-Air.

SP Series Parallel.

STRIDE Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Ser-
vice, Elevation of Privilege.

SUT System Under Test.

TARA Threat Analysis and Risk Assessment.

TCU Telematics Control Unit.

TLS Transport Layer Protocol.

TMT Threat Modeling Tool.

TPMS Tyre Pressure Management System.

TUF The Update Framework.

UML Unified Modeling Language.

UNECE United Nations Economic Commission for Europe.

USB Universal Serial Bus.

VIN Vehicle Identification Number.

Wi-Fi Wireless Fidelity.

XML Extensible Markup Language.

Chapter 1

Introduction

1.1 Research Motivation

Modern vehicles are equipped with numerous sophisticated computing (known as Elec-
tronic Control Units or ECUs) and connectivity capabilities that enable and support
correct functioning of various types of in-vehicle systems. With an increasing number of
ECUs installed, today’s luxury cars host complex software systems with more than 100
million lines of code [3, 4]. With that huge amount of code, regular and timely updates
are inevitable for functional enhancements and most importantly for fixing bugs related
to security issues that could potentially be exploited by adversaries to compromise the
security and safety of the vehicle [5]. For the deployment of these updates, vehicles
had traditionally been required to visit a service centre where an authorised personnel
had to install the updates. This old mechanism for updating in-vehicle software is not
only expensive and inefficient for carmakers, it is inconvenient for the customers as well
(see Figure 1.1). For example, General Motors had to spend $4.1 billion on recalls in
2014 while their total net income for that particular year was $4 billion [6]. Another
interesting related example is the work from Koscher et al. [7] which caused a recall of
1.4 million cars by automakers. Numerous vehicles were recalled for updates recently
incurring huge financial costs for the automakers. Over-the-air software update system
(see Figure 1.2) is emerging as an efficient, cost-effective and convenient way for deliv-
ering software updates to automobiles remotely allowing hassle-free delivery of critical
updates in an economical and timely manner. While OTA offers several benefits, it
introduces new security challenges that warrant immediate attention to carry out in-
depth investigations, as attackers can maliciously use the software update systems as
new attack vectors [8, 9, 10] to compromise the vehicle security. An insecure update
mechanism can allow cyber criminals to undermine the security and safety of modern
vehicles. There are numerous studies [7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] inves-
tigating various aspects of the cybersecurity of automotive systems, exploring testing
approaches and environments, threats, vulnerabilities, and mitigations, including many
recent studies focusing on security issues of automotive OTA updates [22, 23, 24, 25]

1

CHAPTER 1. INTRODUCTION 2

Old Update Approach

Time consuming

Costly

Inconvenient

Figure 1.1: This figure presents the traditional old-fashioned update pro-
cess widely used, indicating some of its shortcomings.

extensively; however, security testing of automotive OTA has not been covered ade-
quately, In fact, most of the prior scientific studies tend to focus on proposing improved
techniques for securing automotive OTA updates. Security evaluation of these solu-
tions is imperative for validating their effectiveness. In order to ensure these update
systems are secure and have effective and adequate protection in place against various
cyberattacks and threats, thorough security analysis and evaluations need to be per-
formed. To the best of our knowledge, there is currently no study that proposes or
employs a systematic security testing approach for evaluating the security of automo-
tive over-the-air update systems. This thesis attempts to close this gap by presenting
a systematic security evaluation of Uptane Framework.

1.2 Research Questions, Aims and Objectives

As argued in [26], in contrast to an ad-hoc approach, which tends to suffer from a lack
of clarity on the prioritization of security test cases, potentially leaving vulnerabilities
undetected, a systematic security testing method increases the chances of revealing
security loopholes in the system. In order to determine how to perform systematic
security testing, we examined the literature by asking some basic questions, as summa-
rized in the Figure 1.3. Where these questions helped us identify various prerequisites
to a systematic security testing process and outputs from the major steps, the pre-
liminary findings from the literature review suggested that the model-based security
testing can assist with the systematic security testing of the OTA updates. These

CHAPTER 1. INTRODUCTION 3

Over-The-Air Updates

Efficient

Cost-effective

Seamless

Figure 1.2: This figure presents the modern, futuristic approach to update
delivery: over-the-air updates. This method addresses the problems of the
traditional approach.

questions also enabled us to conceptualize and improve our overall threat analysis and
security testing approach used in this study. Therefore, the key question investigated
and addressed by this doctoral study is outlined below:

The Research Question How can Model-Based Security Testing (MBST) facilitate
the systematic threat identification and executable test case generation for effective
security testing of automotive systems that can help strengthen and improve the system
security? This fundamental question was broken down into three sub-questions, as
listed below:

1. How can model-based security assist with systematic threat enumeration?

2. How can the identified threats be leveraged to generate security test cases?

3. What specific tools and techniques can be employed for threat enumeration and
test-case generation?

In order to address the core research question (and the associated sub-questions)
introduced above, this doctoral research aims at applying the MBST approach for
carrying out systematic threat assessment and security analysis of OTA updates, as
MBST supports test case derivation and execution by leveraging the system models.

Based on the overall aim of the study and research questions, following objectives
were identified for achieving the overall aim:

CHAPTER 1. INTRODUCTION 4

How to perform systematic security testing of
automotive systems?

How to derive security test cases systematically
?

How to identify potential threats to the system?

What information is needed for creating the threat
model?

Derive security test
cases!

Identify potential
threats!

Use threat
modeling!

System
description!

Test Cases

Threat List

Threat Model

System Model

Problem Solution

Requires

Contributes towards Produces

Suggests

Figure 1.3: This figure shows the key questions that helped identify the
core activities and outputs for performing a systematic threat analysis and
security testing of the automotive OTA.

CHAPTER 1. INTRODUCTION 5

Obj1: To conduct a critical review of the existing testing environments and methods
for establishing the state of the art in automotive cybersecurity testing

Obj2: To apply a systematic threat analysis approach for threat enumeration and
attack tree (a threat modeling technique; please refer to Chapter 2 for a detailed
introduction of this technique) construction

Obj3: To design and implement a software tool capable of generating and executing
security test cases from attack-tree analysis

Obj4: To validate the approach and the software tool by performing a comprehensive
security analysis and testing of the OTA Updates (using the reference implementation
of the Uptane Framework)

1.3 The Contributions of this Thesis

This research contributes to

A systematic threat analysis approach for constructing attack trees
Demonstrated by an in-depth analysis of OTA/Uptane, in Chapter 5 we show

how our step-by-step threat analysis approach helps enumerate security threats and
construct attack trees, which are validated through the system testing (a graphical
overview of this contribution can be viewed in Figure 1.4). This contribution results
from meeting the research objective 2 (please refer to Obj2 above).

System Model
Threat Model Threat List

Attack Tree

Figure 1.4: Contribution 1: Overview of the threat analysis approach
leading to the construction of an attack tree systematically.

A model-based security testing approach based on attack tree to derive secu-
rity test cases We introduce our model-based security testing approach in Chapter
6 that uses attack trees to derive effective security test cases by analyzing the structure
of these attack trees (Figure 1.5 provides an overview of the approach). Based on the
formal semantics of the attack trees, we use formal methods to prove the correctness
of our test-case derivation approach. Furthermore, in order to validate the approach

CHAPTER 1. INTRODUCTION 6

Attack Tree

Test Cases

Figure 1.5: Contribution 2: Overview of the model-based security testing
approach for generating test cases by attack tree analysis.

we demonstrate a number of cyberattacks using the generated security test cases. This
contribution maps to the research objective 3 (please refer to Obj3 above).

An in-depth experimental security analysis of the reference implementation
of the Uptane Framework

Meeting the research objective 4 (please see Obje4 above), a comprehensive security
analysis of the Uptane Framework’s reference implementation is presented in Chapter 7,
which includes a complete threat analysis, attack-tree construction and various security
test cases derived from the constructed attack trees as well as the security testing;
highlighting the strengths and weaknesses of the reference implementation.

The automation of the test-case generation and execution by devising a
software tool

The security test case generation and execution have been automated by designing
and implementing a custom software tool (as evidenced in Chapter 6), which is capable
of deriving correct security test cases by leveraging the attack-tree structure analysis
approach we briefly introduced above. The tool executes all the generated test cases
against the target system and generates a report showing the number of test cases
executed and whether they succeeded. This contribution is linked with the research
objective 4 (please see Obj4 above).

A comprehensive survey of the testbeds and testing approaches, providing
a critical analysis of the testing environments and methods in automotive
security testing

Finally, the literature review (as presented in Chapter 3) includes an extensive
comparative analysis of the major testbeds and testing approaches (please refer to Obj1
above) proposed by the research community in automotive cybersecurity, presenting a
critical analysis of the testing environments based on various relevant characteristics
and factors.

CHAPTER 1. INTRODUCTION 7

1.4 Thesis Structure and Overview

Chapter 2 that follows this introductory chapter provides the reader with essential
background information on automotive OTA updates, attack trees, and threat model-
ing, presenting:

• an overview of the automotive OTA updates

• key security issues, vulnerabilities & threats, security requirements, and some of the
major proposed solutions to securing the OTA updates

• a detailed overview of the Uptane Framework is also included, introducing the server-
side and client-side components (i.e., Image Repository, Director Repository, Time
Server, Primary and Secondary ECUs etc.), metadata structures, roles, and specific
procedures for full and partial verification of the metadata and images

• a dedicated subsection on the attack trees provides introductory information and two
different formal semantics defined based on series-parallel graphs and sequences pro-
viding necessary background for the formal proof of our test-case generation approach
presented in Chapter 6

• an introduction of the threat modeling providing overviews of some of the threat mod-
elling approaches along with a description of STRIDE (Spoofing, Tampering, Repudi-
ation, Information Disclosure, Denial of service, Elevation of privilege) and associated
tool from Microsoft used in the threat analysis

• an overview of risk assessment and the description of the OWASP Risk Assessment
approach, which has been used in this thesis determining the risk rating of the threats

• an overview of the MBST approaches proposed for security testing of embedded system.

Literature review is presented in Chapter 3, which includes the following:

• automotive cybersecurity in general, highlighting major attack vectors, such as Con-
troller Area Network (CAN) bus, in-vehicle infotainment, and Onboard Diagnostic
(OBD) port along with some relevant major security threats and countermeasures

• a comprehensive comparative analysis of the major automotive testbeds and testing
approaches is also presented; all the testing setups are compared based on the following
attributes:

– adaptability

– portability

– fidelity

– cost and safety implications

CHAPTER 1. INTRODUCTION 8

• a comparison of testbeds’ various capabilities, i.e., supported communication protocols
(i.e., CAN, LIN, FlexRay, MOST), and attack types (i.e., DoS, replay, spoofing etc.)

• finally, some of the widely used testing approaches in the domain are also described;
in particular, overviews of automotive fuzz testing, automotive vulnerability scanning,
and penetration testing are provided.

The next chapter (i.e., Chapter 4) introduces the methodology, by describing the fol-
lowing:

• an overview of the security testing approach and its major phases and corresponding
activities

• an introduction of the step-by-step workflow of the approach by using in-vehicle info-
tainment system as an example to demonstrate the application of the approach

• this in particular includes showing the step-by-step process (i.e., System Decomposi-
tion) to identify critical assets of the system under test; and producing a suitable system
description; this is followed by a demonstration of the threat enumeration process.

The Chapter 5 (titled Constructing Attack Trees) focuses on presenting the sys-
tematic approach for constructing attack trees based on the threats identified in the
preceding phase. The approach is demonstrated by using adaptive cruise control sys-
tem as an example target system. The process is clearly explained by guiding how to
construct attack trees.

The following chapter (i.e., Chapter 6: Generating Test Cases) introduces the test-
case generation process by using the attack trees constructed in the previous phase.
Additionally, the correctness of the test-case generation approach is also proved in the
chapter using formal methods. Moreover, the software tool for automated test-case
generation and execution is also detailed. Finally, some example security test cases are
generated and presented to show the approach in action.

In-depth security analysis and results of the security testing of the reference im-
plementation of the Uptane Framework are presented in Chapter 7 by including the
following:

• system decomposition is applied to prepare system description of the Uptane followed
by a threat enumeration for identifying the security threats. A number of attack trees
constructed by following the approach introduced in Chapter 5, which were in turn is
used for generating various security test cases

• The results obtained from executing the security test cases are reported summarizing
the outcomes of all experimental attacks on the reference implementation

• Key findings of the security analysis along with the limitations outlined before con-
cluding the chapter.

CHAPTER 1. INTRODUCTION 9

Chapter 8 presents some relevant countermeasures for the selected experimental
cyberattacks (for more information, see Chapter 7).

The last chapter, that is, Chapter 9 summarizes the research by highlighting the
contributions of the thesis and indicating some future directions.

In addition to these core chapters, Appendices have been included to present some
useful supplementary contents, providing additional information that has not been
included in the main body of this thesis, which includes the following items:

• Appendix A: Source code of the software tool for generating security test cases.

• Appendix B: XML source code of the attack trees used for generating the security test
cases included in the experimental security analysis of the reference implementation.

• C: Threat Modeling Reports generated by the threat modeling tool, providing the
source information used for constructing the attack trees for the security analysis of
the reference implementation.

• Finally, Appendix D includes the Ethics Documentation. A graphical overview is shown
in the Figure 1.6.

1.5 Publications

As a result of this research program, the following publications have been produced.
Hence, this thesis refers to/includes contents from these publications.

• Mahmood S, Fouillade A, Nguyen HN, Shaikh SA. A Model-Based Security Testing
Approach for Automotive Over-The-Air Updates. In2020 IEEE International Confer-
ence on Software Testing, Verification and Validation Workshops (ICSTW) 2020 Oct
24 (pp. 6-13). IEEE.

• Mahmood S, Nguyen HN, Shaikh SA. Automotive Cybersecurity Testing: Survey of
Testbeds and Methods. InDigital Transformation, Cyber Security and Resilience of
Modern Societies 2021 Mar 24 (pp. 219-243). Springer International Publishing.

CHAPTER 1. INTRODUCTION 10

Chapter 1:
Introduction

Chapter 2:
Background

Chapter 3:
Literature Review

Chapter 4:
Methodology

Chapter 5:
Constructing Attack Trees

Chapter 6:
Generating Test Cases

Chapter 7:
Experimental Security

Analysis of Uptane Framework

Chapter 8:
Countermeasures

Chapter 9:
Conclusion and Future Work

Appendices

Figure 1.6: Graphical overview of the thesis.

CHAPTER 1. INTRODUCTION 11

1.6 Chapter summary

This chapter presented an introduction of this doctoral research study, outlining the
research motivation (i.e., why systematic security testing of the Uptane is essential),
questions (i.e., how the MBST can be effectively employed for the systematic security
testing, etc.), aim, and objectives. Additionally, it summarized the key contributions
of the thesis, which briefly include the following:

• A systematic threat analysis approach for constructing attack trees

–Demonstrated by in-depth analysis of the Uptane

–Constructed attack trees validated through system testing

• A model-based security testing approach based on attack trees to derive security
test cases

–Proved the approach’s correctness by using formal methods

–Demonstrated attacks using the generated test cases

• In-depth experimental security analysis of the Uptane Framework

• Automation of the test-case generation and execution by implementing a custom
software tool

• A comprehensive comparative review of the testbeds and testing approaches pub-
lished in the relevant literature

Finally, this chapter is concluded by providing an overview of the thesis along with
listing the publication that resulted from this research program.

Chapter 2

Background

In this chapter, we present some background to the research work presented in this
thesis. Starting with an overview of the automotive OTA, we describe some use cases,
security issues, security requirements, some proposed techniques for secure delivery of
the OTA updates, as well as an extensive introduction to the Uptane Framework. In
addition to a detailed overview of the attack trees along with their formal semantics, we
also provide a brief introduction to the STRIDE (Spoofing, Tampering, Repudiation,
Information Disclosure, Denial of Service, Elevation of Privilege) threat modeling ap-
proach. Finally, an overview of the model-based security testing approaches employed
by automotive security researchers is briefly discussed.

2.1 Automotive OTA Security

2.1.1 Overview

The phrase Over-The-Air or Software Over-The-Air (SOTA) refers to the method of
delivering software updates using a WiFi, Bluetooth, or cellular network link remotely.
While the acronym SOTA is generally used for referring to all types of software up-
dates, the phrase Firmware Over-The-Air (FOTA) is used specifically to refer to the
deployment of a firmware to the target device [27]. In most cases, the FOTA is used
to deliver an update that involves replacing the existing firmware on the device. (more
precisely, an ECU). The three main components of the OTA update system gener-
ally include: backend cloud servers, ECU or other similar devices in the vehicle and a
suitable communication link.

OTA updates have been around for several years in the software industry for the
deployment of critical bug fixes and functional enhancements to both the operating
systems and application programs in laptops and other handheld computing and com-
munication devices [28]. In the automotive industry, OEMs (Original Equipment Man-
ufacturers) are increasingly embracing the OTA technology for delivering updates to
embedded devices in the connected vehicle [29]. Car manufacturers are predicted to

12

CHAPTER 2. BACKGROUND 13

save $35 billion in year 2022 by relying on OTA technology for sending updates re-
motely [30].

Use Cases

Some of the major use cases for automotive updates are outlined below[31]:

• Bug fixing: In order to comply with legal and regulatory requirements, automakers
can leverage SOTA technology for delivering updates addressing safety and/or
security issues in an economical and speedy way, eliminating the need for vehicle
recalls. This type of SOTA update often involves fixing safety-critical faults.

• Quality improvements: SOTA updates can be used by automobile manufacturers
for quality enhancements, such as improving fuel efficiency.

• Research and development: SOTA technology can also be utilised for collecting
useful information about various aspects of the vehicle which could be highly
useful for future developments. This may include gathering data about performance
or other technical issues.

2.1.2 Vulnerabilities and Threats

Software update systems have been attacked and compromised by cybercriminals (for
example, [32, 33, 34, 35, 36]) for delivering and installing malware on computer and
mobile systems. The World Forum for Harmonization of Vehicle Regulations (WP.29)
- an international regulatory forum within the institutional Framework of the United
Nations Economic Commission for Europe (UNECE) - has introduced new regula-
tions to be implemented by the member states from January 2021. These regulations
are concerned with regulating the automotive cybersecurity, automotive cybersecurity
management systems, automotive OTA updates and automotive OTA updates man-
agement systems [37]. A revised draft proposal for these regulations has recently been
published by UNECE [2], which identifies major threats (as shown in Table 2.1) to
automotive update procedures along with relevant vulnerabilities and attack methods.

A more comprehensive threat model has been presented in [38], as can be seen in
Figure 2.1, that provides a graphical overview of various security threats to the OTA
system that can potentially be used by malicious entities for compromising the security
and safety of connected vehicles. Each threat has one or more types of related attacks
that can be used by hackers, ranging from reading the contents of an update to gaining
the vehicle control. Attackers can have one or more attack goals, as described in [38]
and [39]. A summary of these goals is presented below:

• Read the contents of updates to discover confidential information, reverse-engineer
firmware, or compare two firmware images to identify security fixes and hence
determine the fixed security vulnerability

CHAPTER 2. BACKGROUND 14

Table 2.1: Automotive OTA update security threats and vulnerabilities.
Adapted from [2].

Threat Vulnerability or Attack Method

Misuse or compromise of up-
date procedures • Compromise of OTA update proce-

dures by fabricating system update
program or firmware

• The software is manipulated prior to
the update process

• Cryptographic keys compromised for
delivering malicious update

Deny legitimate updates Denial of service attack against update
servers or network to block the delivery of
critical updates

OTA Update Threats

Deny Updates

Drop Request Attack

Slow Retrieval Attack

Partial Bunddle
Attack

Read Updates

Endless Data Attack

Mixed-Bunddle Attack

Mix-and-Match Attack

Freeze Attack

Deny Functionality Control ECU or Vehicle

Arbitrary Software AttackRollback Attack Eavesdrop Attack

Figure 2.1: Graphical overview of major threats to OTA Update System
along with corresponding potential attacks.

CHAPTER 2. BACKGROUND 15

• Deny installation of updates to prevent vehicles from fixing software problems

• Cause one or more ECUs in the vehicle to fail, denying use of the vehicle or of
certain functions

• Control ECUs within the vehicle, and possibly the vehicle itself

2.1.3 Security Requirements

Security of OTA updates is critical and effective defense and mitigation against different
potential threats needs identification and understanding of security requirements of
OTA update ecosystem. Halder et al. [40] identify various security requirements for
OTA updates, as summarised in Table 2.2.

2.1.4 Secure OTA Update Methods and Techniques

There is no doubt that in the future all or most updates to the connected cars will be
delivered using OTA technology [38]; thus, the security of these updates is paramount.
A number of studies have been published proposing different solutions for securing
OTA updates. We provide an overview of some of these solutions in the following
subsections.

AiroDiag: An Over-The-Air Diagnostics and Updates System

Mansour et al.[41] propose AiroDiag - an over-the-air system - for performing automo-
tive diagnostics and software updates. Figure 2.2 provides an overview of the major
components of the system on both the client and OEM sides. The AiroDiag client
monitors and sends the diagnostics (e.g., faults and performance) information to the
OEM, which can be used to advise the customer of any detected issues or new updates
to be installed. The database on the OEM backend holds both the vehicle informa-
tion (such as, vehicle manifests detailing what updates are already installed on the
vehicle) as well as the authentication communication keys for each car (tagged with a
unique manufacturer ID) which has AiroDiag installed on it. This authentication key
is supplied to the server when the client requests to establish a connection for verifying
the client is a trusted entity. ECUs may either use CAN or serial communication for
communicating with the AiroDiag component on the vehicle. Once connected with the
server, the client sends a list of all the currently installed software on each ECU. The
server compares the received list with the one it contains in the database and informs
the client of the new updates if applicable. The driver is shown an alert to ask whether
to proceed with the downloading and installation of the updates. The AiroDiag client
on the vehicle side will proceed with downloading the software updates if the driver
allows it to do so and stores all the updates on a non-volatile memory (such as an SD
card), and flashes them on corresponding ECUs once download is complete. In order
to ensure the customer’s privacy is not compromised, an encrypted channel is used

CHAPTER 2. BACKGROUND 16

Table 2.2: A summary of the automotive OTA update system security
requirements for each of the major components. While this table presents
key requirements for the automotive OTA update, it is not exhaustive by
any means.

Component Security Requirement

Security of the update package
during transit

Security of update package should be
ensured so that its integrity, confiden-
tiality, authenticity, and freshness are
intact while it is being transmitted
from the backend to the vehicle.

Security of update package while
stored

The update package must be protected
against any security breaches
affecting its integrity, authenticity,
confidentiality, and freshness while it
is stored prior to the installation.

Update authorisation verification The target ECU/device needs to
be verified to ensure whether it is
authorised for receiving and installing
the update package.

Protection of the update
installation

Traceability of the delivery and
installation of the update must be
ensured.

Protection against denial of
service

The updates must be available to the
ECUs for installation when required;
therefore, the backend servers must be
protected against any security breaches
(e.g., DoS) affecting the availability of
the updates.

CHAPTER 2. BACKGROUND 17

between the vehicle and OEM system as well as all the features offered by AiroDiag
must obtain driver’s approval before proceeding with any action.

The authors of the AiroDiag implement it to simulate the update process and
share the results showing the time taken by the OTA update procedure. Advanced
Encryption Standard (AES) is used for all the communication between the server and
client sides. Some of the key considerations highlighted about some limitations include
the long boot time (due to the Ubuntu OS installed) taken by the AiroDiag client, and
potential of cyberattacks.

OEM Backend Vehicle side

Internet

ECU-A

ECU-C

ECU-B

AiroDiag

Other ECUsOther ECUsOther ECUs
Database

Received
Diagnostic
Information +
New Software
Updates

AiroDiag
Server

Figure 2.2: An overview of the AiroDiag architecture (adapted from [41])
showing the components on the server side and client side.

An Integrated Approach for Securing the OTA Software Updates

A method using a combination of enhanced cryptography and image stenography tech-
niques for securing automotive OTA software updates has been proposed by Mayilsamy
et al. [42]. The authors use the customised RSA crypographic algorithm for encrypt-
ing the update data, which in turn is embedded along the edge of the image using the
Least Significant Bit technique. They use fuzzy logic for the detection of the edges. For
the verification of the authenticity of the source of the software update, they leverage
Hash algorithm. The proposed method provides two levels of security for secure OTA
updates for automobiles: while the modified RSA algorithm is used to provide the
first level of security; second level of security is achieved by using image stenography
technique (using fuzzy logic for the edge detection). Based on the evaluation results
of their proposed method, the authors conclude that their proposed method showed
better results in terms of the security as compared to conventional cryptographic tech-

CHAPTER 2. BACKGROUND 18

Revised RSA
Encryption
Algorithm

LSB
 Steganography

Image Embedding
Process

Revised RSA
Encryption
Alogrithm

SHA HASH
Function

Fuzzy Edge
Detection
Technique

Software
Update

Message Digest

Cipher Text Stego Image

Edge Image

Cover Image
Cloud Storage

Signature

Final Image

Source Image

Image Extraction
Process

LSB Extraction
Algorithm

Revised RSA
Decryption
Algorithm

Revised RSA
Decryption
Algorithm

Final Image

SHA HASH
FunctionMD = MD'

Stego Image Cipher Text

Software Update

MD

MD'
Signature

True

Discard
Update

Proceed with
update process...

False

Server Side

Telematics Unit

Vehicle Side

Figure 2.3: An overview secure automotive OTA updates systems us-
ing enhanced cryptography and image stenography techniques (adapted from
[42]).

niques. However, a major limitation of their proposed method is the performance when
it comes to encryption/decryption time.

OTA Update Security Using Blockchain Techniques

For effective security protection of OTA updates for connected vehicles, Steger et al.
[43] propose a secure architecture employing Blockchain (BC) technology. The pro-
posed architecture ensures the confidentiality and integrity of the software updates
as well as privacy of all the entities involved in the system by providing a secure
and trustworthy interconnection between them, which relies on a Lightweight Scalable
Blockchain for addressing the inherent limitations (i.e., high resource consumption and
high latency) of traditional underpinning consensus algorithm in order to meet the spe-

CHAPTER 2. BACKGROUND 19

cial requirements of the intrinsically resource-constrained embedded systems. Instead
of relying on a network model involving central management, this BC-based archi-
tecture uses a distributed environment where each participating stakeholder forms a
cluster, which constitutes a cluster head and a number of cluster members. A network
overlay is used to interconnect all the cluster heads. The software provider distributes
the new software and/or updates to the OEM which forwards them to the local software
update providers, and ultimately to the target vehicles for installation on the target
ECUs. Cloud storage acts as a secure repository to hold the updates received from the
software providers or OEMs. These cloud repositories are secured by advanced authen-
tication mechanisms to ensure only authorized entities are able to access, modify, and
download software images. The authors evaluate their proposed architecture by means
of a proof-of-concept implementation of the OTA update system, comparing it with
certificate-based system. The results demonstrate the proposed BC-based architecture
for OTA updates is better than the traditional certificate-based systems in terms of
performance.

Although Blockchain technology can effectively be used to guarantee the integrity,
authenticity, and confidentiality aspects of the OTA updates, increased complexity
stemming from its inherent distributed architecture and redundancy/replication re-
quirements raise cost, time, and effort concerns. Moreover, more advanced, update
repository-related attacks, such as slow retrieval attack, freeze update attack, endless
data attack, etc. need further attention, introducing more complexities. Finally, this
particular solution does not consider customization requirements for delivering required
updates to the vehicle based on previously installed updates.

All the solutions described above focus on the confidentiality and integrity of the
update contents by using cryptographic and Hash function techniques and technologies,
While such techniques have their own merits, they do not provide a comprehensive
coverage of all the threat types that can compromise the security of such systems. (as
shown in the Figure 2.1).

The Uptane Framework

Uptane, developed by US researchers in collaboration with automotive industry stake-
holders, is an automotive software update framework, which is claimed to address
automotive-specific security flaws, and provide protection against a wide range of se-
curity attacks, offering both the security and customisability of updates for different
vehicles depending on their particular needs.

As shown in Figure 2.5, Uptane Framework has three core components: the Image
Repository, the Director Repository, and the Time Server.

Image Repository

The Image Repository holds all the images deployed by the OEM along with metadata
files for proving the authenticity of the hosted images. OEMs use offline keys for signing

CHAPTER 2. BACKGROUND 20

Overlay

Service
Centre

OEM

Cloud Storage

Software
Provider

Service
Centre

Vehicle

OEM

Cloud Storage Software
Provider

Vehicle

Service
Centre

Vehicle

OEM

Software
Provider

Intra-cluster

Inter-cluster

Figure 2.4: Blockchain-based automotive OTA Architecture (adapted from
[43]) for ensuring the confidentiality, integrity of software updates as well
as protecting the privacy of the users.

metadata stored on the repository as a protective measure against any attempt from
attackers to tamper with this metadata. Some of the mandatory capabilities that the
Image Repository needs include the following:

• An interface for image and metadata download (that SHOULD be public) SHALL
be exposed.

• Authorization SHALL be required for writing images and metadata.

• A method enabling authorized users to upload images and associated metadata
SHALL be provided.

• The repository SHALL check whether the user has the appropriate set of per-
missions for writing images and metadata for the specific images by checking the
chain of delegation.

• The repository SHALL include appropriate storage mechanism allowing autho-
rized users to store files with unique file names. It SHALL also enable the users to
retrieve the stored files. The storage mechanism MAY be file-system, key-value
store or a database.

• Read access MAY require authentication.

CHAPTER 2. BACKGROUND 21

Vehicle

Primary ECU

Secondary ECU
(Full Verfication)

Secondary ECU
(Partial Verfication)

Image Repository

Director Repository

Images +
Metadata

Time
Server

Vechicle Manifest

Image + Metadata

Signed Tokens
& Time

Inventory
DatabaseMetadata

Figure 2.5: An overview of the Uptane Framework, illustrating the inter-
connections and flow of information among the Time Server, Image Repos-
itory, Director Repository, Primary ECU and Secondary ECU.

Director Repository

The Director Repository is responsible for tracking and determining what updates to
deliver to each ECU based on the current status of the repository and currently in-
stalled updates. Based on the information contained in the signed manifest provided by
the vehicle, Director Repository determines and prepares appropriate update packages
for the vehicle. A vehicle manifest informs the Director of its previously installed ver-
sions of the updates. Unlike Image Repository, Director Repository uses online keys
for signing metadata. Director Repository also needs to meet some mandatory and
optional requirements as outlined below:

• An interface SHALL be exposed for Primaries to download metadata and upload
vehicle version manifests. This interface SHOULD be public.

• The Director MAY encrypt images if need be, either using on-the-fly encryption
or storing the encrypted images on the repository.

• For enabling the automated services to write metadata, the Director Repository
SHALL implement appropriate storage. It MAY use file-system, key-value store,
or a database.

Furthermore the Director Repository is required to comply with the following six-
step process for directing the installation of updates on the target cars:

1. The vehicle SHOULD be identified by the Director, which MAY be done by
determining the unique vehicle identifier received from the Primary ECU. More-
over, other mechanisms (e.g., 2-way TLS with unique client certificates) MAY
also be used.

2. The Director queries its inventory database for relevant information about a
specific ECU in the vehicle by using the vehicle identifier.

CHAPTER 2. BACKGROUND 22

3. Manifest accuracy check SHALL be performed by Director by comparing the re-
ceived manifest with the one in its inventory database. The request MAY be
discarded should any checks fail.

While an implementer MAY include additional checks, at least following checks
SHALL be carried out:

• All ECUs contained in the manifest are also recorded in the inventory
database.

• The sender Primary ECU’s key matches the signature of the manifest.

• Each Secondary ECU’s contribution to the manifest signature matches its
corresponding key.

4. In order to prevent replay attack, the Director SHALL check whether the nonce
or counter in each ECU version report has been used before, the request SHOULD
be dropped if the nonce or counter is being reused.

5. The information contained in the vehicle version manifest is used by the Director
to determine whether new updates need to be installed based on the versions of
currently installed software. The Director MUST consider any conflicts or depen-
dencies between the images and SHOULD employ appropriate, well-established
dependency resolution techniques.

6. Images MAY be encrypted by the Director if required by the target ECUs.

7. Metadata, comprising of Targets, Snapshot, and Timestamp, is generated for the
desired images by the Director to be sent to the Primary ECU. The metadata
generation takes into account the dependency resolution.

A private inventory database SHALL be used by the Director for storing vehicle
and associated ECUs information, which MUST record a unique identifier (e.g., a VIN)
for each vehicle. Additionally, following information MUST be recorded for each ECU:

• A unique identifier, such as a serial number

• An ECU key (which can either be symmetric or asymmetric; only public key to
be stored if the latter is used)

• An identifier for ECU key

• An indication of whether the ECU is a Primary or Secondary

Furthermore, additional information pertaining to the ECUs and vehicles may be
recorded in the inventory database. In particular, a hardware identifier SHOULD be
used to prevent the Director from directing an ECU to install incompatible firmware.

CHAPTER 2. BACKGROUND 23

Time Server

As time is a critical aspect in automotive software updates, knowledge of current,
accurate time is crucial for ECUs to provide protection against freeze attacks, which
involves sending the same update indefinitely even when new updates are available.
Many ECUs are unaware of current time because they do not have builtin clocks, this
is where the Time Server plays an important role in providing accurate time to the
vehicle in a cryptographically secure manner, which helps ECUs defend time-related
attacks. The Uptane standard includes the Time Server as an optional component,
and if it is implemented the following requirements must be fulfilled:

• In response to the token sequences received from the vehicle, the Time Server is
required to provide one or more signed responses along with the time and these
tokens. It MAY generate a single time attestation composed of the current time
and all the tokens. Alternatively, it may generate multiple time attestations each
comprising of the current time and one or more tokens. The response should
contain all the tokens.

• In order for the Primaries to communicate with it, the Time Server will expose
a public interface, which MAY rely on any transport control protocol, such as
HTTP, HTTPS, FTP, or SFTP.

• The Time Server’s key is rotated by listing a new key in the Director’s Root
metadata, as is the case with other roles’ keys. Additionally, the key must also
be listed in the custom field of the Targets metadata of the Director Repository.

Uptane Roles

Uptane repositories rely on different roles, each responsible for signing different type
of metadata as explained below:

• The Root Role is responsible for signing metadata, used for distributing and
revoking public keys for the verification of the Root, Targets, Timestamp and
Snapshot metadata.

• The Snapshot Role is concerned with signing metadata indicating the images
released by the repository at the same time.

• The Targets Role has the responsibility of signing metadata (e.g., crypto-
graphic hashes and file size etc.) that verifies the image.

• The Timestamp Role is used to sign metadata to indicate the availability of
new metadata or images on the repository.

CHAPTER 2. BACKGROUND 24

Uptane Metadata Structure and Types

To ensure security, Uptane Framework relies on a properly generated metadata having
a specified structure. There is no particular format or encoding mandated by the Up-
tane standard for the metadata. Any encoding scheme complying with the standard
requirements can be used by the implementers. However, since the metadata verifica-
tion involves string comparisons; therefore, the Uptane standard mandates the use of
Unicode Format for Network Interchange for encoding all strings. Table 2.3 provides a
summary of the four different types of metadata generated by Uptane Framework, each
corresponding to the metadata roles described earlier. In addition to the characteristics
(unique to each metadata type) described in the Table 2.3, there are some common
characteristics shared by all types of the metadata. All public keys, represented by a
public key identifier, can be composed of all or either of the following:

• The public key’s value, which MAY be formatted as a PEM string

• The cryptographic algorithm (e.g., ECDSA or RSA) used by the public key

• The signature verification scheme used, such as ecdsa-sha2-nistp256 or rsassa-
pss-sha256

• All the four Uptane roles have a common structure, which includes metadata
payload to be signed and an attribute that contains the signature of the payload

Finally, there may be additional custom metadata belonging to the Targets files
(for more on this, please refer to the official design documentation at [39]).

Primary and Secondary ECUs

A primary ECU is typically the one that is more capable in terms of storage capacity
and connectivity as compared to a Secondary ECU which needs help from the primary
ECU for receiving and installing software updates. A Primary ECU directly com-
municates with the Director Repository in order to download metadata and firmware
images, carry out verification to verify the authenticity and integrity of updates, and
finally distribute the downloaded updates to the Secondary ECU. A Secondary ECU,
depending on its capabilities, performs full or partial verification of the image against
the metadata, and installs it if the verification succeeds.

Uptane-compliant ECUs SHALL be capable of downloading and verifying image
metadata and image binaries before the installation of a new image. Moreover, ECUs
MUST have a secure way for verifying the current time. In order to detect and act
against any attempt of a slow retrieval attack, ECUs SHOULD monitor the metadata
and image binaries download speed. The Director repository SHOULD be informed
(e.g., by communicating this information in the next vehicle manifest) if the download
speed drops the specified minimum threshold level. The Uptane Framework design
documentation specifies the following key build-time requirements for ECUs:

CHAPTER 2. BACKGROUND 25

Table 2.3: This table summarizes the four different types of metadata used
by the Uptane Framework.

Metadata Type Description

Root Metadata

• Responsible for the distribution of public keys of
top-level Root, Targets, Snapshot, and Timestamp
roles

• SHALL contain two attributes:

– A representation of the public keys of all four
roles and each key SHALL have a unique pub-
lic key identifier

– An attribute mapping each role to its public
key and the required signatures threshold for
this role

Targets Metadata

• Contains all the information (i.e., filename, file
sizes, hashes) pertaining to the images to be in-
stalled on ECUs

• May also contain metadata about delegations,
which allow one Targets role to delegate its au-
thority to another

Snapshot Metadata

• Lists filenames and version numbers of all Targets
metadata files, providing protection against mix-
and-match attacks

• MAY also list filename and version number of the
Root metadata for backward compatibility with
the TUF

Timestamp Metadata SHALL contain:

• the filename and version number of the latest
Snapshot metadata

• One or more hashes of the Snapshot metadata file
as well as the hashing function used

CHAPTER 2. BACKGROUND 26

1. At the time of manufacture or installation, a reasonably recent copy of the re-
quired Uptane metadata should be provisioned to allow the ECU to determine
if the remote repository is legitimate when downloading the metadata for the
first time. In order to minimize the possibility of replay and rollback attacks,
Secondary ECUs with partial verification capability MUST have the Root and
Targets metadata from the Director repository. They MAY also contain the
metadata from other roles or Image Repository if necessary.

2. Secondary ECUs with the ability of full verification, MUST have full set of meta-
data from both repositories, which is comprised of Root, Targets, Snapshot, and
Timestamp. Additionally, they are required to have repository mapping meta-
data.

3. They must also have either current time or securely attested reasonably recent
time.

4. An ECU key, which is a private key and unique to the ECU. This key is used for
signing the ECU version report and decrypting the firmware image.

Vehicle Version Manifest

The vehicle version manifest, a metadata structure, MUST have the information de-
tailed below:

• An attribute encompassing the payload signature(s), each of which is specified
by:

– The public key identifier of the key used for signing the payload

– The method used for signing, such as ed25519

– The payload’s hash to be signed

– The hash function employed, such as SHA-3 256

– The signature of the hash

• A payload comprising of the following pieces of information:

– VIN or a unique identifier of the vehicle

– The unique identifier or serial number of the Primary ECU

– The ECUs version reports list. Primary ECU’s version report should also
be included in this list.

CHAPTER 2. BACKGROUND 27

ECU Version Report

This report is very similar to the vehicle version manifest outlined above. That is, it
is a metadata structure containing the signature(s) specified by an attribute (identical
to the one listed above) and a payload including the following:

• A unique identifier (e.g., a serial number) for the ECU

• Currently installed image’s filename, length, and hashes

• An indication of any security issues detected

• The latest time that can be verified by the ECU at the time of generation of this
report

• A counter or nonce for preventing replay of the ECU version report. This can
be a cryptographically generated nonce similar to the one generated for Time
Server. This value MUST not be reused.

Full vs. Partial Verification of Metadata

As indicated earlier, metadata verification can either be full or partial, depending
on the capabilities of the ECUs. Figure 2.6 shows the step-by-step process of full
verification. The process begins with loading and verifying the current time (or most
recent attested time), leading to the step two which downloads the metadata form the
Director Repository and carries on with checking if the metadata is correct. If either
the download process or the check fails, the other steps are skipped and any errors
are reported. All the subsequent steps follow the same pattern, that is, to proceed
with the next step if the current step is successful, skip all remaining steps and jump
to the error reporting, otherwise. The outcomes of the step four and step six may
result in ending with no updates and exiting the process by skipping all the following
steps. Each step is concerned with downloading and/or performing checks on different
types of metadata. While full verification has several steps, partial verification process,
in contrast, only includes a couple of steps, as it is limited to loading and verifying
the current time or securely attested most recent time followed by downloading and
checking Targets metadata from Director Repository. However, partial verification
may optionally go beyond these required basic checks (if secondary ECUs are capable
of doing so) by including additional checks. If all the checks and verification steps
proceed successfully, the firmware binaries are downloaded and installed on the target
ECU. We have provided an overview of the full and partial verification procedures in
this section, for a more in-depth and extensive description please see the official design
documentation of Uptane Framework that can be found at [39].

CHAPTER 2. BACKGROUND 28

1. Load & verify current time

Report error(s)

Yeshashes &
version numbers

match?

5. Download & check the Snapshot metadata
file from Director Repo

No new updates to
download

2. Download & check Root metadata from
Director Repo

3. Download & check Timestamp metadata
from Director Repo

4. Check previously downloaded Snapshot
metadata file from Director Repo

6. Download & check the Targets metadata
file from Director Repo

No

are there
new updates

available?

7. Download & check the Root metadata file
from Image Repo

8. Download & check Timestamp metadata
from Image Repo

9. Check previously downloaded Snapshot
metadata file from Image Repo

Yes

hashes &
version numbers

match?

Yes

No

10. Download & check Snapshot metadata
from Image Repo

11. Download & check top-level Targets
metadata file from Image Repo

12. Verify the metadata from Director &
Image Repos match

step 2
succeded?

Yes

No

step 3
succeeded?

Yes

No

No

step 5
succeeded?

Yes

No

step 7
succeeded?

No

Yes

step 8
succeeded?

Yes

No

step 10
succeeded?

No

Yes

step 11
succeeded?

Yes

No

Figure 2.6: This diagram provides a graphical representation of the full
verification (usually performed by the Primary ECU) of the metadata. The
process proceeds with the successive step if the current step is successful,
otherwise error(s) causing the failure are reported.

CHAPTER 2. BACKGROUND 29

2.2 In-Vehicle Networks and Systems

Most cars today come equipped with a variety of computing devices, known as Elec-
tronic Control Units (ECUs). A typical modern vehicle may contain a number of
different ECUs, each of which has unique responsibilities for performing one or more
functions of the vehicle. For example, one ECU may be responsible for detecting
whether there is a passenger present in the vehicle, whereas another one may be mon-
itoring the tyre pressure. In order to perform their duties correctly, these ECUs need
to communicate with each other as well as external world [14].

8 Bytes Data
S
O
F

11-bit
Identifier

I
D
E

r0 DLC CRC ACK
E
O
F

I
F
S

R
T
R

CRC

Figure 2.7: CAN 2.0A data frame structure (redrawn from [44]).

For local communication, ECUs rely on various automotive networking technologies
including Controller Area Network (CAN, see Figure 2.8 for an example), Local In-
terconnect Network (LIN), Media Oriented Systems Transport (MOST), and FlexRay.
Each of these technologies has been designed to meet specific needs of a particular
automotive application. For instance, MOST is a high-speed network technology to
support audio, video, and voice data communications. Whereas, LIN is used in auto-
motive applications requiring low network bandwidth and speed, such as mirror control
and door lock/unlock features [45].

2.2.1 CAN Bus

The latest of the several versions of the CAN specification was released in 1991 by
Bosch, which is version 2.0. There are two parts of the CAN specification, referred to
as CAN 2.0A and CAN 2.0B, the former containing an 11-bit identifier as compared
with the latter having a 29-bit identifier. The CAN specification breaks the messages
into data frames, comprising of a certain structure as shown in the Figure 2.7. A brief
definition of each term, representing a certain part of the frame, is given below:

• Start of Frame (SOF) Marking the Start Of Frame, SOF consists of a single
dominant bit, used to synchronize the nodes on the bus.

• 11-bit Identifier is used to express the priority of the message, where the lowest
value denotes the highest priority and vice versa.

• Remote Transmission Request (RTR) is a single bit, which is dominant when
information from another ECU is needed. The request is received by all the nodes;
however, the target node is determined by the identifier. While all nodes receive the
data contained in the response, it is consumed by the relevant nodes only.

CHAPTER 2. BACKGROUND 30

• Identifier Extension (IDE) is also a single bit, which indicates a standard CAN
identifier is being sent with no extension.

• Eight-Bytes Data, as the name suggests, this field represents the data (up to 8
bytes long) to be transmitted.

• Cyclic Redundancy Check (CRC) carries the 2 bytes of BCH error-correcting
checksum for error detection purposes.

• Acknowledgement (ACK) is a recessive bit (it is two bit long, first is used for
acknowledgement and the second one for a delimiter), which is overwritten to become
a dominant bit in the original message by every node receiving an accurate message
to indicate an error-free message has been transmitted. The message is discarded by
a receiving node if an error is detected, thereby leaving this bit in the recessive state,
causing the sending node to resend the message after re-arbitration. This is how the
Integrity of the data is acknowledged by each node.

• End of Frame (EOF) (a seven-bit field) indicates the end of the frame. It disables
bit stuffing and indicates a stuffing error when in dominant state. A bit of the
opposite logic level is stuffed into the data when during the normal operation five
bits of the same logic appear in succession.

• Inter-Frame Space (IFS) is comprised of seven bits, it contains the time needed
by the controller to move a received frame to the appropriate position in a message
buffer area.

Engine Control
Unit

Intelligent
Break Booster

Body Control
Module

Gear
Shif Unit

Airbag Control
Module

Adaptive
Cruise Control

Seat Control
Unit

Figure 2.8: An illustration of the CAN bus with some typical ECUs found
in a modern car.

CHAPTER 2. BACKGROUND 31

2.2.2 LIN

Founded in the late 1990s by five automobile manufacturers (Audi, BMW, Mercedes-
Benz, Volkswagen Group and Volvo Cars), Local Interconnect Network (LIN) is an
inexpensive vehicular communication protocol that utilises what is commonly known
as a master-slave model, wherein a single bus is shared by a master node and up to 16
slave nodes. A slave node cannot send a message unless it has previously been asked
by the master node to do so. Some of the key characteristics of the protocol include:

• Up to 20 kbit/s speed

• Variable length of data frame

• Time-synced multi-cast reception

• Ability of faulty nodes detection

• Flexible configurations

• Error-detection and checksum capabilities

• Low-cost silicon implementation

• Guaranteed latency times

As noted above, LIN is primarily used in the applications where safety and performance
are not key considerations.

2.2.3 FlexRay

Developed by FlexRay Consortium, FlexRay is an automotive communications proto-
col, offering enhanced data rates (up to 10 Mbit/s) to enable applications requiring
higher speed. Figure 2.9 shows format of the FlexRay frame.

CFrame ID Payload
Length Header CRC Cycle

Count Data 0 Data 1 Data 2 - - - Data N CRC CRCCRC

Header Segment

Payload Segment

Trailer Segment

11 bits 7 bits 11 bits 6 bits 0 ... 254 bytes 24 bits

Figure 2.9: FlexRay Frame Format (redrawn from [1]).

Listed below are some of the key features of this vehicular protocol:

• Supports Party Line and Start topologies

CHAPTER 2. BACKGROUND 32

• High-speed serial communication

• Fault-tolerant communication

• Supports both time-triggered and event-triggered schemes

While FlexRay was introduced as a successor to CAN, its widespread adoption is
adversely affected by the higher production costs.

2.2.4 MOST

Media Oriented Systems Transport (MOST) is used to carry multimedia data into the
car via optical fiber. MOST is a synchronous network offering multiple data channels
as well as a control channel used to set up which data channels a sender and a receiver
will use. Synchronous data channels are used to transfer streaming data (such as audio
or video signals) but MOST also implements asynchronous data transfer mechanisms
(for example while retrieving data from the Internet) by using some dedicated channels.
It offers rates going up to 24Mb/s.

MOST is a high-speed (up to 24 Mbit/s data rate) multimedia network technology
that uses a ring or daisy-chain topology for transferring multimedia (i.e., video, audio,
voice, etc.) data via plastic optical fiber.

Being a synchronous network type, MOST provides the ability to transfer streaming
data (such as video and audio) using synchronous data channels.

We outline some of the main characteristics of this technology below:

• Ability to manage up to 64 in a ring topology

• Plug and play capability - allowing easy installation/removal of MOST devices

• Support redundant double ring configuration for safety-critical applications

• Timing Master - maintains continuous MOST frames into the ring.

2.2.5 In-vehicle Infotainment

An In-Vehicle Infotainment (IVI) or automotive infotainment system is an integrated
unit (a combination of hardware and software), providing information services and
entertainment functionality to the driver and other vehicle occupants for an enhanced
in-vehicle experience.

While legacy entertainment systems were quite simple (consisting of cassette/CD
players and radios), modern IVIs offer a sophisticated set of capabilities, including nav-
igation systems, USB/Bluetooth/Wi-Fi connectivity, and video/DVD players, touch-
screen displays etc. Following is a brief overview of the various components of a typical
IVI system:

CHAPTER 2. BACKGROUND 33

Integrated Head Unit: Mounted on the car’s dashboard, a head unit provides a
user-friendly HMI (Human-Machine Interface) by means of a high-resolution touch-
screen display unit, acting as the control centre for the infotainment system.

Heads-up Display Integrated with car’s windshield, a heads-up display is transpar-
ent screen - a latest technology that shows real-time vehicle information (speed, digital
cluster, navigation maps etc.) to the driver.

Digital Instrument Cluster Replacing the old-fashioned, static displays of the
vehicle’s instruments with the digital instrument clusters for displaying speed and
tachometer, speedometer, odometer etc.

2.2.6 Onboard Diagnostic (OBD) Port

Modern vehicles have Onboard Diagnostic (OBD) ports inside them that are used for
ECU firmware updates, vehicle repairing and inspections. Implementation of these
ports is obligatory since 1998 in the USA and since 2001 for gasoline-powered vehi-
cles and since 2003 for diesel-powered vehicles in the EU respectively [46]. Onboard
Diagnostic is mainly used for reporting the data gathered by various sensors in the
car to the outside world, providing information on the health status of the vehicle.
This information is often used by service providers for fixing any reported problems
[47]. Since inexpensive OBD dongles are readily available in the market, attackers can
leverage them as an entry point for breaking into in-vehicle networks.

2.3 Attack Trees

Originally proposed by Schneier [48], attack trees are a formal, structured approach
for describing threats to a system by means of multi-levelled, hierarchical diagrams
facilitating the visualisation of various ways attackers can use to attack a system or
an asset. An attack tree is drawn following a top-down approach; that is, with the
root node at the top of the tree representing an overall goal of the attacker. Primitive
actions carried out by the attackers are depicted by the lowest level of nodes, called
leaf nodes. Inner nodes sitting between the root node and leaf nodes represent the
sub-goals of the attacker that contribute to the overall goal.

The root node and each intermediate node specify the refinement of their corre-
sponding subtrees (see Figure 2.10). The refinement can either be disjunctive (OR) -
depicted by no symbol, conjunctive (AND) - depicted by an arc, or a variant of the
conjunctive refinement, the Sequential AND (SAND) - depicted by an arc with an
arrowhead. The disjunctive or OR refinement is used to specify that at least one of
the steps (leaf nodes) is complete in order for the parent node to be considered com-
plete. Conjunctive refinement, on the other hand, requires that all steps are complete

CHAPTER 2. BACKGROUND 34

Attack Goal

Subgoal 1

Action 1 Action 2

Subgoal 2

Action 1 Action 2

Root Node

Child Nodes

Leaf Nodes

SAND Operator

AND Operator

OR Operator

Figure 2.10: Example Attack Tree: This example attack tree depicts a
root, two children, and four different leaf nodes. Annotations indicate the
type of refinement (i.e., AND, OR, SAND operators), type of role that is
assumed by each of the node types.

before an attack can be considered complete. Finally, steps of a SAND tree must be
performed in the specified order for the attack to succeed.

Definition 2.3.1. With A denoting a set of potential atomic actions of the attacker,
the elements of attack trees are A∪ {OR,AND,SAND}; the following grammar can
be used to construct an attack tree (where 0 ∈ A):

C ::= 0 | OR(C, . . . , C) | AND(C, . . . , C) | SAND(C, . . . , C)

The set of all attack trees is denoted by T, which is consistent with the formalisation
of the attack trees proposed in [49, 50].

Example 1: Figure 2.11 presents an example attack tree with the overall goal of
delivering a malicious update to an IoT device. It is to be noted that the overall attack
tree is a SAND tree with the first child node (on the left) being an AND subtree and
the second a leaf node (representing an atomic attacker action). The sequential AND
refinement has been applied because the ordering of the actions execution is important.
The AND subtree is composed of two children nodes, one of which is in turn is an OR
subtree and the other one a leaf node. As preparing the malicious update needs access
to the cryptographic keys for signing the software (SW) as well as crafting (i.e., writing
the malicious program) the update; hence, an AND or conjunctive refinement was the
most appropriate choice. Note that both of these actions can be performed in any
order. Since compromising cryptographic keys can be accomplished in two different

CHAPTER 2. BACKGROUND 35

ways (i.e. by bribing the admin or stealing the keys); therefore, a disjunctive (or an
OR) refinement has been used to express this scenario. Following is a representation
of the attack tree displayed in Figure 2.11, which has been written using the term
notation introduced above. Please note that for convenience, only keywords have been
used to denote attacker atomic actions (i.e. 0 ∈ A).

Deliver Malicious
Update to IoT Device

Prepare Malicious
Update

Compromise Cryptographic
Keys for SW Signing

Bribe Admin to
Obtain the Keys

Steal the Keys

Craft Malicious
Update

Send the Update
to the Target IoT

Device

Figure 2.11: An example SAND attack tree constructed following the
grammar defined above. This overall SAND aims at delivering a malicious
update to ta an IoT device.

C = SAND

(
AND

(
OR

(
�A814 �3<8=, (C40; 4HB

)
, �A0 5 C *?30C4

)
, (4=3 *?30C4

)
Prior studies have provided formal semantics for attack trees, some of which include

multiset semantics introduced by Mauw and Oostdijk in [50], set semantics defined by
Bossuat and Kordy in [51], path semantics formalised by Audinot et al. in [52], serial-
parallel graph semantics presented by Jhawar et al. in [49], and sequence semantics
by Mantel and Probst introduced in [53]. In order to present the notion of how attack
trees can be formally expressed and interpreted, we present the SP Graph Semantics
in the following subsection, and the Sequence Semantics in Chapter 6 (where, which

CHAPTER 2. BACKGROUND 36

are more closely related to our own work presented in this thesis for deriving test cases
by attack-tree analysis. It is noteworthy that, as noted in [54], these semantics (i.e.
GP Graph and Sequence semantics) are equivalent.

2.3.1 SP Graph Semantics

Attack trees can be interpreted as a set of series-parallel (SP) graphs [49] for the
purpose of defining the semantics of the attack tree. With two unique vertices source
and sink (where source is a vertex with no incoming edges and sink is a vertex that
has no outgoing edges), an SP graph is an edge-labelled directed graph that can be
constructed with two operators for sequential and parallel composition of graphs. A
definition of the source-sink graphs is required before defining SP graphs. Following
formal definitions of source-sink graphs and SP graphs have been used from [49]:

Definition 2.3.2. A source-sink graph over A is a tuple � = (+, �, B, I) where + is a
set of vertices, � is a multiset of edges with support �∗ ⊆ + ×A×+ , B ∈ + is a unique
source and I ∈ + is a unique sink, and B ≠ I.

The sequential composition of two source-sink graphs � and �′ (denoted by � ·�′)
is the graph that results from taking the disjoint union of � and �′ and concatenating
the sink of � with the source of �′. Hence, if we denote the disjoint union by ¤∪ and
the multiset of � with � [B/I] , where vertices B replace I, we can then define � ·�′ as:

� · �′ = (+{I} ¤∪+ ′, � [B′/I′] ¤∪ �′, B, I′)

Denoted by � | | �′, parallel composition is similar to the sequential composition; the
only difference is that two sources and two sinks are identified. This can be formally
defined as:

� | | �′ = (+ {s, z} ¤∪+ ′, � [B′/B,I′/I] ¤∪ �′, B′, I′)

Now that the definition of the source-sink graph has been presented, we proceed
with providing the definition of the SP graphs, which will help us define the attack-trees
formal semantics by interpreting them as SP graphs.

Definition 2.3.3. The set G(% over A is defined inductively by these rules:

For 0 ∈ A,
0−→ is an SP graph,

If � and �′ are SP graphs, then so are � · �′ and � | | �′.

Example 2: The following construction corresponds to the SP graph shown in the
Figure 2.12.

0−→ .

(((1−→ || 2−→ || 3−→
)
.
5
−→

)
| | 4−→

)

CHAPTER 2. BACKGROUND 37

a

b

fc

d

e

s z

Figure 2.12: An example SP graph, with the source represented by s and
sink represented by z.

The formal definition presented below shows how the full SP semantics of a given attack
tree can be defined.

Definition 2.3.4. The SP graph semantics for attack trees in T can be given by the
following function:

v·w
(%

: T −→ %(G(%)

This is defined recursively. If 0 ∈ A, C8 ∈ T, and 1 ≤ 8 ≤ :, then

v0w
(%

= { 0−→}
vOR(C1, ..., C:)w(% =

⋃:
8=1vC8w(%

vAND(C1, ..., C:)w(% = {�1 | | ... | |�: | (�1, ..., �:) ∈ vC1w
(%
× ... × vC:w(%}

vSAND(C1, ..., C:)w(% = {�1 · ... · �: | (�1, ..., �:) ∈ vC1w
(%
× ... × vC:w(%}

where vCw
(%

= {�1, ..., �: } corresponds to a set of possible attacks �8

Example 3: The following SP semantics corresponds to the attack tree t presented
in the Figure 2.13. As can be seen, this overall AND attack tree has two subtrees,
each with two different leaf nodes for representing atomic actions. We use this simple
attack tree to show SP semantics of the attack tree. Since the overall tree is an AND,
hence both of its children subtrees must be complete. It can be observed that the OR
subtree on the left has two leaf nodes denoted by a and b, representing two different
possible ways to achieve the subgoal of this particular subtree. The SAND tree on
the right also has two leaf nodes denoted by c and d, both of which must be performed
in the given order in order for the parent subtree to be considered complete. Overall,
either of the actions from the first subtree (i.e., OR subtree) needs to be combined
with both of the actions in the second subtree (i.e., SAND subtree) to achieve the
overall goal of the parent AND tree.

vCw
(%

= { 0−→ || 2−→ .
3−→, 1−→ || 2−→ .

3−→}

CHAPTER 2. BACKGROUND 38

AND Tree

OR Subtree

a b

SAND Subtree

c d

Figure 2.13: An example AND with two different subtrees. See associated
SP semantics above.

2.4 Threat Modeling

Threat modeling is a security analysis technique that helps identify risks by using ab-
stractions [55]. It plays a vital role in automotive security engineering by facilitating
in the identification of potential threats and relevant defensive mechanisms. In partic-
ular, threat modeling helps model the system and its trust assumptions as well as aid
in modeling adversaries in order to understand their motivations, capabilities, tactics,
techniques, and procedures.[56]. Several threat modeling methods and techniques have
been proposed, some of which are briefly described below:

2.4.1 CORAS

[57] - based on Australian Risk Management Standard AS/NZS 4360:2004 - is a threat
modeling and specification language, compromising of five main activities: 1) estab-
lishing the context, 2) identifying risks, 3) analysing risks, 4) evaluating risks, and 5)
treating those risks. It uses specialized UML use case diagrams for modeling threats
and undesirable behaviours.

2.4.2 PASTA

PASTA or Process for Attack Simulation and Threat Analysis [58] is a seven-stage
threat modeling framework aiming at providing an attacker-centric view of the sys-
tem, which can aid in developing relevant, effective mitigation strategies against cyber
threats ad attacks. The seven stages of the PASTA include: 1) define the objectives,
2) define the technical scope, 3) decompose the application, 4) analyse the threats, 5)
analyse vulnerabilities and weaknesses, 6) model the attacks, and 7) analyse risk and
its impact.

CHAPTER 2. BACKGROUND 39

2.4.3 T-MAP

T-MAP [59] is an attack-path-analysis based threat modeling method for the quantifi-
cation of the security threats based on the total severity weights of the relevant security
paths for commercial-off-the-shelf (COTS) systems. UML class diagrams are used for
developing the attack path models. Four different class diagrams are generated for each
step: access class diagram, vulnerability class diagram, target asset class diagram, and
affected value class diagram.

2.4.4 STRIDE

STRIDE is a cybersecurity threat identification and classification model providing a
structured approach for grouping threats into six threat categories: Spoofing iden-
tity, Tampering with data, Repudiation, Information disclosure, Denial of service, and
Elevation of privilege [60], as summarized in Table 2.4. While the threat modeling
methodologies/systems introduced above have their own merits, in this study we use
STRIDE for the following key reasons: Firstly, STRIDE is a mature, well-known threat
modeling tool that is extensively used in both automotive industry and research set-
tings. Secondly, STRIDE model is an extension of the familiar and famous CIA triad
(Confidentiality, Integrity, Availability). Finally, STRIDE has an associated threat-
modeling tool, as explained in detail below (providing the ability to use specialised,
extensible automotive-specific templates) that we leverage in this study for threat enu-
meration, which contributes to our attack-tree construction process.

2.4.5 Threat Modeling Tool

Microsoft’s Threat Modeling Tool (TMT), which was originally developed for support-
ing its well-known Secure Development Lifecycle (SDL) process for a systematic identi-
fication of various security threats during the initial phases of the software development
lifecycle [61]. TMT, as its name implies, allows security analysts to model the target
system by employing one of the standard notations, known as Data Flow Diagram
(DFD), for visualising system components, information flows and trust boundaries for
the identification and classification of various threats using the STRIDE threat clas-
sification model. The threat modeling tool has been around for several years, and its
adoption and application has not been confined to secure software engineering only, it
is also widely used to support security assessments in other domains, including auto-
motive cybersecurity testing, such as [56, 62, 63, 28].

Figure 2.14 shows the standard symbols used for modeling data flow diagrams.
A data flow depicted by a one-sided arrow, is used to represent flow of information
from one element to another. A process, depicted using a circle, is used to represent
computations or running programs. A data store is depicted by two horizontal parallel
lines and is used to represent files, databases, and registry keys. External Interactors,
also known as external entities, are external actors, providers, and consumers of the

CHAPTER 2. BACKGROUND 40

Table 2.4: An overview of the STRIDE model summarizing threat cate-
gories and relevant affected security proprieties.

Threat Definition Property

Spoofing identity S Assuming the identity of a human
or non-human system entity for
achieving a malicious goal

Authentication

Tampering of data T Making unauthorized changes to
data or code

Integrity

Repudiation R Refusing to accept the responsi-
bility of a performed action

Non-repudiation

Information disclosure I Disclosing confidential informa-
tion to unauthorized parties

Confidentiality

Denial of service D Causing disruption to a system
service so users cannot access or
use it

Availability

Elevation of privileges E Obtaining higher level of privi-
leges than originally granted

Authorization

data from the system. Finally, a trust boundary, depicted by a dotted line, is an
extension to the standard DFDs for showing separations between trusted and untrusted
components.

2.5 Risk Assessment

The process involving identification, estimation, and prioritization of risks to the or-
ganizational operations, assets, and individuals is commonly referred to as risk assess-
ment. There are two key factors that are used to determine the level of risk: likelihood
and impact. Likelihood - a weighted risk factor - that refers to the probability of a given
threat’s capability of exploiting one or more vulnerabilities. Whereas the magnitude
of the harm or damage is referred to as the impact [64].

2.5.1 Assessment Approaches

While the overall security risk assessment process is generally well defined, its sub-
processes can be implemented in different ways based on the context and specific needs
of a particular organization. As a result of this flexibility, a plethora of risk assessment

CHAPTER 2. BACKGROUND 41

Figure 2.14: This figure shows different symbols used in Microsoft’s
Threat Modeling Tool for drawing Data Flow Diagrams in order to enu-
merate various potential threats.

tools, techniques and approaches have been introduced, including the well-known NIST
SP800-30, OCTAVE, and OWASP Risk Rating Methodology. Some risk assessment
approaches (such as NIST SP800-30) are threat oriented - i.e. as first steps, they in-
volve identification of the threat sources/events followed by identification of exploitable
vulnerabilities along with the probability and impact of the threat events. In contrast,
other approaches (such as OCTAVE) are asset oriented - i.e., they focus on identifying
critical assets before determining how those assets can be targeted and the magnitude
of the resultant damage [65].

There are numerous methods (i.e., quantitative, qualitative, semi-quantitative) that
can be used for the assessment of the risk and its associated contributing factors, each
with certain merits and limitations. Approaches employing quantitative methods use
numerical values - where the meaning and proportionality of the values are used consis-
tently both inside and outside of the assessment context. While these types of assess-
ments are proved to be effective for cost-benefit analyses of alternative risk treatment
options, the meaning of the assessment results may not always be clear and may suf-
fer from subjective interpretations. Qualitative approaches, on the other hand, assess
the risk by employing non-numeric categories (e.g., low, moderate, high). While such
approaches are effective in terms of communicating the assessment results to the stake-
holders/decision makers, the range of values in qualitative approaches is often small as
compared to quantitative assessments, resulting in difficulties of prioritization/compar-
ison of reported risks. Annotations and use of tables can enhance the repeatability and
reproducibility of the qualitative assessments. Finally, semi-quantitative approaches -
offering the benefits of both the quantitative and qualitative approaches - use scales,

CHAPTER 2. BACKGROUND 42

bins or representative numbers whose meanings and values are not maintained in other
contexts [64].

2.5.2 OWASP Risk Assessment Tool

This study uses the OWASP risk assessment tool (shown in Figure 2.15) [66] - a web-
based tool that uses OWASP Risk Rating Methodology [67], which is comparatively
simple, easy to use, and can be customised. Similar to the risk assessment approach
introduced in the ISO/SAE 21434 standard, this tool calculates the overall risk severity
by considering various factors (i.e. threat agent factors, vulnerability factors, technical
impact factors, and business impact factors). A brief overview of each of these factors
is presented below.

Figure 2.15: OWASP Risk Assessment Tool.

Probability or Likelihood Factors: These include attacker’s skill level (i.e., level
of technical expertise of the threat agent), motive (i.e., how motivated the adversary
is), opportunity (i.e, what resources are required for the exploitation of the vulnera-
bility), population size (i.e., how large is the threat agents group), ease of discovery
(i.e., how easy is the discovery of this vulnerability by the threat agent group), ease of
exploitation (i.e., how easy it is for the threat agents group to exploit this vulnerabil-
ity), awareness (i.e., how well the adversaries know this vulnerability), and intrusion
detection (i.e.,likelihood of the detection of the exploitation) [68].

CHAPTER 2. BACKGROUND 43

Impact Factors: These factors include loss of confidentiality, integrity, availability,
and accountability of the concerned asset. Other factors include the extent of the
financial and reputation damage as well as any non-compliance and privacy violations.

2.6 Model-Based Security Testing

MBST is concerned with specifying, documenting and generating security test ob-
jectives, test cases, and test suites (where a test case involves validating whether the
system is working as expected, and a test suite is simply a set of such test cases grouped
together for execution purposes [69]) in a systematic and efficient manner [70]. MBST
primarily uses models to verify if the target system meets its security requirements [71].
Although, MBST is relatively a new area of research, there are few studies employing it
for the security testing of embedded and concurrent systems (involving cyber-physical
components), a couple of which are presented below:

Santos et al. [72] propose their automotive cybersecurity testing framework, which
uses Communicating Sequential Processes (CSP) for representing the models of the
vehicle’s bus systems as well as a set of attacks against these systems. CSP - a language
with its own syntax and semantics - is a process-algebraic formalism used to model
and analyze concurrent systems. Using CSP, they create architectures of the vehicle’s
network and bus systems along with the attack models. One of the key challenges that
authors claim to address in their work is the scalability of the testing in distributed
environments. Their system model is comprised of networks, bus systems connected to
each network, and the gateways. Additionally, network parameters, such as latency can
also be modelled. An attack model is also created, defining the attackers’ capabilities
as channels. An attacker’s capabilities may include command spoofing, communication
disruption, eavesdropping and influencing behaviours of the system. According to the
authors, the ability for a detailed definition of the scope of the attack and test cases is
a key advantage of using these models for security testing.

Wasicek et al. [73] present Aspect-Oriented Modeling (AOM) as a powerful tech-
nique for security evaluation of Cyber-Physical Systems (CPS), especially focusing on
safety-critical elements in automotive control systems. AOM is based on the ideas
inspired by aspect-oriented programming, which is concerned with crosscutting as-
pects being expressed as concerns (e.g., security, quality of service, caching etc.) [74].
Aspect-oriented modeling is used to express crosscutting concerns at a higher level
of abstraction by means of modeling elements [75]. The technique presented by [76]
models attacks as aspects, and aims at discovering and fixing potential security flaws
and vulnerabilities at design time, because it becomes highly costly to find and fix the
bugs if they are discovered later in the development life-cycle stages for automotive
systems. Some of the main benefits that can be achieved by using AOM for security
assessment of automotive systems include: separation of functional and attack models
into aspects allows domain experts to work on different aspects without any interfer-
ence; real-world attack scenarios involving high degree of risks can be modelled easily;

CHAPTER 2. BACKGROUND 44

general models can be reused in other systems. An automotive case study is presented
by the authors, involving the adaptive cruise control system as an example. They use
a special modeling and simulation framework, called Ptolemy II, for developing their
models. The authors intended to explore the effects of attacks on the communication
between two vehicles. A discussion of four different attacks (i.e., man-in-the-middle,
fuzzing, interruption, and replay) is presented.

Both of the works presented above rely on the models of the systems rather than
performing any practical testing involving test scripts to be executed against the target
systems, providing no observable insights on any behavioural/functional changes in the
system under test. The approach applied in this thesis, on the other hand, uses threat
models for automated derivation and execution of security test cases by combining the
MBST with penetration testing.

2.7 Chapter summary

In this chapter, we provided relevant and essential background information for the
work presented in this thesis, exploring various relevant areas; starting with an ex-
tensive overview of the automotive OTA updates, we described various aspects of this
modern technology by citing some the key developments in the area; following this, we
introduced the attack trees along with two types of formal semantics defined in the
literature, as they provide the basis for our test case generation approach; addition-
ally, a brief overview of the threat modeling, focusing on STRIDE methodology and
related tool that are used extensively for the threat enumeration in this work is also
provided; finally, we included a summary of a couple of studies on MBST approaches
proposed for the security testing of embedded and safety-critical systems, highlighting
their limitations.

Chapter 3

Literature Review

As suggested by its title, this chapter presents an overview of the findings, insights,
and state-of-the-art from the automotive cybersecurity domain as a result of the liter-
ature review conducted over several months of this doctoral research. To begin with, a
number of major intrusion points exposed by a connected car are described along with
an overview of the relevant security threats and associated countermeasures and miti-
gations, citing new developments in the field. Following this, a comprehensive survey
of the testbeds and testing approaches proposed in the related scientific literature is
presented, by critically analysing their characteristics and highlighting the merits and
demerits of each. Figure 3.1 presents a graphical overview of this chapter’s structure,
providing a breakdown of the sections and corresponding subsections.

3.1 Automotive Cybersecurity: State of the Art

Software flaws or vulnerabilities in the vehicle can lead to serious consequences, ranging
from incidents of information theft to life-threatening situations. Numerous previous
studies show how a vehicle can be maliciously controlled by exploiting one or more
weaknesses in its software systems. Koscher et al. [7] demonstrate that it is possible
for an adversary to maliciously influence a car’s behaviour (e.g., engaging or disengaging
its brakes) if they are able to access the car’s internal network.

A connected vehicle may have several internal and external connections for accom-
plishing various important tasks. While these connections support correct functioning
of different applications in the car, they can be exploited by cybercriminals to launch
cyberattacks targeting various digital systems in the vehicle. Some of the external
connections to the vehicle include cellular network, Wi-Fi, Bluetooth, Keyless Entry
System (KES), and Tyre Pressure Management System (TPMS). Whereas, OBD, USB,
and in-vehicle infotainment are some of the internal connections [77]. This section pro-
vides an overview of some of the common cybersecurity threats and risks faced by
modern automobiles.

45

CHAPTER 3. LITERATURE REVIEW 46

Chapter 3: Literature Review

3.1 Automotive Cyber
Security: State of the Art

3.2 Testbeds for Security
Evaluation of Connected

Cars
3.4 Testing Approaches in
Automotive Cybersecurity

3.3 Comparative Analysis
of Automotive

Cybersecurity Testbeds

3.5 Chapter Summary

3.1.1 CAN Vulnerabilities
and Mitigations

3.2.1 Open Car Testbed
and Network...

3.2.2 A Mobile Testing
Platform

3.2.3 A Cyber Assurance
Testbed for Heavy...

3.2.4 Testbed for
Automotive Cybersecurity

3.2.5 Testbed for Security
Analysis of Modern...

3.2.6 PASTA: Portable
Automotive...

3.2.7 Hardware-in-loop
based Automotive...

3.3.1 An Overview of
Supported Network...

3.3.2 Supported Attack
Surfaces...

3.3.3 Adaptability

3.3.4 Portability

3.3.5 Fidelity

3.3.6 Cost

3.3.7 Safety Implications

3.4.1 Automotive Fuzz
Testing

3.4.2 Automotive
Vulnerability Scanning

3.4.3 Automotive
Penetration Testing

3.1.2 IVI Vulnerabilities
and Mitigations

3.1.3 OBD Vulnerabilities
and Mitigations

Figure 3.1: Graphical Overview of the Chapter.

3.1.1 CAN Vulnerabilities and Mitigations

Although CAN is a robust and fault-tolerant network technology, it lacks any security
mechanisms because it has not been designed with security in mind [78]. Therefore,
it is vulnerable to numerous cybersecurity threats (such as, eavesdropping/man-in-
the-middle attacks compromising confidentiality and privacy, denial-of-service attacks
affecting availability of the information and services, spoofing attacks compromising
integrity and authenticity) which have been reported in many existing studies, such as
[79, 19, 80].

Chen and Lin [81] present two different DoS attacks on automotive CAN bus by
exploiting the major inherent flaws in the CAN protocol for demonstarting the impact
of such attacks on the CAN bus efficiency. Their experimental results suggest that the
attacks had significant impact on the bus efficiency. Furthermore, they also conclude
that the entire CAN network could be jeopardized by a single attacker by injecting fake
can messages repetitively. While the first attack involves sending CAN messages by
using a defined identifier with invalid data, the second one includes sending irregular
data with the smaller CAN message ID. Their experimental results show that both
attacks were successful in blocking the operation of the CAN bus. Consider another

CHAPTER 3. LITERATURE REVIEW 47

example attack wherein an adversary could gain access to the internal network of the
vehicle remotely followed by injecting messages in order to compromise and control
an ECU, and even the vehicle itself. Once an ECU is compromised, the attacker can
potentially control the safety-critical functions of the car, such as braking, acceleration,
and steering. It is however important to note that safety-critical components usually
reside on a network that is separate from other non-critical components. Nevertheless,
hackers may still be able to break into these networks by leveraging a gateway ECU
[16].

Other examples of CAN bus exploitation include installation of a malicious diagnos-
tic device to send packets to the CAN bus, using CAN bus to start a vehicle without
a key, leveraging the CAN bus to upload malware, installing a malicious diagnostic
device in order to track the vehicle and enable remote communications directly to the
CAN bus [82].

Several solutions have been proposed to provide protection against security threats
to the CAN bus, which include employing encryption for preventing information dis-
closure and tampering, authentication mechanisms for dealing with spoofing attacks
as well as network segmentation and intrusion detection and prevention systems as
protection against DoS attacks. Changing network topology can also be a useful strat-
egy whereby the critical and non-critical ECUs are separated by placing in different
networks. However, one particular concern associated with this network segmentation
approach is the fact that these networks are interconnected using a central gateway
unit, which could be compromised to send malicious messages to the ECUs residing on
different networks [83].

Part of the well-known standard Automotive Open Software Architecture (AU-
TOSAR),Secure Onboard Communication (SecOC) is an AUTOSAR module that re-
leased in version 4.2 of the specification, which offers protection against tampering,
spoofing and replay attacks. It may use either symmetric or asymmetric cryptogra-
phy for ensuring the authenticity and integrity of the messages. In order to ensure
authenticity of the message sender, SecOC uses either digital certificates or Message
Authentication Code (MAC) [84].

Scientists are constantly striving to discover novel ways or applying existing ap-
proaches in other domains for developing effective solutions that can help strengthen
the system security. One example of such efforts is a solution for monitoring and
detecting cybersecurity attacks on CAN bus, proposed by Kalutarage et al. [85], a
contextualized anomaly detector, which employs message sequence modeling using n-
gram distributions, and relying on benign data for threshold estimation and training
purposes. The authors evaluate their proposed solution by means of two spoofing at-
tacks targeting RPM and gear gauge messages. The experimental results demonstrate
their approach was able to detect the attacks with hundred-percent accuracy using a
small fraction of a second.

CHAPTER 3. LITERATURE REVIEW 48

3.1.2 IVI Vulnerabilities and Mitigations

Infotainment systems, one of the major attack vectors in connected cars (as depicted in
the Figure 3.1), are growing both in terms of their capabilities and popularity. As more
and more features are being added to infotainment systems, this will likely to increase
the number of new vulnerabilities, attack vectors, and threats that can undermine the
privacy and safety of the vehicle and its occupants. Typically, an IVI is interconnected
with the CAN bus for communicating with other devices. From cybersecurity perspec-
tive, this connectivity may have serious implications. Prior studies have evidenced that
cybercriminals can target automotive infotainment systems for mounting sophisticated
attacks on automobiles [86].

An attacker can exploit weaknesses in the infotainment system or can use it as an
entry point to gain access to in-vehicle network, thus to safety-critical features of the
vehicle. Some possible use cases include utilising a remote connection to the infotain-
ment system for exploiting the application in the IVI responsible for handling incoming
calls, accessing the Subscriber Identity Module (SIM) through the IVI, installing ma-
licious code on the infotainment system, putting the infotainment console into debug
mode, using a malicious application to access the internal CAN bus network, using a
malicious application to eavesdrop on actions taken by vehicle occupants. Mitigating
strategies for addressing the security weaknesses include the following [87]:

• USB sticks with only supported file systems should be allowed to connect

• Security permissions for mounted USB sticks should be limited to read-only

• USB configurations should be restricted to enable essential USB services only

• Updates should always be signed or encrypted

• Authentication of the update procedure should be ensured

• Security of the key storage should be ensured

• Failed updates should be rescued by fall back mechanism

• Onboard applications should only be installed from trusted and official sources

• High-risk applications should be isolated using containers or virtual machines

• Strict access models (e.g., RBAC or PBAC, etc.) should be applied by dividing
different security domains for effective application management

• Proper configurations of wireless protocols should be ensured

• Network routing should be restricted to pre-defined normal behaviour

• Disable all Bluetooth profiles that are not in use.

CHAPTER 3. LITERATURE REVIEW 49

Table 3.1: Attack surfaces and security threat associated with In-Vehicle
Infotainment interfaces.

Component/attack
surfaces

Threat/attack vectors

USB Port

• Malware injection

• Malicious firmware updates

• Port scanning (USB-to-Ethernet)

Wireless connectivity
(Wi-Fi, Bluetooth,
Cellular, GPS)

• Packet sniffing

• Protocol-specific exploits

• Jamming

• GPS tracking, spoofing

• MITM

Multimedia playback

• Tampering with media services, Bluetooth, and
Wi-Fi stacks

External diagnostic

• Fuzzing attack

Onboard applications

• Application related vulnerabilities

CHAPTER 3. LITERATURE REVIEW 50

3.1.3 OBD Vulnerabilities and Mitigations

Nilsson and Larsan in [88] demonstrate how a virus can be injected on to the CAN
bus through the OBD port that issues some messages for controlling some aspects of
the vehicle behaviour (e.g., locks, brakes, etc.) if certain conditions are found to be
true. Unlike the attack mentioned above in [88], which requires physical access to
the vehicle, many modern automobiles allow remote access to these dongles via Wi-Fi
connections from a computer, allowing adversaries to launch cyberattacks remotely.
As reported in a survey [89], more than 50% of the surveyed dongles, were found to be
containing vulnerabilities (e.g., exposed keys, weak encryption), which can be exploited
by cybercriminals to compromise the security of a vehicle.

Intrusion detection systems and firewalls are some of the major countermeasures
used for dealing with automotive OBD-specific security threats and cyberattacks. One
of the recent studies aiming at devising innovative solutions to address security chal-
lenges in this area includes an OBD anomaly detector proposed by Rumez et al. [90],
which is capable of detecting anomalies in automotive diagnostic applications by lever-
aging a statistical language model. The authors use two different n-grams models (i.e.,
byte-based and sequence-based) to analyze the incoming diagnostic frames for deter-
mining whether the sequences and embedded bytes are contextually legitimate and
valid.

By compromising one of the connections listed above, cybercriminals can potentially
attack in-vehicle systems in order to take over a vehicle remotely, shut down it, unlock
it, track it, thwart its safety systems, install malware on it, or spy on its occupants.
For example, an adversary can access the vehicle’s internal network or the remote
diagnostic system remotely by means of cellular connection. Similarly, an attacker can
exploit the Wi-Fi connection for gaining access to the vehicle network (from up to 300
yards), intercepting data traffic of the Wi-Fi network, breaking the Wi-Fi password
and more [77].

3.2 Testbeds for Security Evaluation of Connected

Cars

Systematic cybersecurity evaluation of automotive systems is a non-trivial, critical
task. Comprehensive security assessment requires a disciplined and well thought out
approach. As opposed to an ad-hoc testing approach which often suffers from sub-
jective prioritization of test cases leaving numerous undiscovered vulnerabilities in the
system, a methodical approach increases the chances of detecting more flaws. Both
the testing approaches and the testing environments play crucial role for discovering
security loopholes in a system; we conducted a comprehensive survey of the automotive
testbeds and testing approaches, which is presented below. In this section we present an
overview of seven different automotive cybersecurity testbeds that have been proposed
in the last ten years.

CHAPTER 3. LITERATURE REVIEW 51

Testbeds can generally be categorised in three different types: simulation based,
hardware based, and hybrid. Simulation-based testbeds rely solely or substantially on
software to simulate the behaviour of ECUs and in-vehicle networks. Since they do
not include real cyber-physical components, simulation-based testbeds are generally
cheaper to build, and provide a safer environment for the testers. Hardware-based
testbeds, on the other hand, include real or emulated hardware components. As op-
posed to software-based testbeds, hardware-based testbeds enable testers to study in-
teractions between components through physical inputs and outputs. Hybrid testbeds
include both software and hardware components, offering strengths of simulation-based
and hardware-based testbeds.

Table 3.2 presents an overview of the surveyed testbeds, indicating whether they
are simulation-based, hardware-based, or hybrid. Mobile testing platform from [91]
is the only testbed that uses real physical components and a vehicle (go-cart) for
investigating cybersecurity threats. OCTANE and the Testbed for Security Analysis
of Modern Vehicle Systems are hybrid testing environments. All other testbeds rely on
virtual/software components only.

Table 3.2: Types of Automotive Cybersecurity Testbeds

Name of Testbed Test
Platform

Year Reference

Open Car Testbed and Network Experiments
(OCTANE)

Hybrid 2013 [92]

Mobile Testing Platform Hardware 2015 [91]

Cyber Assurance Testbed for Heavy Vehicle
Electronic Controls

Simulator 2016 [93]

Testbed for Automotive Cybersecurity Simulator 2017 [94]

Testbed for Security Analysis of Modern Vehicle
Systems

Hybrid 2017 [95]

Portable Automotive Security Testbed with
Adaptability (PASTA)

Simulator 2018 [96]

Hardware-in-loop based Automotive Embedded
Systems Cybersecurity Evaluation Testbed

Simulator 2019 [97]

CHAPTER 3. LITERATURE REVIEW 52

GUI Layer XML
Editing

Interface
Bus

Control
Bus

Monitor

Processing
Layer XML

Access
Data

Converter

Thread
Layer Transmit

Thread
Receive
Thread

XML File
Hardware
Middle
Layer

FlexRay
Interface

CAN
Interface

Hardware
Layer CAN-AVR

Interface
Kvaser

API

Figure 3.2: OCTANE: Software package architecture. (redrawn from [98])

3.2.1 OCTANE

OCTANE [92] includes a hardware framework and a software package providing capa-
bilities to reverse engineer and test automotive networks. In particular, the tool can
be used for fuzz testing various proprietary vehicular network protocols.

The software package (see Figure 3.2 for the software package architecture) allows
transmission and monitoring of CAN messages for general purpose network diagnostic
and debugging as well as automated replay testing of Electronic Control Units (ECUs),
whereas the hardware framework assists in setting up hardware components of the
automotive networks for two main different configurations: lab setup and real-world
setup. The hardware framework outlines a structured step-by-step approach to set up a
particular environment without prescribing any specific type of hardware components.

The testbed has been designed to enable entry into automotive cybersecurity test-
ing research and teaching in a safe and cost-effective way. In order to maintain clear
separation of concerns between software and hardware components, the hardware mid-
dle layer plays a pivotal role. This makes it easy to add a new hardware adapter to
replace the existing one without affecting other layers. In order to enable adaptability

CHAPTER 3. LITERATURE REVIEW 53

and flexibility, the software package has been designed using a layered architecture
consisting of a presentation layer, a business layer composed of a processing layer and
a thread layer, a hardware middle layer, and a hardware layer.

This testbed allows security testing of various vehicular network protocols including
CAN, LIN, MOST and FlexRay. An appropriate adapter needs to be used when
working on a specific network technology. One of the main limitations of the testbed
is that it only uses the OBD port as an attack surface. The testbed is not capable of
testing vulnerabilities related to wireless connectivity. We observe that although the
source code is available to download on the Google Code platform, we were unable to
find any related documentation.

3.2.2 A Mobile Testing Platform

Miller and Valasek [91] implemented a mobile testbed by modifying a go-cart to emulate
a real vehicle. They equipped it with various ECUs and sensors, which help study the
behaviour of actual devices in an economical way. As compared to a real vehicle, there
is low financial risk involved, because the go-cart is much cheaper than a real vehicle.
However, risk of physical injuries is still present as it is a moving vehicle.

One of the major capabilities of the real vehicle they included was a power steering
control module (PSCM) on the go-cart. Additionally, they integrated different sensors
including proximity and speed sensors. A real pre-collision system was also incorpo-
rated for actual distance readings while the vehicle is in motion. While using a moving
vehicle instead of a bench setup certainly enabled the testers to study the behaviour of
the moving vehicle, which is generally not possible with a setup on a bench, there are
some shortcomings as well that the original developers of the environment identified,
as outlined blow:

While real components were used in the go-cart, they may not represent the com-
plete functionality and behaviour of an actual car. For example, the developers note
that PSCM does not work properly after some right and left turns, as it enters its final
state. Another limitation reported by authors is steering wheel radius that does not
allow steering to be controlled by the CAN bus. This limitation was also a hurdle for
auto-park capability, which otherwise could have been realized. Finally, remodelling of
the go-cart vehicle is another key challenge for the researchers who may be interested
in using this setup. To summarize, while this mobile testing platform enables the tester
to evaluate the impact of of cyberattacks on the moving vehicle cost-effectively, it has
some considerable limitations as well.

3.2.3 A Cyber Assurance Testbed for Heavy Vehicle Elec-
tronic Controls

This testbed [93] has mainly been proposed for cybersecurity testing of heavy vehi-
cles remotely. It primarily supports J1939 networks that are found in heavy vehicles

CHAPTER 3. LITERATURE REVIEW 54

Sensor Simulator

Node ControllerECU
Node Controller

ECU

. . .

Node 1 Node N

Backbone

Figure 3.3: Conceptual diagram of the testbed showing the isolation of the
modules from the backbone (adapted from [93]).

including buses and trucks. Authors used real ECUs, Linux-based simulated node con-
trollers for their testing setup. The testbed components include an electronic brake
controller, engine control module, backbone, node controller, power supply, switch,
sensor simulator, and telematics along with associated antennas. Figure 3.3 presents a
conceptual diagram of the testbed showing the component arrangement that involves
isolating each module from the backbone.

The testbed allows the researcher to study and manipulate the network traffic by
providing various features. For example, one of the distinctive characteristics of this
testbed is the capability of remote experimentation, which allows the analyst to access
the data remotely without any physical interaction with the vehicle. For this purpose,
the authors of the testbed introduced a custom-built five-layer application, as shown
in the Figure 3.4.

The five layers are web interface, experiment processing, experiment logic, CAN
data processor and a database for experiment and J1939 data. The web interface
layer allows the tester/researcher to interact with ECUs for monitoring and modifying
network traffic. Experiment processing layer is responsible for converting the CAN
messages into a human readable format. The database layer is mainly used for storing
the experiment data.

3.2.4 Testbed for Automotive Cybersecurity

Fowler et al. [94] built a testbed for automotive cybersecurity testing consisting of an
established industry, real-time CAN simulator from Vector Informatik.

The simulator along with its associated software CANoe is widely used in the au-
tomotive industry primarily by automakers for the development and testing of ECUs.
The simulator provides CAN data traffic monitoring, capturing, and analysis capa-

CHAPTER 3. LITERATURE REVIEW 55

Web Interface
History
OptionsInput Experiment

Display
Testbed

Reservations

Experiment
Processnig Reservation

Parameters
Experiment
Parameters

History
ParametersAuthentication

Experiment
Logic History

ResultsModel Experiment
Results

Reservation
Data

CAN Data
Processer ECU

Interaction
Node Controller
Configuration

Traffic Injection
Messages

J1939 and Experiment
Database

Figure 3.4: Five-layer software architecture of the remote interface to the
testbed (adapted from [93]).

bilities, which help in reverse engineering of vehicles. To validate the testbed, CAN
message-injection was performed by using a Bluetooth-enabled dongle connected to an
OBD port on the simulator. The messages were successfully injected validating the
correct functioning of the testbed. The description presented in the paper is limited
to some high level information only without going into details about the architecture
and other characteristics of the testbed.

3.2.5 Testbed for Security Analysis of Modern Vehicles

Zheng et al. [95] developed a prototype of their proposed testbed (as shown in Figure
3.5), which was built around a real-time CAN bus simulator using dedicated hardware
from National Instruments and a simulated vehicular infotainment system (using Lab-
VIEW software).The testbed is able to capture CAN messages for security analysis
and can inject malicious messages through simulated infotainment system.

CHAPTER 3. LITERATURE REVIEW 56

ECU N

ECU 1

.

.

.

CAN

Telemetry Display

Emulated
Infotainment

Ethernet

Gateway

VCU

Ethernet

Figure 3.5: High-level architecture of the testbed for modern vehicle secu-
rity analysis (adapted from [95]).

It is argued by the authors that while use of real vehicles or vehicle components for
testing is more effective and produces accurate results, such test environments provide
little or no flexibility in terms of their configurations. The proposed testbed by Zheng
et al. is reconfigurable, enabling the testbed to replicate many test configurations.
Furthermore, the testbed is able to reproduce the complexity of interconnected ECUs
in the in-vehicle network.

The authors performed a denial-of-service attack targeting the CAN bus by lever-
aging the emulated infotainment system as an entry point into the in-vehicle network.
A dump containing a large number of previously captured CAN messages was injected
causing the CAN bus to fail to operate properly by rejecting legitimate CAN mes-
sages. This testbed is reconfigurable, inexpensive to reproduce, and provides a safe
environment for automotive cybersecurity testing. However, being largely a simulated
environment its obvious limitation is the lack of physical input and output ports which
seriously affects security evaluation requiring these ports.

CHAPTER 3. LITERATURE REVIEW 57

3.2.6 Portable Automotive Security Testbed with Adaptabil-
ity: PASTA

Portable Automotive Security Testbed with Adaptability (PASTA) [96] is another au-
tomotive security testbed with a special focus on white-box ECUs, high adaptability
and portability. Authors explain why white-box ECUs can be more effective when it
comes to automotive cybersecurity testing. First of all, white-box ECUs provide the
ability to observe their inputs and outputs as well as disassembly of the ECU programs
without involving any suppliers or OEMs. Secondly, ECUs can be reprogrammed and
rearranged in a number of different configurations in the automotive networks allow-
ing evaluation of the security technology against cyberattacks. Finally, the ability to
modify different parameters, such as CAN ID, payload, or transmission cycle enables
the reproducibility of a commercial vehicle.

The authors outline the requirements that they considered while designing their
proposed testbed. The first factor is the cost of the testbed, which is typically very
high when involving a real vehicle containing a variety of ECUs and in-vehicle net-
works. High financial cost is one of the barriers to automotive cybersecurity research.
To minimize the cost of their testbed, they eliminated expensive sensors and other
similar components including simulators such as speed, angle of tyres, and status of
headlights. Authors argue that such expensive components are not essential for cyber-
security testing.

Portability of the testbed is another key consideration; PASTA has been designed
with portability in mind, its compact size allows it to be easily carried to different places
for demonstrating research experiments and results. Another aspect of the testbed is
the generalizability of the vehicle to ensure the testing is not restricted to a specific
make and model. All the testbed components have been fitted in an attache case.

Safety is also critical aspect, especially when the testing involves physical subsys-
tems, such as actuators, which can behave in an unexpected way causing injuries to
the researchers or any other parties involved. Such safety risks can be addressed by
using an emulated actuator instead of a real one, for example. Finally, the target
testbed must be designed in a way that it supports the learning of all the stakeholders,
especially software developers, because software bugs and flaws in the software design
due to human error often result in catastrophic consequences.

PASTA, according to its designers, meets all the requirements outlined above. The
testbed can be customized to fulfill specific needs of a researcher, as it has been designed
using non-proprietary technologies.The testbed allows testers to use custom security
technology and provides the flexibility to design the in-vehicle network as per their
particular requirements.

While PASTA is safe, flexible, portable and adaptable, it has some shortcomings
too. Its software vehicle simulator is not able to replicate a vehicle’s behaviour accu-
rately. As the designers of PASTA have noted that speed of the vehicle reaches 199
km/hour in a very short time when the acceleration is applied, which is obviously not
reflective of true behaviour of a real vehicle. The software needs tweaking to resolve

CHAPTER 3. LITERATURE REVIEW 58

this issue. Another limitation of PASTA is that it currently supports CAN protocol
only. Other protocols such as LIN, FlexRay, and MOST are not supported. OBD-
II port and a tapped CAN cable are the only physical intrusion points that PASTA
provides for launching attacks on the CAN bus. Moreover, it currently lacks attack
surfaces such as Bluetooth, WiFi, and cellular networks. Finally, the software archi-
tecture for the implementation of ECUs environment is not Automotive Open System
Architecture compliant.

3.2.7 Hardware-in-loop based Automotive Embedded Systems
Cybersecurity Evaluation Testbed

Real Setup

Hardware Interface

Virtual Setup

Connected Environment

Virtual ECU Vehicle
DynamicsActuatorsVirtual CAN

Communication

Real ECU

Physical Bus

Telematics

Figure 3.6: Simplified architectural view of the proposed hardware-in-the-
loop based testbed (adapted from [97]).

Oruganti et al. [97] propose a testbed for automotive cybersecurity testing, as
presented in the Figure 3.6. Authors report their current progress towards the devel-
opment of their testbed which will include hardware-in-loop components. The current
testbed is completely a virtual setup, thus limited to a software simulation only. Using

CHAPTER 3. LITERATURE REVIEW 59

this virtual testbed, the authors demonstrate a GPS location spoofing attack on a vir-
tual vehicle. The authors list essential elements of the testbed that should be present,
which include connectivity, vehicular networks, controller modeling and algorithm im-
plementation, hardware-in-loop and telematics. Each of these subsystems allows the
cybersecurity evaluation and validation of a connected car for a range of attack surfaces
and attack vectors.

3.3 Comparative Analysis of Automotive Cyberse-

curity Testbeds

This section compares the reviewed testbeds based on their various characteristics,
such as adaptability, portability, fidelity and cost. An overview of other capabilities
(e.g., types of attacks, attack surfaces, attack targets, and communication protocols
supported) of the testbeds have also been discussed.

Each testbed type has its own strengths and limitations. Ideally, a testbed should be
able to reproduce the behaviour of a real vehicle as accurately and faithfully as possible
(fidelity), adaptable, portable, safe, and inexpensive to construct, as explained in [96].
In following subsections, we provide an overview of the supported vehicular network
protocols, support attack surfaces and types along with a description of how and to
what extent each of the testbeds meets the requirements of adaptability, portability,
fidelity, safety, and cost-effectiveness.

Adaptability is a measure of a testbed’s ability to support different testing configu-
rations, i.e. how well a testbed can adapt to different testing scenarios and applications.
A testbed with a High adaptability relies on standard, general-purpose components
that enable such testbeds to support the security testing of most in-vehicle network
types (i.e., CAN, MOST, LIN, FlexRay, etc.) as well as of different types of ECUs. A
testbed comprising of both general-purpose and special-purpose components could be
considered to have a Medium adaptability, whereas a testbed built using proprietary,
special-purpose devices offers a Low adaptability. Portability refers to how easy it is for
the testbed to be carried around. Testbeds constructed using small, lightweight and/or
virtual components and those not relying on heavy cyber-physical components (e.g.,
actuators) offer High portability. While testbeds rated Medium for portability, contain-
ing a combination of both virtual and some lightweight physical components/devices,
can be moved around, movement could be challenging depending on the nature of the
physical components involved. We assigned a Low portability rating, indicating the
inability and/or complexities stemming from the physical characteristics (i.e., dimen-
sions and weight) of the testbed components. Fidelity of testbed can be measured by
evaluating how accurately it can imitate the behaviour of a real vehicle in response
to a cyberattack. Real hardware-based devices with multiple input/output capabili-
ties can deliver a high accuracy of the behavioural reactions of the system under test,
hence can be given a High rating for the fidelity. Testing environments involving cyber
physical components often have safety implications for the security analysts and any

CHAPTER 3. LITERATURE REVIEW 60

hardware/equipment involved; therefore it is vital to determine how a given testbed
ensures the safety of testers and the equipment involved in the testing. We rate a
testbed to be highly safe if it does not include any cyber-physical components that can
potentially cause physical harm (i.e., the testing environment is virtual, relying on sim-
ulations only). On the other hand, a testing setup involving both virtual and physical
components can be rated Medium for safety, and can be assigned a Low rating if all or
most of the components are physical. Finally, cost of the entire setup can be compared
based on whether it contains real physical devices, only virtual components or a mix
of both types. In addition to the hardware devices, software components (e.g., open-
source vs commercial) may also have an impact on the overall cost of the testing setup.
A virtual testbed with free, open source software applications will have a Low cost, as
compared with the ones involving simulated and real devices/components, which can
be rated Medium for the cost factor. Hardware-based testbeds running commercial
software applications are more expensive, thus a High cost rating has been assigned.
Table 3.5 provides a comparison of how adaptable, portable, accurate, safe and costly
each testbed is. While a testbed offering High adaptability, portability, fidelity, and
safety is the best as compared with the ones with Medium or Low values for these at-
tributes, testbeds having Low cost value are comparatively better than the ones with
High or Medium cost.

3.3.1 An Overview of Supported Network Protocols

Modern cars have multiple network types for facilitating various applications. Not all
testbeds that have been surveyed offer support for testing all types of communication
standards. Table 3.3 gives an overview of the protocols supported by each testbed.
As can be noticed, OCTANE is the only testbed that claims to support testing for all
major vehicular network protocols. All other testbeds do not cover any protocol other
than CAN. This means they are unable to support study of threats/attacks related to
other network standards found in modern automobiles.

3.3.2 Supported Attack Surfaces, Types of Attacks, and At-
tack Goal

Table 3.4 highlights types of attack surfaces exposed by each testbed, types of attack
supported or demonstrated, and attack target or goal. OBD-II port is the most popular
choice as an entry point into the in-vehicle network. This is probably due to the fact
that all cars do have an OBD port, (since it is legal requirement to have one) OBD
scanners are cheap and easily available in the market.

CHAPTER 3. LITERATURE REVIEW 61

Table 3.3: Overview of what types of in-vehicle network protocols are sup-
ported by each testbed for cybersecurity testing (* FLR stands for FlexRay
and Ref. for Reference).

Testbed Name CAN LIN FLR* MOST Ref.*

Open Car Testbed and Network Experiments
(OCTANE)

3 3 3 3 [92]

Mobile Testing Platform 3 n/a n/a n/a [91]

Cyber Assurance Testbed for Heavy Vehicle
Electronic Controls

3 n/a n/a n/a [93]

Testbed for Automotive Cybersecurity 3 n/a n/a n/a [94]

Testbed for Security Analysis of Modern
Vehicle Systems

3 n/a n/a n/a [95]

Portable Automotive Security Testbed with
Adaptability (PASTA)

3 n/a n/a n/a [96]

Hardware-in-loop based Automotive
Embedded Systems Cybersecurity Evaluation
Testbed

3 n/a n/a n/a [97]

CHAPTER 3. LITERATURE REVIEW 62

T
a
b
le

3
.4
:

A
n

o
ve

rv
ie

w
o
f

th
e

ty
pe

s
o
f

ex
po

se
d

a
tt

a
ck

su
rf

a
ce

s,
ty

pe
s

o
f

a
tt

a
ck

s,
ta

rg
et

a
n

d
/
o
r

go
a
l

o
f

th
e

a
tt

a
ck

s
su

p
po

rt
ed

by
ea

ch
te

st
be

d
.

T
es

tb
ed

N
am

e
A

tt
ac

k
S
u
rf

ac
e

A
tt

ac
k

T
y
p

e
A

tt
ac

k
T

ar
ge

t/
G

oa
l

R
ef

er
en

ce

O
p

en
C

ar
T

es
tb

ed
an

d
N

et
w

or
k

E
x
p

er
im

en
ts

(O
C

T
A

N
E

)

O
B

D
II

P
or

t
M

es
sa

ge
sn

iffi
n
g,

D
oS

,
R

ep
la

y
N
\A

[9
2]

M
ob

il
e

T
es

ti
n
g

P
la

tf
or

m
O

B
D

II
P

or
t

C
A

N
M

es
sa

ge
In

je
ct

io
n

T
ak

e
ov

er
ve

h
ic

le
co

n
tr

ol
[9

1]

C
y
b

er
A

ss
u
ra

n
ce

T
es

tb
ed

fo
r

H
ea

v
y

V
eh

ic
le

E
le

ct
ro

n
ic

C
on

tr
ol

s

E
C

U
,

E
th

er
n
et

,
U

S
B

B
ru

te
fo

rc
e,

D
oS

E
va

lu
at

io
n

of
S
ee

d
\K

ey
,

E
x
ch

an
ge

S
tr

en
gt

h
an

d
,

In
tr

u
si

on
D

et
ec

ti
on

S
y
st

em

[9
3]

T
es

tb
ed

fo
r

A
u
to

m
ot

iv
e

C
y
b

er
se

cu
ri

ty
O

B
D

II
P

or
t

C
A

N
M

es
sa

ge
In

je
ct

io
n

C
om

fo
rt

S
u
b
sy

st
em

M
an

ip
u
la

ti
on

(e
.g

.,
h
ea

d
la

m
p

O
N

/O
F

F
)

[9
4]

T
es

tb
ed

fo
r

S
ec

u
ri

ty
A

n
al

y
si

s
of

M
o
d
er

n
V

eh
ic

le
S
y
st

em
s

In
fo

ta
in

m
en

t
G

at
ew

ay
C

an
S
n
iffi

n
g,

C
o
d
e

In
je

ct
io

n
,

D
oS

C
on

tr
ol

ve
h
ic

le
m

an
eu

ve
r

[9
5]

P
or

ta
b
le

A
u
to

m
ot

iv
e

S
ec

u
ri

ty
T

es
tb

ed
w

it
h

A
d
ap

ta
b
il
it

y
(P

A
S
T

A
)

O
B

D
II

P
or

t/
C

li
p
p
in

g
A

re
a

C
o
d
e

In
je

ct
io

n
/E

x
ec

u
ti

on
N
\A

[9
6]

H
ar

d
w

ar
e-

in
-l

o
op

b
as

ed
A

u
to

m
ot

iv
e

E
m

b
ed

d
ed

S
y
st

em
s

C
y
b

er
se

cu
ri

ty
E

va
lu

at
io

n
T

es
tb

ed

N
av

ig
at

io
n

S
y
s-

te
m

G
P

S
S
p

o
ofi

n
g

S
p

o
of

G
P

S
L

o
ca

ti
on

[9
7]

CHAPTER 3. LITERATURE REVIEW 63

Similarly, most popular type of attack is message/code injection. This is due to
the fact that CAN protocol does not have an authentication or other security mecha-
nism capable of identifying and rejecting malicious contents. Since many testbeds lack
support for wireless/remote attack surfaces, they are only confined to testing attack
scenarios assuming physical access to the vehicle.

3.3.3 Adaptability

In-vehicle networks and ECUs are the major targets of cyber attacks, their security
testing is important to identify and fix any security issues. Unfortunately, due to copy-
right restrictions and closed-source proprietary ECU technologies, it is very difficult
to perform security testing on commercial ECUs. In addition, testing specific ECUs
does not provide insights and results that can be helpful when testing the ECUs from
different manufactures. Similarly, it is also important that the testbed is adaptable
to a variety of testing configurations (e.g., with different vehicular network types) and
not confined to a particular technology.

For instance, PASTA [96] includes white-box or programmable ECUs that allow
the researcher to program an ECU to replicate the behaviour of a specific ECU, with
the knowledge of internal implementation, which is usually not possible with real pro-
prietary ECUs. Also, because it is largely software-based setup, it can be used for
different testing configurations.

The layered-based design of the OCTANE [92] allows it to be adapted to different
testing setups by replacing hardware components in the hardware middle layer without
affecting other layers. Furthermore, its bespoke software package can be modified to
extend its capabilities according to specific testing scenarios. The prototype testbed
proposed by Zheng et al. [95] has a flexible architecture allowing additional ECUs to be
added easily. The setup can also be used for testing and investigating attacks launched
via remote connections. Since it is entirely software-based, the testbed presented by
Oruganti et al. [97] is adaptable to various testing configurations, as virtual components
can be easily added or removed in the software environment.

Daily et al. have relied on actual ECUs and sensor simulations primarily focusing on
J1939 based networks, which are specifically designed for heavy vehicles, such as trucks
and buses. Although, the authors do not explicitly consider or discuss adaptability of
the testbed, based on the information provided, it seems probable for the testbed to
be adapted to various testing configurations.

3.3.4 Portability

A key factor to consider while designing or using a testbed is the portability. Some-
times it may be necessary to carry the testbed to a different location for demonstration
purposes (e.g., in a conference or workshop). A testbed with compact or virtual compo-
nents is obviously easy to carry around as opposed to the ones that include large actual
components. Below we describe how each of the reviewed testbeds support portability.

CHAPTER 3. LITERATURE REVIEW 64

Table 3.5: A comparative overview of the reviewed testbeds based on adapt-
ability, portability, fidelity, safety and cost

(= High, = Medium, = Low)

Testbed Name

A
d
ap

ta
b
il
it

y

P
or

ta
b
il
it

y

F
id

el
it

y

S
af

et
y

C
os

t

Open Car Testbed and Network Experiments
(OCTANE) (real-world setup)

Open Car Testbed and Network Experiments
(OCTANE) (lab setup)

Mobile Testing Platform

Cyber Assurance Testbed for Heavy Vehicle Electronic
Controls

Testbed for Automotive Cybersecurity

Testbed for Security Analysis of Modern Vehicle
Systems

Portable Automotive Security Testbed with
Adaptability (PASTA)

Hardware-in-loop based Automotive Embedded
Systems Cybersecurity Evaluation Testbed

CHAPTER 3. LITERATURE REVIEW 65

OCTANE has two types of main setups: lab based and real world. The lab-based
testing environment typically relies on small components and does not involve real
vehicle. So, it is possible to carry the lab setup as necessary with ease. However, in the
case of a real-world testing setup, the portability depends on the actual components
involved. The portability will be affected if, for example, a real car or heavy components
are used. PASTA has been designed to be portable, so all its components are able to
fit in a briefcase allowing high degree of mobility. Instead of using a real vehicle, a
simulated or scale model of a real vehicle is a key factor in allowing this testbed to
be more portable. The testbed from Zheng et al. contains simulated and emulated
components so it should be easy to relocate if required.

Similar to the Zheng et al., the testbed from Oruganti et al. is purely a software-
based environment which allows it to be moved around easily. The cyber assurance
testbed by Daily et al. does not use a real vehicle, can be accessed remotely and uses
simulated components with real ECUs, hence it satisfies the portability requirements.

3.3.5 Fidelity

Fidelity of a testbed refers to its ability to accurately reproduce the behaviour of a real
vehicle or components in response to a specific event. To achieve high degree of fidelity,
real vehicle and/or real hardware components must be included in the test. Software-
based testing environments cannot faithfully reflect the conditions of a real car. Thus,
fidelity of the test results is directly linked to the type of systems/components involved
in the testing. Most importantly, complex interactions among various ECUs and other
cyber-physical components inside the vehicle cannot be simply reproduced with high
accuracy in a virtual environment.

The software vehicle simulator used in PASTA, for example, reaches 199km/h in a
very short time which does not mimic the actual behaviour of the vehicle. It can be
concluded that while virtual, software-based testbeds have their own merits, they do
not generally replicate actual behaviour of a real vehicle.

3.3.6 Cost

A virtual or software-based testbed is generally cheaper than a testbed which includes
cyber physical components. OCTANE, and mobile testing platform (involving go-cart)
rely on physical components, they are therefore more expensive. On the other hand,
Zheng et al. Fowler et al. Oruganti et al. are software-based testbeds their cost is
comparatively lower. PASTA and Daily et al. both contain ECUs, their cost will be
higher than the pure software-based testbeds.

3.3.7 Safety Implications

Testing real vehicles help study the actual impact and behaviour of a vehicle as a result
of a cyber attack. However, this has serious safety implications for the researcher and

CHAPTER 3. LITERATURE REVIEW 66

the vehicle under test. Physical safety of all stakeholders as well as of all the compo-
nents/equipment involved must be the top priority. We look what safety implications
each of the reviewed testbeds may have. In general, safety risks are high when a real
vehicle or large cyber-physical components are used in the testing. The risk is even
higher when the testing involves a moving vehicle on the road. While designing a new
or using an existing testbed, it is advisable to carefully consider any safety issues that
can potentially surface.

OCTANE has two testing environments - laboratory-based and real world. In the
lab-based setup, there are virtually no concerns related to human safety as it is a
controlled environment with no real vehicle involved. The real-world testing setup
potentially can lead to situations that can affect safety of both the vehicle and the
testers.

Since [96], [95], [97] are primarily simulation based, these testbeds do not raise any
safety concerns for the testers/researchers. Similarly, because the testbed from Daily
et al. [93] is remotely accessible, it is safe to use.

It can be noticed that while software-based testbeds are generally more adaptable,
portable, inexpensive, and safe, they however lack physical inputs and outputs (I/O)
which may not be useful in the scenarios where evaluation of physical I/O is essential.
Moreover, software-only testbeds do not provide accurate results and are often unable
to reproduce the behaviour of actual systems.

3.4 Testing Approaches in Automotive Cybersecu-

rity

While testbeds play a key role in security assessment of in-vehicle computing sys-
tems, effective testing methods are equally crucial for successful security evaluation of
these systems. Knowledge of different testing approaches can be useful in choosing
and applying the best possible technique for optimal results. We present a survey of
four different automotive cybersecurity testing approaches here, as at the time of this
writing, there is no existing work presenting such a survey.

Interconnected computing components (i.e. ECUs) in a modern vehicle control var-
ious features including safety-critical functions, such as airbags, braking, acceleration
etc. Attackers can exploit security loopholes in these systems to take over control,
steal information, or cause damage to the vehicle and/or its occupants. Prior stud-
ies [15, 14, 7, 99] discuss different attack scenarios that are possible and practical.
Therefore, thorough and systematic testing of automotive components is paramount.

There are effective approaches employed by cybersecurity testers, professionals and
researchers, which help detect potential security weaknesses in automotive systems.
Following subsections discuss some major cybersecurity testing approaches.

CHAPTER 3. LITERATURE REVIEW 67

3.4.1 Automotive Fuzz Testing (Fuzzing)

Fuzz testing or fuzzing is used to discover new vulnerabilities by exposing the system
to invalid, malformed, or unexpected inputs and the target system is monitored for
any unusual behaviour, which may cause the system to crash. Fuzzing involves three
main steps [100, 101]:

1. Preparing the input

2. Delivering the input to the target

3. Observing the behaviour of the target

Fuzzer, a software application specifically designed for performing fuzz testing, is
used for bombarding the system under test with a huge number of automatically gen-
erated data values. The software then observes system’s behaviour to see any reactions
to the input data. The input values are crafted either from existing valid input dataets
or from a prescribed set of values.

While fuzzing has been around since 90s, and widely used as an effective testing
technique in other domains for vulnerability discovery, it is not very popular in auto-
motive security testing yet. This is probably due to the presence of specific challenges
that require some adjustments for successful application of the technique to automotive
security assessment. For example, monitoring of the system for unusual behaviour is
crucial, but since the same interface is usually used for both the fuzz massage-injection
and monitoring purposes, this means the internal reactions of the system might not
be visible to the observers. A virtual testing environment with adequate support for
observing the reaction of the target ECU can be an effective solution to this challenge
as Bayer et al. report in [102].

In their study, Fowler et al. [103] describe a basic experimental attack they per-
formed on a virtual vehicle using fuzz testing with a custom-built fuzzer. OBD port
was used to interface the fuzzer with the CAN bus. The attack involved locking/un-
locking the door lock of the virtual vehicle by injecting messages onto CAN bus. This
was achieved by injecting random CAN messages for a short period of time. Based on
their experience by executing the attack successfully and influencing the behaviour of
the vehicle, the authors conclude that the fuzzing can be useful in reverse engineer-
ing of CAN messages as well as causing disruption to the vehicular networks. Most
importantly, they note that the fuzzing can be detrimental for the vehicle under test.

In a more recent work [104], Fowler et al. emphasize the importance and usefulness
of fuzzing (and other security testing methods), especially, when it is performed prior
to production for allowing the discovery and fixing of bugs, which can lead to serious
security issues in the early phases of the system development.

CHAPTER 3. LITERATURE REVIEW 68

3.4.2 Automotive Vulnerability Scanning

Automotive vulnerability scanning focuses on testing the system for existing known
weaknesses in the system to ensure that the system is protected against known threats.
An automotive system is typically scanned for identifying known weaknesses in the
source code, ICT infrastructure and networks by using a regularly updated database
of known vulnerabilities.

Vulnerability scanning can be performed in several different ways, depending on the
types of target weaknesses for which the system is being examined. For example, in
order to verify whether certain software flaws (e.g., buffer/heap overflows) present in the
software, static and dynamic analyses can be performed on the source code. Various
interfaces including Wi-Fi, cellular network, and Ethernet can be scanned for open
ports and running services in automotive systems. In particular, in-vehicle networks,
such as CAN and on-board diagnostic port should be scanned. Finally, analysis of the
entire system specifically focusing on various configurations to verify if there are any
loopholes that can be leveraged by adversaries to compromise the system. [105].

Vulnerability scanning of an automotive infotainment system is presented in a re-
cent study [106] by Josephlal and Adepu. The infotainment system used in the study
has various connectivity interfaces including Wi-Fi, Bluetooth, USB port, CAN and
others. The authors used different tools (e.g., Nmap, Nessus) to support their experi-
ment involving a attack vector analysis and vulnerability scanning of the infotainment
system. The scan was able to detect various types of vulnerabilities of varying levels
of risks. In particular, IP address of the infotainment system, an infotainment service
running on a certain port, as well as a number of information leaking vulnerabilities
were identified.

In addition to the vulnerability scan described above, they also report different at-
tacks including a denial-of-service attack they conducted using a malicious smartphone
app.

3.4.3 Automotive Penetration Testing

Penetration testing, in general, is a security assessment approach which is usually
adopted by security testing professionals to carry out security testing from the per-
spective of an attacker to discover security weaknesses in a system. While there are
different variants of the approach, it generally has the following key stages as outlined
in the National Institute of Standards and Technology (NIST) Guide to Information
Security Testing and Assessment [107]:

1. Planning - this phase is concerned with collecting as much information as possi-
ble about the target system as well as the boundaries and relevant components
involved in the testing.

2. Discovery - in this phase, all the available public external interfaces of the system
are systematically discovered and enumerated.

CHAPTER 3. LITERATURE REVIEW 69

3. Attack - in order to test the identified interfaces, a series of attacks are launched
on the system by exploiting the found vulnerabilities.

4. Reporting - the reporting takes place simultaneously with other three steps. Doc-
umentation of the findings is done in this phase.

When the tester has no or limited knowledge of the system under test, they largely
depend on publicly available information of the target system. In this case, the target
system is treated as a black box, as such the specification of the system is not acces-
sible. In contrast, when the tester has detailed knowledge of the system, the system
can be referred to as white box, as the internal details of the system are known to
the tester. Whereas, the system may be considered a grey box when the tester has
partial information about it [108]. Black-box approach is the most appropriate choice
for automotive cybersecurity assessment due to the unavailability of the functional
specifications of in-vehicle systems.

Durrwang et al. [109] introduce their approach that combines safety (Hazard Anal-
ysis and Risk Assessment) and threat (Threat Analysis and Risk Assessment) analyses
for supporting penetration tests for the enhancement of automotive security evaluation.
They introduce a method that uses attack trees for deriving security test cases. Their
test-case derivation approach relies mainly on safety and threat analyses. Experiments
involving penetration testing against an automotive safety-critical, airbag ECU are
conducted by the authors for demonstrating and evaluating their testing approach. As
the test cases are derived from threat and safety analyses, adequacy and effectiveness
of the derived test cases rely on the quality of these analyses. Furthermore, the main
focus of the approach is on the identification and testing of the security threats affect-
ing the safety of automobiles. Lastly, the experimentation has been limited to threats
targeting a single ECU in the vehicle.

Penetration Testing and Execution Standard (PTES) [110] defines the key stages
or phases of the penetration testing as follows:

1. Pre-engagement Interactions

2. Intelligence Gathering

3. Threat Modelling

4. Vulnerability Analysis

5. Exploitation

6. Post Exploitation

7. Reporting

CHAPTER 3. LITERATURE REVIEW 70

A Framework for systematic security testing of automotive Bluetooth interfaces is
proposed by Cheah et al. [111], which relies on a proof-of-concept tool, threat modeling
(using attack trees), and a penetration testing approach. While the testing approach
helped the authors discover various vulnerabilities in the automotive Bluetooth in-
terface, security evaluation was confined to a single scenario with the goal of data
extraction from the vehicle. Additionally, authors did not use or explain a systematic
approach for constructing the attack tree they used, they relied on a predefined attack
tree.

3.5 Chapter summary

As a result of conducting the literature review, this chapter presented an overview of the
state-of-the-art in automotive cybersecurity by exploring various relevant technologies,
security challenges, protective mechanisms, new developments, testing environments,
and techniques proposed in the relevant literature. An in-depth review of the existing
scientific literature addressing various aspects of the automotive cybersecurity domain
helped us discovered that there were no prior studies adequately investigating the sys-
tematic security analysis and testing of the automotive over-the-air updates. Moreover,
by conducting a comparative analysis of the key security testing approaches with a par-
ticular focus on their strengths and weaknesses, we have been able to refine our testing
approach by realising that while penetration testing is one of the most widely employed
testing approaches, it has certain limitations, which can be overcome by combining it
with model-based security testing techniques. Finally, another useful contribution of
the literature review includes key insights and practical lessons for constructing a cost-
effective, safe, portable, and adaptable testing environment for the security analysis of
the automotive security evaluations.

Chapter 4

Methodology

In this chapter, we present the testing approach we adopted in this study (initially
introduced in [112] that relies on the custom-built software tool for generating and
executing test cases automatically. First, a brief overview of the approach is presented
followed by a detailed description of each phase and relevant activities. In order to
demonstrate the applicability of the approach, we provide an example, illustrating the
workflow of all the phases involved.

4.1 Systematic Security Testing Approach

The testing approach we employ in this study is inspired by the Penetration Testing and
Execution Standard (PTES) [110] and some of the ideas presented in [111, 113, 62, 114].
Our work diverges from the approaches mentioned above in many ways: Our study
focuses on carrying out the systematic security testing of automotive OTA updates
using a model-based security testing approach based on attack trees. We employ
a structured threat enumeration approach along with threat modeling with attack
trees (which is one of the recommended threat modeling approaches suggested by
SAE 3601 standard [115]) for systematic derivation of executable security test cases.
Our approach encompasses a step-by-step method for constructing attack trees. A
custom software tool capable of automatic test-case derivation and execution has been
implemented that analyzes the structure of the attack trees to derive effective test
cases. We combine model-based security testing techniques with penetration testing for
better threat identification, systematic derivation of security test cases, and automated
test-case generation and execution against the target system.

A graphical overview of the approach is presented in Figure 4.1. The first phase
Information Gathering is concerned with gathering information about the target sys-
tem insofar as possible. System decomposition in this phase refers to the process of
identifying major components and their internal and external interfaces along with all
interactions. Description of the system (preferably a visual model) is the output from
this phase, which is subsequently used in the next phase Threat Assessment for exam-

71

CHAPTER 4. METHODOLOGY 72

System
Decomposition Threat Enumeration Threat Modelling Test Case

Generation
Test Case
Execution

Information Gathering Threat Assessment Security Testing

Test Cases

Threat List
System Model Attack Trees Test Report

Figure 4.1: An overview of the threat assessment and security testing
approach used for automotive OTA update system, showing key phases,
inputs and outputs of each phase.

ining the system in order to determine what potential threats/vulnerabilities can be
leveraged by cybercriminals for compromising system security. Based on the informa-
tion provided by the preceding phase, Threat Enumeration helps generate a Threat List,
which in turn assists Threat Modeling activity in the same phase. Since the generated
threat list is usually limited to providing high-level descriptions of the potential threats,
identification of the specific attack actions/steps can be accomplished by creating At-
tack Trees. Subsequent steps in the following phase (i.e., Security Testing) utilise these
attack trees for deriving test cases, preparing test scripts, and finally executing them
against the target system. Our prototype software tool analyzes the structure of each
attack tree to identify and extract executable test cases/scripts. The final output of
this systematic process is a Test Report providing a brief summary of the executed test
cases. The section that follows highlights the differences and commonalities between
our approach and PTES.

4.1.1 Inspirations and Adaptations

Figure 4.2 shows an overview of the PTES, which consists of seven different stages.
As can be seen, while our testing approach has many commonalities with the PTES,
there are some notable differences as well. Most importantly, our approach does not
strictly include all the stages/activities of the PTES, instead it adapts some of the
best practices/ideas by avoiding complexities and irrelevant processes/activities. To
begin with, the Information Gathering phase in our approach is similar to Intelligence
Gathering stage of the PTES methodology, as both aim at gathering information about
the target system. Since PTES is a set of guidelines, it recommends the use of threat
modeling (without advocating any particular approach, though) for threat identifica-
tion and risk assessment. In particular, it breaks down traditional threat modeling
comprising of assets and attackers into business assets and business processes, and

CHAPTER 4. METHODOLOGY 73

threat communities and their capabilities, respectively. While our approach relies on
the threat modeling for identifying potential threats in very similar manner, it goes
beyond this fundamental purpose by leveraging threat modeling to facilitate the au-
tomated test-case generation and execution process (as detailed in the Chapter 5).
Threat Assessment can be considered the counterpart of Vulnerability Analysis stage
in PTES to some extent. Activities similar to the ones carried out in Exploitation and
Reporting stages are performed by Security Testing phase of the approach employed in
this study. Finally, our testing approach has no equivalent to the Pre-engagement and
Post-exploitation stages. We describe all the phases/activities of our approach with
more details in the following subsections.

Pre-engagement Intelligence
Gathering Threat Modeling

Vulnerability
Analysis Exploitation Post-exploitation

Reporting

Figure 4.2: Overview of the Penetration Testing and Executing Standard
(PTES) Methodology (adapted from [110]).

4.2 Information Gathering

This phase is concerned with learning about the target system from the perspective
of an adversary to identify relevant physical and logical (i.e., hardware and software)
assets/components for a comprehensive security analysis. In particular, all cyber assets
- including all the computing and communication devices capable of storing, processing,
and receiving/transmitting information, along with associated software components
(both system and application) - must be identified that can potentially be the target of
cyberattacks. It is worth mentioning that while human assets should also be identified
and documented if applicable, we do not consider such assets to be relevant, as test
cases constituting social engineering attacks cannot usually be automated. It consists
of one major activity that we refer to as system decomposition, which is detailed below.

CHAPTER 4. METHODOLOGY 74

4.2.1 System Decomposition

One of the key elements of the effective security testing is the understanding and
knowledge of technical aspects of the system under test. However, in most cases,
design specifications and implementation details of the in-vehicle digital systems are not
readily available due to commercial reasons and the obscurity of subsystems; therefore,
such information may need to be gathered from various other sources, including publicly
available technical documentation, (which may include technical guides and technical
manuals) and several times by directly observing (and if practicable, may be by reverse
engineering) the system/component.

This process is concerned with finding as much information about the system as
possible. In particular, identification of core hardware and software system compo-
nents, interfaces, interrelationships among components, communication devices, tech-
nologies, protocols, and key processes can be highly useful in revealing associated
security threats. A step-by-step approach to this can be similar to the one as illus-
trated in Figure 4.3. A large, complex system can be broken down into subsystems,
each of which can further be divided into components and finally the components into
sub-components. The overall purpose of this process is to identify critical, security-
relevant assets leading to threat identification to test case generation, and ultimately
to an in-depth security analysis to establish whether the system has adequate and
effective security controls, protections against those threats. In the subsection that
follows, an example is provided for illustrating system decomposition approach.

Decompose
system

into subsystems

 Decompose
 components into
 sub-components

 Decompose
 subsystems
 into components

1

3

2

Figure 4.3: A graphical overview of the system decomposition steps. The
system is decomposed into subsystems, subsystems into components, and
finally components into sub-components.

CHAPTER 4. METHODOLOGY 75

4.2.2 Automotive In-Vehicle Infotainment: Example of System
Decomposition

An In-Vehicle Infotainment or an automotive infotainment system is an integrated unit
providing information services and entertainment functionality to the driver and other
vehicle occupants for an enhanced in-vehicle experience.

Display Unit HMI Controls

USB Interface Bluetooth Interface CAN Bus Interface Ethernet Interface

4G/5G Module Audio/Radio Module

Figure 4.4: High-level graphical view of the in-vehicle infotainment sys-
tem.

Three broad types of the services that a typical IVI can provide include entertain-
ment services, communication services, and information services. Entertainment ser-
vices offer the capabilities of playing audio and video media both through a CD/DVD
player or via a USB device. Communication services allow the driver to make and
receive phone calls, use messaging services, and issue voice commands for operating
the system. For an enhanced hands-free experience, the driver can use a Bluetooth
headset. Information services provide a variety of highly useful information including
vehicle related information, such as fuel levels, total distance travelled, whether the
doors are open, and the health status of various devices.

Step 1: Decompose system into subsystems Figure 4.4 presents the system
view of the IVI without providing any details of the subsystems or components. With
the first pass of our investigation, we discovered five different layers of the same IVI
by decomposing it into subsystems as shown in Figure 4.5. It is apparent that while
the information provided by this view is more meaningful and detailed as compared
to the limited details expressed by the overall view of the system, this is still by no
means a comprehensive description of the system either. Nonetheless, it certainly lays
the foundation for deeper examination of each individual subsystem.

Step 2: Decompose subsystems into components Based on the subsystems
identified in the Step 1, further exploration enabled us to discover associated compo-
nents for each subsystem, as depicted in the Figure 4.6. For instance, we were able

CHAPTER 4. METHODOLOGY 76

HMI Layer

Middleware Layer

Application Layer

Hardware Layer

OS Layer

Figure 4.5: The IVI decomposed into subsystems, represented as five dif-
ferent layers.

to identify CPU, Memory, Storage, CAN, Wi-Fi and BT (Bluetooth) components by
decomposing the hardware layer of the IVI. It is evident that this evolutionary sys-
tem/asset discovery approach is effective for understanding the target system with
appropriate level of details.

Step 3: Decomposing components into sub-components Ultimately, in this
final step of the system decomposition, information discovered during the preceding two
steps should form the basis for determining critical cyber assets along with associated
potential intrusion points, attack surfaces by decomposing each component into sub-
components (if applicable). As an example, decomposition of the OS Core component
of the OS Layer may result in the discovery of specific kernel and hardware abstraction
layer (HAL) sub-components, which can be further investigated for determining if
there are any known, reported vulnerabilities for the specific version of the kernel
being used. Additionally, with more detailed information of the system, identification
of the component interactions and information flows should be a straightforward task.

All the information gathered at the end of the system decomposition activity should
be helpful in producing the system description, preferably in the form of a graphical
model. The rationale for this preference is firstly for minimizing/eliminating the po-
tential confusions/misunderstanding caused by the use of natural languages that tend
to be inherently ambiguous, and secondly conversion from one graphical model to
another would be easy. The system description/model should help express both the
architectural and behavioural aspects of the system if possible, as this will streamline
the process of crafting a DFD diagram using Threat Modeling Tool in the Threat

CHAPTER 4. METHODOLOGY 77

HMI Layer

Middleware Layer

Application Layer

Hardware Layer

OS Layer

User Interface Voice Recognition

Navigation Entertainment Mobile

Automotive connectivity

Networking Online Services

Board Support Package OS Core

CPU Memory Storage CAN Wi-Fi BT

Figure 4.6: This diagram (adapted from [116]) presents the component-
level overview of the IVI by decomposing its subsystems into components.

Assessment phase. Following the system decomposition, we rely on the standard and
widely used modeling technique: Unified Modeling Language (UML) for producing the
system model. Once the system model has been created in this phase, we can proceed
with the next important activity: identification of the threats.

4.3 Threat Assessment

This phase is comprised of two major activities: threat enumeration and threat model-
ing. Both activities are crucial for the systematic and automated test case generation
and execution process, as each plays an important and distinct role in the process.
Threat enumeration involves identifying all potential threats to the system by using
the well-known, standard approach STRIDE supported by its associated threat model-
ing tool, which is capable of enumerating various types of threats in a structured way.
Threats identified by the threat enumeration process lay the groundwork for attack
tree construction in the threat modeling process. Our automated test case generation
and execution tool relies on attack trees for generating concrete security test cases
by analyzing the structure of attack trees (for further details, see Section 5.2). The
information pertaining to the target system discovered in the Information Gathering
phase, is leveraged for automated threat identification in this phase. Details of each of
the activities are presented in the following subsections.

CHAPTER 4. METHODOLOGY 78

4.3.1 Threat Enumeration

There are several approaches to identifying security threats, the popular SAE J3601
standard for automotive cybersecurity [115] suggests threat modelling for identifying se-
curity threats. For the structured threat identification approach, we employ Microsoft’s
Threat Modeling Tool. The system model produced in the Systems Decomposition pro-
cess (as shown in Figure 4.1), serves as an input to creating data flow diagram using
TMT. While all or most of the relevant components identified in the preceding phase
are more likely to become processes, their interrelationships are represented using the
data flows. A data store, as its name suggests, is used to denote files and databases etc.
Once the diagram is complete, a report of the potential threats associated with each
element of the system can be generated. Potential threats identified in the generated
report are categorized into different threat groups by the tool using Microsoft’s threat
classification model STRIDE. Furthermore, the report includes descriptions of each
threat and potential attack methods employed by adversaries. An example demon-
strating threat enumeration process is presented in the following subsection.

4.3.2 IVI System: Example of Threat Enumeration

This section presents a simple example of threat enumeration process by using the IVI
system introduced in the Information Gathering phase above.

To start with, threat enumeration process requires a data flow diagram of the target
system as an input to identify potential threats. As indicated earlier, Microsoft’s
Threat Modeling Tool is used for that purpose, which provides all the necessary tools
of the trade for creating the data flow diagram. The reason for using this particular
application is its unique capability of generating a threat report from the diagram,
which is not possible with other diagramming tools. In order to ensure the identified
threats are most relevant, an automotive template developed by NCC Group [117]
has been used, which offers automotive-specific stencils to draw data flow diagrams in
Threat Modeling Tool.

Recall that a number of components were identified including USB, Wi-Fi, and
HMI. Figure 4.7 displays the data flow diagram showing the IVI system in the centre
and other components placed around it. In addition to the components listed above,
a TCU, an IVI System Data Store, and a Navigation Maps Data Store have also been
included to this data flow diagram to depict various connectivity devices/interfaces and
data stores. Bidirectional data flows have been used to denote the two-way commu-
nication between components. Depending on the purpose and required level of detail,
data flow diagrams can be created at various levels of abstraction. In this example dia-
gram of the IVI system, connectivity components/interfaces have been the main focus.
For example, a data flow diagram with a lower level of abstraction may decompose the
IVI system into the layers listed in the Figure 4.6.

Figures 4.8 and 4.9 show two pages extracted from the threat report generated by
the TMT based on the diagram displayed in Figure 4.7, presenting a summary of the

CHAPTER 4. METHODOLOGY 79

Figure 4.7: Example data flow diagram depicting the infotainment system
and its associated components identified in the previous phase.

threat report as well as the details of five different threats (see Appendix C for the
complete threat modeling report). In addition to the title of the threat, other useful
pieces of information are included for each identified threat entry including priority,
justification, description, the STRIDE category, and possible attack method(s). We
use most of this information in the Threat Modeling phase for constructing attack trees.

4.3.3 Threat Modeling

While the threat report generated by the TMT enumerates all identified threats that
can potentially be leveraged by cybercriminals to compromise the system security, it
is often limited to a high-level description of the threat and attack methods, provid-
ing no information about the specific steps/actions performed for compromising the
system security [118]. Effective security testing requires a good understanding of the
different ways employed by the adversary to carry out these attacks. Attack trees can
effectively assist with identifying specific techniques and associated actions performed
by an attacker. Attack tree construction process requires a clear identification of the

CHAPTER 4. METHODOLOGY 80

���������� 7KUHDW�0RGHOLQJ�5HSRUW

����

1RW�6WDUWHG ��
1RW�$SSOLFDEOH �
1HHGV�,QYHVWLJDWLRQ �
0LWLJDWLRQ�,PSOHPHQWHG �
7RWDO ��
7RWDO�0LJUDWHG �

(OHYDWLRQ�RI�3ULYLOHJH
$Q�DWWDFNHU�JDLQV�DFFHVV�WR�DOO�WKH�ILOHV�RQ�WKH�,Q�9HKLFOH�,QIRWDLQPHQW�V\VWHP��,Q�
DGGWLRQ��WKH�DWWDFNHU�FDQ�H[WUDFW�VHQVLWLYH�GDWD�H�J��ORJLQ�FUHGHQWLDOV�DQG�GHYHORS�

Figure 4.8: A summary page extracted from the Threat Report generated
by the Threat Modeling Tool. To view complete threat report, please see
Appendix C.

CHAPTER 4. METHODOLOGY 81

���������� 7KUHDW�0RGHOLQJ�5HSRUW

����

IXUWKHU�DWWDFNV��0RUHYHU��LW�FDQ�UHYHUVH�HQJLQHHU�ILOHV�DQG�ILQG�YXOQHUDELOLWLHV�RYHU�
WLPH�
�QR�PLWLJDWLRQ�SURYLGHG!
$Q�DWWDFNHU�SXUFKDVHV�,9,�6\VWHP�IURP�DQ�RQOLQH�DXFWLRQ�VLWH��GLVPDQWOHV�WKH�XQLW��
UHPRYHV�WKH�PHPRU\�FKLSV��H[WUDFWV�WKHLU�FRQWHQW�DQG�DQDO\VHV�WKH�VRIWZDUH�
+DUGZDUH�VHFXULW\�WHFKQLFDO�DVVHVVPHQW�RI�WKH�,9,�6\VWHP�

(OHYDWLRQ�RI�3ULYLOHJH
(OHYDWLRQ�RI�SULYLOHJHV�LQ�RUGHU�WR�H[SORLW�WKH�,9,�6\VWHP�
�QR�PLWLJDWLRQ�SURYLGHG!
1HWZRUN�EDVHG�YXOQHUDELOLWLHV��WKURXJK�RXWGDWHG�VRIWZDUH�RU�FRQILJXUDWLRQ�
ZHDNQHVVHV�
(QVXUH�WKDW�WKH�VHUYHU�LV�NHSW�XS�WR�GDWH�DQG�SHUIRUP�UHJXODU�VHFXULW\�WHVWLQJ�

'HQLDO�RI�6HUYLFH
'R6�RQ�,9,�6\VWHP�
�QR�PLWLJDWLRQ�SURYLGHG!
3HUIRUP�DQ�QHWZRUN�DWWDFN�DQG�FDVH�UHVRXUFH�H[KDXVWLRQ�
+DYH�D�QXPEHU�RI�,9,�6\VWHP�GHOLYHU\�VHUYHUV�DFURVV�D�EURDG�JHRJUDSKLF�UDGLXV��LQ�
WKH�HYHQW�RI�RQH�VHUYHU�IDLOLQJ�WKH�V\VWHP�VKRXOG�FRQWLQXH�XQKLQGHUHG�

'HQLDO�RI�6HUYLFH
'R6�RQ�,9,�6\VWHP�E\�IORRGLQJ�ZLWK�LQYDOLG�GDWD�
�QR�PLWLJDWLRQ�SURYLGHG!
(LWKHU�SK\VLFDOO\�E\�FOLSSLQJ�RQWR�WKH�VHQVRU�ZLUHV�DQG�LQMHFW�YDOLG�GDWD�RU�ZLWK�
H[WHUQDO�LQSXW�H�J��D�EULJKW�WRUFK�
5HO\�RQ�DGGLWLRQDO�VHQVRUV�LQ�WKH�HYHQW�RI�RQH�LV�XQDYDLODEOH�

'HQLDO�RI�6HUYLFH
'R6�RQ�,9,�6\VWHP�WKDW�FUDVKHV��KDOWV��VWRSV�RU�UXQV�VORZO\��LQ�DOO�FDVHV�YLRODWLQJ�DQ�
DYDLODELOLW\�PHWULF�
�QR�PLWLJDWLRQ�SURYLGHG!
)ORRGLQJ�,9,�6\VWHP�ZLWK�LQYDOLG�PHVVDJHV�RU�GDWD�
,PSOHPHQW�GDWD�YDOLGDWLRQ�DQG�VKXWGRZQ�FRPPXQLFDWLRQV�FKDQQHO�WR�,9,�6\VWHP�LI�

Figure 4.9: Page two extracted from the Threat Report generated by the
Threat Modeling Tool, showing details of various identified threats for the
IVI system.

CHAPTER 4. METHODOLOGY 82

attacker’s goal, which serves as the root node of the attack tree. This is then followed
by identifying subgoals and specific attack techniques that can help achieve the over-
all attacker’s goal. A comprehensive description of the threat modeling (constituting
attack tree construction process) is given in the next chapter.

4.4 Test Case Generation and Execution

All the activities carried out in the preceding phases contribute towards producing the
building blocks required for generating security test cases. Attack trees constructed
in the Threat Assessment phase facilitate the automated test case generation and
execution. Chapter 6 presents an extensive description of the test case generation
and execution process and its associated bespoke software tool. The tool has been
developed for the automation of the test case generation and execution, and is capable
of deriving test cases by performing attack-tree structure analysis.

4.5 Chapter summary

This chapter presented a detailed overview of the systematic testing approach adopted
in this thesis with relevant examples of key activities to showcase its application and
effectiveness. The approach, inspired by the well-known Penetration Testing and Exe-
cution methodology and model-based security testing approach, is comprised of three
major phases, each constituting different activities performed in a step-by-step manner
to derive effective security test cases. The System Decomposition activity in Infor-
mation Gathering divides the target system into subsystems, components and sub-
components for the identification of cyber assets in the target system. This is followed
by the Threat Enumeration and Threat Modeling activities in the phase Threat Assess-
ment aiming at identifying relevant potential security threats by using the STRIDE
methodology and refining the identified threats using attack trees, respectively. Finally,
the Security Testing phase concludes the testing process by generating and executing
the automated security test cases by leveraging the software tool that relies on attack
trees for the test case derivation.

Chapter 5

Constructing Attack Trees

The preceding chapter has introduced the overall security testing approach we employ
in this thesis, which includes various phases and related activities. This chapter details
the approach to constructing attack trees based on the threats identified/enumerated
in preceding steps of our security testing approach. We first present an overview of the
approach for constructing attack trees by outlining key activities that are prerequisites
to the attack-tree construction, leading to the process of building attack trees in a
systematic manner. Finally, we use an example to showcase our step-by-step approach
for creating attack trees. The contribution of this chapter is the systematic approach
for constructing attack trees.

5.1 A Step-by-Step Approach for Constructing At-

tack Trees

While the attack tree is a mature and widely used threat modeling approach that
security analysts used to depict security threats, prior studies (e.g. [119, 120, 121])
employing this technique do not specify/describe a method for constructing attack
trees. We address this gap by introducing a step-by-step approach for building attack
trees systematically. The attack-tree construction process is facilitated by applying a
top-down approach, that is, the major steps for constructing the attack tree include
identifying an overall goal that an attacker would like to achieve by compromising the
system security, followed by identifying one or more different ways that can assist the
attacker in achieving the overall goal. From a security analyst’s perspective, attacker’s
overall goal is a threat to the system’s security. This implies that identifying attacker’s
goal is synonymous with identifying a security threat. However, recall that threat
identification requires information about the target system for determining possible
intrusion points and vulnerabilities that could potentially be exploited to attack the
system (for more details, see Chapter 4).

What is shown in the Figure 5.1 is a structured, systematic approach to the attack-
tree construction process. As a first step, attack-tree construction requires a clear

83

CHAPTER 5. CONSTRUCTING ATTACK TREES 84

identification of the attacker’s goal, which serves as the root node of the attack tree.
This is then followed by identifying subgoals and specific attack techniques that can
help achieve the overall goal.

Identify Overall
Goal

Identify
Subgoal/Attack

Method

Identify Attack
Step(s)

Threat
Enumeration

Brainstroming/Expert
Discussion/Online Resources

M

C

O

Root Node

Subtree/
Int Node

Leaf Node(s)

Legend
M

O

Mandatory

Optional

C Conditionally
Mandatory

Figure 5.1: A graphical overview of the attack tree construction approach.

One of the threat scenarios from the threat list (resultant from enumeration pro-
cess) is selected as the root node of the attack tree. The second step focuses on
identifying any potential subgoals and/or attack methods, which can be accomplished
using brainstorming sessions, expert discussions, and/or publicly available online re-
sources. Note that since an attack tree must have exactly one root node and at least
one attack step/leaf node, which can be the root node itself; hence it is considered
mandatory to identify the root node, and conditionally at least one leaf node. On the
other hand, having an intermediate node or subgoal is not necessary for all attack trees;
therefore, it is considered optional. As a starting point, the threat report generated
by TMT includes suggestions highlighting what kind of attack methods/techniques
could be used by the attackers for each type of identified threat. This can be supple-
mented by brainstorming sessions that can serve as a useful tool for the identification,
fine-tuning/tweaking of subgoals (intermediate nodes) and action steps (leaf nodes),
wherein an overall goal is decomposed into intermediate goals and concrete actions
in an iterative fashion. Finally, in addition to the expert knowledge and experience
of the security team, publicly available online/open-source resources can facilitate the
process of discovering modern, state-of-art attack techniques, methods, and tools used
by malicious entities for materializing different types of threats, which can greatly help
with attack-tree refinement.

CHAPTER 5. CONSTRUCTING ATTACK TREES 85

5.2 Adaptive Cruise Control System: Examples of

Constructing Attack Trees

Radar Camera

OBD II

Central
Gateway

Telematics
Control Unit

Adaptive
Cruise
Control

Figure 5.2: Simplified graphical overview of some of the in-vehicle net-
worked components including the central gateway unit, telematics control
unit, adaptive cruise control ECU accompanied by radar and camera sen-
sors.

In what follows, we demonstrate the application of the approach by using an exam-
ple involving the Adaptive Cruise Control (ACC) system. As a first step of the testing
approach (that is, System Decomposition) the diagram in Figure 5.2 is produced by
gathering information from various publicly available sources, providing an overview
of different components and their relationships. It is imperative to note that we have
deliberately included a limited number of ECUs/components in order to reduce unnec-
essary complexity arising from irrelevant technical details. Almost all modern vehicles
do come with all the components shown in this diagram and more. A brief description
of the adaptive cruise control system is provided below.

Adaptive cruise control, also referred to as dynamic or intelligent cruise control,
maintains a set speed of the vehicle without relying on the input from the acceleration
pedal, relieving the driver from some workload during the driving experience. It is also
capable of adjusting the speed of the vehicle automatically depending on the traffic
conditions, such as based on the speed of nearby moving vehicles. Adaptive cruise
control relies on various on-board sensors (such as, radars, cameras, and/or lidar) for
detecting any obstacles and vehicles moving around. The data from these sensors is

CHAPTER 5. CONSTRUCTING ATTACK TREES 86

(i}------c���,....--��..,....,.,��������o,_...�--,---�-,.......,,---.��-���-��--t1
;r- - - - ... - - - � - - - .. �

OBDU

Radars

,,,,<

Sensor Data]

Vehicle Trust Boundary
I i

,------,.,,.__--------.. l

Gateway

CAN us Data Flow

Adaptive Cruise
Control ECU

Sensor Data]

TCU

CAN Bus Data Flow!

Bus Data Flow

Cameras

Ii
i

I I
l

Ii

I I
l

Ii
i

Ii
l

I!
- !
I:

i

16

I I
l

1 l
l

Ii
;

I!
l

I!
l

1 i
i

Ii
j

I!

I
!
!

: i
: I Ii
· ---------------------- :
[_} .. ------•-·--·-----·-·--· ·----··-··· --······------·-·--•·· ---------------····-El----··-·-·· ---·····-·----·-···-----····------·----·· -----···------·-··!J

Figure 5.3: Data flow diagram produced using the TMT tool by following
the diagram presented in Figure 5.2, the same system represented using a
different notation.

CHAPTER 5. CONSTRUCTING ATTACK TREES 87

consumed by the ACC ECU, which controls the throttle and braking of the vehicle.
Based on the system model shown in the Figure 5.2, data flow diagram (DFD)

presented in Figure 5.3 was created using TMT. As can be noticed that the system
model depicted by this DFD is almost the same except for the symbols and notation
used. The threat report generated based on this model is the major output from
this exercise providing the basis for constructing attack trees. Table 5.1 presents all
52 threats identified by the TMT grouped into STRIDE threat categories. Since the
primary focus of this example is the ACC ECU, we therefore do not consider threats
related to other ECUs/components in the list. One representative threat from each of
the categories is chosen for building the attack trees. We denote the selected threats
for further analysis with an asterisk symbol. As some threats may have more than
one occurrence, a count value has been listed to indicate how many instances of a
particular threat have been identified. For this example, we short listed three different
relevant threat scenarios belonging to Spoofing, Denial of Service, and Elevation of
Privilege categories. No ACC ECU related threats were identified for the Tampering,
Repudiation, and Information Disclosure categories of the STRIDE model.

As mentioned earlier, each attack tree has exactly one root node, which represents
the main goal of the adversary. One instance of each of the selected threats becomes
the root node (or main goal) of the attack tree as outlined above. Now the primary goal
of the attacker has been established, different methods/techniques that can potentially
be used to achieve this goal are to be identified. The original report generated by TMT
suggests at least one way to realize the threat. In most cases, these suggestions are
relevant and serve as an excellent starting point for populating the attack tree with ap-
propriate subgoals (child nodes) and/or actions (leaf nodes). For each threat scenario,
we started with the attack method suggested by TMT followed by brainstorming and
discussion sessions to determine what are the possible steps/actions that can poten-
tially be carried out by cybercriminals. The resultant attack trees are shown in the
figures 5.5 to 5.7.

The first attack tree (in Figure 5.5) represents the threat one entitled Trick ACC
ECU into Triggering an Emergency Stop from the Table 5.1, and it belongs the the
Spoofing category of the STRIDE threat classification model. The potential attack
method for realizing this threat from TMT is to spoof radar messages. Figure 5.4
shows the approach in action by depicting all the steps applied to construct this attack
tree. In step one, the overall goal was identified followed by step two which involved
identifying the subgoal and leaf nodes by means of the information from the threat
modeling report, discussions, and brainstorming. A brief analysis of the diagrams
in Figures 5.2 and 5.3 enabled us to identify at least two different attack paths for
accomplishing this very task of injecting spoofed radar messages. This resulted in
the identification of the subgoal or an OR subtree (Inject Spoofed Radar CAN Bus
Messages). Since it can be done in two different ways; hence, the subtree has been
assigned with two disjunctive leaf nodes corresponding to two different attack paths:
Inject Messages Via OBD-II Port and Inject Messages Via TCU.

The attack tree shown in Figure 5.7 represents the threat seven (entitled Cause

CHAPTER 5. CONSTRUCTING ATTACK TREES 88

Table 5.1: A summary of the 52 threat instances identified by the Threat
Modeling Tool. Threats have been grouped into the STRIDE categories and
a count of each threat type has been specified.

Category # Threat Count

Spoofing 1 * Trick ACC ECU Into Triggering an Emergency Stop 1
2 Cause the Car to Perform Emergency Braking 1

Tampering 3 Modify Data Being Sent to the TCU While in Transit 1

Repudiation – – –

Information
Disclosure

4 Updates Could be Downloaded 6
5 Data Flow Sniffing 8
6 Car Could be Tracked 1

Denial of
Service

7 * Cause the ACC ECU to Crash or Stop 1
8 Cause the ACC ECU to Crash or Stop Remotely 1
9 Flood ACC ECU With Invalid Data 1
10 Take the ACC ECU Offline 1
11 Cause the Gateway to Crash or Stop 3
12 Cause the Gateway to Crash or Stop Remotely 3
13 Flood Gateway With Invalid Data 3
14 Take the Gateway Offline 3
15 Cause the TCU to Crash or Stop 1
16 Cause the TCU to Crash or Stop Remotely 1
17 Flood TCU With Invalid Data 1
18 Take the TCU Offline 1
19 Cause the OBD-II to Crash or Stop 1
20 Cause the OBD-II to Crash or Stop Remotely 1
21 Flood OBD-II With Invalid Data 1
22 Take the OBD-II Offline 1

Elevation of
Privilege

23 Compromise the ACC ECU to Deliver Malicious Updates 1
24 * Reflash the ACC ECU From the CAN Bus to Send

Arbitrary CAN Messages
1

25 Compromise the Gateway to Deliver Malicious Updates 1
26 Compromise the TCU to Deliver Malicious Updates 1
27 Reflash the TCU Firmware to Send Arbitrary CAN

Messages
2

28 Compromise the Gateway to Deliver Malicious Updates 3
29 Compromise the OBD-II to Deliver Malicious Updates 1

CHAPTER 5. CONSTRUCTING ATTACK TREES 89

Excerpt from the Threat Modeling Report

Identifying the root nod by deriving
overall attack goal from the threat report.

How the information from the Description and
Attack method, combined with brainstorming, discussions,

and/or online resources is used to identify the subgoal
and leaf nodes.

Discussions

Brainstorming

Online resources

Other supportive activities for refining
and tweaking attack trees.

Figure 5.4: Applying the attack-tree construction approach to build the
first attack tree shown in Figure 5.5.

the ACC ECU to Crash or Stop), and it belongs to the Denial of Service category of
the STRIDE model. In contrast with the previous attack tree, this one is a SAND or
sequential AND tree, with a defined ordering of the actions. TMT suggested to flood
the ACC ECU with invalid data for causing it to stop or crash. In order to flood or
overwhelm the target ECU with invalid messages, we must first establish a connection
with the concerned ECU. Looking at the DFD diagram, we discovered a subtree with
two different ways to connect to the ECU: Connect through OBD-II Port or Connect
through TCU. Either of these entry points can be leveraged to flood the the ACC ECU.
However, the connection must be established before we can send the messages to our
target ECU; which means, correct ordering of these operations is critical. Therefore, a
SAND tree is the best fit here.

Finally, the SAND attack tree in Figure 5.6 represents the threat 24 (entitled Reflash
the ACC ECU from the CAN Bus to Send Arbitrary Messages), and it belongs to the
Elevation of Privilege category of the STRIDE model. This attack tree has some
similarities with the attack tree in Figure 5.7 including being a SAND attack tree, and

CHAPTER 5. CONSTRUCTING ATTACK TREES 90

Trick ACC ECU Into
Triggering an Emergency

Stop

Inject Spoofed
Radar CAN Bus

Messages

Inject Messages
Via OBD-II Port

Inject Messages
Via TCU

Figure 5.5: Attack tree depicting the threat aiming at spoofing the radar
signals to trick the adaptive cruise control ECU to cause the vehicle to
perform an emergency brake.

containing an OR subtree. Since the attack paths were already known from previous
two exercises, we were able to populate the subtree with those known attack paths (i.e.,
Connect through OBD-II Port or Connect through TCU). The remaining two steps
were not difficult to identify, which include downloading the compromised firmware
image into the ECU followed by reflashing the ECU with this image. This is obvious
to note that similar to the previous SAND attack tree, all the steps must be performed
in the specified order.

It is worth noting that the attack paths identified above do not directly provide a
connection to the ACC ECU from OBD-II port or TCU, it involves the Central Gateway
Unit. We used these examples to illustrate the step-by-step way of constructing the
attack trees. The next chapter presents the test-case generation process, which is fully
dependent on the attack trees that we construct in this particular step of the security
test approach.

CHAPTER 5. CONSTRUCTING ATTACK TREES 91

Reflash the Adaptive
Cruise Control ECU

From the CAN Bus in Order to Send
Arbitrary CAN Messages

Connect to the
ACC ECU

Connect through
OBD-II Port

Connect through
TCU

Download
the Firmware Image

Perform
Reflashing

Figure 5.6: This is another SAND attack tree with an OR subtree. As
usual, after placing the threat scenario at the root node, specific attack steps
have been identified by brainstorming and discussion, taking into account
the suggestions from the TMT.

CHAPTER 5. CONSTRUCTING ATTACK TREES 92

Cause the Adaptive
Cruise Control ECU

to Crash or Stop

Connect to
ACC ECU

Connect through
OBD-II Port

Connect through
TCU

Flood ACC ECU
with Invalid Data

Figure 5.7: This attack tree represents the threat involving denial-of-
service (DoS) attack on the adaptive cruise control ECU in order to cause
it to stop working.

CHAPTER 5. CONSTRUCTING ATTACK TREES 93

5.3 Chapter summary

In this chapter, we have presented a structured, systematic approach to constructing
and populating attack trees using the STRIDE threat classification model and its
associated tool. Using adaptive cruise control system as an example to illustrate our
approach, we have shown the step-by-step process for identifying the overall goal of
the attacker followed by specific attack methods/steps that help construct/populate
the attack tree. The example presented in this chapter shows all the activities from
system decomposition to threat enumeration to attack tree construction.

Chapter 6

Generating Test Cases

In the last chapter, we described our systematic, step-by-step approach to constructing
attack trees by using different detailed examples. This Chapter is concerned with
presenting the test-case generation process, which relies on the attack trees created
in previous steps. We introduce our test-case generation software tool that is capable
of deriving test cases by analyzing the structure of the attack tree. After providing
an overview of the test-generation approach, we explain the algorithm for the software
tool followed by a formal proof to show the correctness of test case derivation approach.
Finally, three different examples are used to demonstrate the approach in action.

6.1 Test Case Generation

Traditional security test-case derivation process tends to be unstructured, irrepro-
ducible, reliant on the expertise and experience of the tester, undocumented, and
having no or inadequate rationales for the test design. In order to address these short-
comings or minimize their impact, model-based security testing approaches rely on the
explicit model of the system-under-test for systematic (and often automated) specifi-
cation, derivation, and execution of the security test cases [122, 71].

Since this study adopts a model-based security testing approach, a software tool
has been designed and implemented (previously introduced in [112]) for automating the
test case derivation and execution process. This tool has been completely redesigned
and rewritten by eliminating its dependencies on third-party tools and libraries for the
performance and efficiency improvements. The tool, written in Python programming
language, has a command-line based user interface and consists of two main modules,
one of which is responsible for the test case generation and the other one for execut-
ing those test cases against the system under test. The test case generator module
accepts an XML-based attack tree, analyzes its structure, derives test cases based on
the semantics of the input attack tree, and writes the derived test cases to a plain text
file. The executor module uses that file for executing the test cases against the target
system. All test cases have their corresponding test scripts stored in a separate file.

94

CHAPTER 6. GENERATING TEST CASES 95

Table 6.1: An attack tree represented in XML format.

XML representation of the Attack Tree as displayed in Figure 2.10.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <sandtree >

3 <node refinement="conjunctive">

4 <label>Attack Goal</label>

5 <node refinement="sequential">

6 <label>Subgoal 1</label>

7 <node refinement="conjunctive">

8 <label >Action 1</label>

9 <comment >Test Script A</comment >

10 </node>

11 <node refinement="conjunctive">

12 <label >Action 2</label>

13 <comment >Test Script B</comment >

14 </node>

15 </node>

16 <node refinement="disjunctive">

17 <label>Subgoal 2</label>

18 <node refinement="conjunctive">

19 <label >Action 1</label>

20 <comment >Test Script C</comment >

21 </node>

22 <node refinement="conjunctive">

23 <label >Action 2</label>

24 <comment >Test Script D</comment >

25 </node>

26 </node>

27 </node>

28 </sandtree >

CHAPTER 6. GENERATING TEST CASES 96

Gain Unauthorised
Access to System

Password Attack

Brute Force Guessing Dictionary Attack

Figure 6.1: An example attack tree with an (OR) subtree representing a
subgoal that helps achieving the overall attack goal of the attacker.

The test executor uses that file for loading the test scripts to be executed against the
target corresponding to the security test case being executed.

Before introducing the approach in more detail, a definition of a security test case
is warranted here to explain what a derived security test case entails.

Definition 6.1.1. A security test case is a finite sequence of atomic actions or events
from A (recall from Definition 2.3.1 in Chapter 2 that A denotes a set of potential
atomic actions of the attacker) that attempts to check if the System Under Test (SUT)
can defend against the test case. The outcome of executing a security test case against
the SUT can either be PASS or FAIL. A test case yields a PASS outcome if the SUT
is able to thwart a cyberattack effectively, whereas failure to defend a security attack
leads to a FAIL outcome.

To better illustrate the process and the resultant output (i.e., test cases), we use
some simple attack trees. The first example uses a simple OR attack tree (shown in
Figure 6.1) with one subtree having two leaf nodes depicting the primitive actions of
the attacker. As evident, the overall goal of the attacker involves gaining unauthorised
system access. The attacker tries to accomplish this by means of a password attack.
Traversing through this attack tree results in two unique sequences of events (i.e.,
Brute Force Guessing and Dictionary Attack) or attacks, either of which can be used
to achieve the overall attack goal. Please note that goals and subgoals are not included
in the test cases, only atomic attacker actions are used to construct a security test case.
Listing 6.1 shows the test cases generated from the attack tree (see Figure 6.1).

The second example uses an AND attack tree with two leaf nodes. It should be
noted that since an AND attack tree requires both of the actions to be completed in
order to achieve the overall goal, hence each test case is composed of both of the actions.
However, because the order in which these actions are performed is immaterial, because

CHAPTER 6. GENERATING TEST CASES 97

Test Case 1 : <Brute Force Guessing>
Test Case 2 : <Dict ionary Attack>

Listing 6.1: Test Cases derived from the OR attack tree presented in Figure
6.1.

both ways lead to the same result; hence two different executions (permutations) have
been resulted.

The test cases derived by analyzing the structure of this particular attack tree are
shown in Listing 6.2:

Compromise System

Install Spyware Install Backdoor

Figure 6.2: An example (AND) attack tree with the overall goal of com-
promising the system by installing spyware (e.g. keylogger) and a backdoor
for persistent unauthorised access to the system for carrying out further
exploitation.

Test Case 1 : < I n s t a l l Spyware , I n s t a l l Backdoor>
Test Case 2 : < I n s t a l l Backdoor , I n s t a l l Spyware>

Listing 6.2: Test Cases derived from the AND attack tree presented in
Figure 6.2.

The third example involves a SAND subtree with two leaf nodes. Overall at-
tack goal aims at retrieving user credentials (i.e., usernames and passwords) from the
database. The attack method used by the attacker is the well-known SQL injection
attack. The query is written in such a way that can fetch confidential, private infor-
mation, bypassing the application access control restrictions. The test cases derived
from this attack tree are shown in Listing 6.3. Since this is a SAND tree, the actions
must be performed in the correct order, as shown by the direction of the arrow.

CHAPTER 6. GENERATING TEST CASES 98

Retrieve User Credentials
from Database

SQL Injection
Attack

Craft Malicious
SQL Query

Execute Malicious
SQL Query

Figure 6.3: An example attack tree with a (SAND) subtree representing
a subgoal that helps achieving the overall attack goal of the attacker. The
subtree in turn is composed of two leaf nodes representing the atomic attack
actions.

It is worth noting for this particular type of attack tree that both actions must be
executed in the specific order shown for the overall goal to be accomplished successfully,
hence two leaf nodes of this SAND tree resulted in a single security test case. The final
example demonstrates four different test cases (see Listing 6.4) derived from a more
complex overall SAND attack tree with different subtrees. The overall goal of this
attack tree involves delivering a malicious update to an IoT device. The first task is
preparing the malicious update to be delivered to the target device. An AND subtree
depicts the two different mandatory steps/actions for preparing the update. Since the
refinement type of this subtree is AND, the actions can be carried out in any order,
even in parallel. The OR subtree (Compromise Cryptographic Keys for SW Signing)
in turn has two leaf nodes (which are atomic actions). Only one of these actions
will be suffice for compromising the keys. This combination of subtrees with different
refinement types and interrelationships leads to interesting test cases, as shown in the
Listing 6.4. Since, overall it is a SAND tree; ordering of the actions in which they are
executed is very important for achieving the desired outcome.

CHAPTER 6. GENERATING TEST CASES 99

Deliver Malicious
Update to IoT Device

Prepare Malicious
Update

Compromise Cryptographic
Keys for SW Signing

Bribe Admin to
Obtain the Keys

Steal the Keys

Craft Malicious
Update

Sign Update
Send the Update
to the Target IoT

Device

Figure 6.4: An example overall SAND attack tree with an OR and an
AND subtree representing different subgoals, each of which can help achieve
the overall attack goal of delivering a malicious update.

Later in this chapter we will provide more details on how the executable test cases
are generated and what additional information they carry. Following section presents
the algorithm we devised for generating security test cases by analyzing the structure
of the attack trees.

6.2 Test Case Generation Algorithm

Algorithm 1 outlines the main logic and major steps for deriving security test cases
by analyzing the structure of the attack tree. The function GenerateTestCases (for
convenience, we will henceforth refer to GenerateTestCases as GTC) accepts an at-
tack tree as input. For this purpose, the tool requires the attack tree to be in the
XML representation as an example shown in the Figure 6.1. The conversion can be
accomplished by using the built-in feature of the ADTool, allowing the attack tree to
be exported in XML format.

As can be observed, GTC has a number of if-else blocks for determining the refine-

CHAPTER 6. GENERATING TEST CASES 100

Test Case 1 :
<Craft Mal i c ious SQL Query , Execute Mal i c ious SQL Query>

Listing 6.3: Test Case derived from the SAND attack tree presented in
Figure 6.3.

Test Case 1 :
<Bribe Admin , Craft Update , Sign Update , Send Update>
Test Case 2 :
<St ea l Keys , Craft Update , Sign Update , Send Update>
Test Case 3 :
<Craft Update , Bribe Admin , Sign Update , Send Update>
Test Case 4 :
<Craft Update , S t ea l Keys , Sign Update , Send Update>

Listing 6.4: Test Cases derived from the mixed attack tree presented in
Figure 6.4.

ment type of the input attack tree and processes the attack tree/node accordingly.
The first case (beginning on line three of the algorithm) determines whether the

input attack tree/node is a leaf node. This is determined by establishing whether the
current node has a subtree or a child node, if none of these is true, this node will
be considered a leaf node and appended to the set TC. Rationale for using the set
data structure here is motivated by the unique characteristics of this data structure
(i.e., sets are unordered, their elements are unique with no duplicates allowed, and the
elements are immutable) that make them an appropriate choice for holding test cases
derived from OR and AND trees, as the preservation of ordering is only applicable
and required in the sequential AND (SAND) trees.

The second case (from line six to line 11) is applicable where the attack tree/node
is an OR tree. Since this type of attack trees is assumed to have one or more children
nodes, a recursive call is made to the function GTC by supplying the current (i.e.,
8Cℎ) child node as input, which goes through the same process and the resultant return
value (that is, a test case) of this function call is added to the set TC as a subset. This
process is repeated for = number of times where = is the number of children nodes for a
given attack tree/subtree. Once all the children nodes have been processed, union of all
the test cases (i.e.,)�0 to)�8) is appended to the set TC. It is important to note that
each leaf node of an OR represents one complete test case. That is, if a given OR has

CHAPTER 6. GENERATING TEST CASES 101

Algorithm 1: This is the test-case generation algorithm that derives test cases
by analyzing the structure and based on the the formal semantics of the attack
tree. It accepts an attack tree as input, generates all possible test cases, and
provides a set of concrete test cases. To view the source code implementing
this algorithm, please see Appendix A.

Input: Attack Tree
Output: Test Cases

1 initialization;
2 Function GenerateTestCases(0CC02:)A44):
3 if attackTree.type == leaf node then
4 TC ← 0CC02:)A44

5 return TC

6 else if attackTree.type == OR node then
7 foreach 2ℎ8;3 =>348 in 0CC02:)A44(8=0,...,=) do
8)�8 ← �4=4A0C4)4BC�0B4B(2ℎ8;3 =>348)
9 end

10)� ← D=8>=()�0, ...,)�=)
11 return TC

12 else if attackTree.type == AND node then
13 foreach 2ℎ8;3 =>348 in 0CC02:)A44(8=0,...,=) do
14)�8 ← �4=4A0C4)4BC�0B4B(2ℎ8;3 =>348)
15 end
16)� ← D=8>=(?A>3D2C ()�0, ...,)�=))
17)� ← ?4A<DC0C8>=B()�)
18 return TC

19 else if rootNode.type == SAND node then
20 foreach 2ℎ8;3 =>348 in A>>C#>34(8=0,...,=) do
21)�8 ← �4=4A0C4)4BC�0B4B(2ℎ8;3 =>348)
22 end
23)� ← D=8>=(?A>3D2C ()�0, ...,)�=))
24 return TC

25 end

CHAPTER 6. GENERATING TEST CASES 102

attack tree

Yes

Nohas children
node(s) add to TC

No

Yesis it an
OR tree?

for each child node,
call GTC(child_node)

return TC

append return value
of each call to TC return TC

is it an
AND tree?

Yes for each child node,
call GTC(child_node)

append return value
of each call to TC

compute Cartesian
products

generate
permutations & add

to TC

return TC

is it a
SAND tree?

No

Yes for each child node,
call GTC(child_node)

append return value
of each call to TC

compute Cartesian
products & add to TC

return TC

Figure 6.5: This flowchart is a graphical representation of the algorithm
1.

CHAPTER 6. GENERATING TEST CASES 103

= leaf nodes, the number of derived test cases will be equal to =. However, remember
that in the case of a complex attack tree with the root node being OR, which contains
other types of (i.e., AND or SAND) attack trees as subtrees, the number of test cases
will unlikely to equate the number of leaf nodes of that OR tree.

Starting on line 12 of the algorithm, the third case is applicable to the AND
attack trees/nodes. Similar to the OR tree case explained above, children nodes are
recursively processed and returned values are appended to an intermediate variable)�8
one by one. Once all the children nodes have been processed, Cartesian product of all
the elements is computed followed by performing a union of all theses products, which is
finally appended to the TC. An additional step here is the function permutations, which
computes all the valid permutations of the test cases contained in the TC and reassigns
the resultant output to the TC. The last two steps help achieve the interleaving of leaf
nodes. This is in line with the formal semantics of the attack trees presented in [53]
and described in the Section 6.3. A single test case derived from an AND attack tree
can constitute more than one action steps. That is, multiple leaf nodes can be part of
one test case. In general, the number of test cases derived from an AND attack tree
will be =! where = represents the total number of leaf nodes of a given AND attack
tree.

The last case deals with the SAND attack tree/node. This case is very similar to
the AND trees with a couple of differences. Firstly, since maintaining the sequential
order of the test steps is crucial, a compatible data structure (e.g., lists) should be
used that can preserve the order of the test steps. Secondly, unlike the AND attack
trees/nodes, permutations are not generated. All children nodes are processed one-by-
one by leveraging the recursion. An ordered list of elements returned is contained in
the TC. A test case derived from a SAND attack tree is composed of all the action
steps concatenated together. However, please keep in mind that a SAND attack tree
consisting of other types of attack trees as its subtrees will yield a number of test cases
based on the combined semantics of the parent and subtrees involved.

6.3 Sequence Semantics

Mantel and Probst [53] present the SAND attack-trees formal semantics by interpreting
them as sequences, which is equivalent to the SP semantics of attack trees presented
in [49] and described in Chapter 2. Similar to the procedure used for SP semantics in
[49], the sequence semantics of a SAND tree are defined using a bottom-up approach
wherein semantics of a leaf node is a sequence comprising of a single element formed
by the label of the node, representing the attacker’s primitive action. A set of attacks
can be constructed from the semantics (depending on the refinement operator used,
i.e., OR,AND, or SAND) of the subtrees of an inner node.

To begin with, we provide an introduction to the basic notions and the notation
we use for presenting the sequence semantics of the SAND attack trees based on the
formalisation presented in [53]. Using N for denoting the set of natural numbers, the

CHAPTER 6. GENERATING TEST CASES 104

notation [<, =] = {<, ..., =} is used to denote a subset of the N, where <, = ∈ N∧< < =,
and if < > = then [<, =] = ∅ holds. Additionally, <0G(#) denotes the unique maximal
element of a nonempty, finite set # ⊆ N. While the notation - ⇀ . is used to denote
the space of partial functions, - → . is used to denote the space of total functions from
a domain - to a codomain . . To retrieve the domain of a function, we use 3>< and
for retrieving the codomain of a function we use 23><; that is, 3><(5) = 3><(6) = -,
and 23><(5) = 23><(6) = hold for 5 : - ⇀ . and 6 : - −→ . .

Furthermore, for retrieving the set of elements for which a function is defined and
the set of elements that can be reached by a function, we use 34 5 and 8<6, respectively.

In order to model infinite sequences over a set -, we use N −→ -, and we denote
the set of all such infinite sequences by (�&8= 5 (-). Additionally, in order to model
finite sequences over -, we use functions 5 : N ⇀ -, with 34 5 (5) = ∅ or 34 5 (5) =
[0, =],∀= ∈ N. The length of a finite sequence 5 is defined by # 5 = 0 if 34 5 (5) = ∅, and
5 = <0G(34 5 (5)) + 1 if 34 5 (5) ≠ ∅. We denote the set of all such finite sequences by
(�& 5 8= (-). Finally, to denote the set of all infinite and all finite sequences over -, we
use (�&(-), which can be defined formally as: (�&(-) = (�&8= 5 (-) ∪ (�& 5 8= (-).

For convenience, we denote an empty sequence by 〈〉; that is, 〈〉 : N ⇀ - with
34 5 (〈〉) = ∅ and ; = 〈G0, ..., G=〉 to denote a finite sequence with = + 1 elements or
; : N⇀ - with 34 5 (;) = [0, =] and ; (8) = G8 ∀ 8 ∈ 34 5 (;).

We use the following function for appending to a finite sequence:

◦ : (((�& 5 8= (-) × (�& 5 8= (-)) −→ (�& 5 8= (-))
∪(((�& 5 8= (-) × (�&8= 5 (-)) −→ (�&8= 5 (-))

(;1 ◦ ;2) : 8 ↦→

;1(8), 8 5 8 < #;1

;2(8 −#;1), 8 5 8 ≥ #;1 0=3 8 < #;1 +#;2

D=34 5 8=43, 8 5 8 ≥ #;1 +#;2

and lift ◦ in a pointwise manner to sets of sequences by:

(!1◦, ..., ◦!:) = {;1◦, ..., ◦;: | ;1 ∈ !1 ∧ ;: ∈ !: }

A function 4<1 : N⇀ N is an embedding of a sequence

; ∈ (�&(-) into ;′ ∈ (�&(-′), where - ⊆ -′ iff

• 34 5 (4<1) = 34 5 (;)

• ∀= ∈ 34 5 (4<1) : ; (=) = ;′(4<1(=)), and

• ∀= ∈ (34 5 (4<1\{0}) : 4<1(=) > (= − 1) hold.

CHAPTER 6. GENERATING TEST CASES 105

A sequence ; ∈ (�&(-1∪ -2) is an interleaving of ;1 ∈ (�&(-1) 0=3 ;2 ∈ (�&(-2)
iff there exists an embedding 4<11 of ;1 into ; and an embedding 4<12 of ;2 into ; such
that 34 5 (;) = 8<6(4<11) ∪ 8<6(4<12) 0=3 8<6(4<11) ∩ 8<6(4<12) = ∅ holds.

The following function is used for interleaving two sequences:

∼: (((�&(-) × (�&(-) −→ %((�&(-))

(;1 ∼ ;2) = {; ∈ (�&(-) | ; is an interleaving of ;1 and ;2} and lift ∼ in a pointwise
fashion to sets of sequences by

(!1 ∼ !2) =
⋃

;1∈!1 ,;2∈!2

;1 ∼ ;2

Since both ◦ and ∼ are associative operators; therefore, lifting to =-ary operators is
obvious. For lifted operators, we use prefix notation as shown in the following example
involving interleaving three sets !1, !2, !3:

∼ (!1, !2, !3), which is equivalent to !1 ∼ (!2 ∼ !3).

The sequence semantics of attack trees in T can be given by using the following
function.

Definition 6.3.1. The function v·w
(�&

: T −→ %((�& 5 8= (A)\{〈〉}) is defined
recursively by:

1. v0w
(�&

= {〈0〉},

2. vOR(C1, ..., C:)w(�& =
⋃
8∈{1,...,:}vC8w(�&

vAND(C1, ..., C:)w(�& = ∼ (vC1w
(�&

, ..., vC:w(�&)
vSAND(C1, ..., C:)w(�& = ◦(vC1w

(�&
, ..., vC:w(�&)

Example 4: This example illustrates the sequence semantics of the attack tree t
presented in Figure 2.13.

vCw
(�&

= 〈0 ∼ 2 ◦ 3, 1 ∼ 2 ◦ 3〉

It is imperative to note that vCw
(�&

is guaranteed to be a non-empty set, and since
each C ∈ T has at least one sub-expression of the form 0; hence, each element in
vCw

(�&
is also guaranteed to be a non-empty sequence.

CHAPTER 6. GENERATING TEST CASES 106

6.4 Correctness of the Test-Case Derivation Ap-

proach

In order to demonstrate the correctness of the test case derivation approach, we provide
a formal proof in this section. For a detailed description of the notation and the basis
for this proof, please refer to Section 6.3.

Lemma 1. ∀ C ∈ T$',�#�,(�#� , GTC(t) = vCw
(�&

This will be proved by induction on the structure of the C.

Base Case:
Let C = 0; since by definition
v0w

(�&
= {〈0〉},

and �)� (C) =)� = {〈0〉}, as shown by lines 3 to 5 of the pseudocode in the
Algorithm 1, which show that TC = vCw

(�&
.

Inductive Step:

Case C = OR(C1, ..., C:):
�)� (C1) =)�1 =⇒)�1 = vC1w

(�&
(by induction hypothesis)

...
�)� (C:) =)�: =⇒)�: = vC:w(�& (by induction hypothesis).

vCw
(�&

=
⋃
8=1,...,:vC8w(�& (by definition), and

)� ← ∪()�0, ...,)�=), as shown by lines 6 to 11 of pseudocode in the Algorithm 1,
which is equivalent to the following:

)� = ∪()�0, ...,)�=) = ∪8∈1,...,:vC8w(�&
=⇒)� = vCw

(�&

Case C = AND(C1, ..., C:):

�)� (C1) =)�1 =⇒)�1 = vC1w
(�&

(by induction hypothesis)
...
�)� (C:) =)�: =⇒)�: = vC:w(�& (by induction hypothesis).

vCw
(�&

= ∼ (vC1w
(�&

, ..., vC:w(�&) (by definition), and

)� ← ∪()�1×, ...,×)�:) and)� ← ?4A<DC0C8>=B()�) as shown by the lines 12
to 18 of the pseudocode in the Algorithm 1. (That is, the interleaving of)�1, ...,)�:
has been accomplished by computing the Cartesian product of all TCs (i.e., from
)�1 C>)�:) followed by generating their permutations). The end result of this is

CHAPTER 6. GENERATING TEST CASES 107

equivalent to the following:

)� =∼ ()�1, ...,)�:) =∼ (vC1w
(�&

, ..., vC:w(�&)
=⇒)� = vCw

(�&

Case C = SAND(C1, ..., C:):

�)� (C1) =)�1 =⇒)�1 = vC1w
(�&

(by induction hypothesis)
...
�)� (C:) =)�: =⇒)�: = vC:w(�& (by induction hypothesis).

vCw
(�&

= ◦(vC1w
(�&

, ..., vC:w(�&) (by definition), and
)� ← ∪()�1×, ...,×)�:), as shown by the lines 19 to 24 of the pseudocode presented
in the Algorithm 1, which is equivalent to the following:

)� = ◦()�1, ...,)�:) = ◦(vC1w
(�&

, ..., vC:w(�&)
=⇒)� = vCw

(�&

6.5 Test Case Generation in Action

In this section we generate some test cases to showcase the effectiveness of the test-
case generation approach introduced in this chapter. Examples presented in this section
demonstrate the application of the test case derivation approach. We use the attack
trees constructed in the Section 5.2 of Chapter 5.

6.5.1 Anatomy of an Executable Security Test Case

Before proceeding with the examples of generating test cases, it is important to under-
stand the structure of an executable security test case and what is the meaning of each
constituent part of it. Recall, we explained earlier that a security test case is composed
of a sequence of one or more events or actions that an attacker can potentially perform
for achieving a certain goal by compromising the system security; in addition to all
the components that a standard security test case has, an executable security test case
contains an additional piece of information about its associated test script, hence it
is called an executable test case. In other words, an executable security test case is a
sequence of pairs of events or actions from A and their associated test scripts. In order
to differentiate with a security test case, we use the notation ”[” and ”]” (i.e., square
brackets), instead of ”〈” and ”〉” (i.e., angle brackets) to denote a sequence. A typical
example of an executable security test case is presented in Listing 6.5.

The comma-separated pair of values enclosed in the double quotes (as shown in
Listing 6.5) is an example of a complete executable security test case. While the first
value (extracted from the leaf node’s label) denotes the description of the event or

CHAPTER 6. GENERATING TEST CASES 108

Test Case 1: [("event Leaf Node Label","test script information")]

Listing 6.5: Example of an executable test case containing a pair of comma-
separated values enclosed in double quotes.

attack action, the second value (comes from the comment element of the XML version
of the attack tree, please see Table 6.1) represents the name of the test script that gets
executed when the security test case runs. To prevent run-time programming errors,
all the white spaces are replaced with underscore symbols by the software tool.

All the security test cases generated by our software tool have the same format and
structure as presented in this section.

6.5.2 Example Security Test Cases

Table 6.2: This table presents the derived test cases from the attack tree
shown in Figure 5.5 (see Section 5.2).

Threat Scenario:
Trick the ACC ECU into Triggering an Emergency Stop

Source Attack Tree: Figure 5.5
Attack Tree Type: OR
Number of Leaf Nodes: 2
Number of Test Cases: 2

Test Case 1:
[("event Inject Messages Via TCU","inject tcu message")]

Test Case 2:
[("event Inject Messages Via OBD-II Port","inject obd message")]

Table 6.2 shows two different test cases derived by using the OR attack tree dis-
played in Figure 5.5 in Section 5.2 as an input to the software tool. This attack tree
has one OR subtree containing two leaf nodes. Note that our tool correctly derived
the test cases by analyzing the structure of the tree. Each test case, comprising one
action, is derived from the leaf node of subtree. The tool extracts label (e.g., Inject
Messages Via TCU) from of the leaf node and uses it for the test case description by
preceding it with the word event to indicate it is an action step. Similarly, the tool
also extracts the text (e.g., inject tcu message) from the comment element of the XML
version of the attack tree, which is usually a method name in the test script. These
values are specified while constructing the attack tree in the ADTool.

CHAPTER 6. GENERATING TEST CASES 109

Table 6.3: This table presents the derived test cases from the SAND
attack tree shown in Figure 5.7 (see Section 5.2).

Threat Scenario:
Flood Cause the Adaptive Cruise Control ECU to Stop or Crash

Source Attack Tree: Figure 5.7
Attack Tree Type: SAND
Number of Leaf Nodes: 3
Number of Test Cases: 2

Test Case 1:
[("event Connect through OBD-II Port","connect via obd"),

("event Flood ACC ECU with Invalid Data","flood acc")]

Test Case 2:
[("event Connect through TCU","connect via tcu"), ("event Flood -

ACC ECU with Invalid Data","flood acc")]

Two different test cases derived from the SAND attack tree shown in the Figure
5.7 of Section 5.2 are presented in the Table 6.3. This attack tree is made up of an
OR (with two children leaf nodes) as well as one leaf node. The subtree represents the
subgoal of connecting to the ACC ECU by using one of the two different possibilities.
The overall goal of this attack tree can be achieved in two different ways; hence,
two test cases are derived. Since this is a SAND tree, the specified order of the
actions/operations must be followed. Note that unlike OR example described above,
each test case contains more than one action. This example also demonstrates that the
tool successfully generated valid and correct test cases in accordance with the semantics
of the attack tree.

The third example of test case derivation is presented in the Table 6.4, which
summarizes two different test cases derived from the SAND attack tree shown in the
5.6 of Section 5.2. This attack tree is composed of two SAND leaf nodes and an OR
subtree representing the subgoal Connect to the ACC ECU. Each leaf node of this OR
attack tree represents an alternative to gaining access to the ACC ECU either through
OBD-II port or TCU. Each test case consists of two sequential actions.

CHAPTER 6. GENERATING TEST CASES 110

Table 6.4: This table presents the SAND attack tree shown in Figure 5.6
(see Section 5.2).

Threat Scenario:
Reflash the Adaptive Cruise Control ECU From the CAN Bus in Order to Send
Arbitrary CAN Messages

Source Attack Tree: Figure 5.6
Attack Tree Type: SAND
Number of Leaf Nodes: 4
Number of Test Cases: 2

Test Case 1:
[("event Connect through OBD-II Port","connect obd"), ("event -

Download the Firmware Image","download firmware"), ("event -

Perform Reflashing","reflash acc")]

Test Case 2:
[("event Connect through TCU","connect tcu"), ("event Download -

the Firmware Image","download firmware"), ("event Perform -

Reflashing","reflash acc")]

CHAPTER 6. GENERATING TEST CASES 111

6.6 Chapter summary

In this chapter we introduced our test case derivation software tool by presenting and
walking through the algorithm followed by the proof of the approach’s correctness using
formal methods. We showed how our tool analyzed the structure of the attack tree
based on its formal semantics for deriving valid test cases. Furthermore, we provided
a definition and explanation of the security test cases, supported by some appropriate
generic examples. Finally, three different examples were presented to showcase the
core functionality of the software tool and underpinning test case derivation approach.
Each example involves generating security test cases based on a particular attack tree
provided to the tool as an input. A table summarizing each test case generated is also
provided showing the core elements of test case.

Chapter 7

Experimental Security Analysis of
Uptane Framework

In this chapter we apply the systematic approach to the security testing of the reference
implementation of the Uptane Framework and detail all the core activities. Starting
with describing some key assumptions, an overview of the testing setup is provided,
which is followed by the detailed description of the in-depth security analysis of the
Uptane Framework by applying the testing approach. We conclude the chapter by
summarizing the key findings and limitations.

We present a number of different experiments performed on various components of
Uptane Framework using our systematic security testing approach. It is demonstrated
how applying System Decomposition in the Information Gathering was carried out
for identifying the critical assets and preparing the suitable system model for Threat
Enumeration in Threat Assessment phase of the approach. Using the Threat List gen-
erated, a number of attack trees were constructed using the attack tree construction
approach. Our software tool generated and executed the executable test cases by using
these attack trees. The chosen security tests presented are derived from the threat list
generated by the Threat Modeling Tool, as shown in Table 7.2, by using the system
model of Uptane Framework (as shown in Figure 7.3) as a basis for the test derivation
and execution process. Note that the last three threats in the table are selected from
the literature (for more details, see [38]). While all the tests conducted in these exper-
iments were successfully executed with all the associated steps/actions performed as
expected, 13 out of a total of 29 security test cases failed (i.e., yielded FAIL outcome).
As discussed later, while the reference implementation was able to defend various cy-
berattacks, the outcome of some experiments suggest that effective security controls
need to be applied to the production system in order to ensure the confidentiality of
the information being exchanged between ECUs and the availability of Uptane repos-
itories and backend-server infrastructure to ensure timely and uninterrupted delivery
of updates for smooth and safe operations of the vehicle.

112

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK113

7.1 Assumptions

Before proceeding with security testing process, we would like to highlight some im-
portant assumptions that have been made while performing the security testing.

1. First of all, most of the experimental security attacks presented in the subsequent
subsections assume that attackers either have privileged access (e.g., it could be
a disgruntled employee, facilitating the attacker to gain access) to the Uptane
repositories or the repositories are being spoofed. We will further explain it when
we describe specific experiments in the corresponding sections.

2. Some experiments rely on the assumption that the secret cryptographic keys for
signing software or metadata were compromised. This could be accomplished by
social engineering techniques and/or bribing an employee, for example.

3. Finally, since our primary goal has been to demonstrate what the adversaries
would be able to accomplish if they could compromise the update servers, rather
than showing how would they break into the system, many experiments assume
that the attackers were somehow able to break into the system. Furthermore,
since the production environment would have its own specific dynamics (such as
type of the hardware equipment, operating systems etc.), which would be depend-
ing on the very nature of OEM’s (or the vendor’s) IT infrastructure, it is there-
fore reasonably impracticable to demonstrate or simulate the attacks (without
any knowledge of the hardware/software vulnerabilities) on such environments
when the details of such actual target setups are unknown.

7.2 Experimental Setup

This section details the testing environment used for security evaluation of the auto-
motive over-the-air updates system. The testbed has been constructed using readily
available, inexpensive hardware components, providing a safe, adaptable, and portable
testing environment for automotive security testing. Core components of the testbed
are shown in the Figure 7.2, and a description of all its hardware/software compo-
nents has been summarised in Table 7.1. We use Raspberry Pi microcontrollers for
simulating the Primary and Secondary ECUs, representing Uptane clients. The laptop
computer hosts the Uptane repositories of the reference implementation. A standard
network switch has been used to facilitate connectivity between the server and client
devices.

The laptop computer hosting the Uptane repositories has Ubuntu 18.04 installed.
We use the standard Raspberry Pi Desktop version of the operating system on both
Raspberry computers that simulate the Uptane-compliant Primary and Secondary
clients. The reference implementation of the Uptane framework was downloaded and
installed on the server and client components. The reference implementation has been

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK114

Secondary ECU

Primary ECU

:

Uptane Servers

Image Repository

Director Repository

Time Server

Network Swtich

Laptop Computer

Raspberry Pi

Raspberry Pi

Figure 7.1: OTA testbed schematic diagram, providing a graphical
overview of the major components and communication links.

Figure 7.2: The Testbed for OTA Updates Security Testing. Major com-
ponents of the testing setup are shown in this image.

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK115

Table 7.1: A summary of the hardware and software components used for
building the security testing environment shown in the Figure 7.2.

Component Machine Type Operating System

Uptane Servers Laptop Computer Ubuntu 18.04

Uptane Primary ECU Raspberry Pi
Microcontroller

Raspberry Pi Desktop

Uptane Secondary ECU Raspberry Pi
Microcontroller

Raspberry Pi Desktop

Attacker Machine Laptop Computer Kali Linux

Communication Device Switch –

programmed in using Python programming language and can be downloaded from
[123]. A guide providing detailed instructions on how to set up the servers and clients
can also be found using the link provided above. However, remember that in order to
set up the implementation on separate (distributed) physical devices, further config-
urations would need to be applied. Instructions for such configurations are provided
in the appendix. Finally, even though over-the-air updates usually employ wireless
communication technologies, this testbed rely on a wired switch, which is insignificant
for the purposes of the experimentation, as using such a device does not affect the
process or outcome of the security tests.

7.3 Uptane Framework: System Decomposition

Recall that in order to identify core system components and external interfaces that
attackers can potentially target as entry points for compromising the security, infor-
mation about the target system needs to be gathered. Ideally, both architectural and
functional models of the system should be produced in order to determine the potential
attack surface. Uptane Framework’s reference implementation along with detailed de-
sign documentation is available on the internet, these resources provided useful starting
point for our investigations. By reviewing the design documentation and other rele-
vant information on the internet about the framework, we reproduced the architecture
diagram of Uptane as shown in Figure 7.3. This detailed view was achieved by apply-
ing system decomposition approach outlined in the Section 4.2.1 of Chapter 4. This
diagram shows key system components on both the backend OTA servers and within
the vehicle along with associated data/communication flows.

Having identified the major entities of the OTA update system, the next step in-
volved identifying and understanding the interactions between these entities. Based

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK116

Vehicle

Primary ECU

Secondary ECU
(Full Verfication)

Secondary ECU
(Partial Verfication)

Image Repository

Director Repository

Images +
Metadata

Time
Server

Vechicle Manifest

Image + Metadata

Signed Tokens
& Time

Inventory
DatabaseMetadata

Figure 7.3: Produced as a result of the System Decomposition process,
this diagram provides a detailed architectural view of the Uptane Framework
depicting the repositories, clients and the information flows.

on the analysis of the information we gathered, a UML sequence diagram (as shown in
Figure 7.4) was produced, representing various interactions between server-side and in-
vehicle components. As evident, this diagram presents more meaningful insights about
the key processes and the information exchange taking place between them. With this
diagram, we proceed to the next activity: Threat Enumeration.

7.4 Uptane Framework: Threat Enumeration

While the sequence diagram in Figure 7.4 captures key system processes and interac-
tions, it does not provide any information about the security threats. Therefore, with
the help of the two diagrams (i.e., Figure 7.3 and Figure 7.4), we were able to construct
the DFD, as shown in Figure 7.5.

Note that the data flow diagram (Figure 7.5 includes the major components of the
Uptane OTA update system from both the server and the vehicle side. As can be ob-
served from the DFD in Figure 7.5, both the server-side and the client-side components
are surrounded by rectangles, signifying the trust boundaries. Three different types of
data flows have been used to indicate the communication types used between different
components. Communication between update server and Telematics Control Unit uses
HTTP protocol, while CAN protocol has been used between in-vehicle components.
The third type of data flow is command, depicting internal communication flows be-
tween server-side components (i.e., Image Repository, Director Repository, Inventory
Database etc.), assuming they reside on the same physical system.

Based on this data flow diagram, the report generated by the TMT tool identifies
53 different threats (a summary is presented in the Table 7.2 and detailed threat report
can be found in Appendix C) that could potentially be used to compromise the security
of OTA update system in a number of different ways. As indicated earlier, the last
three threats have been included from the literature to show some known attacks on
the update systems. In addition to the title of the threat, Table 7.2 also shows relevant

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK117

Figure 7.4: Uptane Framework Sequence Diagram depicting Over-The-
Air Update interactions between Uptane OTA Server-Side and In-Vehicle
Primary and Secondary ECUs.

STRIDE category and a count of the occurrences of each threat. For example, the
first threat Data Flow Sniffing has a count value of nine, which means there are nine
different data flows that are exposed sniffing attacks. Similarly, TMT identified at
least seven different vulnerable points that can be used for unauthorised download of

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK118

Figure 7.5: Data Flow Diagram (created using Threat Modeling Tool and a
template from NCC group) of the Uptane Framework Backend Servers (ref-
erence implementation) and in-vehicle components, showing various types
of components and communication links.

updates. The pie chart in Figure 7.6 provides an overview of the threats identified,
showing the total number of threats in each category of STRIDE.

7.5 Uptane Framework: Attack-Tree Construction

We only include a subset of the threats in the experiments, as this strategy allows us
to effectively demonstrate the application of systematic security testing approach with
appropriate level of details. We first build attack trees for various selected threats
enumerated by TMT (see Table 7.2), followed by some known threats as published in
the literature (see Figure 2.1 and Table 2.1). Recall from the Section 5, the step-by-
step approach for constructing the attack trees that includes identifying a goal that
an attacker would like to achieve by compromising the system security, followed by
identifying one or more ways that can assist in achieving the goal. That high-level
goal becomes the root node of the attack tree. Also recall that each of the threats
listed in Table 7.2 represents a potential high-level goal (root node). The threat report
generated by TMT provides suggestions about what attack methods/techniques could
be used by the attackers for each type of threat. We also used brainstorming and expert
discussion sessions for identifying subgoals (intermediate nodes) and action steps (leaf
nodes). Where necessary and applicable, we also made use of available online resources

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK119

Table 7.2: This table presents a summary of the threats identified by the
tool.

Category # Threat Count

Tampering 1 Modify Data Being Sent to the TCU (Primary) While
in Transit

3

Repudiation

2 Director Repo Denies Writing Data 1
3 Image Repo Denies Writing Data 1
4 TCU (Primary) Denies Writing Data 3
5 Time Server Denies Writing Data 1

Information
Disclosure

6 * Updates Could be Downloaded 7
7 * Data Flow Sniffing 9
8 Car Could be Tracked 3

Denial of Service

9 * Cause the Director Repo to Crash or Stop Remotely 1
10 * Cause Image Repo to Crash or Stop Remotely 1
11 * Cause the TCU (Primary) to Crash or Stop Re-

motely
1

12 * Cause the Time Server to Crash or Stop Remotely 1
13 Take the Director Repo Offline 1
14 Take the Image Repo Offline 1
15 Take the TCU (Primary) Offline 3
16 Take the Time Server Offline 1
17 Flood Director Repo with Invalid Data 1
18 Flood Image Repo with Invalid Data 1
19 Flood TCU (Primary) with Invalid Data 3
20 Flood Time Server with Invalid Data 1

Elevation of
Privilege

21 ** Compromise Director Repo in order to Send Ma-
licious Updates

1

22 ** Compromise Image Repo in order to Send Mali-
cious Updates

1

23 Compromise TCU (Primary) in order to Send Mali-
cious Updates

3

24 Compromise Time Server in order to send Malicious
Updates

1

25 Reflash TCU (Primary) in order to Send Arbitrary
CAN Messages

3

Other Known
Threats

26 ** Endless Data Attack N/A
27 * Rollback Attack N/A
28 * Mix and Match Attack N/A

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK120

Spoofing:	0

Tampering:	3

Repudiation:	6

Information Disclosure :	19

Denial of Service: 16

Elevation of Privilege :	9

Tampering Repudiation Information DisclosureSpoofing Elevation of Privilege

meta-chart.com

Denial of Service

Figure 7.6: Graphical overview of the number of identified threats to OTA
update system in each category of STRIDE threat classification model.

for the identification of relevant attack techniques used by malicious entities. For
constructing each attack tree, we began by choosing each selected threat scenario as
the root node of the attack tree. Following the next steps described in the attack tree
construction process introduced in Chapter 5, we refined and populated each attack
tree by taking into consideration the attack method suggested by TMT followed by
brainstorming sessions to determine what could be the possible steps/actions that could
potentially be carried out by cybercriminals. Attack trees we constructed following the
steps outlined above are presented in the subsequent sections (see figures 7.7 to 7.21),
each in a separate section. Once these attack trees for the selected threats had been
constructed, they were combined to construct an overall attack tree for the reference
implementation of the Uptane Framework as displayed in Figure 7.22.

As explained earlier, test case generation and execution are automated processes,
carried out by our bespoke software tool. Attack trees are an integral and crucial
part of our automated test case generation and execution process. By analyzing the
structure of each of the attack trees, the tool successfully derived security test cases,
generated and executed test scripts against the reference implementation, in a step-by-
step manner. The execution of all the test scripts was carried out using our testbed as
detailed above. Result of each experimental attack performed along with the test case
details are given in a separate section of this chapter. In addition to the test scripts,
each test result outlines the outcome of the test (i.e., the impact of the attack on the

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK121

system) and resultant system behaviour.
In what follows, we explain how each of the attack trees was constructed.
As mentioned earlier, each attack tree has exactly one root node, which represents

the main goal of the adversary. Various potential goals have been identified, as listed in
the Table 7.2. One instance of each of the threats becomes the root node (or main goal)
in the attack tree. Now the primary goal of the attacker has been established, different
methods/techniques that can potentially be used to achieve this are to be identified.
The original report generated by TMT mentions at least one way to realize the threat.
In most cases, those suggestions are relevant and serve as a good starting point for
populating the attack tree with appropriate subgoals (child nodes) and/or actions (leaf
nodes). Brainstorming sessions also supported the identification of different attack
steps/actions to realize the threats.

Threat 6 - Updates Could Be Downloaded

Updates Could
be Downloaded

Download Firmware
from Image Repo

Determine
Image Repo

Firmware URL

Establish
Network

Connection

Download
Firmware

Download Firmware
from Director Repo

Determine
Director Repo
Firmware URL

Establish
Network

Connection

Download
Firmware

Figure 7.7: Attack Tree - Updates Could be Downloaded: This attack tree
represents Threat 6 enlisted in Table 7.2 that involves downloading firmware
images from Uptane repositories without any authentication.

The main objective of this threat is to directly download firmware images from
Uptane repositories in order to steal sensitive/confidential and proprietary information
(this threat belongs to the category Read Updates, as presented in Figure 2.1), which
can later be used to craft and launch destructive attacks against connected cars by
comparing the different versions of the firmware image with each other. As shown
in the Figure 7.7, the root node of the attack tree has been labeled using the title
of the threat 6 in the Table 7.2 (i.e., Updates Could be Downloaded) representing the
attacker’s main goal. With discussions and brainstorming, we identified at least two
different ways to achieve the main goal, each of which turned into an intermediate
node with its own subtree, showing two different ways (subgoals) for downloading the
images from the Uptane servers: Download Firmware from Image Repo and Download

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK122

Firmware from Director Repo. However, the two steps for downloading the firmware
image from either of the repositories are identical. Note that this overall OR attack
tree has two SAND (recall that a sequential AND or a SAND tree is the one each
action of which must be carried out in the specified order) subtrees, each depicting a
possible way used by the intruder for downloading the image from the servers. Each of
the subtrees has three leaf nodes representing the atomic actions of the attacker. The
first action step of the subtree on the left involves determining the URL of the firmware
on the Image Repo, followed by establishing a network connection with the server in
the second action step. The download of the target firmware image is initiated once
the connection has been established in the final step. As evident, the second subtree’s
action steps are identical with the exception of the target repository, which is different.

Threat 7 - Data Flow Sniffing

Data Flow Sniffing

Determine Director Repo's
Network Information

Determine IP
Address

Determine Port
Number

Establish Network
Connection

Intercept Network
Traffic

Analyze Captured
Network Data

Figure 7.8: Attack Tree - Data Flow Sniffing: This attack tree represents
Threat 7 as enlisted in Table 7.2 that involves monitoring and capturing
information exchange between Uptane servers and clients.

After assigning the title of the threat 7 to the root node of the tree, it was straight-
forward to identify the specific actions for materializing the threat. The AND subtree
for determining the network information of the Director Repo has two steps: one for
determining the IP address and the other for port number. Since both actions can be
executed in any order; hence, AND conjunction was chosen as the refinement opera-
tor. In contrast, all other leaf nodes belonging to the root node must be carried out in
the order shown, otherwise attack would not succeed or would not produce the desired
result. This particular threat aims at intercepting network communication between
Uptane repositories and the client ECUs. As can be seen in the Table 7.2, there are
total nine occurrences of this threat, each corresponding to one of the data flows in
the DFD in Figure 7.5. This indicates that the TMT identifies all these data flows
vulnerable to this threat. We include only one instance of this threat in the testing,
since the process and the end results will be identical - providing no further insights.

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK123

The SAND attack tree in Figure 7.8 provides a graphical overview of the threat and
associated actions. Notice that Data Flow Sniffing represents the main goal of the
attack tree. We identified one OR subtree and three different actions (leaf nodes) for
accomplishing the main goal: the subtree has two leaf nodes which represent the ac-
tions Determine IP Address, and Determine Port Number. The other three leaf nodes
represent the Establish Network Connection, Intercept Network Traffic followed by
Analyze Captured Traffic. The first and the last actions are performed manually while
other two are carried out by the tool. Note that this threat corresponds to the Eaves-
drop Attack under the Read Updates category in Figure 2.1. This and the preceding
threat both have the same ultimate goal of reading/downloading restricted/confiden-
tial content for malicious purposes. As mentioned earlier, such content can be used for
creating more powerful and sophisticated attacks.

Threat 9 - Cause the Director Repository to Crash or Stop Remotely

Cause Director Repo to
Crash or Stop

Remotely

Determine Director Repo's
Network Information

Determine IP
Address

Determine Port
Number

Launch
DoS Attack

Establish Network
Connection

Flood Director
Repo

Figure 7.9: Attack Tree - Cause Director Repo to Crash or Stop Remotely:
This attack tree represents the Threat 9 as enlisted in Table 7.2 that involves
blocking the delivery of updates to the ECUs.

There are numerous ways that adversaries can potentially employ to adversely
influence the delivery and/or installation of crucial software updates. For instance,
attackers can cause disruptions to the delivery of important firmware/software updates
by mounting denial-of-service attacks on update servers. As shown in the Figure 2.1,
denying or blocking updates is one of the strategies that hackers can adopt for stopping
the removal or correction of software bugs or security loopholes in the software/firmware
currently installed.

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK124

The attack tree depicted in the Figure 7.9, represents Threat 9 that involves per-
forming a DoS attack against the Director Repository, by overwhelming it with a huge
number of communication requests, causing it to stop responding to legitimate requests
from clients. The main goal of the attack is to block update delivery to the ECUs in the
vehicle. The SAND root node has one AND subtree and another SAND subtree. As
explained earlier, determining network information steps do not require any particular
order; therefore, an AND refinement makes sense here. Conversely, for the other two
steps, strict order is essential thus SAND operator has been used.

In order to begin performing the attack, essential information regarding the target
(that is, OTA update servers) is required. Hence, the first step (leaf node) involves
determining the IP address and port number of the Director Repository. As this
experimentation relies on the reference implementation of the Uptane Framework, we
obtained this information by running the reference implementation in our local setup.
In a real-world scenario, this information may need to be obtained by performing
network/port scanning on the server or extracting it from an ECU (e.g., TCU) in the
vehicle.

The second step, as can be seen from the attack tree in Figure 7.9, involves estab-
lishing a network connection with the Director Repository. The main purpose of this
step is to determine whether the target system is available on the network and that
there are no connectivity issues before executing the DoS attack. Finally the attack is
launched, which sends a large number of HTTP requests to the Director Repository at
port 30401.

Threat 10 - Cause Image Repository to Crash or Stop Remotely

The attack tree shown in Figure 7.10 represents the threat Cause the Image Repo to
Crash or Stop Remotely (by mounting a DoS attack) so that it can not respond to
legitimate update requests from ECUs. The root node of this SAND tree represents
the main goal (i.e., Cause Image Repo to Crash or Stop Remotely, drawn from the
threat 10 from the threat list). It is composed of two AND subtrees representing
two subgoals that were identified easily for this and the two subsequent attack trees
as they essentially accomplish the same task of bombarding the target device with
a large number of invalid or malformed packets. The first subtree is concerned with
determining the IP address and relevant port number. This is followed by second
subtree that involves establishing the network connection and flooding the repository
by sending a large number of requests to cause it to crash or become unresponsive to
all client requests. Mounting a DoS attack on these server components is relatively
easy, as they expose publicly accessible APIs or interfaces accepting communication
requests.

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK125

Cause Image Repo to
Crash or Stop

Remotely

Determine Image Repo's
Network Information

Determine IP
Address

Determine Port
Number

Launch
DoS Attack

Establish Network
Connection

Flood Image
Repo

Figure 7.10: Attack Tree - Cause Image Repository to Crash or Stop
Remotely: This attack tree represents Threat 10 enlisted in Table 7.2 that
involves blocking the delivery of updates to the ECUs.

Threat 11 - Cause the Primary ECU to Crash or Stop Remotely

As its name suggests, the main goal of this threat is to disrupt the normal operation of
the Primary ECU, causing it to crash or stop working; hence, blocking the delivery of
critical updates to secondary ECUs. Figure 7.11, shows the SAND attack tree depict-
ing the steps for interrupting the normal operation of the Primary ECU. The root node
represents the threat scenario from the Table 7.2, two AND subtrees were identified
with each having two leaf nodes by using the attack tree construction approach. It
is worth noting that this attack is initiated from a remote machine, not locally from
within the host vehicle. As was the case with the preceding attacks, determining IP
address/port is the precondition in order to successfully perform subsequent steps.
Step two establishes whether the ECU has the internet connectivity. Lastly, the ECU
is flooded with a huge number of requests, which leads to the failure of the ECU to
respond to requests from clients.

Threat 12 - Cause the Time Server to Crash or Stop Remotely

This threat targets the Time Server by sending it a large number of requests caus-
ing it to exhaust and stop working properly. Unavailability or malfunctioning of this
component can leave the Uptane clients vulnerable to time-specific attacks (e.g., Freeze
Attack, as depicted in 2.1). The root node of the SAND attack tree in Figure 7.12 rep-
resents overall goal (i.e., the threat Cause the Time Server to Crash or Stop Remotely)

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK126

Cause Primary ECU to
Crash or Stop

Remotely

Determine Primary ECU's
Network Information

Determine IP
Address

Determine
Port Number

Launch
DoS Attack

Establish Network
Connection

Flood Pirmary
ECU

Figure 7.11: Attack Tree - Cause the Primary ECU to Crash or Stop
Remotely: This attack tree represents Threat 11 that involves causing the
Primary ECU to crash; thus, resulting in the failure of normal update op-
erations.

and two AND subtrees that assist achieving the main goal, consisting of the action
steps for launching a denial-of-service attack against the Time Server. These subtrees
and corresponding leaf nodes were identified by applying the step-by-step attack tree
construction approach. Since IP address along with the port number are prerequisites
to the DoS attack; hence, the first subtree accomplishes this followed by the second
subtree - launching the actual DoS attack against the Time Server, causing it to fail
serving all legitimate requests from the clients.

Threat 21.1 - Compromise Director Repository in order to Deliver Malicious
Updates (without compromised keys)

In this section, we provide the details of the threat that involves compromising the
Director Repository for sending updates containing malicious contents. For the purpose
of this experiment, it has been assumed that either the intruder has privileged access to
Uptane servers, which allows them to read, write, and execute all types of programs on
this repository, or alternatively they might be using a dedicated machine impersonating
the servers.

However, in both cases they are assumed not to have access to the private keys for
signing updates/metadata. With these capabilities, they attempt to send malicious
updates to the clients by manipulating the firmware images on the repository. Figure

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK127

Cause the Time Server to
Crash or Stop

Remotely

Determine Time Server's
Network Information

Determine IP
Address

Determine Port
Number

Launch
DoS Attack

Establish Network
Connection

Flood Time
Server

Figure 7.12: Attack Tree - Cause the Time Server to Crash or Stop
Remotely: This attack tree represents Threat 12 as enlisted in Table 7.2 that
involves causing the Time Server to crash; thus, affecting the distribution
of timely updates to clients.

7.13 shows the SAND attack tree with two action steps for sending malicious updates.
Firstly, a valid firmware on the Image Repo is modified to add malicious data to it.
Once the firmware has been modified, the firmware is added to the Director Repository
by using a builtin feature of the repository. All these steps require some understand-
ing and knowledge of the specific procedures used at the Uptane backend repository
servers. This relatively simple attack tree, with only two leaf nodes, was not difficult
to construct, as it involves adding some malicious contents to an existing firmware
image and then adding the image to the Director repo. The reference implementation
provides various methods one of which is named add target to director that is used to
add a firmware image file to the Director Repository.

Threat 21.2 - Compromise Director Repository in order to Send Malicious
Updates (with compromised keys)

This is an advanced variant of the preceding attack wherein the attackers are assumed
to have access to the private Directory keys for signing the metadata. Therefore, in
addition to the capabilities outlined above, they can sign updates/metadata. As can be
noticed from the attack tree in Figure 7.14, there is an additional step (i.e., the leaf node
Generate Signed Metadata) for generating signed metadata. Therefore, in addition to
adding the modified image to the repository, valid metadata is also generated. This

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK128

Compromise Director Repo to
Dliver Malicious

Updates

Add Malicious Contents to
Firmware

Add Firmware to Director
Repo

Figure 7.13: Attack Tree - Compromise Director Repo in Order to Deliver
Malicious Updates (without compromised keys): This attack tree represents
Threat 21.1 as enlisted in Table 7.2 that involves delivering a malicious
update to the target ECU.

is accomplished by calling the method write to live. This signed metadata causes the
client ECUs to believe the firmware image is trustworthy. However, since the ECU
verification process verifies the metadata from both of the repositories, the update
shall be rejected by the Primary due to inconsistent metadata values.

Threat 21.3 - Compromise Image and Director Repositories in order to
Send Malicious Updates

The SAND attack tree shown in Figure 7.15 depicts the steps for launching the most
damaging attack against the Uptane repositories, as attackers can install malware on
the ECU to control it in order to take over the vehicle control. However, such an attack
is highly difficult to perform, as it requires access to the private keys for Image and
Director repositories, as well as administrative access to the server machines. Since
Uptane standard expects the private keys of Image Repository to be stored securely
offline in order to prevent key compromises, making it highly difficult for attackers to
compromise the keys. Furthermore, Uptane uses key thresholds for providing protec-
tion against key compromises. Multiple keys are used for signing the metadata, which
means malicious actors will have to compromise a set of keys rather than relying on a
single compromised key to be able to sign the metadata.

As can be observed, the exact ordering for executing all the actions is crucial for
this attack to succeed. Therefore, SAND trees are the natural choice in this scenario.
Similar to the Director Repository, the Image Repository also has methods for adding
the firmware to the repository (add target to imagerepo) and signing the metadata
(write to live). Threat 21 from the Table 7.2 becomes the root node, and as a first
step, malicious contents to the image are added, which is followed by step two adding
the malicious firmware to the Image Repository. Signed metadata is generated in step
three on the Image repository. On the Director Repository, two remaining steps are
performed: adding the malicious firmware to the Director Repository and generating

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK129

Compromise Director Repo
to Deliver Malicious

Updates

Modify Existing
Firmware Image

Add Malicious
Contents to the Firmware

Image

Add Modified Firmware
to Director Repo

Generate and Sign
the Metadata

Figure 7.14: Attack Tree - Compromise Director Repo in Order to Deliver
Malicious Updates (with Director Repository Keys Compromised): This at-
tack tree represents Threat 21.2 that involves delivering a malicious update
to the target.

signed metadata.

Threat 22.1 - Compromise Image Repository in order to Send Malicious
Updates (without compromised keys)

In this scenario, the attackers are assumed to have access to perform certain types of
operations on the Image Repository, which include making changes to firmware images
stored on Image Repository and adding the modified image to the repository. Private
offline keys for signing updates/metadata are, however, not available. The attacker
adds malicious contents to a newly added (but not yet distributed) firmware image
intended to be installed on the ECU. The target firmware image to be compromised
(named firmware.img) is stored on both repositories.

Remember that this attack also assumes that the Director Repository has not been
compromised yet. While, the adversary could add malicious contents to the firmware
image and add it to the Image Repository, the attack would not succeed, as Primary
ECU would detect the inconsistency in the accompanied metadata from Uptane repos-
itories; therefore, the update would be rejected. The SAND attack tree in Figure 7.16
shows the steps for materializing this attack. The root node represents the main goal
(i.e., Compromise Image Repo in order to Send Malicious Updates). First action step
involves adding malicious contents to the firmware image. The firmware is then added

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK130

Compromise Director and
Image Repos to
Deliver Malicious

Updates

Modify Existing
Firmware Image

Add Malicious
Contents to Firmware

Add Modified Firmware
to Image Repo

Generate Image
Repo Signed

Metadata

Add Modified
FIrmware

to Director Repo

Generate
Director Repo

Signed Metadata

Figure 7.15: Attack Tree - Compromise Image and Director Repositories:
This attack tree represents Threat 21.3 as enlisted in Table 7.2 that involves
delivering a malicious update to the ECU.

to Image Repo.

Threat 22.2 - Compromise Image Repository in order to Send Malicious
Updates (with compromised keys)

This attack is a variant of the attack presented in the preceding experiment. The
intruder does possess the private keys (with the required threshold) in addition to the
administrative access to the system. The SAND attack tree in Figure 7.17 shows the
root node representing the main goal (i.e., Compromise Image Repository in order to
Send Malicious Updates), with other steps (represented by leaf nodes): Add Firmware
to Image Repo and Generate Signed Metadata. It is important to remember that this
attack is performed independently, with the assumption that the same image has not
been compromised on the Director Repository.

Threat 26.1 and Threat 26.2 - Endless Data Attack

Endless Data attack - represented by two different attack trees shown in Figures 7.18
and 7.19 each depicting a variant of the attack, which aim at delivering an update
with endless stream of data, causing the ECU’s storage to exhaust. There are two
variants of the attack wherein the additional data is appended to the update file in the
first case, and inserted in the other. This has been done to observe the behaviour of
reference implementation, as according to the documentation, the Primary ECU will
only see and download the amount of update data as specified in the metadata file.
Appending additional data to the file does not alter the original contents of the update

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK131

Compromise Image Repo to
Deliver Malicious

Updates

Add Malicious Contents to
Firmware

Add Firmware to Image
Repo

Figure 7.16: Attack Tree - Compromise Image Repository in Order to
Deliver Malicious Updates (without Repository Keys Compromised): This
attack tree represents Threat 22.1 enlisted in Table 7.2 that involves deliv-
ering a malicious update to the ECU.

file. On the other hand, when we insert the additional contents to the file, the original
file contents might be modified. This will allow us to see how these two different
scenarios are handled by the Uptane Framework. First SAND attack tree in Figure
7.18 is comprised of the following steps (represented as leaf nodes): Append Malicious
Contents to Firmware, Add Firmware to Image Repo, and Generate Signed Metadata.
Action steps depicted by second tree in Figure 7.19 are identical, except for the first
one, which is Insert Additional Contents in Firmware on Image Repo. Please note
that this and the following two threats, as mentioned earlier, have been included from
the literature to show specific types of attack methods/techniques used by attackers to
undermine the security of update systems. SAND tree has one direct leaf node and
an AND subtree with two leaf nodes. It can be noted that after appending additional
data to the file, the file is added to both of the repositories. While ordering of the
parent tree (root node) must be ensured, two atomic actions of the AND can be
executed in any order.

Threat 27 - Rollback Attack

This section presents the Rollback attack which involves delivering a valid but old
version of the update, causing the ECU to uninstall the latest version. As can be
noticed in the attack tree shown in Figure 7.20, step one and step three include deleting
Timestamp metadata on both repositories. Steps two and four place an old version of
the same update on repositories. This attack intends to trick the target ECU to install
an old but valid firmware image, containing known vulnerabilities.

Threat 28 - Mix and Match Attack

This section presents the Mix and Match attack which delivers an update package
containing incompatible versions of software components. Figure 7.21 shows the attack

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK132

Compromise Image Repo
to Deliver Malicious

Updates

Modify Existing
Firmware Image

Add Malicious
Contents to Firmware

Add Modified Firmware
to Image Repo

Generate and
Signed Metadata

Figure 7.17: Attack Tree - Compromise Image Repo to Deliver Malicious
Updates: This attack tree represents the Threat 22.2 as enlisted in Table
7.2 that involves sending malicious updates to the clients by compromising
the Image repository.

tree representing various key steps performed by attackers to mount this attack. The
SAND attack tree represents the main goal of the attack as root node (i.e., Mix and
Match Attack) with four leaf nodes. Two AND subtrees were added to the parent
tree with the first one deleting the currently valid snapshot metadata file from both
repositories followed by the second one adding the modified snapshot to the repositories.
The malicious snapshot metadata file added to the repositories show a set of valid but
mutually incompatible software images to the client to be installed on different ECUs
in the vehicle. If such an attack is successful, it can lead to affected vehicle operations
arising from interoperability issues caused by devices containing conflicting software.

The Overall Attack Tree

We now have all the attack trees for the selected threats. They are combined into an
overall attack tree for the reference implementation of the Uptane Framework. This
overall tree is presented in the Figure 7.22. Subtrees have been organized into the
STRIDE threat categories.

It is worth mentioning here that we only include the main goals of the trees exclud-
ing the leaf nodes/child nodes to build the overall attack tree. The overall goal of this
tree becomes Compromise Uptane Framework, and the subtrees are different ways to
accomplish this. Since this overall attack tree is an OR tree, smaller subtrees can be
individually used in the experiments. Additionally, as the Uptane Framework is a dis-
tributed system, running all the tests at once is challenging. This is because when one
experiment with one or more test cases is executed, it affects the system configurations

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK133

Endless Data
Attack

Append Additional
Contents to Firmware

Add to Modified
Image to Repos

Add Firmware to
Image Repo

Add Firmware
to Director Repo

Figure 7.18: Attack Tree - Endless Data Attack: This attack tree rep-
resents the Threat 26 as enlisted in Table 7.2 that involves delivering an
update containing a huge amount of data in order to overwhelm the target
ECU.

Endless Data
Attack

Insert Additional
Contents into Firmware

Add to Modified
Image to Repos

Add Firmware to
Image Repo

Add Firmware
to Director Repo

Figure 7.19: Attack Tree - Endless Data Attack (insert mode): This
attack tree represents a variation of the Endless Data attack presented above
that involves delivering an update containing a huge amount of data to
overwhelm the ECU.

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK134

Rollback
Attack

Delete Currently Valid
Timestap Files

from Repos

Delete Timestamp from
Image Repo

Delete Timestamp from
Director Repo

Add Outdated Timestamp
Files to Repos

Add File to
Image Repo

Add File to
Director Repo

Figure 7.20: Attack Tree - Rollback Attack: This SAND attack tree repre-
sents the Rollback Attack (Threat 27 in Table 7.2) that involves delivering
an old but valid firmware image to the ECU.

that require a system reset for the other tests to run effectively. Furthermore, some
tests need human intervention/observation at the client side for the attack actions to
take effect, which is not possible when all tests are executed in a single session.

7.6 Results

In this section results of the automotive OTA security-testing experimentation are pre-
sented. Each attack tree was analyzed by our bespoke software tool to derive test cases
and generate appropriate test scripts to be executed against the reference implemen-
tation. The tool derived a total of 29 different test cases and generated relevant test
scripts. Thirteen of these security test cases failed after successful execution of the test
scripts; while a summary is provided in the Table 7.3, detailed results of these tests
are presented in the following subsections individually.

In order to determine the risk level associated with each threat type, we used
OWASP Risk Assessment Calculator (as described in Chapter 2). Based on the speci-
fied factor values, the tool determines an overall risk level. While the report generated
by the tool shows the individual risk levels (i.e., probability and impact), the overall
risk severity levels have been presented for each of the threats presented in Table 7.3.

Threat 6: Updates Could Be Downloaded

As indicated in the Table 7.4, we were able to directly download the firmware image files
from both the Director and Image repositories, showing lack of any authentication/ac-
cess control mechanism at the server-side to restrict the download to only legitimate

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK135

Table 7.3: Security testing results at a glance.

Threat
ID

SUT Component Total
TCs

Failed
TCs

Passed
TCs

Risk Rating

6 Image & Director Repos 2 2 0 Medium

7 Image & Director Repos 2 2 0 Medium

9 Director Repo 2 2 0 Medium

10 Image Repo 2 2 0 Medium

11 Primary ECU 2 2 0 Low

12 Time Server 2 2 0 Medium

21.1 Director Repo 1 0 1 Medium

21.2 Director Repo 1 0 1 Medium

21.3 Image & Director Repos 1 1 0 Medium

22.1 Image Repo 1 0 1 Medium

22.2 Image Repo 1 0 1 Medium

26.1 Image & Director Repos 2 0 2 Low

26.2 Image & Director Repos 2 0 2 Low

27 Image & Director Repos 4 0 4 Low

28 Image & Director Repos 4 0 4 Low

Totals: 29 13 16

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK136

Mix and Match
Attack

Delete Currently Valid
Snapshot from Repos

Delete Snapshot from
Image Repo

Delete Snapshot from
Director Repo

Add Invalid
Snapshot to Repos

Add Snapshot to
Image Repo

Add Snapshot to
Director Repo

Figure 7.21: Attack Tree - Mix and Match Attack: This SAND attack
tree represents one of the attacks (Threat 28 in Table 7.2) that involves
delivering an update containing valid but incompatible versions of software
updates.

Table 7.4: Summarizes the results of Threat 6 - Updates Could Be Down-
loaded.

Updates Could Be Downloaded

TC COUNT = 2

TC 1 =

[("event Determine Image Repo Firmware URL","determine IR url"),

("event Establish Network Connection","establish connection"),

("event Download Firmware","download firmware")]

Status: FAIL

TC 2 =

[("event Determine Director Repo Firmware URL","determine -

DR url"), ("event Establish Network Connection","establish -

connection"), ("event Download Firmware","download firmware")]

Status: FAIL

Test Outcome:

The firmware images were successfully downloaded from both the Image Repos-
itory and Director Repository using simple HTTP calls without any authenti-
cation/authorization.

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK137

C
om

po
rm

is
e

U
pt

an
e

F
ra

m
ew

or
k

D
en

ia
l o

f S
er

vi
ce

C
au

se
 D

ire
ct

or
R

ep
o

to
 C

ra
sh

or
 S

to
p

R
em

ot
el

y

C
au

se
 Im

ag
e

R
ep

o
to

 C
ra

sh
or

 S
to

p
R

em
ot

el
y

C
ua

se
 T

im
e

S
er

ve
r

to
 C

ra
sh

or
 S

to
p

R
em

ot
el

y

C
au

se
 P

rim
ar

y
E

C
U

 to
 C

ra
sh

or
 S

to
p

R
em

ot
el

y

E
le

va
tio

n
of

 P
riv

ile
ge

C
om

pr
om

is
e

D
ire

ct
or

 R
ep

o
to

 D
el

iv
er

 M
al

ic
io

us
U

pd
at

es

C
om

pr
om

is
e

Im
ag

e
R

ep
o

to
 D

el
iv

er
 M

al
ic

io
us

U
pd

at
es

C
om

pr
om

is
e

D
ire

ct
or

 a
nd

 Im
ag

e
R

ep
os

In
fo

rm
at

io
n

D
is

cl
os

ur
e

U
pd

at
es

 C
ou

ld
be

 D
ow

nl
oa

de
d

D
at

a
F

lo
w

S
ni

ffi
ng

O
th

er
 K

no
w

n
A

tta
ck

s

E
nd

le
ss

 D
at

a
A

tta
ck

R
ol

lb
ac

k
A

tta
ck

M
ix

 a
nd

 M
at

ch
A

tta
ck

F
ig
u
re

7
.2
2

A
tt

ac
k

T
re

e
-

C
om

p
ro

m
is

e
U

p
ta

n
e

F
ra

m
ew

or
k
:

T
h
is

fi
gu

re
p
re

se
n
ts

a
co

m
p
re

h
en

si
ve

ov
er

v
ie

w
of

al
l
th

e
th

re
at

s
(c

om
p
ro

m
is

in
g

U
p
ta

n
e

F
ra

m
ew

or
k
)

in
cl

u
d
ed

in
th

e
ex

p
er

im
en

ta
ti

on
b
y

co
m

b
in

in
g

al
l

at
ta

ck
tr

ee
s.

N
ot

e
th

at
th

e
at

ta
ck

tr
ee

s
h
av

e
b

ee
n

or
ga

n
iz

ed
in

to
d
iff

er
en

t
S
T

R
ID

E
th

re
at

ca
te

go
ri

es
.

L
ea

f
n
o
d
es

ar
e

n
o
d

in
cl

u
d
ed

in
th

is
d
ia

gr
am

.

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK138

clients. The incidence of information disclosure in this scenario may have serious ram-
ifications, as if cybercriminals were able to reverse engineer the downloaded images to
identify any vulnerabilities fixed in the current version by comparing it with an older
version of the firmware, they could use that intelligence for crafting destructive attacks
for compromising entire fleets of vehicles. Additionally, the reference implementation
relies on the plain HTTP for communication between server and clients, as described
in the following section. The risk rating for this threat has been determined to be
Medium (see Table 7.3). Since this threat does not require any special skills (hence
basic Network and programming skills was specified for Skills required factor in the
Threat Agent Factors section), and it is easy to discover and exploit, a Medium value
was calculated by the tool for the Likelihood factors. In the Technical Impact Factors
section, the relevant factor was Loss of confidentiality, and for the Reputation damage
factor in the Business Impact Factors section we selected Loss of goodwill, as informa-
tion disclosure of sensitive update data can affect the reputation of the OEM due to
lack of effective protection for ensuring confidentiality.

Threat 7: Data Flow Sniffing

Table 7.5 provides a summary of the sniffing attack, listing the steps and outlining the
outcome. As can be seen in the table, information exchange between Uptane servers
and clients is not encrypted. All the Remote Procedure Calls (RPCs) from the Primary
and responses from the Repositories are readable. This particular interception session
was also able to capture the firmware image contents. As discussed above, the wealth
of information accessible to the adversaries without applying any confidentiality and
privacy security controls can potentially lead to very serious consequences. As shown
in the Table 7.3, the risk rating for this threat has been determined to be Medium,
as similar to the preceding threat (i.e., Updates Could be Downloaded), the ease of
exploitation and discovery along with basic skills required to accomplish this were the
key factors that calculated the Medium value for Likelihood factors. As Technical
and Business Impact factors under the Impact Factors were similar to those in the
previous threat, hence a Medium value was calculated, resulting in an overall Medium
risk rating.

Threat 9: Cause Director Repo to Crash or Stop Remotely

Table 7.6 shows the result of failed attempts from Primary ECU to receive any re-
sponse from Director Repository after it was affected by the DoS attack. As Director
Repository is responsible for direct communication with the Primary ECU, its unavail-
ability will have an impact on the normal operations of the entire update process, as
no further actions will succeed. In order to restore the normal operation, the servers
had to be rebooted. An overall risk rating of Medium has been determined, as shown
in the Table 7.3. Main influencing factors in the Likelihood factors area include the
ease of discovery/exploitation and the relatively basic skills required along with Loss

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK139

Table 7.5: Summarizes the results of Threat 7 - Data Flow Sniffing.

Data Flow Sniffing

TC COUNT = 2

TC 1 = [("event Determine IP Address","determine IP"), ("event -

Determine Port Number","determine port"), ("event Establish -

Network Connection","establish connection"), ("event Intercept -

Network Traffic","intercept traffic"), ("event Analyze Captured -

Network Data","analyze network data")]

Status: FAIL

TC 2 = [("event Determine Port Number","determine port"),

("event Determine IP Address","determine IP"), ("event Establish -

Network Connection","establih connection"), ("event Intercept -

Network Traffic","intercept traffic"), ("event Analyze Captured -

Network Data","analyze network data")]

Status: FAIL

Test Outcome:

Data exchange between Uptane repositories and Primary ECU was successfully
captured. This included RPC calls, corresponding responses, and the firmware
image file contents in plain text.

of Availability (i.e., Extensive primary services interrupted), Reputation damage (i.e.,
Loss of goodwill) in the Impact factors led to this risk score.

Threat 10: Cause Image Repository to Crash or Stop Remotely

As shown in the Table 7.7, DoS attack on Image Repository caused it to stop responding
to requests from the client. However, Director Repository was not affected by the attack
and continued to respond to client requests. The result shows that the Primary ECU
succeeded with downloading the metadata from Director Repository. As the attack
method (i.e., Denial of Service) and the target are similar, hence the same risk rating
value (i.e., Medium) has been determined for this threat.

Threat 11: Cause the Primary ECU to Crash or Stop Remotely

After successful DoS attacks on Uptane repositories, we mounted a DoS attack on the
Primary ECU, which succeeded in causing the Primary to stop working properly. A

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK140

Table 7.6: Summarizes the results of Threat 9 - Cause the Director Repos-
itory to Crash or Stop Remotely.

Cause the Director Repository to Crash or Stop Remotely

TC COUNT = 2

TC 1 = [("event Determine IP Address","determine IP"), ("event -

Determine Port Number","determine port"), ("event Establish -

Network Connection","establish connection"), ("event Flood -

Director Repo","flood dirctor")]

Status: FAIL

TC 2 = [("event Determine Port Number","determine port"),

("event Determine IP Address","determine IP"), ("event Establish -

Network Connection","establish connection"), ("event Flood -

Director Repo","flood director")]

Status: FAIL

Test Outcome:

The Director Repository failed to respond to legitimate requests from the Pri-
mary ECU after successful DoS attack. The Primary ECU displayed URLEr-
ror and timed out error messages (stating it was unable to download metadata
when it attempted to request update from the Director Repository).

Low risk rating has been determined for this threat (as can be seen in the Table 7.3).
The main contributing factors for a low risk rating value include the extent of damage
(reputation damage is unlikely due to a single device/service in the vehicle being the
target as compared to the update repositories that can affect multiple vehicle at once).

As can be seen in Table 7.8, the Secondary ECU was presented with the error mes-
sages indicating connection could not be established with the Primary ECU. Therefore,
any new updates for the Secondary ECU could not be delivered. This DoS attack is
less severe as opposed to the ones launched against Uptane servers, as its impact is
limited to one vehicle only.

Threat 12: Cause the Time Server to Crash or Stop Remotely

The results displayed in Table 7.9 the DoS attack on the Time Server disrupted its
functionality, resulting in undesirable behaviour from the Primary, as it seemed to wait
forever for a response containing validated time from the Time Server. It was observed
that there was no set timeout limit for preventing such situations where clients await a

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK141

Table 7.7: Summarizes the results of Threat 10 - Cause the Image Repos-
itory to Crash or Stop Remotely.

Cause the Image Repository to Crash or Stop Remotely

TC COUNT = 2

TC 1 = [("event Determine IP Address","determine IP"), ("event -

Determine Port Number","determine port"), ("event Establish -

Network Connection","establish connection"), ("event Flood -

Image Repo","flood imagerepo")]

Status: FAIL

TC 2 = [("event Determine Port Number","determine port"),

("event Determine IP Address","determine IP"), ("event Establish -

Network Connection","establish connection"), ("event Flood -

Image Repo","flood imagerepo")]

Status: FAIL

Test Outcome:

The Image Repository failed to respond to legitimate requests from the Pri-
mary ECU after successful DoS attack. The Primary ECU displayed URLEr-
ror and timed out error messages when it attempted to request update from
the Image Repository. As the attack method (i.e., Denial of Service) and the
target are similar, hence the same risk rating value (i.e., Medium) has been
determined for this threat.

response indefinitely. In order to verify whether Director Repository responds to other
requests from clients, a request for registering the ECU with the Director Repository,
which was successfully processed by the Director Repository, demonstrating the correct
operation of all other server components/services. Similar to the DoS attacks on Image
and Director repositories above, similar likelihood and impact factors chosen led to the
Medium risk rating value for the Time Server.

Threat 21.1: Compromise Director Repository for Sending Malicious Up-
dates

The Table 7.10 presents the outcome of the attack aiming at sending a malicious
firmware image to the client. The Primary ECU did not download the compromised
firmware image from Director Repository after it found a bad hash value while perform-

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK142

Table 7.8: Summarizes the results of Threat 11 - Cause the Primary ECU
(TCU) to Crash or Stop Remotely.

Cause the Primary ECU (TCU) to Crash or Stop Remotely

TC COUNT = 2

TC 1 = [("event Determine IP Address","determine ip"), ("event -

Determine Port Number","determine port"), ("event Establish -

Network Connection","establish connection"), ("event Flood -

Pirmary ECU","flood primary")]

Status: FAIL

TC 2 = [("event Determine Port Number","determine port"),

("event Determine IP Address","determine ip"), ("event Establish -

Network Connection","establish connection"), ("event Flood -

Pirmary ECU","flood primary")]

Status: FAIL

Test Outcome: Following the DoS attack on Primary ECU, the Secondary
ECU made several attempts to connect to the Primary ECU, the Primary
ECU did not respond to any of the requests from Secondary ECU. Secondary
ECU seemed to wait forever, and the process had to be manually interrupted to
resume normal operation, which resulted in displaying error messages stating
unsuccessful connection attempts.

ing the verification. On the other hand, it proceeded with downloading the firmware
file from Image repository, because no issues were found with the metadata sent by
Image Repository. The update was not presented to the Secondary by the Primary
after it detected the anomaly. The risk rating for this threat has been determined to
be Medium, as shown in the Table 7.3. While likelihood factors calculated a Low score
(due to a high skills level required and difficulty of exploitation and discovery), the
impact factors resulted in a Medium value.

Threat 21.2: Compromise Director Repository (with valid Keys) to Send
Malicious Updates

As shown in the Table 7.11, the Primary ECU rejected to download the image from
the server after it detected an anomaly in the metadata from Director and Image
Repositories. The risk rating for this threat has been determined to be Medium, as
shown in the Table 7.3. While likelihood factors calculated a Low score (due to a high

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK143

Table 7.9: Summarizes the results of Threat 12 - Cause the Time Server
to Crash or Stop Remotely.

Cause the Time Server to Crash or Stop Remotely

TC COUNT = 2

TC 1 = [("event Determine IP Address","determine ip"), ("event -

Determine Port Number","determine port"), ("event Establish -

Network Connection","establish connection"), ("event Flood Time -

Server","flood time server")]

Status: FAIL

TC 2 = [("event Determine Port Number","determine port"),

("event Determine IP Address","determine ip"), ("event Establish -

Network Connection","establish connection"), ("event Flood Time -

Server","flood time server")]

Status: FAIL

Test Outcome:

Following the DoS attack, the Time Server failed to respond to legitimate re-
quests for validated time from the Primary ECU. The Primary ECU begins
waiting indefinitely for a valid response from the Time Server after calling the
method get time attestation from within the method update cycle. All the
other components on the server-side were found to be responsive and opera-
tional when tested. For instance, the Director responded as usual when the
Primary invoked the method clean slate after the DoS attack on Time Server.
This clearly indicates that the DoS attack successfully causes the Time Server
to crash. It also indicates that there is no timeout and/or exception handling
mechanisms in place that can deal with such circumstances.

level of skills level required and difficulty of exploitation and discovery), the impact
factors resulted in a Medium value.

Unlike the previous attempt, the firmware metadata was signed with valid keys.
Even though the metadata, received from both repositories, was correct; however,
since inconsistent hash values were received from each of the repositories, Primary
ECU discarded the update.

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK144

Table 7.10: Summarizes the results of Threat 21.1 - Compromise Director
Repo in Order to Deliver Malicious Update (without compromised keys).

Compromise Director Repository in Order to Deliver Malicious Up-
date (without compromised keys)

TC COUNT = 1

TC 1 = [("event Add Malicious Contents to Firmware","add -

contents"), ("event Add Modified Firmware to Director Repo","add -

to director")]

Status: PASS

Test Outcome:
Primary ECU did not download the firmware image from the Director Repos-
itory, since the hash values did not match, a BadHashError error occurred. In
contrast, the Primary was able to successfully download firmware image from
Image Repository, because the hash values were correct.

Threat 21.3: Compromise both Image and Director Repositories with Com-
promised Keys to Send Malicious Updates

The information presented in Table 7.12 shows the result of the most dangerous attack,
wherein the attackers were able to add malicious contents to the firmware image, sign
it and its associated metadata with valid keys both by Image and Director repositories.
As both the update itself and associated metadata were valid and correct, the Primary
proceeded with downloading the malicious image file and passing it to the Secondary
for installation. The risk rating for this threat has been determined to be Medium, as
shown in the Table 7.3. While likelihood factors calculated a Low score (due to a high
level of skills required and difficulty of exploitation and discovery), the impact factors
resulted in a Medium value, as in the case of successful attack, there is a potential for
reputation and financial damages.

Threat 22.1: Compromise Image Repository to Send Malicious Updates

Table 7.13 summarises the results of an attack involving modifying a firmware image
on the Image Repository to include malicious contents in order to send to the Primary.
This attack was carried out without having access to the keys for signing the update
and metadata, which could not succeed, as additional data would not be downloaded
by the Primary. Moreover, as the changes were only made to the firmware at Image
Repository, the verification will not be successful when the Primary ECU tries to
validate the image with both Image and Director repositories. The risk rating for this

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK145

Table 7.11: Summarizes the results of Threat 21.2 - Compromise Director
Repo in Order to Deliver Malicious Update (with compromised keys)

Compromise Director Repository in Order to Deliver Malicious Up-
date (with compromised keys)

TC COUNT = 1

TC 1 = [("event Add Malicious Contents to Firmware","add -

contents"), ("event Add Modified Firmware to Director Repo","add -

to director"), ("event Generate and Sign the Metadata","gen -

director metadata")]

Status: PASS

Test Outcome: The Primary ECU refused to download the update from the
Director and displayed the following error message:

Director has instructed us to download a target (/firmware1.img) that is not
validated by the combination of Image + Director Repositories. That update
IS BEING SKIPPED. It may be that files have changed in the last few mo-
ments on the repositories. Try again, but if this happens often, you may be
connecting to an untrustworthy Director, or there may be an untrustworthy
Image Repository, or the Director and Image Repository may be out of sync.

threat has been determined to be Medium, as shown in the Table 7.3. While likelihood
factors calculated a Low score (due to a high level of skills required and difficulty of
exploitation and discovery), the impact factors resulted in a Medium value.

Threat 22.2: Compromise Image Repository (with Valid Keys) to Send
Malicious Updates

The Primary ECU did not accept the update (as shown in Table 7.14, as it found an
anomaly in the metadata while validating it with the Director and Image repositories.
The metadata sent by the Director was different from the one sent by Image Repository,
even though valid keys were used for signing the malicious update by Image repository.
The risk rating for this threat has been determined to be Medium, as shown in the
Table 7.3. While likelihood factors calculated a Low score (due to a high level of skills
required and difficulty of exploitation and discovery), the impact factors resulted in a
Medium value.

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK146

Table 7.12: Summarizes the results of Threat 21.3 - Compromise Im-
age and Director Repositories in Order to Deliver Malicious Updates (with
compromised keys).

Compromise Image and Director Repositories in Order to Deliver
Malicious Updates (with compromised keys)

TC COUNT = 1

TC 1 = [("event Add Malicious Contents to Firmware","add -

contents"), ("event Add Modified Firmware to Image Repo","add -

to imagerepo"), ("event Generate Image Repo Metadata","gen -

imagerepo metadata"), ("event Add Modified FIrmware to -

Director Repo","add to dir"), ("event Generate Director Repo -

Metadata","gen dir metadata")]

Status: FAIL

Test Outcome: The Primary ECU successfully downloaded and forwarded
the malicious firmware image to the Secondary ECU. Both clients could not
detect the presence of any malicious contents, as can be seen from the following
messages:

Metadata for the following Targets has been validated by both the Director
and the Image repository. They will now be downloaded:[’/firmware1.img’];
Successfully downloaded trustworthy ’firmware1.img’ image.

Threats 26.1 and 26.2: Endless Data Attack

Tables 7.15 and 7.16 show the results of two variations of Endless Data Attack, with
the goal to inundate the Primary ECU with a large amount of data to affect its func-
tionality. In the first scenario, we appended additional contents to a firmware image
and re-added it to both Director and Image repositories.

As expected, the Primary only downloaded the original image ignoring additional
appended data. The Primary reads the associated metadata and downloads the amount
of update data as specified in the metadata file. We then decided to add additional data
to the firmware by replacing existing contents or inserting the data in the image file at a
location other than the end of file. This is done to observe the response of the Primary
if this occurs. Primary ECU detected the changes made to the original firmware file by
discovering anomalies in the metadata. It is worth noting that both variations of this
test were carried out without generating and signing metadata and updates. A Low
risk rating has been determined for these threats, as this attack requires special skills,
privileged access and modification of update files on the update servers. Additionally,

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK147

Table 7.13: Summarizes the results of Threat 22.1 - Compromise Image
Repository in Order to Deliver Malicious Updates (without compromised
keys).

Compromise Image Repository in Order to Deliver Malicious Up-
date (without compromised keys)

TC COUNT = 1

TC 1 = [("event Add Malicious Contents to Firmware","add -

contents"), ("event Add Modified Firmware to Image Repo")]

Status: PASS

Test Outcome:

The Primary ECU did not detect any changes made at the server to the
Firmware image on Image Repository. This is because the metadata generated
by both repositories was still intact; hence, Primary ECU assumed the origi-
nal file was still there without any changes. Therefore, only original firmware
image would be downloaded by the client, the one with valid metadata, ig-
noring any modifications made. This happens because the metadata contains
information about the size of the firmware image file.

the impact of the attack would be limited to a single target vehicle should an attack
is successful.

Threat 27: Rollback Attack

As its name implies, the objective of this attack was to cause the ECU to uninstall
the newest installed version of an image and install an older one instead by replacing
the timestamp on both Director and Image repositories. Table 7.17, shows the key
steps (actions) and the result of the test. The Primary detected that it was sent an
older version of the timestamp; therefore, it rejected it and thus the latest version of
the update was not rolled back. As shown in the Table 7.3, a Low risk rating has
been determined for this threat, mainly due to the level of difficulty, skills, window of
opportunity available.

Threat 28: Mix and Match Attack

As shown in the Table 7.18, the invalid Snapshot file sent to the Primary was rejected
as the accompanied metadata could not be verified. Hence, the attack could not suc-
ceed. This attack intended to include incompatible versions of the firmwares in an

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK148

Table 7.14: Summarizes the results of Threat 22.2 - Compromise Image
Repository in Order to Deliver Malicious Updates (with compromised keys).

Compromise Image Repository in Order to Deliver Malicious Up-
dates (with compromised keys)

TC COUNT = 1

TC 1 = [("event Add Malicious Contents to Firmware","add -

contents"), ("event Add Modified Firmware to Image Repo","add to -

imagerpo"), ("event Generate and Sign Metadata","gen imagerepo -

metadata")]

Status: PASS

Test Outcome: The Primary did not proceed with the download and displayed
the following error message:

Director has instructed us to download a target (firmware1.img) that is not
validated by the combination of Image + Director Repositories. That update
IS BEING SKIPPED. It may be that files have changed in the last few mo-
ments on the repositories. Try again, but if this happens often, you may be
connecting to an untrustworthy Director, or there may be an untrustworthy
Image Repository, or the Director and Image Repository may be out of sync.

update package, causing interoperability issues among various ECUs having mutually
incompatible software versions. As mentioned above, the inconsistent metadata al-
lowed the Primary to establish that the update is not trustworthy, thus it refused to
proceed with the download process. Uptane Framework’s Snapshot metadata is an
effective protection mechanism against advanced attacks involving tricking the clients
to download and install software updates that are individually valid, but can lead to
serious interoperability problems. As shown in the Table 7.3, the risk rating for this
threat has also been determined to be Low, because of the difficulty of exploitation and
special skills/privileged access required. A very low score for the likelihood is the key
factor that resulted in the overall Low rating for this attack.

7.6.1 Key Findings

The systematic threat assessment and security testing approach we employed in this
study showed promising results by revealing unmitigated threats/vulnerabilities in the
reference implementation of Uptane Framework by applying a structured approach for
threat identification to construct attack trees, model-based security testing for step-
by-step derivation of test cases from the attack trees constructed in the preceding step,

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK149

Table 7.15: Summarizing the results of Threats 26.1 and 26.2 - Endless
Data Attack.

Endless Data Attack (with appended contents)

TC COUNT = 2

TC 1 =

[("event Append Additional Contents to Firmware","add contents"),

("event Add Firmware to Image Repo","add to imagerepo"), ("event -

Add Firmware to Director Repo","add to director")]

Status: PASS

TC 2 =

[("event Append Additional Contents to Firmware","add contents"),

("event Add Firmware to Director Repo","add to director"),

("event Add Firmware to Image Repo","add to imagerepo")]

Status: PASS

Test Outcome:
The attack was defended by the Uptane Framework by accepting and down-
loading exactly the same amount of data as specified in the trusted metadata
file. The appended contents were ignored by both the Primary and Secondary
ECUs.

and the automation of security test-case generation and execution. As, derivation of
appropriate and effective security test cases is often considered a challenging and non-
trivial task, because in addition to the knowledge of potential threats, it requires a clear
idea of what to test and where to start [124]. Threat modeling techniques and tools
we used, allowed us to effectively identify several security threats targeting automotive
OTA updates in a systematic and repeatable manner. Based on the selected subset
of threats identified in the threat enumeration step, our test case generation approach
was able to derive 29 different test cases providing effective coverage affecting various
core components (i.e., Image repository, Director repository, Time Server, and Primary
Server) of the OTA ecosystem. The range of threat types identified includes everything
from tampering to elevation of privilege. The experimental cyberattacks crafted from
the derived security test cases provided a variety of techniques potentially used by
adversaries.

While threat enumeration using STRIDE model allowed us to identify a number
of threats that could affect the security of automotive OTA update processes and
procedures in a variety of ways, we also included some of the known attacks that have

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK150

Table 7.16: Summarizing the results of Threats 26.2 - Endless Data Attack
(inserting contents).

Endless Data Attack (with overwritten or inserted contents)

TC COUNT = 2

TC 1 =

[("event Insert Contents intto Firmware","insert contents"),

("event Add Firmware to Image Repo","add to imagerepo"), ("event -

Add Firmware to Director Repo","add to director")]

Status: PASS

TC 2 =

[("event Insert Contents into Firmware","insert contents"),

("event Add Firmware to Director Repo","add to director"),

("event Add Firmware to Image Repo","add to imagerepo")]

Status: PASS

Test Outcome:

This attack was detected and defended by the Uptane Framework; conse-
quently, the entire update was rejected due to the inconsistent hash values.
The Primary ECU refused to download the update file by showing BadHash-
Error error messages.

been launched on the update systems/repositories in the past, which include: mix-and-
match attack, rollback attack, and endless data attack. Experimental results of these
and other attacks have shown the Uptane Framework’s ability to effectively combat
threats involving tampering and manipulation of updates. On the other hand, some of
experimental results suggest that a production-quality, real-world implementation of
the Uptane Framework would require effective measures against common threats, such
as denial of service and information disclosure. For example, we showed how firmware
images could be easily downloaded from Uptane servers without encountering any
access-control/authentication restrictions. Additionally, the results demonstrated how
the information exchange between the servers and clients could be easily intercepted.
In order to ensure and maintain confidentiality of the sensitive information, state-
of-the art technologies need to be applied for providing adequate protection against
information disclosure threats. Similarly, the denial-of-service attacks mounted against
the Uptane repositories and Primary ECU demonstrated how the timely delivery of
critical updates can be hampered, affecting the availability of crucial update services.

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK151

Table 7.17: Summarizing the results of Threat 27 - Rollback Attack.

Rollback Attack

TC COUNT = 4

TC 1 =

[("event Delete Timestamp from Image Repo","delete timestamp"),

("event Delete Timestamp from Director Repo","delete timestamp"),

("event Add File to Image Repo","add timestamp"), ("event Add -

File to Director Repo","add timestamp")]

Status: PASS

tTC 2 =

[("event Delete Timestamp from Image Repo","delete timestamp"),

("event Delete Timestamp from Director Repo","delete timestamp"),

("event Add File to Director Repo","add timestamp"), ("event Add -

File to Image Repo","add timestamp")]

Status: PASS

TC 3 =

[("event Delete Timestamp from Director Repo","delete timestamp"),

("event Delete Timestamp from Image Repo","delete timestamp"),

("event Add File to Image Repo","add timestamp"), ("event Add -

File to Director Repo","add timestamp")]

Status: PASS

TC 4 =

[("event Delete Timestamp from Director Repo","delete timestamp"),

("event Delete Timestamp from Image Repo","delete timestamp"),

("event Add File to Director Repo","add timestamp"), ("event Add -

File to Image Repo","add timestamp")]

Status: PASS

Test Outcome:

The Primary ECU refused to proceed with the update process with the fol-
lowing error message:

The Director has instructed us to download a Timestamp that is older than the
currently trusted version. This instruction has been rejected. As the Primary
has rejected the update, the Secondary was not presented with the update by
the Primary ECU.

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK152

Table 7.18: Summarizing the results of Threat 28 - Mix and Match Attack.

Results: Mix and Match Attack

TC COUNT = 4

TC 1 =

[("event Delete Snapshot from Image Repo","delete snapshot ir"),

("event Delete Snapshot from Director Repo","delete snapshot dr"),

("event Add Snapshot to Image Repo","add snapshot ir"), ("event -

Add Snapshot to Director Repo","add snapshot dr")]

Status: PASS

TC 2 =

[("event Delete Snapshot from Image Repo","delete snapshot ir"),

("event Delete Snapshot from Director Repo","delete snapshot dr"),

("event Add Snapshot to Director Repo","add snapshot director"),

("event Add Snapshot to Image Repo","add snapshot ir")]

Status: PASS

TC 3 =

[("event Delete Snapshot from Director Repo","delete snapshot -

dr"), ("event Delete Snapshot from Image Repo","delete snapshot -

ir"), ("event Add Snapshot to Image Repo","add snapshot ir"),

("event Add Snapshot to Director Repo","add snapshot dr")]

Status: PASS

TC 4 =

[("event Delete Snapshot from Director Repo","delete snapshot -

dr"), ("event Delete Snapshot from Image Repo","delete snapshot -

ir"), ("event Add Snapshot to Director Repo","add snapshot drr"),

("event Add Snapshot to Image Repo","add snapshot ir")]

Status: PASS

Test Outcome:

The Primary ECU refused to proceed with the update process by showing
BadHashError message.

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK153

Failed Security Test Cases As mentioned earlier, about fifty percent of (13 out
of 29) security test cases did not succeed in this experimental security analysis of
the reference implementation, which involve denial-of-service, elevation of privilege,
and information disclosure attacks against the Uptane repositories and the Primary
ECU. While it can be argued that since this particular implementation has not been
developed for meeting the production-level quality, the findings from the experimental
results still serve the useful purpose of showing serious issues that must be taken
into account before they are discovered by malicious actors in the real world, leading
to serious ramifications. The first two attacks (i.e., Updates Could be Downloaded
and Data Flow Sniffing) have shown the repositories’ susceptibility of becoming easy
targets of eavesdropping and Man-In-The-Middle (MITM) attacks. In particular, we
found that the network data captured being exchanged between the repositories and
the Primary contained sensitive information (such as, vehicle manifest, contents of the
remote procedure calls in plain text) that can be highly useful for the criminals to
launch more complex and damaging attacks in the future. Hence, appropriate security
controls must be applied to protect the confidentiality of the information, both in
transit and while stored on a device.

Denial-of-service attacks mounted on the repositories demonstrated their fragility to
collapse within a few seconds of being bombarded with excessive number of illegitimate
requests. Since this type of attacks are very common and are relatively easy to carry
out, OEMs and vendors must address this issue by deploying effective countermeasures
to fail such malicious attempts and ensure timely delivery of important updates.

Successful experimental attacks involving elevation of privilege threats showed the
potential impact of these attacks on the system after being compromised. We learned
that compromising only one repository (Image or Director) could not influence the
update itself or the procedures, as the metadata verification at the Primary (or Sec-
ondary) side will certainly fail due to incorrect/inconsistent sets of metadata from each
of the repositories. It should also be noted that while we were able to compromise both
the Director and Image repositories to deliver malicious updates to the target ECUs,
practically such attacks require the attacker to compromise the secret cryptographic
keys of both repositories, which is considerably difficult if not impossible to accom-
plish, as the keys for the Image Repository are kept offline securely. Hence, based on
the effectiveness of this defensive countermeasure, we believe the framework provides
adequate protection against such attacks unless the attacker is able to compromise all
the keys.

Passed Security Test Cases Various attacks launched against the Uptane did not
succeed proving the effectiveness of its protection mechanisms. Different types of meta-
data have been introduced to ensure protection against certain common attacks per-
formed against update systems. For instance, mix-and-match and attacks are thwarted
by using Snapshot metadata; similarly, freeze update, rollback and replay attacks are
handled through the Timestamp metadata. Targets metadata is used to prove the

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK154

authenticity of the firmware images. Moreover, the framework is also equipped with
effective mechanisms to ensure protection against endless data attack and slow-retrieval
attack. Thus, our findings from these experimental attacks suggest that tampering and
replay attacks (as well as many other attacks) are well defended by the system.

To conclude, while the Uptane Framework offers solutions to various major threats
to the update process by introducing effective mechanisms, our experimental results
show the reference implementation is vulnerable to eavesdropping and denial-of-service
attacks. Exploitation of these vulnerabilities in the production environment can cause
serious disruptions to the distribution of important updates to connected vehicles.
OEMs and other relevant stakeholders must take into consideration such threats and
apply necessary security controls (e.g., authentication and access control) for maximum
protection.

7.6.2 Limitations

While the approach we have used enabled us to systematically reveal various types of
threats and subsequently derive security test cases, not all of those threats could be
included in the experimentation for various legitimate reasons.

1. First of all, the main focus of this research work was on the threats that could
potentially compromise the OTA procedures on the backend server-side (i.e., Im-
age Repo, Director Repo, Time Server, etc.), rather than targeting and exploiting
vehicle-side vulnerabilities/threats (e.g., Reflash the TCU (Primary) Firmware in
Order to Send Arbitrary CAN Messages), as they have been extensively explored
in prior studies [89, 125, 7]. Additionally, vehicle-side security compromises often
require physical access to the vehicle, which was not conducive to the automated
testing process.

2. Second, we did not take the threats (six different threats were identified by the
tool) from the Repudiation category of STRIDE model into consideration for
testing, as these threats independently are not capable of causing any harm/dis-
ruption to the Update procedures or system. That is, threats involving a compo-
nent or a human user, either at server side or in the vehicle. denies performing a
certain action, does not have any effect on the update process.

3. Third, the threat (having three instances) Car Could be Tracked has not been
included in the experimentation, since it is not directly relevant/exclusive to OTA
update system as well as it does not have any direct impact on the delivery or
installation of the updates. Moreover, such threats are usually associated with
the vehicle’s external connectivity by using telematics, for instance.

4. Finally, we excluded those threats from the experimentation that have very sim-
ilar attack steps, affects, and/or results to the ones investigated. For instance,
Take the Director Repo Offline, Flood Director Repo with Invalid Data, and Cause

CHAPTER 7. EXPERIMENTAL SECURITY ANALYSIS OF UPTANE FRAMEWORK155

the Director Repo to Crash or Stop Remotely have similar attack method (i.e.,
DoS attack) and the same effect: that is, causing the Director Repository to
become unresponsive to legitimate request from clients. This is simply because
representative examples presented provide sufficient details and insights about
various aspects of the threats.

Some attack trees we constructed could be further elaborated by including more
attack steps; however, since our primary goal has been to demonstrate what the at-
tacker would be able to do if they succeeded in compromising the update system, we
intentionally did not focus on the tactics and methods that attackers can potentially
use for breaking into the OTA servers, in order to prevent complexities affecting the
automated test-case generation/execution. Moreover, since our investigations relied on
automated test-case generation and execution process, social engineering techniques
(e.g., stealing offline cryptographic keys for signing updates and metadata on Uptane
Image Repository or the credentials of a system administrator) and other manual steps
were not feasible to be included in the attack trees and test scripts.

Although, Threat Modeling Tool identified various threats in different categories of
STRIDE, (as can be seen in Table 7.2 and 7.6) it reported no Spoofing threats to the
Uptane repositories and clients. From a technical standpoint, it is perfectly possible
that the attackers may use spoofing as one of the strategies to compromise the update
procedures. In fact, several of our experiments rely on the assumption that the Uptane
repositories were being spoofed or impersonated by malicious actors.

7.7 Chapter summary

This chapter presented the experimental security analysis of the Uptane Framework
by applying the systematic security approach. All the key activities and associated
steps described with appropriate details demonstarting the processes of information
gathering through to attack tree construction and test-case generation and execution.
We showed how we modelled the Uptane system to produce both a static and dynamic
representation of the system, which enabled us to craft the data flow diagram in the
threat enumeration process for identifying all the threats. Next, the identified threats
were used to build 15 different attack trees, each corresponding to a particular threat
in the threat modeling list, demonstrating our systematic approach to attack tree
construction. For each of the attack trees, one or more corresponding test cases were
generated by the software tool and executed against the reference implementation of
the Uptane Framework. Finally, results of all the experiments along with key findings
and limitations are highlighted.

Chapter 8

Countermeasures

This chapter presents some countermeasures against the experimental information dis-
closure and denial of service attacks on Uptane repositories and clients that succeeded
(i.e., the ones with a ”FAIL” status) in the previous chapter. These experimental at-
tacks were able to affect the security of the reference implementation, compromising
the confidentiality and availability of the system. Based on high-level recommenda-
tions/guidelines from UNECE WP.29, appropriate mitigations have been discussed,
highlighting their strengths and weaknesses. Attack-defence trees have been included
to provide graphical representation of the attacks and relevant countermeasures/miti-
gations. While the suggested countermeasures/mitigations, best practices presented in
this chapter are first steps towards effective protection, they should not be considered
ultimate or comprehensive solutions.

8.1 Protection against Information Disclosure

In this section countermeasures against two different threats violating the confidential-
ity of the updates are presented. First, a discussion on how to protect the sensitive
updates from unauthorised access is provided followed by a solution for ensuring secu-
rity against interception of the sensitive communication/data.

8.1.1 How to Stop Unauthorised Update Downloads

Four attacks were successful in compromising the confidentiality of the updates, re-
sulting in the disclosure of sensitive, proprietary updates information. As indicated
earlier, while leakage of such information itself does not directly affect the operations/-
functionality of the system, it can subsequently can be leveraged by the adversary to
craft destructive, more sophisticated attacks.

Recall that this threat involved downloading the firmware images from the Uptane
repositories without having to go through/compromise any security mechanisms (see
Table 7.4 in Chapter 7). The reference implementation of Uptane Framework does

156

CHAPTER 8. COUNTERMEASURES 157

not currently implement any security controls (e.g., authentication/access control pro-
tections) to prevent unauthorised access/download of the firmware images. Hence,
anyone with access to the IP address/URL/port numbers of the repository servers will
be easily able to download the update files from the server.

The new regulations (see Table C1 in Annex 5 of the UNECE WP.29 [2]) concerning
mitigations for protecting backend systems recommends the introduction/implementa-
tion of appropriate security controls to minimise unauthorised access to the backend
systems, for examples.

Obviously this is merely a high-level suggestion without any details about the
specific solutions that can effectively be deployed to provide protection against such
threats. One effective approach to address this would be restricting downloading capa-
bility to authenticated devices/clients only; this can practically be achieved by intro-
ducing authentication/authorization mechanisms, wherein a client device must be able
to present valid credentials (e.g., a unique identifier/serial number along with an associ-
ated cryptographic key or digital certificate) before it should be allowed by the Uptane
repositories to download/access the requested resource. This is shown graphically by
the attack defence tree in the Figure 8.1, with the countermeasures included. This mit-
igation would need implementation of the authentication/access control functionality
at both Uptane backend servers (i.e., Director repository and Image repository) and
compliant clients in the vehicle.

Established best practices and guidelines (e.g., using adequate key lengths, appro-
priate encryption algorithms etc.) should be followed to protect against brute force
attacks.

There are a number of other key factors that must be considered thoroughly, as
security of the cryptographic materials stored on the device and key management would
be additional challenges to deal with. Importantly, compromised keys can easily thwart
such protective measures. Additionally, as ECUs (i.e., client devices) are embedded
systems, they typically have limited computing and storage capabilities than required
for cryptographic systems. This means more powerful ECUs (ideally with access to
hardware security modules or secure hardware extension) would be needed for the
security of cryptographic materials.

8.1.2 Preventing Data Flow Sniffing

Eavesdropping or interception of the sensitive information is another successful attack
that demonstrated (see Table 7.5 in Chapter 7) how plain-text information exchange
between Uptane repositories (i.e., Image repository and Director repository) and clients
can be intercepted by the attackers that may facilitate them in their future efforts to
compromise the security of the system. The intercepted information includes remote
procedure calls, update data, vehicle identification number (VIN), and other similar
pieces of data that can potentially be used by the attackers to craft and launch more
advanced attacks on the system.

High-level mitigation relevant to this threat is outlined in the Table B1 of Annex 5

CHAPTER 8. COUNTERMEASURES 158

U
pd

at
es

 C
ou

ld
be

 D
ow

nl
oa

de
d

D
ow

nl
oa

d
F

irm
w

ar
e

fr
om

 Im
ag

e
R

ep
o

D
et

er
m

in
e

Im
ag

e
R

ep
o

U
R

L
E

st
ab

lis
h

N
et

w
or

k
C

on
ne

ct
io

n
D

ow
nl

oa
d

F
irm

w
ar

e
C

lie
nt

A
ut

he
nt

ic
at

io
n

V
er

ify
 U

ID
 +

K
ey

 V
er

ifi
ca

tio
n

U
ID

 +
D

Ig
ita

l C
er

tif
ic

at
e

V
er

ifi
ca

tio
n

D
ow

nl
oa

d
F

irm
w

ar
e

fo
rm

 D
ire

ct
or

 R
ep

o

D
et

er
m

in
e

D
ire

ct
or

R
ep

o
U

R
L

E
st

ab
lis

h
N

et
w

or
k

C
on

ne
ct

io
n

D
ow

nl
oa

d
F

irm
w

ar
e

C
lie

nt
A

ut
he

nt
ic

at
io

n

V
er

ify
 U

ID
 +

K
ey

 V
er

ifi
ca

tio
n

U
ID

 +
D

Ig
ita

l C
er

tif
ic

at
e

V
er

ifi
ca

tio
n

F
ig
u
re

8
.1
:

A
tt

a
ck

d
ef

en
ce

tr
ee

d
ep

ic
ti

n
g

th
e

co
u

n
te

rm
ea

su
re

to
m

it
ig

a
te

th
e

th
re

a
t.

CHAPTER 8. COUNTERMEASURES 159

of the UNECE WP.29 ([2]), which suggests that the protection of the confidential data
transmitted to/from the vehicle shall be ensured. In order to guarantee the confiden-
tiality of such sensitive information (or the communication channel), employing widely
used technologies, such as Transport Layer Security (TLS) can be one of the effective
solutions. TLS is a cryptographic protocol that uses encryption to ensure privacy and
integrity of the data exchange between communication computing devices. However,
earlier versions of the TLS are known to have various vulnerabilities; therefore, TLS
1.3 is highly recommended, as it has significant improvements overcoming shortcom-
ings of the previous versions. All the public data flows (e.g., publicly exposed APIs by
Director and Image repositories) should be protected by this mechanism.

Data Flow Sniffing

Determine
Director Repo's

Network Information

Determine IP
Address

Determine Port
Number

Establish
Network

Connection

Intercept
Network
Traffic

Analyze
Captured

Network Data

Ensure Information
Confidentiality

Use TLS/SSL

Figure 8.2: Attack defence tree depicting the countermeasure for ensuring
confidentiality of the information.

8.2 Strategies for Dealing with Denial of Service

Attacks

Denial of service attacks pose a serious threat to the system security by causing the
system to stop serving the clients as a result of various kinds of resource depletion.
More than half of the successful threats involved DoS attacks on different components
both at server side and at the vehicle end. This section presents some of the common
approaches to dealing with denial of service attacks on both ends of the OTA update
ecosystem.

8.2.1 Mitigations against DoS Attacks on OTA Backend Servers

As explained later in the section, a multi-layered approach would be required to secure
the Uptane backend systems against DoS attacks. UNECE WP.29 (see Table B2 in [2])
recommends effective preventive and recovery measures against system outage events

CHAPTER 8. COUNTERMEASURES 160

caused by malicious DoS attacks in order to ensure continuous availability/delivery
of critical services. However, WP.29 does not suggest specific strategies, techniques
that should be used. Since there are numerous types of DoS attacks targeting different
aspects of the system (and are categorised into different groups such as application level,
network level, data level, and operating system level) [126]; hence, there is no single,
universal strategy, technique, or approach that can be effectively leveraged to coping
with this threat. It is worth noting here that (as noted in [127]) DoS attacks can either
adopt a resource corruption/destruction strategy or a resource exhaustion approach,
the experimental DoS attacks in this thesis have employed the latter approach. In
particular, we have used brute-force based DoS attacks which involve overwhelming
the victim system by flooding it with fake network messages (more details on this can
be found in [127]). Application-level vulnerabilities that could be exploited to cause
the Uptane repositories/components to crash (e.g., due to no/poor input validation or
buffer overflow), should be fixed early in the development phase. In what follows, we
outline some common strategies (as outlined in [128] and depicted in the attack defence
trees presented in Figures figures 8.3 to 8.5) that can be adopted for protection against
the brute-force DoS attacks performed against the Uptane repositories and client in
this thesis.

Intrusion Detection and Prevention Systems Since the Uptane repositories (i.e.,
Image repository, Director repository, and Time Server) expose public interfaces, an
intrusion detection and/or prevention system can be the first line of defence against
DoS (and other types of attacks) from the external world. The process of monitor-
ing the events taking place in a computer system or network environment for signs of
malicious activity (e.g., large number of connection attempts) is commonly referred to
as intrusion detection. While an intrusion detection system automates the process of
intrusion detection, an intrusion protection system is additionally capable of interven-
ing to protect the system from possible incidents [129]. In order to take appropriate
actions against DoS and other types of attacks and to limit the extent of damage they
can cause, automated intrusion detection systems can be an effective approach. Intru-
sion prevention systems can respond to potential threats/attacks by blocking, limiting,
and/or filtering the network traffic as required [130] to secure Uptane repositories.

Mitigations provided by Internet and cloud service providers In many cases,
service providers (with varying capabilities) can assist in dealing with resource exhaus-
tion (i.e., DoS attacks) by offering mitigating measures that can ensure security of
Uptane repositories against DoS attacks. For instance, packet scrubbing (a packet fil-
tering service) can be used to filter packets that seemingly intended to cause a DoS
attack. Some mitigations deal with attacks at higher levels of the network. Some ser-
vice providers may also implement basic packet filtering in order to prevent network
firewalls being overwhelmed by inbound access requests. It is worth noting that detect-
ing unusual activity may be a challenging and non-trivial task in situations wherein

CHAPTER 8. COUNTERMEASURES 161

C
au

se
 D

ire
ct

or
 R

ep
o

to
 C

ra
sh

 o
r

S
to

p
R

em
ot

el
y

D
et

er
m

in
e

D
ire

ct
or

 R
ep

o'
s

N
et

w
or

k
In

fo
rm

at
io

n

D
et

er
m

in
e

IP
A

dd
re

ss
D

et
er

m
in

e
P

or
t

N
um

be
r

La
un

ch
D

oS
 A

tta
ck

E
st

ab
lis

h
N

et
w

or
k

C
on

ne
ct

io
n

F
lo

od
 D

ire
ct

or
R

ep
o

D
oS

 M
iti

ga
tio

ns

D
ep

lo
y

ID
P

/ID
S

S
ys

te
m

s

Im
pl

em
en

t a
 S

er
vi

ce
F

ai
lu

re
 R

es
po

ns
e/

R
ec

ov
er

y
P

la
n

U
se

 D
ef

en
ce

s
P

ro
vi

de
d

by
 S

er
vi

ce
 P

ro
vi

de
rs

F
ig
u
re

8
.3
:

A
tt

a
ck

d
ef

en
ce

tr
ee

d
ep

ic
ti

n
g

th
e

co
u

n
te

rm
ea

su
re

s
fo

r
en

su
ri

n
g

th
e

a
va

il
a
bi

li
ty

o
f

cr
it

ic
a
l

se
rv

ic
es

p
ro

vi
d
ed

by
D

ir
ec

to
r

R
ep

o
si

to
ry

.

CHAPTER 8. COUNTERMEASURES 162

C
au

se
 Im

ag
e

R
ep

o
to

C
ra

sh
 o

r
S

to
p

R
em

ot
el

y

D
et

er
m

in
e

Im
ag

e
R

ep
o'

s
N

et
w

or
k

In
fo

rm
at

io
n

D
et

er
m

in
e

IP
A

dd
re

ss
D

et
er

m
in

e
P

or
t

N
um

be
r

La
un

ch
D

oS
 A

tta
ck

E
st

ab
lis

h
N

et
w

or
k

C
on

ne
ct

io
n

F
lo

od
 Im

ag
e

R
ep

o
D

oS
 M

iti
ga

tio
ns

D
ep

lo
y

ID
P

/ID
S

S
ys

te
m

s

Im
pl

em
en

t a
 S

er
vi

ce
F

ai
lu

re
 R

es
po

ns
e/

R
ec

ov
er

y
P

la
n

U
se

 D
ef

en
ce

s
P

ro
vi

de
d

by
 S

er
vi

ce
 P

ro
vi

de
rs

F
ig
u
re

8
.4
:

A
tt

a
ck

d
ef

en
ce

tr
ee

d
ep

ic
ti

n
g

th
e

co
u

n
te

rm
ea

su
re

s
fo

r
en

su
ri

n
g

th
e

a
va

il
a
bi

li
ty

o
f

cr
it

ic
a
l

se
rv

ic
es

p
ro

vi
d
ed

by
Im

a
ge

R
ep

o
si

to
ry

.

CHAPTER 8. COUNTERMEASURES 163

encrypted protocols (such as TLS or HTTPS) are being used. Other important con-
siderations include the following:

• Will the service provider automatically enable the DoS mitigations, whether they
will inform you when doing so?

• Time required for restoring/re-enabling the service if interrupted or shutdown,

• Time required to enable the additional mitigations.

Finally, availability of the Uptane services may be improved by using multiple service
providers. This can be useful in providing uninterrupted delivery of essential services
(by responding to requests from legitimate Uptane clients) when one service provider is
under attack. However, this introduces additional cost and management complexities.
Moreover, this solution may not be effective if the second provider is the reseller of the
first one.

Implementing a service failure response and recovery plan In order to com-
bat DoS attacks against Uptane repositories effectively, it is vital to define a robust
response plan, specifying all necessary actions to be taken along with specific respon-
sibilities of each team member should an attack is detected. National Cyber Security
Centre (NCSC) recommends the following key elements of a DoS response plan [131],
as summarized in the Table 8.1.

8.2.2 Mitigations against DoS Attacks on In-Vehicle Compo-
nents

Even though DoS attacks on PTA backend servers and in-vehicle components along
with the relevant countermeasures may have commonalities, there are important dif-
ferences, requiring special considerations. Importantly, in contrast to standard ICT
systems, in-vehicle components (IVCs) and in-vehicle networks (IVNs) have comput-
ing and storage constraints along with strict real-time requirements due to their very
safety-critical nature, involving cyber-physical components.

As can be seen from the Figure 8.6, IDS and IPS systems have been included as
recommended countermeasures against DoS attacks on the Primary ECU. However,
IDS and IPS systems for resource-constrained IVCs and IVNs must take into account
the special consideration and limitations of such embedded systems. There are various
types of IDS systems with different characteristics, strengths, and limitations. Below
is a brief overview of two broad categories of intrusion detection systems:

Anomaly-based IDS Anomaly-based intrusion detection systems use a combination
of machine-learning, statistical, physical finger-printing, and rule-based methods for
detecting attacks. During the training phase, a learning model is developed that helps

CHAPTER 8. COUNTERMEASURES 164

C
au

se
 th

e
T

im
e

S
er

ve
r

to
 C

ra
sh

 o
r

S
to

p
R

em
ot

el
y

D
et

er
m

in
e

T
im

e
S

er
ve

r's
N

et
w

or
k

In
fo

rm
at

io
n

D
et

er
m

in
e

IP
A

dd
re

ss
D

et
er

m
in

e
P

or
t

N
um

be
r

La
un

ch
D

oS
 A

tta
ck

E
st

ab
lis

h
N

et
w

or
k

C
on

ne
ct

io
n

F
lo

od
 T

im
e

S
er

ve
r

D
oS

 M
iti

ga
tio

ns

D
ep

lo
y

ID
P

/ID
S

S
ys

te
m

s

Im
pl

em
en

t a
 S

er
vi

ce
F

ai
lu

re
 R

es
po

ns
e/

R
ec

ov
er

y
P

la
n

U
se

 D
ef

en
ce

s
P

ro
vi

de
d

by
 S

er
vi

ce
 P

ro
vi

de
rs

F
ig
u
re

8
.5
:

A
tt

a
ck

d
ef

en
ce

tr
ee

d
ep

ic
ti

n
g

th
e

co
u

n
te

rm
ea

su
re

s
fo

r
en

su
ri

n
g

th
e

a
va

il
a
bi

li
ty

o
f

se
rv

ic
es

p
ro

vi
d
ed

by
T

im
e

S
er

ve
r.

CHAPTER 8. COUNTERMEASURES 165

Table 8.1: Service failure response and recovery plan.

Approach Description

Grace degradation

• Access should be prioritized based on its source;
for instance, restricting access to IP addresses from
a certain country/region

• Compute/database-intensive dynamic content
generation should be disabled

• Only authenticated users should be allowed to ac-
cess dynamically generated contents

Tackling changing
attack tactics and
recurring attacks

Attackers may attempt to overwhelm the system by us-
ing different attack methods after learning more about
the mitigations in place. Resources should be wisely
and efficiently utilised in order to deal with multiple,
repeating attacks attempts effectively.

Retaining admin
access

A different network/subnet should be used to keep man-
agement access to deal with situations when under a DoS
attack. Public DNS zones that are likely to be a target
of the DoS attacks should not be relied upon for this
purpose.

Ensuring a scalable
fall-back plan

Service(s) should be able to rapidly scale in order to
effectively deal with surges in sessions taking place con-
currently. While it is easy to achieve horizontal scal-
ing with native cloud applications, some re-engineering
efforts may be required for pre-existing, non-cloud ap-
plications. Virtualization could be useful for achieving
automated scaling in privately owned data centres, as-
suming adequate hardware capacity exists to accommo-
date this capability.

CHAPTER 8. COUNTERMEASURES 166

detect unusual traffic, patterns, and new attacks that were not previously discovered.
In contrast with the signature-based IDS, these systems are capable of detecting zero-
day attacks as they do not rely on existing attack patterns. However, there is possibility
of high false positive rate, as the IDS can interpret new behaviours as anomalies [?].

Signature-based IDS Signature-based intrusion detection systems (also known as
Knowledge-based detection or misuse detection) detect attacks by scanning intrusion
signatures in a database containing known attack signatures. While these systems have
low false positive rate (i.e., excellent detection accuracy), they suffer from high-latency
due to scanning large databases for attack signatures. Additionally, these systems
are not able to detect zero-day or novel attacks due to no matching signatures in the
database [132].

Cause the Primary ECU
to Crash or Stop

Remotely

Determine Primary ECU's
Network Information

Determine IP
Address

Determine Port
Number

Launch
DoS Attack

Establish Network
Connection

Flood Primary
ECU

Deploy Automotive
IPS/IDS

Figure 8.6: Attack defence tree depicting the recommended countermea-
sure for ensuring the availability of functionality provided by Primary ECU.

Automotive security architectures typically include intrusion detection/prevention
systems and firewalls to provide protection against cyberattacks and intrusions. Fur-
thermore, network segmentation is also a widely used approach that splits CAN net-
works into multiple subnetworks to limit the proliferation of cyberattacks by placing
safety-critical components (such as braking and steering) on a separate subnetwork.

The Primary ECU (or OTA master) in this study has been assumed to be a telem-
atics control unit (TCU), which is not a safety-critical system; while a remote DoS
attack on this system can disrupt the update process for the ECUs in the affected
car, the DoS attack would not have an impact on the Uptane repositories and other
vehicles. Such an attack is unlikely to be a lucrative venture for the adversary due to
its limited scope and damage capability.

CHAPTER 8. COUNTERMEASURES 167

8.3 Chapter Summary

In line with the guidelines from UNECE WP.29, this chapter presented countermea-
sures for securing Uptane repositories and clients against information disclosure and
denial of service attacks. For protection against information disclosure threats, mech-
anisms such as authentication, access control and appropriate encryption (e.g., TLS)
have been suggested. The resources stored on Image and Director repositories should
be restricted to authenticated clients only, which can be enforced using digital certifi-
cates and unique identifiers of the ECUs. Publicly exposed API interfaces by Director
and Image repositories should implement TLS to ensure the confidentiality of the infor-
mation exchange between the repositories and client ECUs. DoS attacks on the Uptane
repository can be defended by deploying intrusion detection and prevention systems,
implementing a comprehensive service failure response and recovery plan, and using
mitigations offered by service providers. Even though intrusion prevention/detection
systems can be effective mitigations at the vehicle end, being resource-constrained
devices,IVCs need additional special considerations. While the suggested countermea-
sures/mitigations in this chapter are believed to be a good starting point, they do not
represent comprehensive solutions.

Chapter 9

Conclusion and Future Work

This concluding chapter summarizes the entire study by highlighting key points, includ-
ing the application of the systematic, model-based security testing approach, demon-
strated by an in-depth security analysis of the Uptane reference implementation, the
resultant major contributions and findings, as well as the directions for future work. In
particular, we employed a MBST approach, it primarily concentrates on the specifica-
tion and derivation of security test cases by using explicit models of the system under
test.

9.1 Summary of the Study

The Uptane framework is being adopted by many major OEMs for the delivery of all
types of software and firmware updates to the in-vehicle components found in the con-
nected cars. These modern cars host sophisticated computing systems running software
applications with millions of lines of code, requiring frequent and regular updates for
functional enhancements, maintenance, and security fixes. Thus, remotely-delivered
updates and associated procedures must be secure, as malicious or compromised up-
dates can undermine the security and safety of the vehicle and its occupants. Most
importantly, taking into consideration its potential future widespread adoption (affect-
ing millions of cars), in-depth security analysis of this solution is crucial. In order to
provide a comprehensive security testing/analysis, this study has showcased the ap-
plication of a MBST, systematic threat assessment and security testing approach for
automotive OTA update system (using the reference implementation of the Uptane
Framework).

Our testing approach included systematic threat enumeration of major threats to
the OTA update system by using the standard threat classification system STRIDE
and associated tool called Threat Modeling Tool. Chapter 4, presents a complete
description of the approach involving systematic asset identification (i.e., system de-
composition) and producing a suitable representation of the system (i.e., system de-
scription) for the identification of associated security threats (i.e., threat enumeration).

168

CHAPTER 9. CONCLUSION AND FUTURE WORK 169

Each of the identified threats forms the basis for constructing an attack tree. Since the
quality of the generated test cases is largely determined by the quality of approach used
(which is attack-tree based threat modeling in our case), a well-defined and structured
approach could make a big difference in constructing effective attack trees, chapter
5 is dedicated to explain and demonstrate the step-by-step attack-tree construction
approach with appropriate relevant examples. This approach starts with an identified
threat scenario (which represents the root node of the attack tree) followed by popu-
lating the attack tree by identifying subgoals and the specific actions (depicted by leaf
nodes). Information provided by the threat modeling report along with brainstorming,
and discussions, the attack trees went through a well-defined refinement process.

Moreover, we presented a powerful software tool for automated test-case genera-
tion and execution, which is capable of deriving test cases by analyzing attack tree’s
structure and underpinning formal semantics. That is, depending on the refinement
connective used (i.e., OR,AND,SAND), and the complexity of the attack tree, the
tool generates valid and correct test cases. In order to prove the validity of our test-case
derivation approach, we provided formal proof.

In-depth security analysis and system testing of the Uptane Framework carried
out in the previous chapter, demonstrating the validity of our approach by enumer-
ating various threats by examining the system model, constructing attack trees from
the results from threat enumeration, deriving effective security cases by analyzing the
structure of the constructed attack trees, and finally running those test cases against
the implementation. Detailed results and findings of the security evaluation presented
in the previous chapter show the effectiveness of our approach by revealing unmitigated
threats and vulnerabilities of the system. The experimental security attacks crafted
from the attack trees, help us evaluate the security controls and mechanisms built
into the framework. The findings from the experimental results of this study show
that while in general the Uptane is an effective solution providing protection against
numerous security threats, the reference implementation is vulnerable to information
disclosure and denial-of-service threats, which must be given serious consideration in
the production environment to protect the updates from cyberattacks.

9.2 Summary of the contributions of this research

This doctoral research makes several scientific and technical contributions, as summa-
rized below:

Contribution 1 A systematic threat analysis approach for constructing attack trees
(introduced in Chapter 4). This approach provides a structured, step-by-step method
for constructing attack trees. Core components, assets of the system under test are
identified in the System Decomposition step, resulting in an appropriate graphical rep-
resentation of the system to be used for threat analysis in the next step. The system
model is transformed into a suitable data flow model for identifying security threats

CHAPTER 9. CONCLUSION AND FUTURE WORK 170

in the Threat Enumeration step. Combined with the threat report produced in the
preceding step, we show practical steps for constructing attack trees in a methodical
manner. To validate the approach, we first provided a number of examples demonstrat-
ing the application of the approach in general, followed by applying it to the reference
implementation of the Uptane framework. As a result of the System Decomposition,
A UML sequence diagram of the Uptane was constructed documenting and exhibiting
the behavioral aspects of the system, which was then transformed into a suitable data
flow model for examining the system for identifying security threats (applying Threat
Enumeration approach). Consequently, 52 different types of threats were identified
targeting both the Uptane repositories and clients. A subset of these threats were
selected from the list of threats and 15 attack trees were constructed, by applying the
step-by-step approach for constructing attack trees introduced in Chapter 5.

Contribution 2 A test-derivation approach using model-based security testing ap-
proach based on attack trees (introduced in Chapter 6). We introduced this powerful
approach to deriving security test cases by analyzing the structure of attack trees. We
demonstrated how different refinements (i.e., disjunctive, conjunctive, and sequential
conjunctive) along with different node types can assist with deriving valid security test
cases. We exemplified the approach with many examples showing how the security
test cases are derived using the structured approach. Additionally, we also described
and explained the structure of a typical security test case derived from the attack tree.
As explained below, we automate this process by implementing a software tool that
generates executable security test cases by analyzing the structure of the attack tree.

An in-depth, experimental security analysis of the Uptane Framework by applying
the systematic threat assessment and security testing approach (presented in Chapter
7). We applied our approach for the in-depth security analysis of the reference im-
plementation of the Uptane Framework, involving comprehensive threat enumeration,
attack-tree construction, thorough test-case generation and execution. Fifteen different
experiments constituting 29 different derived test cases from 15 attack trees, helped us
carry out an extensive security analysis of the Uptane framework by mounting a range
of security attacks on the Director Repository, Image Repository, Time Server, and
Primary ECU. Thirteen of these test cases failed out of a total 29 test cases generated
and executed. Key findings and insights from these experimental attacks have been
summarized providing threat- and target component-specific as well as system-wide
impact of these attacks. Based on these findings, we have highlighted the strengths
and weaknesses of the Uptane Framework as an OTA update delivery solution in the
automotive domain. In addition to demonstrating the effectiveness and validity of our
methodical testing approach, by means of this full security analysis, we discovered that
the reference implementation requires effective countermeasures for ensuring the up-
dates are protected against threats, such as disruptions to the updates and information
theft in a production environment.

CHAPTER 9. CONCLUSION AND FUTURE WORK 171

Contribution 4 The automation of the test case generation and execution by im-
plementing a special-purpose software tool (presented in Chapter 6). This powerful
software tool is capable of generating and executing security test cases by performing
intelligent analysis of the attack-tree structure. As mentioned earlier, 29 different test
cases were successfully generated and executed by the tool by processing 15 attack
trees, showing the correct functioning, efficiency and effectiveness of the tool. The al-
gorithm that we devised and used to implement the tool has been detailed in Chapter
6. Additionally, the source code has also been made available, which can be found in
Appendix A.

Contribution 5 A comprehensive survey of the testbeds and testing approaches, pro-
viding a critical analysis of the testing environments and methods in the automotive
cybersecurity testing (presented in Chapter 3). The testbed used for the experimental
security analysis of the Uptane Framework in this study was designed by using the
insightful findings from the extensive survey of a number of testing setups proposed in
the relevant literature. We critically reviewed and analyzed each of the investigated
testbeds by evaluating the capabilities and features offered by each of these solutions.
A comparative analysis of these testing environments based on the important charac-
teristics/factors was also carried out for determining the key considerations that must
be taken into account for ensuring sound and effective design of the setup. In par-
ticular, the comparison focused on the adaptability, portability, cost, fidelity, as well
as safety considerations. Moreover, the supported communication technologies, attack
surfaces/vectors, and attack types reported for each of the environment have been
highlighted. We also reviewed and described some of the most widely used testing
methods in the domain, which include automotive vulnerability scanning, fuzz testing,
and penetration testing. The wealth of information included in this comprehensive
survey provides both theoretical background knowledge and practical advice for the
factors and key considerations that can be highly handy in the decision-making pro-
cess for designing and building safe, cost-effective, and adaptable testing environment,
as to the best of our knowledge, currently there exists no such study.

9.3 Beneficiaries of this Research

The work presented in this thesis is useful for various stakeholders including both
from the academia and the industry, ranging from the new entrants in the field to
the experienced researchers and practitioners. In what follows, we highlight how this
research work can be useful for different individuals and groups who are related to or
interested in the automotive cyber security testing.

CHAPTER 9. CONCLUSION AND FUTURE WORK 172

9.3.1 Research Community in Automotive Cybersecurity

This research work benefits the automotive cybersecurity testing researchers in a num-
ber of ways:

• The overall systematic threat assessment and security approach introduced in
this study can be used by researchers to investigate and evaluate the security of
various automotive systems in an organized and structured way; additionally, the
approach can be adapted to a variety of scenarios and configurations.

• In particular, the methodical approach for constructing attack trees and the re-
lated test-case generation approach can help derive test cases relatively efficiently,
saving time and manual effort, assisting the researchers with their security testing
efforts.

• The software tool can be adapted and used for generating security test cases and
executing them in the security assessment of different automotive systems. The
tool can be extended in a number of ways to further enhance the quality of the
overall testing experience and results obtained. We outline some of the possible
extensions in the future work section later in this chapter.

• The comprehensive survey on automotive cybersecurity testbeds and testing
methods combines the major innovative solutions proposed in the literature that
can help the researchers with identifying the most effective solution for meeting
particular requirements of the security evaluations. Furthermore, the survey can
be used as a reference to design and set up a lab-based testing environment to
conduct security testing of automotive systems/components in a safe and cost-
effective manner.

• Finally, the thorough security analysis of the Uptane Framework can assist with
understanding the key security threats/vulnerabilities, requirements and unique
challenges of the OTA updates in the context of connected vehicles; particularly,
the findings from the experimental security testing can be used for designing more
effective, secure and efficient techniques and solutions for protecting the updates
and other system components from cyberattacks and threats.

9.3.2 Stakeholders form the Automotive Industry

Some of the relevant parties from the industry benefiting from this research are iden-
tified below:

• OEMs seeking to adopt and implement OTA technology for the delivery of up-
dates can find the information in this research useful. Specifically, comprehensive
overview of the Uptane Framework along with the findings from its security anal-
ysis will help them make informed decision whether this particular solution meets

CHAPTER 9. CONCLUSION AND FUTURE WORK 173

their requirements and if it is technically and operationally feasible for them to
adopt this technology.

• The systematic security testing approach, the software tool, and the testbed can
be employed by the engineering and consulting companies, such as EDAG and
HORIBA MIRA, to conduct security assessments of the vehicle systems.

• Finally, individual security practitioners working independently (e.g., freelancers)
can also be the beneficiaries of the particular processes, tools, and techniques
introduced in this thesis.

9.4 Future Work

While the work presented in this thesis has introduced several approaches techniques
and tools for carrying out the systematic security testing of the automotive OTA up-
dates (that are not strictly restricted to such systems, it can equally be effective for
other automotive systems), we believe these are just the first steps towards a long jour-
ney. The presented work can be extended in various ways, some of which are outlined
here.

• Firstly, we aim to carry out further evaluation of our systematic security approach
(and its integrated attack-tree construction and test-case generation processes)
by applying it to other similar automotive OTA solutions. Moreover, we look
forward to applying our approach to other automotive systems other than OTA.

• Secondly, we plan to automate the attack-tree construction process by imple-
menting a software tool. The tool would be capable of constructing the attack
trees from the threat modeling report generated in the Threat Enumeration step
of our approach, which is currently handled manually. This can be accomplished
by implementing the template-based attack tree construction method proposed
in [133].

• Finally, in order to enhance the usability and hence the productivity, we would
like to implement a graphical user interface (GUI) for our test-case generation
and execution software tool implemented in this study. Currently, the software
tool offers a command-line user interface, which is effective and appropriate for
the purpose; however, a graphical user interface will support the class of users
that prefers and finds the GUI environments more convenient and productive.

9.5 Chapter summary

This final chapter provided a summary of the entire study followed by an overview of
the key contributions. Stakeholders who are likely to benefit from this research from

CHAPTER 9. CONCLUSION AND FUTURE WORK 174

the academia and industry are identified, highlighting the usefulness for each group of
beneficiaries. Finally, an overview of the future work is outlined.

References

[1] R. Shaw and B. Jackman, “An introduction to flexray as an industrial network,”
in 2008 IEEE International Symposium on Industrial Electronics. IEEE, 2008,
pp. 1849–1854.

[2] Proposal for a new UN Regulation on uniform provisions concerning the
approval of vehicles with regards to cyber security and cyber security
management system. http://www.unece.org/fileadmin/DAM/trans/doc/2020/
wp29grva/ECE-TRANS-WP29-2020-079-Revised.pdf, [Last accessed: 10-06-
2020].

[3] J. Mössinger, “Software in automotive systems,” IEEE software, vol. 27, no. 2,
pp. 92–94, 2010.

[4] D. J. Coe, J. Kulick, A. Milenkovic, and L. Etzkorn, “Virtualized in-situ software
update verification: Verification of over-the-air automotive software updates,”
IEEE Vehicular Technology Magazine, 2019.

[5] J. P. Trovao, “An overview of automotive electronics [automotive electronics],”
IEEE Vehicular Technology Magazine, vol. 14, no. 3, pp. 130–137, 2019.

[6] “GM’s total recall cost: $4.1 billion,” https://money.cnn.com/2015/02/04/
news/companies/gm-earnings-recall-costs/index.html, [Last accessed: 20-06-
2020].

[7] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,
B. Kantor, D. Anderson, H. Shacham et al., “Experimental security analysis of a
modern automobile,” in 2010 IEEE Symposium on Security and Privacy. IEEE,
2010, pp. 447–462.

[8] K. Munro, “Deconstructing flame: the limitations of traditional defences,” Com-
puter Fraud & Security, vol. 2012, no. 10, pp. 8–11, 2012.

[9] J. Cappos, J. Samuel, S. Baker, and J. H. Hartman, “A look in the mirror:
Attacks on package managers,” in Proceedings of the 15th ACM conference on
Computer and communications security, 2008, pp. 565–574.

175

REFERENCES 176

[10] P. Ruissen and R. Vloothuis, “Insecurities within automatic update systems v1.
16,” 2007.

[11] S. Mazloom, M. Rezaeirad, A. Hunter, and D. McCoy, “A security analysis of
an in-vehicle infotainment and app platform,” in 10th {USENIX} Workshop on
Offensive Technologies ({WOOT} 16), 2016.

[12] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote attacks on automated
vehicles sensors: Experiments on camera and lidar,” Black Hat Europe, vol. 11,
p. 2015, 2015.

[13] S. Jafarnejad, L. Codeca, W. Bronzi, R. Frank, and T. Engel, “A car hacking
experiment: When connectivity meets vulnerability,” in 2015 IEEE Globecom
Workshops (GC Wkshps). IEEE, 2015, pp. 1–6.

[14] C. Miller and C. Valasek, “A survey of remote automotive attack surfaces,” black
hat USA, vol. 2014, p. 94, 2014.

[15] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage,
K. Koscher, A. Czeskis, F. Roesner, T. Kohno et al., “Comprehensive experi-
mental analyses of automotive attack surfaces.” in USENIX Security Symposium,
vol. 4. San Francisco, 2011, pp. 447–462.

[16] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger vehi-
cle,” Black Hat USA, vol. 2015, p. 91, 2015.

[17] S. Mukherjee, H. Shirazi, I. Ray, J. Daily, and R. Gamble, “Practical dos attacks
on embedded networks in commercial vehicles,” in International Conference on
Information Systems Security. Springer, 2016, pp. 23–42.

[18] J. Petit and S. E. Shladover, “Potential cyberattacks on automated vehicles,”
IEEE Transactions on Intelligent transportation systems, vol. 16, no. 2, pp. 546–
556, 2014.

[19] T. Hoppe, S. Kiltz, and J. Dittmann, “Security threats to automotive can
networks–practical examples and selected short-term countermeasures,” in In-
ternational Conference on Computer Safety, Reliability, and Security. Springer,
2008, pp. 235–248.

[20] J. Liu, S. Zhang, W. Sun, and Y. Shi, “In-vehicle network attacks and counter-
measures: Challenges and future directions,” IEEE Network, vol. 31, no. 5, pp.
50–58, 2017.

[21] O. Avatefipour and H. Malik, “State-of-the-art survey on in-vehicle net-
work communication (can-bus) security and vulnerabilities,” arXiv preprint
arXiv:1802.01725, 2018.

REFERENCES 177

[22] J. Howden, L. Maglaras, and M. A. Ferrag, “The security aspects of automotive
over-the-air updates,” International Journal of Cyber Warfare and Terrorism
(IJCWT), vol. 10, no. 2, pp. 64–81, 2020.

[23] N. Dejon, D. Caputo, L. Verderame, A. Armando, and A. Merlo, “Automated
security analysis of iot software updates,” in IFIP International Conference on
Information Security Theory and Practice. Springer, 2019, pp. 223–239.

[24] S. Halder, A. Ghosal, and M. Conti, “Secure over-the-air software updates in
connected vehicles: A survey,” Computer Networks, p. 107343, 2020.

[25] M. Khurram, H. Kumar, A. Chandak, V. Sarwade, N. Arora, and T. Quach, “En-
hancing connected car adoption: Security and over the air update framework,”
in 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT). IEEE, 2016,
pp. 194–198.

[26] M. Cheah, S. A. Shaikh, J. Bryans, and P. Wooderson, “Building an automotive
security assurance case using systematic security evaluations,” vol. Computers &
Security. 77, pp. 360–379.

[27] “Know the term: Sota/fota,” https://www.business.att.com/learn/tech-advice/
know-the-term--sota-fota.html, [Last accessed: 20-06-2020].

[28] T. Chowdhury, E. Lesiuta, K. Rikley, C.-W. Lin, E. Kang, B. Kim, S. Shi-
raishi, M. Lawford, and A. Wassyng, “Safe and secure automotive over-the-air
updates,” in International Conference on Computer Safety, Reliability, and Se-
curity. Springer, 2018, pp. 172–187.

[29] H. Dakroub and R. Cadena, “Analysis of software update in connected vehicles,”
SAE International Journal of Passenger Cars-Electronic and Electrical Systems,
vol. 7, no. 2014-01-0256, pp. 411–417, 2014.

[30] “How automakers will save $35 billion by 2022,” https://fortune.com/2015/09/
04/ihs-auto-software, [Last accessed: 15-06-2020].

[31] “Software-over-the-air (sota): An automotive accelerator,” https://
www.bearingpoint.com/files/BEI008-07-ICL SOTA-Software-over-the-air.pdf,
[Last accessed: 25-06-2020].

[32] “Hackers trick thousands into downloading dangerous ’google chrome update’,”
https://www.forbes.com/sites/daveywinder/2020/03/26/warning-hackers-trick-
thousands-into-downloading-dangerous-google-chrome-update, [Last accessed:
21-06-2020].

[33] “Hackers hijacked asus software updates to install backdoors on thousands
of computers,” https://www.vice.com/en/article/pan9wn/hackers-hijacked-

REFERENCES 178

asus-software-updates-to-install-backdoors-on-thousands-of-computers, [Last
accessed: 21-06-2020].

[34] “Extortionist continues to scan for exposed git creds,” https://
www.itnews.com.au/news/extortionist-continues-to-scan-for-exposed-git-
creds-525178, [Last accessed: 25-06-2020].

[35] “Attackers sign malware using crypto certificate stolen from opera software,”
https://arstechnica.com/information-technology/2013/06/attackers-sign-
malware-using-crypto-certificate-stolen-from-opera-software, [Last accessed:
25-06-2020].

[36] “Debian investigation report after server compromises,” https://
www.debian.org/News/2003/20031202, [Last accessed: 25-06-2020].

[37] “Cybersecurity in automotive: Mastering the challenge,” https://
www.gsaglobal.org/wp-content/uploads/2020/03/Cybersecurity-in-automotive-
Mastering-the-challenge.pdf, [Last accessed:06-12-2019].

[38] T. K. Kuppusamy, A. Brown, S. Awwad, D. McCoy, R. Bielawski, C. Mott,
S. Lauzon, A. Weimerskirch, and J. Cappos, “Uptane: Securing software updates
for automobiles,” 14th ESCAR Europe, 2016.

[39] Uptane Alliance, “Ieee-isto 6100.1.0.0 uptane standard for design and imple-
mentation,” n.d, https://uptane.github.io/papers/ieee-isto-6100.1.0.0.uptane-
standard.html, [Last accessed: 06-12-2019].

[40] S. Halder, A. Ghosal, and M. Conti, “Secure ota software updates in connected
vehicles: A survey,” arXiv preprint arXiv:1904.00685, 2019.

[41] K. Mansour, W. Farag, and M. ElHelw, “Airodiag: A sophisticated tool that
diagnoses and updates vehicles software over air,” in 2012 IEEE International
Electric Vehicle Conference. IEEE, 2012, pp. 1–7.

[42] K. Mayilsamy, N. Ramachandran, and V. S. Raj, “An integrated approach for
data security in vehicle diagnostics over internet protocol and software update
over the air,” Computers & Electrical Engineering, vol. 71, pp. 578–593, 2018.

[43] M. Steger, A. Dorri, S. S. Kanhere, K. Römer, R. Jurdak, and M. Karner, “Secure
wireless automotive software updates using blockchains: A proof of concept,” in
Advanced Microsystems for Automotive Applications 2017. Springer, 2018, pp.
137–149.

[44] S. C. HPL, “Introduction to the controller area network (can),” Application Re-
port SLOA101, pp. 1–17, 2002.

REFERENCES 179

[45] A. Hafeez, H. Malik, O. Avatefipour, P. R. Rongali, and S. Zehra, “Comparative
study of can-bus and flexray protocols for in-vehicle communication,” SAE Tech.
Paper, Tech. Rep., 2017.

[46] I. Studnia, V. Nicomette, E. Alata, Y. Deswarte, M. Kaâniche, and Y. Laarouchi,
“Survey on security threats and protection mechanisms in embedded automotive
networks,” in 2013 43rd Annual IEEE/IFIP Conference on Dependable Systems
and Networks Workshop (DSN-W). IEEE, 2013, pp. 1–12.

[47] M. H. Eiza and Q. Ni, “Driving with sharks: Rethinking connected vehicles with
vehicle cybersecurity,” IEEE Vehicular Technology Magazine, vol. 12, no. 2, pp.
45–51, 2017.

[48] B. Schneier, “Modeling security threats,” Dr. Dobb’s journal, vol. 24, no. 12,
1999.

[49] R. Jhawar, B. Kordy, S. Mauw, S. Radomirović, and R. Trujillo-Rasua, “Attack
trees with sequential conjunction,” in IFIP International Information Security
and Privacy Conference. Springer, 2015, pp. 339–353.

[50] S. Mauw and M. Oostdijk, “Foundations of attack trees.” Springer Berlin Hei-
delberg, vol. 3935, pp. 186–198.

[51] A. Bossuat and B. Kordy, “Evil twins: handling repetitions in attack–defense
trees,” in International Workshop on Graphical Models for Security. Springer,
2017, pp. 17–37.

[52] M. Audinot, S. Pinchinat, and B. Kordy, “Is my attack tree correct?” in European
Symposium on Research in Computer Security. Springer, 2017, pp. 83–102.

[53] H. Mantel and C. W. Probst, “On the meaning and purpose of attack trees,”
in 2019 IEEE 32nd Computer Security Foundations Symposium (CSF). IEEE,
2019, pp. 184–18 415.

[54] J. Bryans, H. N. Nguyen, and S. A. Shaikh, “Attack defense trees with sequential
conjunction,” in 2019 IEEE 19th International Symposium on High Assurance
Systems Engineering (HASE). IEEE, 2019, pp. 247–252.

[55] A. Shostack, Threat modeling: Designing for security. John Wiley & Sons, 2014.

[56] Z. Ma and C. Schmittner, “Threat modeling for automotive security analysis,”
Advanced Science and Technology Letters, vol. 139, pp. 333–339, 2016.

[57] F. Den Braber, I. Hogganvik, M. S. Lund, K. Stølen, and F. Vraalsen, “Model-
based security analysis in seven steps—a guided tour to the coras method,” BT
Technology Journal, vol. 25, no. 1, pp. 101–117, 2007.

REFERENCES 180

[58] T. UcedaVelez and M. M. Morana, Risk centric threat modeling. Wiley Online
Library, 2015.

[59] Y. Chen, B. Boehm, and L. Sheppard, “Value driven security threat modeling
based on attack path analysis,” in 2007 40th Annual Hawaii International Con-
ference on System Sciences (HICSS’07). IEEE, 2007, pp. 280a–280a.

[60] A. Shostack, “Experiences threat modeling at microsoft.” MODSEC@ MoDELS,
vol. 2008, 2008.

[61] I. Williams and X. Yuan, “Evaluating the effectiveness of microsoft threat model-
ing tool,” in Proceedings of the 2015 information security curriculum development
conference, 2015, pp. 1–6.

[62] A. Karahasanovic, P. Kleberger, and M. Almgren, “Adapting threat modeling
methods for the automotive industry,” in Proceedings of the 15th ESCAR Con-
ference, 2017, pp. 1–10.

[63] J. S. Park, D. Kim, S. Hong, H. Lee, and E. Myeong, “Case study for defin-
ing security goals and requirements for automotive security parts using threat
modeling,” SAE Technical Paper, Tech. Rep., 2018.

[64] S. NIST, “800-30 revision 1,” Guide for Conducting Risk Assessments, 2012.

[65] J. R. Nurse, S. Creese, and D. De Roure, “Security risk assessment in internet of
things systems,” IT Professional, vol. 19, no. 5, pp. 20–26, 2017.

[66] OWASP, “OWASP Risk Assessment Calculator ,” https://www.security-net.biz/
files/owaspriskcalc.html, [Last accessed: 05-25-2021].

[67] J. Williams, “Owasp risk rating methodology,” https://owasp.org/www-
community/OWASP\ Risk\ Rating\ Methodology, [Last accessed: 10-06-2021].

[68] A. Y. Putra, “Introduction implementation of OWASP Risk Rating Management
,” https://slideplayer.com/slide/12574283/, [Last accessed: 05-25-2021].

[69] “Test cases and test suites,” https://www.ibm.com/support/knowledgecenter/
SSYMRC 7.0.1/com.ibm.rational.test.qm.doc/topics/c testcase overview.html
[Accessed: 10-12-2019].

[70] I. Schieferdecker, J. Grossmann, and M. Schneider, “Model-based security test-
ing,” arXiv preprint arXiv:1202.6118, 2012.

[71] M. Felderer, P. Zech, R. Breu, M. Büchler, and A. Pretschner, “Model-based
security testing: a taxonomy and systematic classification,” Software Testing,
Verification and Reliability, vol. 26, no. 2, pp. 119–148, 2016.

REFERENCES 181

[72] E. d. Santos, A. Simpson, and D. Schoop, “A formal model to facilitate security
testing in modern automotive systems,” arXiv preprint arXiv:1805.05520, 2018.

[73] A. Wasicek, P. Derler, and E. A. Lee, “Aspect-oriented modeling of attacks in
automotive cyber-physical systems,” in 2014 51st ACM/EDAC/IEEE Design
Automation Conference (DAC). IEEE, 2014, pp. 1–6.

[74] T. Elrad, M. Aksit, G. Kiczales, K. Lieberherr, and H. Ossher, “Discussing as-
pects of aop,” Communications of the ACM, vol. 44, no. 10, pp. 33–38, 2001.

[75] C. Chavez and C. Lucena, “A metamodel for aspect-oriented modeling,” in Work-
shop on Aspect-Oriented Modeling with UML (AOSD-2002), 2002.

[76] P. H. Nguyen, S. Ali, and T. Yue, “Model-based security engineering for cyber-
physical systems: A systematic mapping study,” Information and Software Tech-
nology, vol. 83, pp. 116–135, 2017.

[77] C. Smith, The car hacker’s handbook: a guide for the penetration tester. no
starch press, 2016.

[78] R. Buttigieg, M. Farrugia, and C. Meli, “Security issues in controller area net-
works in automobiles,” in 2017 18th International Conference on Sciences and
Techniques of Automatic Control and Computer Engineering (STA). IEEE,
2017, pp. 93–98.

[79] C. Riggs, C.-E. Rigaud, R. Beard, T. Douglas, and K. Elish, “A survey on
connected vehicles vulnerabilities and countermeasures,” Journal of Traffic and
Logistics Eng. Vol, vol. 6, no. 1, 2018.

[80] S. Rizvi, J. Willet, D. Perino, S. Marasco, and C. Condo, “A threat to vehicular
cyber security and the urgency for correction,” Procedia computer science, vol.
114, pp. 100–105, 2017.

[81] S.-H. Chen and C.-H. R. Lin, “Evaluation of dos attacks on vehicle can bus sys-
tem,” in International Conference on Intelligent Information Hiding and Multi-
media Signal Processing. Springer, 2018, pp. 308–314.

[82] D. Klinedinst and C. King, “On board diagnostics: Risks and vulnerabilities of
the connected vehicle,” Software Engineering Institute-Carnegie Mellon Univer-
sity, vol. 10, 2016.

[83] M. Bozdal, M. Samie, and I. Jennions, “A survey on can bus protocol: Attacks,
challenges, and potential solutions,” in 2018 International Conference on Com-
puting, Electronics & Communications Engineering (iCCECE). IEEE, 2018,
pp. 201–205.

REFERENCES 182

[84] A. Bretting and M. Ha, “Vehicle control unit security using open source autosar,”
Master’s thesis, 2015.

[85] H. K. Kalutarage, M. O. Al-Kadri, M. Cheah, and G. Madzudzo, “Context-aware
anomaly detector for monitoring cyber attacks on automotive can bus,” in ACM
Computer Science in Cars Symposium, 2019, pp. 1–8.

[86] H.-Y. Kim, Y.-H. Choi, and T.-M. Chung, “Rees: Malicious software detection
framework for meego-in vehicle infotainment,” in 2012 14th International Con-
ference on Advanced Communication Technology (ICACT). IEEE, 2012, pp.
434–438.

[87] T. Lin and L. Chen, “Common attacks against car infotainment systems,” 2019.

[88] D. K. Nilsson and U. E. Larson, “Simulated attacks on can buses: vehicle virus,”
in IASTED International conference on communication systems and networks
(AsiaCSN), 2008, pp. 66–72.

[89] W. Yan, “A two-year survey on security challenges in automotive threat land-
scape,” in 2015 International Conference on Connected Vehicles and Expo (IC-
CVE). IEEE, 2015, pp. 185–189.

[90] M. Rumez, J. Lin, T. Fuchß, R. Kriesten, and E. Sax, “Anomaly detection for
automotive diagnostic applications based on n-grams,” in 2020 IEEE 44th Annual
Computers, Software, and Applications Conference (COMPSAC). IEEE, 2020,
pp. 1423–1429.

[91] C. Miller and C. Valasek, “Car hacking: for poories,” Technical report, IOActive
Report, Tech. Rep., 2015.

[92] P. Borazjani, C. Everett, and D. McCoy, “Octane: An extensible open source car
security testbed,” in Proceedings of the Embedded Security in Cars Conference,
2014.

[93] J. Daily, R. Gamble, S. Moffitt, C. Raines, P. Harris, J. Miran, I. Ray, S. Mukher-
jee, H. Shirazi, and J. Johnson, “Towards a cyber assurance testbed for heavy
vehicle electronic controls,” SAE International Journal of Commercial Vehicles,
vol. 9, no. 2016-01-8142, pp. 339–349, 2016.

[94] D. S. Fowler, M. Cheah, S. A. Shaikh, and J. Bryans, “Towards a testbed for
automotive cybersecurity,” in 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST). IEEE, 2017, pp. 540–541.

[95] X. Zheng, L. Pan, H. Chen, R. Di Pietro, and L. Batten, “A testbed for security
analysis of modern vehicle systems,” in 2017 IEEE Trustcom/BigDataSE/ICESS.
IEEE, 2017, pp. 1090–1095.

REFERENCES 183

[96] T. Toyama, T. Yoshida, H. Oguma, and T. Matsumoto, “Pasta: Portable auto-
motive security testbed with adaptability,” Black Hat Europ, Tech. Rep., 2018.

[97] P. S. Oruganti, M. Appel, and Q. Ahmed, “Hardware-in-loop based automotive
embedded systems cybersecurity evaluation testbed,” in Proceedings of the ACM
Workshop on Automotive Cybersecurity, 2019, pp. 41–44.

[98] C. E. Everett and D. McCoy, “Octane (open car testbed and network experi-
ments): Bringing cyber-physical security research to researchers and students,”
in Presented as part of the 6th Workshop on Cyber Security Experimentation and
Test, 2013.

[99] R. E. Haas and D. P. Möller, “Automotive connectivity, cyber attack scenar-
ios and automotive cyber security,” in 2017 IEEE International Conference on
Electro Information Technology (EIT). IEEE, 2017, pp. 635–639.

[100] J. Li, B. Zhao, and C. Zhang, “Fuzzing: a survey,” Cybersecurity, vol. 1, no. 1,
p. 6, 2018.

[101] P. Patki, A. Gotkhindikar, and S. Mane, “Intelligent fuzz testing framework for
finding hidden vulnerabilities in automotive environment,” in 2018 Fourth In-
ternational Conference on Computing Communication Control and Automation
(ICCUBEA). IEEE, 2018, pp. 1–4.

[102] S. Bayer, T. Kreuzinger, D. Oka, and M. Wolf, “Successful security tests using
fuzzing and hil test systems,” 2016.

[103] D. S. Fowler, J. Bryans, S. A. Shaikh, and P. Wooderson, “Fuzz testing for auto-
motive cyber-security,” in 2018 48th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks Workshops (DSN-W). IEEE, 2018,
pp. 239–246.

[104] D. S. Fowler, J. Bryans, M. Cheah, P. Wooderson, and S. A. Shaikh, “A method
for constructing automotive cybersecurity tests, a can fuzz testing example,” in
2019 IEEE 19th International Conference on Software Quality, Reliability and
Security Companion (QRS-C). IEEE, 2019, pp. 1–8.

[105] S. Bayer, T. Enderle, D.-K. Oka, and M. Wolf, “Automotive security testing—the
digital crash test,” in Energy Consumption and Autonomous Driving. Springer,
2016, pp. 13–22.

[106] E. F. M. Josephlal and S. Adepu, “Vulnerability analysis of an automotive info-
tainment system’s wifi capability,” in 2019 IEEE 19th International Symposium
on High Assurance Systems Engineering (HASE). IEEE, 2019, pp. 241–246.

REFERENCES 184

[107] K. Scarfone, M. Souppaya, A. Cody, and A. Orebaugh, “Technical guide to in-
formation security testing and assessment,” NIST Special Publication, vol. 800,
no. 115, pp. 2–25, 2008.

[108] S. Bayer, T. Enderle, D.-K. Oka, and M. Wolf, “Security crash test-practical
security evaluations of automotive onboard it components,” Automotive-Safety
& Security 2014, 2015.

[109] J. Dürrwang, J. Braun, M. Rumez, R. Kriesten, and A. Pretschner, “Enhance-
ment of automotive penetration testing with threat analyses results,” SAE In-
ternational Journal of Transportation Cybersecurity and Privacy, vol. 1, no. 11-
01-02-0005, pp. 91–112, 2018.

[110] PTES, “Penetration testing and execution standard,” 2014, http://www.pentest-
standard.org/index.php/Main Page, [Last accessed: 06-12-2019].

[111] M. Cheah, S. A. Shaikh, O. Haas, and A. Ruddle, “Towards a systematic security
evaluation of the automotive bluetooth interface,” Vehicular Communications,
vol. 9, pp. 8–18, 2017.

[112] S. Mahmood, A. Fouillade, H. N. Nguyen, and S. A. Shaikh, “A model-based
security testing approach for automotive over-the-air updates,” in 2020 IEEE
International Conference on Software Testing, Verification and Validation Work-
shops (ICSTW). IEEE, 2020, pp. 6–13.

[113] A. Vasenev, F. Stahl, H. Hamazaryan, Z. Ma, L. Shan, J. Kemmerich, and
C. Loiseaux, “Practical security and privacy threat analysis in the automotive
domain: Long term support scenario for over-the-air updates,” 2019.

[114] S. Winsen, “Threat modelling for future vehicles: on identifying and analysing
threats for future autonomous and connected vehicles,” Master’s thesis, Univer-
sity of Twente, 2017.

[115] S. J. V. C. S. E. Committee et al., “Cybersecurity guidebook for cyber-physical
vehicle systems,” SAE International, 2016.

[116] S. Marisetty, D. Srivastava, and J. A. Hoffmann, “An architecture for in-vehicle
infotainment systems,” 2010.

[117] N. Group, “NCC Group Template for the Microsoft Threat Modeling Tool
2016 for Automotive Security ,” https://github.com/nccgroup/The Automotive
Threat Modeling Template, [Last accessed: 10-06-2019].

[118] A. Schaad and T. Reski, “” open weakness and vulnerability modeler”(ovvl)–an
updated approach to threat modeling.”

REFERENCES 185

[119] M. Cheah, H. N. Nguyen, J. Bryans, and S. A. Shaikh, “Formalising systematic
security evaluations using attack trees for automotive applications.” Springer
International Publishing, vol. 10741, pp. 113–129.

[120] H. OMOTUNDE, R. Ibrahim, and M. Ahmed, “An optimized attack tree model
for security test case planning and generation,” Journal of Theoretical and Ap-
plied Information Technology, vol. 96, no. 17, pp. 5635–5649, 2018.

[121] A. Marback, H. Do, K. He, S. Kondamarri, and D. Xu, “Security test generation
using threat trees,” in 2009 ICSE Workshop on automation of software test.
IEEE, 2009, pp. 62–69.

[122] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based testing
approaches,” Software testing, verification and reliability, vol. 22, no. 5, pp. 297–
312, 2012.

[123] Uptane Alliance, “Uptane reference implementation code,” https:
//uptane.github.io/papers/ieee-isto-6100.1.0.0.uptane-standard.html, [Last
accessed: 06-12-2019].

[124] Y. Liu and I. Traore, “Systematic security analysis for service-oriented soft-
ware architectures,” in IEEE International Conference on e-Business Engineer-
ing (ICEBE’07). IEEE, 2007, pp. 612–621.

[125] P. Carsten, T. R. Andel, M. Yampolskiy, and J. T. McDonald, “In-vehicle net-
works: Attacks, vulnerabilities, and proposed solutions,” in Proceedings of the
10th Annual Cyber and Information Security Research Conference, 2015, pp. 1–
8.

[126] A. Prakash, M. Satish, T. S. S. Bhargav, and N. Bhalaji, “Detection and mitiga-
tion of denial of service attacks using stratified architecture,” Procedia Computer
Science, vol. 87, pp. 275–280, 2016.

[127] J. Smith, “Denial of service: prevention, modelling and detection,” Ph.D. disser-
tation, Queensland University of Technology, 2007.

[128] ENISA, “ENISA (2018) ENISA Threat Landscape Report 2018 ,” https://
www.enisa.europa.eu/publications/enisa-threat-landscape-report-2018, [Last ac-
cessed: 06-04-2021].

[129] K. Scarfone and P. Mell, “Intrusion detection and prevention systems,” in Hand-
book of Information and Communication Security. Springer, 2010, pp. 177–192.

[130] A. Householder, A. Manion, L. Pesante, G. M. Weaver, and R. Thomas, “Man-
aging the threat of denial-of-service attacks,” CARNEGIE-MELLON UNIV
PITTSBURGH PA SOFTWARE ENGINEERING INST, Tech. Rep., 2001.

REFERENCES 186

[131] NCSC, “Denial of Service (DoS): Preparing for DoS Attacks ,” https://
www.actionfraud.police.uk/cms/wp-content/uploads/2020/02/ddos2.pdf, [Last
accessed: 06-05-2021].

[132] E. Aliwa, O. Rana, C. Perera, and P. Burnap, “Cyberattacks and countermea-
sures for in-vehicle networks,” ACM Computing Surveys (CSUR), vol. 54, no. 1,
pp. 1–37, 2021.

[133] J. Bryans, L. S. Liew, H. N. Nguyen, G. Sabaliauskaite, S. Shaikh, and F. Zhou,
“A template-based method for the generation of attack trees,” in IFIP Interna-
tional Conference on Information Security Theory and Practice. Springer, 2019,
pp. 155–165.

Appendices

187

Appendix A

Test Case Generator: Source code

The source code presented below implements the test case generation algorithm pre-
sented in Section 6.2 of Chapter 6.

1

2 import xml.etree.ElementTree as ET

3 from itertools import combinations as comb

4 from itertools import permutations as permutation

5 from itertools import product

6

7 class AttackTree:

8

9 def __init__(

10 self ,

11 label ,

12 comment ,

13 node_type ,

14 children ,

15):

16 self.label = label

17 self.comment = comment

18 self.node_type = node_type

19 self.children = children

20 def toString(self):

21 lbl = ’_’.join(self.label.text.split())

22 if(self.comment is not None):

23 return ’(" event_ ’ + str(lbl) + ’","’ \

24 + str(self.comment.text) + ’")’

25 else:

26 comment = ’None’

27 return ’(" event_ ’ + str(lbl) + ’","’ \

28 + comment+ ’")’

29

30 OR_Node = ’disjunctive ’

31 AND_Node = ’conjunctive ’

32 SAND_Node = ’sequential ’

33

188

APPENDIX A. TEST CASE GENERATOR: SOURCE CODE 189

34

35 # Method for deriving test cases

36 def parse_attack_tree(attackTree):

37

38 label = attackTree.find(’label ’)

39 comment = attackTree.find(’comment ’)

40 node_type = attackTree.get(’refinement ’)

41 children = []

42

43 for node in attackTree.findall(’node’):

44 children.append(parse_attack_tree(node))

45

46 return AttackTree(label , comment , node_type , children)

47

48 # Method for generating test scripts

49 def gen_test_case_script(at):

50

51 if(not at.children):

52 Leaf_Nodes = set()

53 Leaf_Nodes.add((at.toString () ,))

54 return Leaf_Nodes

55

56 elif (at.node_type == OR_Node):

57 OR_Nodes = set()

58 for child in at.children:

59 OR_Node_Temp = gen_test_case_script(child)

60 OR_Nodes = OR_Nodes.union(OR_Node_Temp)

61 return OR_Nodes

62

63 elif(at.node_type == AND_Node):

64 AND_Nodes = list()

65 for child in at.children:

66 AND_Nodes.append(gen_test_case_script(child))

67 Combined_AND_Nodes = combine_and(AND_Nodes)

68 return Combined_AND_Nodes

69

70 elif (at.node_type == SAND_Node):

71 SAND_Nodes = list()

72 for child in at.children:

73 SAND_Nodes.append(gen_test_case_script(child))

74 Combined_SAND_Nodes = combine_sand(SAND_Nodes)

75 return Combined_SAND_Nodes

76

77 def gen_test_case(tcs):

78 Test_Cases = list()

79 for counter , seq in enumerate(tcs):

80 Test_Cases.append(’TC_’+str(counter +1)+’ = [’+’, ’.join(seq)+

’]’)

81 return Test_Cases

82

83

APPENDIX A. TEST CASE GENERATOR: SOURCE CODE 190

84

85 def combine_sand(SAND_tcs):

86

87 return ([sum(seq , ()) for seq in product (* SAND_tcs)])

88

89 def combine_and(AND_tcs):

90 Test_Cases = list()

91

92 terms = ([sum(seq , ()) for seq in product (* AND_tcs)])

93

94 for i in terms:

95 Test_Cases += ([seq for seq in permutation(i)])

96 return Test_Cases

97

98 # Write test scripts output to file

99 def gen_output_file(tree):

100

101 test_cases = gen_test_case_script(tree)

102

103 test_case_scrips = gen_test_case(test_cases)

104

105 output_script = ’TC_COUNT = ’ + str(len(test_case_scrips)) + ’\n’

106

107 output_script += ’\n’.join(test_case_scrips)

108

109 test_cases = [’TC_’+ str(count +1) for count in range(len(

test_case_scrips))]

110

111 output_script += ’\nTest_Cases = [’ + ’, ’.join(test_cases) + ’]’

112

113 output_file_name = "output.txt"

114

115 f = open(output_file_name , ’w’)

116

117 f.write(output_script)

118

119 f.close()

120 ###------------- End of Program ---------------- ###

Link to Complete Source Code/Documentation

Please use this link to access complete source code for the Test Case Generator/Execu-
tor, Uptane Reference Implementation as well as instructions setting up and running
the testing environment.
https://tinyurl.com/zdhn56pm

Appendix B

XML Source Code for Attack Trees

This appendix includes the XML source code for all the attack trees used in the exper-
iments in Chapter 7 for deriving test cases as well as the test scripts executed against
the Uptane reference implementation.

Threat 6: Updates Could be Downloaded

1

2 <?xml version=’1.0’?>

3 <sandtree >

4 <node refinement="disjunctive">

5 <label>Updates Could

6 be Downloaded </label>

7 <node refinement="sequential">

8 <label >Download Firmware

9 from Image Repo</label>

10 <node refinement="conjunctive">

11 <label >Determine Image

12 Repo Firmware

13 URL</label>

14 <comment >determine_url </comment >

15 </node>

16 <node refinement="conjunctive">

17 <label >Establish Network

18 Connection </label >

19 <comment >establish_connection </comment >

20 </node>

21 <node refinement="conjunctive">

22 <label >Download

23 Firmware </label >

24 <comment >download_firmware </comment >

25 </node>

26 </node>

27 <node refinement="sequential">

28 <label >Download Firmware

29 from Director Repo</label>

191

APPENDIX B. XML SOURCE CODE FOR ATTACK TREES 192

30 <node refinement="conjunctive">

31 <label >Determine Director

32 Repo Firmware

33 URL</label>

34 <comment >determine_url </comment >

35 </node>

36 <node refinement="conjunctive">

37 <label >Establish Network

38 Connection </label >

39 <comment >establish_connection </comment >

40 </node>

41 <node refinement="conjunctive">

42 <label >Download

43 Firmware </label >

44 <comment >download_firmware </comment >

45 </node>

46 </node>

47 </node>

48 </sandtree >

Threat 7: Data Flow Sniffing - attack tree source code

1 <?xml version=’1.0’?>

2 <sandtree >

3 <node refinement="sequential">

4 <label>Data Flow Sniffing </label>

5 <node refinement="conjunctive">

6 <label >Determine Director Repo's

7 Network Information </label>

8 <node refinement="conjunctive">

9 <label >Determine IP

10 Address </label>

11 <comment >determine_IP </comment >

12 </node>

13 <node refinement="conjunctive">

14 <label >Determine Port

15 Number </label>

16 <comment >determine_port </comment >

17 </node>

18 </node>

19 <node refinement="conjunctive">

20 <label >Establish Network

21 Connection </label >

22 <comment >establih_connection </comment >

23 </node>

24 <node refinement="sequential">

25 <label >Intercept Network

26 Traffic </label>

27 <comment >intercept_traffic </comment >

28 </node>

29 <node refinement="sequential">

APPENDIX B. XML SOURCE CODE FOR ATTACK TREES 193

30 <label >Analyze Captured

31 Network Data</label>

32 <comment >analyze_network_data </comment >

33 </node>

34 </node>

35 </sandtree >

Threat 9: Cause Director Repo to Crash or Stop Remotely

1

2 <?xml version=’1.0’?>

3 <sandtree >

4 <node refinement="sequential">

5 <label>Cause Director Repo to

6 Crash or Stop

7 Remotely </label >

8 <node refinement="conjunctive">

9 <label >Determine Director Repo's

10 Network Information </label>

11 <node refinement="conjunctive">

12 <label >Determine IP

13 Address </label>

14 <comment >determine_IP </comment >

15 </node>

16 <node refinement="conjunctive">

17 <label >Determine Port

18 Number </label>

19 <comment >determine_port </comment >

20 </node>

21 </node>

22 <node refinement="sequential">

23 <label >Launch

24 DoS Attack </label>

25 <node refinement="conjunctive">

26 <label >Establish Network

27 Connection </label >

28 <comment >establish_connection </comment >

29 </node>

30 <node refinement="conjunctive">

31 <label >Flood Director

32 Repo</label >

33 <comment >flood_dirctor </comment >

34 </node>

35 </node>

36 </node>

37 </sandtree >

APPENDIX B. XML SOURCE CODE FOR ATTACK TREES 194

Threat 10: Cause Image Repo to Crash or Stop Remotely

1

2 <?xml version=’1.0’?>

3 <sandtree >

4 <node refinement="sequential">

5 <label>Cause Image Repo to

6 Crash or Stop

7 Remotely </label >

8 <node refinement="conjunctive">

9 <label >Determine Image Repo's

10 Network Information </label>

11 <node refinement="conjunctive">

12 <label >Determine IP

13 Address </label>

14 <comment >determine_IP </comment >

15 </node>

16 <node refinement="conjunctive">

17 <label >Determine Port

18 Number </label>

19 <comment >determine_port </comment >

20 </node>

21 </node>

22 <node refinement="sequential">

23 <label >Launch

24 DoS Attack </label>

25 <node refinement="conjunctive">

26 <label >Establish Network

27 Connection </label >

28 <comment >establish_connection </comment >

29 </node>

30 <node refinement="conjunctive">

31 <label >Flood Image

32 Repo</label >

33 <comment >flood_imagerepo </comment >

34 </node>

35 </node>

36 </node>

37 </sandtree >

APPENDIX B. XML SOURCE CODE FOR ATTACK TREES 195

Theat 11: Cause Primary ECU to Crash or Stop Remotely

1

2 <?xml version=’1.0’?>

3 <sandtree >

4 <node refinement="sequential">

5 <label>Cause Primary ECU to

6 Crash or Stop

7 Remotely </label >

8 <node refinement="conjunctive">

9 <label >Determine Primary ECU's

10 Network Information </label>

11 <node refinement="conjunctive">

12 <label >Determine IP

13 Address </label>

14 <comment >determine_ip </comment >

15 </node>

16 <node refinement="conjunctive">

17 <label >Determine

18 Port Number </label>

19 <comment >determine_port </comment >

20 </node>

21 </node>

22 <node refinement="sequential">

23 <label >Launch

24 DoS Attack </label>

25 <node refinement="conjunctive">

26 <label >Establish Network

27 Connection </label >

28 <comment >establish_connection </comment >

29 </node>

30 <node refinement="conjunctive">

31 <label >Flood Pirmary

32 ECU</label>

33 <comment >flood_primary </comment >

34 </node>

35 </node>

36 </node>

37 </sandtree >

APPENDIX B. XML SOURCE CODE FOR ATTACK TREES 196

Threat 12: Cause Time Server to Crash or Stop Remotely

1 <?xml version=’1.0’?>

2 <sandtree >

3 <node refinement="sequential">

4 <label>Cause the Time Server to

5 Crash or Stop

6 Remotely </label >

7 <node refinement="conjunctive">

8 <label >Determine Time Server's

9 Network Information </label>

10 <node refinement="conjunctive">

11 <label >Determine IP

12 Address </label>

13 <comment >determine_ip </comment >

14 </node>

15 <node refinement="conjunctive">

16 <label >Determine Port

17 Number </label>

18 <comment >determine_port </comment >

19 </node>

20 </node>

21 <node refinement="sequential">

22 <label >Launch

23 DoS Attack </label>

24 <node refinement="conjunctive">

25 <label >Establish Network

26 Connection </label >

27 <comment >establish_connection </comment >

28 </node>

29 <node refinement="conjunctive">

30 <label >Flood Time

31 Server </label>

32 <comment >flood_time_server </comment >

33 </node>

34 </node>

35 </node>

36 </sandtree >

APPENDIX B. XML SOURCE CODE FOR ATTACK TREES 197

Threat 21: Compromise Director Repo to Deliver Malicious
Updates

1 <?xml version=’1.0’?>

2 <sandtree >

3 <node refinement="sequential">

4 <label>Compromise Director Repo

5 to Deliver Malicious

6 Updates </label>

7 <node refinement="sequential">

8 <label >Modify Existing

9 Firmware Image </label >

10 <node refinement="conjunctive">

11 <label >Add Malicious

12 Contents to the Firmware

13 Image</label>

14 <comment >add_contents </comment >

15 </node>

16 <node refinement="conjunctive">

17 <label >Add Modified Firmware

18 to Director Repo</label>

19 <comment >add_to_director </comment >

20 </node>

21 </node>

22 <node refinement="conjunctive">

23 <label >Generate and Sign

24 the Metadata </label>

25 <comment >sign_director </comment >

26 </node>

27 </node>

28 </sandtree >

APPENDIX B. XML SOURCE CODE FOR ATTACK TREES 198

Threat 22: Compromise Image Repo to Deliver Malicious Up-
dates

1

2 <?xml version=’1.0’?>

3 <sandtree >

4 <node refinement="sequential">

5 <label>Compromise Image Repo

6 to Deliver Malicious

7 Updates </label>

8 <node refinement="sequential">

9 <label >Modify Existing

10 Firmware Image </label >

11 <node refinement="conjunctive">

12 <label >Add Malicious

13 Contents to Firmware </label >

14 <comment >add_contents </comment >

15 </node>

16 <node refinement="conjunctive">

17 <label >Add Modified Firmware

18 to Image Repo</label>

19 <comment >add_to_imagerpo </comment >

20 </node>

21 </node>

22 <node refinement="conjunctive">

23 <label >Generated and

24 Signed Metadata </label>

25 <comment >sign_imagerepo </comment >

26 </node>

27 </node>

28 </sandtree >

APPENDIX B. XML SOURCE CODE FOR ATTACK TREES 199

Threat 22.2 Compromise Image and Director Repos to Deliver
Malicious Updates

1

2 <?xml version=’1.0’?>

3 <sandtree >

4 <node refinement="sequential">

5 <label>Compromise Director and

6 Image Repos to

7 Deliver Malicious

8 Updates </label>

9 <node refinement="sequential">

10 <label >Modify Existing

11 Firmware Image </label >

12 <node refinement="conjunctive">

13 <label >Add Malicious

14 Contents to Firmware </label >

15 <comment >add_contents </comment >

16 </node>

17 <node refinement="conjunctive">

18 <label >Add Modified Firmware

19 to Image Repo</label>

20 <comment >add_to_imagerepo </comment >

21 </node>

22 </node>

23 <node refinement="conjunctive">

24 <label >Generate Image

25 Repo Signed

26 Metadata </label >

27 <comment >sign_imagerepo </comment >

28 </node>

29 <node refinement="sequential">

30 <label >Add Modified

31 FIrmware

32 to Director Repo</label>

33 <comment >add_dir </comment >

34 </node>

35 <node refinement="sequential">

36 <label >Generate

37 Director Repo

38 Signed Metadata </label>

39 <comment >sign_dir </comment >

40 </node>

41 </node>

42 </sandtree >

APPENDIX B. XML SOURCE CODE FOR ATTACK TREES 200

Threat 26: Endless Data Attack (insert data)

1

2 <?xml version=’1.0’?>

3 <sandtree >

4 <node refinement="sequential">

5 <label>Endless Data

6 Attack </label>

7 <node refinement="conjunctive">

8 <label >Insert Additional

9 Contents into Firmware </label >

10 <comment >add_contents </comment >

11 </node>

12 <node refinement="conjunctive">

13 <label >Add to Modified

14 Image to Repos</label>

15 <node refinement="conjunctive">

16 <label >Add Firmware to

17 Image Repo</label>

18 <comment >add_imagerepo </comment >

19 </node>

20 <node refinement="conjunctive">

21 <label >Add Firmware

22 to Director Repo</label>

23 <comment >add_director </comment >

24 </node>

25 </node>

26 </node>

27 </sandtree >

Threat 26.2: Endless Data Attack (append data)

1

2 <?xml version=’1.0’?>

3 <sandtree >

4 <node refinement="sequential">

5 <label>Endless Data

6 Attack </label>

7 <node refinement="conjunctive">

8 <label >Append Additional

9 Contents to Firmware </label >

10 <comment >add_contents </comment >

11 </node>

12 <node refinement="conjunctive">

13 <label >Add to Modified

14 Image to Repos</label>

15 <node refinement="conjunctive">

16 <label >Add Firmware to

17 Image Repo</label>

18 <comment >add_imagerepo </comment >

19 </node>

APPENDIX B. XML SOURCE CODE FOR ATTACK TREES 201

20 <node refinement="conjunctive">

21 <label >Add Firmware

22 to Director Repo</label>

23 <comment >add_director </comment >

24 </node>

25 </node>

26 </node>

27 </sandtree >

Threat 28: Mix-and-Match Attack

1

2 <?xml version=’1.0’?>

3 <sandtree >

4 <node refinement="sequential">

5 <label>Mix and Match

6 Attack </label>

7 <node refinement="conjunctive">

8 <label >Delete Currently Valid

9 Snapshot from Repos </label >

10 <node refinement="conjunctive">

11 <label >Delete Snapshot from

12 Image Repo</label>

13 <comment >delete_snapshot_imagerpo </comment >

14 </node>

15 <node refinement="conjunctive">

16 <label >Delete Snapshot from

17 Director Repo</label >

18 <comment >delete_snapshot_director </comment >

19 </node>

20 </node>

21 <node refinement="conjunctive">

22 <label >Add Invalid

23 Snapshot to Repos </label >

24 <node refinement="conjunctive">

25 <label >Add Snapshot to

26 Image Repo</label>

27 <comment >add_snapshot_imagerpo </comment >

28 </node>

29 <node refinement="conjunctive">

30 <label >Add Snapshot to

31 Director Repo</label >

32 <comment >add_snapshot_director </comment >

33 </node>

34 </node>

35 </node>

36 </sandtree >

APPENDIX B. XML SOURCE CODE FOR ATTACK TREES 202

Threat 27: Rollback Attack

1

2 <?xml version=’1.0’?>

3 <sandtree >

4 <node refinement="sequential">

5 <label>Rollback

6 Attack </label>

7 <node refinement="conjunctive">

8 <label >Delete Currently Valid

9 Timestap Files

10 from Repos </label >

11 <node refinement="conjunctive">

12 <label >Delete Timestamp from

13 Image Repo</label>

14 <comment >delete_timestamp </comment >

15 </node>

16 <node refinement="conjunctive">

17 <label >Delete Timestamp from

18 Director Repo</label >

19 <comment >delete_timestamp </comment >

20 </node>

21 </node>

22 <node refinement="conjunctive">

23 <label >Add Outdated Timestamp

24 Files to Repos</label>

25 <node refinement="conjunctive">

26 <label >Add File to

27 Image Repo</label>

28 <comment >add_timestamp </comment >

29 </node>

30 <node refinement="conjunctive">

31 <label >Add File to

32 Director Repo</label >

33 <comment >add_timestamp </comment >

34 </node>

35 </node>

36 </node>

37 </sandtree >

Appendix C

Threat Modeling Reports

Following are three excerpted threat modeling reports generated using MS Threat
Modeling Tool, as part of the Threat Enumeration process. They are represented in
the exact form and presentation as output by the tool. These reports were used to
construct attack trees and consequently the test cases. The first report is based on the
Uptane Framework, whereas the other two are related to adaptive cruise control and
infotainment system.

C.1 Uptane Framework Threat Modelling Report

This first threat modeling report details all the threats that are summarized in Section
7.4 of Chapter 7.

203

Threat Modeling Report
Created on 12/09/2020 16:42:00

Threat Model Name:

Owner:

Reviewer:

Contributors:

Description:

Assumptions:

External Dependencies:

Threat Model Summary:

Not Started 53
Not Applicable 0
Needs Investigation 0
Mitigation Implemented 0
Total 53
Total Migrated 0

Diagram: Uptane OTA Reference Implementation

Uptane OTA Reference Implementation Diagram Summary:

Not Started 53
Not Applicable 0
Needs Investigation 0
Mitigation Implemented 0
Total 53
Total Migrated 0

Interaction: Firmware Download Request

1. Compromise the Image Repo in Order to Deliver Malicious Updates [State: Not Started] [Priority: High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to exploit the Image Repo.
Justification: <no mitigation provided>
Attack method: Network based vulnerabilities, through outdated software or configuration weaknesses.
Recommendation: Ensure that the server is kept up to date and perform regular security testing.

2. Take the Image Repo Offline [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Image Repo.
Justification: <no mitigation provided>
Attack method: Perform an network attack and case resource exhaustion.
Recommendation: Have a number of Image Repo delivery servers across a broad geographic radius, in the event of one server failing the system should

continue unhindered.

3. Flood Image Repo With Invalid Data [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Image Repo by flooding with invalid data.
Justification: <no mitigation provided>
Attack method: Either physically by clipping onto the sensor wires and inject valid data or with external input e.g. a bright torch.
Recommendation: Rely on additional sensors in the event of one is unavailable.

4. Cause the Image Repo to Crash or Stop Remotely [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Image Repo that crashes, halts, stops or runs slowly; in all cases violating an availability metric.
Justification: <no mitigation provided>
Attack method: Flooding Image Repo with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to Image Repo if flooding is detected. Potentially enter in a special

safety mode if Image Repo is unavalaible.

5. Updates Could Be Downloaded [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by downloading the updates from Image Repo.
Justification: <no mitigation provided>
Attack method: Reverse engineer the head unit firmware to find information about the update server and download software update files which may

contain sensitive information.
Recommendation: Ensure that connections to the delivery server are authenticated and encrypted and access should be limited to only the required files.

6. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending on what type of data an attacker can read, it may be

used to attack other parts of the system or simply be a disclosure of information leading to compliance violations. In general, as a way to
compromise both integrity and availability. Severity might change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using HTTPS.

7. Image Repo Denies Writing Data [State: Not Started] [Priority: High]

Category: Repudiation
Description: Image Repo claims that it did not write data received from an entity on the other side of the trust boundary.
Justification: <no mitigation provided>
Attack method: An attacker is able to write data on Image Repo.
Recommendation: Consider using logging or auditing to record the source, time, and summary of the received data.

Interaction: Metadata

8. Updates Could Be Downloaded [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by downloading the updates from Image Repo Matadata.
Justification: <no mitigation provided>
Attack method: Reverse engineer the head unit firmware to find information about the update server and download software update files which may

contain sensitive information.
Recommendation: Ensure that connections to the delivery server are authenticated and encrypted and access should be limited to only the required files.

Interaction: Metadata / Firmware Image

9. Reflash the TCU (Primary) Firmware in Order to Send Arbitrary CAN Messages [State: Not Started] [Priority: High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to reflash the TCU (Primary) firmware.
Justification: <no mitigation provided>
Attack method: Physically connect to the target is [TCU] and attempt to reflash the chip.
Recommendation: All firmware should be encrypted and signed to prevent modification. There should be a secure boot process to prevent any invalid

firmware from booted.

10. Compromise the TCU (Primary) in Order to Deliver Malicious Updates [State: Not Started] [Priority: High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to exploit the TCU (Primary).
Justification: <no mitigation provided>
Attack method: Network based vulnerabilities, through outdated software or configuration weaknesses.
Recommendation: Ensure that the server is kept up to date and perform regular security testing.

11. Take the TCU (Primary) Offline [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on TCU (Primary).
Justification: <no mitigation provided>
Attack method: Perform an network attack and case resource exhaustion.
Recommendation: Have a number of TCU (Primary) delivery servers across a broad geographic radius, in the event of one server failing the system should

continue unhindered.

12. Flood TCU (Primary) With Invalid Data [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on TCU (Primary) by flooding with invalid data.
Justification: <no mitigation provided>
Attack method: Either physically by clipping onto the sensor wires and inject valid data or with external input e.g. a bright torch.
Recommendation: Rely on additional sensors in the event of one is unavailable.

13. Cause the TCU (Primary) to Crash or Stop Remotely [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on TCU (Primary) that crashes, halts, stops or runs slowly; in all cases violating an availability metric.
Justification: <no mitigation provided>
Attack method: Flooding TCU (Primary) with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to TCU (Primary) if flooding is detected. Potentially enter in a special

safety mode if TCU (Primary) is unavalaible.

14. Updates Could Be Downloaded [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by downloading the updates from TCU (Primary).
Justification: <no mitigation provided>
Attack method: Reverse engineer the head unit firmware to find information about the update server and download software update files which may

contain sensitive information.
Recommendation: Ensure that connections to the delivery server are authenticated and encrypted and access should be limited to only the required files.

15. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending on what type of data an attacker can read, it may be

used to attack other parts of the system or simply be a disclosure of information leading to compliance violations. In general, as a way to
compromise both integrity and availability. Severity might change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using HTTPS.

16. Car Could be Tracked [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by performing a MITM attack in order to track a car.
Justification: <no mitigation provided>
Attack method: Downgrade or false base station attack.
Recommendation: Encrypt communications so that passive interception cannot identify specific vehicles. Rolling/unique identifiers that change over time, to

prevent tracking.

17. TCU (Primary) Denies Writing Data [State: Not Started] [Priority: High]

Category: Repudiation
Description: TCU (Primary) claims that it did not write data received from an entity on the other side of the trust boundary.
Justification: <no mitigation provided>
Attack method: An attacker is able to write data on TCU (Primary).
Recommendation: Consider using logging or auditing to record the source, time, and summary of the received data.

18. Modify Data Being Sent to the TCU (Primary) While in Transit [State: Not Started] [Priority: High]

Category: Tampering
Description: Tamper with data in trasit sent to the TCU (Primary).
Justification: <no mitigation provided>
Attack method: MITM on the TCU for example a 3g to 2g downgrade attack, or false base station attack.
Recommendation: Disable 2G communications, only 3G and 4G should be allowed. Use a secure communication channel between the car and the server.

Interaction: Metadata / Firmware Image

19. Reflash the TCU (Primary) Firmware in Order to Send Arbitrary CAN Messages [State: Not Started] [Priority: High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to reflash the TCU (Primary) firmware.
Justification: <no mitigation provided>
Attack method: Physically connect to the target is [TCU] and attempt to reflash the chip.
Recommendation: All firmware should be encrypted and signed to prevent modification. There should be a secure boot process to prevent any invalid

firmware from booted.

20. Compromise the TCU (Primary) in Order to Deliver Malicious Updates [State: Not Started] [Priority: High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to exploit the TCU (Primary).
Justification: <no mitigation provided>
Attack method: Network based vulnerabilities, through outdated software or configuration weaknesses.
Recommendation: Ensure that the server is kept up to date and perform regular security testing.

21. Take the TCU (Primary) Offline [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on TCU (Primary).
Justification: <no mitigation provided>
Attack method: Perform an network attack and case resource exhaustion.
Recommendation: Have a number of TCU (Primary) delivery servers across a broad geographic radius, in the event of one server failing the system should

continue unhindered.

22. Flood TCU (Primary) With Invalid Data [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on TCU (Primary) by flooding with invalid data.
Justification: <no mitigation provided>
Attack method: Either physically by clipping onto the sensor wires and inject valid data or with external input e.g. a bright torch.
Recommendation: Rely on additional sensors in the event of one is unavailable.

23. Cause the TCU (Primary) to Crash or Stop Remotely [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on TCU (Primary) that crashes, halts, stops or runs slowly; in all cases violating an availability metric.
Justification: <no mitigation provided>
Attack method: Flooding TCU (Primary) with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to TCU (Primary) if flooding is detected. Potentially enter in a special

safety mode if TCU (Primary) is unavalaible.

24. Updates Could Be Downloaded [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by downloading the updates from TCU (Primary).

Justification: <no mitigation provided>
Attack method: Reverse engineer the head unit firmware to find information about the update server and download software update files which may

contain sensitive information.
Recommendation: Ensure that connections to the delivery server are authenticated and encrypted and access should be limited to only the required files.

25. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending on what type of data an attacker can read, it may be

used to attack other parts of the system or simply be a disclosure of information leading to compliance violations. In general, as a way to
compromise both integrity and availability. Severity might change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using HTTPS.

26. Car Could be Tracked [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by performing a MITM attack in order to track a car.
Justification: <no mitigation provided>
Attack method: Downgrade or false base station attack.
Recommendation: Encrypt communications so that passive interception cannot identify specific vehicles. Rolling/unique identifiers that change over time, to

prevent tracking.

27. TCU (Primary) Denies Writing Data [State: Not Started] [Priority: High]

Category: Repudiation
Description: TCU (Primary) claims that it did not write data received from an entity on the other side of the trust boundary.
Justification: <no mitigation provided>
Attack method: An attacker is able to write data on TCU (Primary).
Recommendation: Consider using logging or auditing to record the source, time, and summary of the received data.

28. Modify Data Being Sent to the TCU (Primary) While in Transit [State: Not Started] [Priority: High]

Category: Tampering
Description: Tamper with data in trasit sent to the TCU (Primary).
Justification: <no mitigation provided>
Attack method: MITM on the TCU for example a 3g to 2g downgrade attack, or false base station attack.
Recommendation: Disable 2G communications, only 3G and 4G should be allowed. Use a secure communication channel between the car and the server.

Interaction: Private Keys

29. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending on what type of data an attacker can read, it may be

used to attack other parts of the system or simply be a disclosure of information leading to compliance violations. In general, as a way to
compromise both integrity and availability. Severity might change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.

Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using HTTPS.

Interaction: Signed Time + Signed Tokens

30. Reflash the TCU (Primary) Firmware in Order to Send Arbitrary CAN Messages [State: Not Started] [Priority: High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to reflash the TCU (Primary) firmware.
Justification: <no mitigation provided>
Attack method: Physically connect to the target is [TCU] and attempt to reflash the chip.
Recommendation: All firmware should be encrypted and signed to prevent modification. There should be a secure boot process to prevent any invalid

firmware from booted.

31. Compromise the TCU (Primary) in Order to Deliver Malicious Updates [State: Not Started] [Priority: High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to exploit the TCU (Primary).
Justification: <no mitigation provided>
Attack method: Network based vulnerabilities, through outdated software or configuration weaknesses.
Recommendation: Ensure that the server is kept up to date and perform regular security testing.

32. Take the TCU (Primary) Offline [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on TCU (Primary).
Justification: <no mitigation provided>
Attack method: Perform an network attack and case resource exhaustion.
Recommendation: Have a number of TCU (Primary) delivery servers across a broad geographic radius, in the event of one server failing the system should

continue unhindered.

33. Flood TCU (Primary) With Invalid Data [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on TCU (Primary) by flooding with invalid data.
Justification: <no mitigation provided>
Attack method: Either physically by clipping onto the sensor wires and inject valid data or with external input e.g. a bright torch.
Recommendation: Rely on additional sensors in the event of one is unavailable.

34. Cause the TCU (Primary) to Crash or Stop Remotely [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on TCU (Primary) that crashes, halts, stops or runs slowly; in all cases violating an availability metric.
Justification: <no mitigation provided>
Attack method: Flooding TCU (Primary) with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to TCU (Primary) if flooding is detected. Potentially enter in a special

safety mode if TCU (Primary) is unavalaible.

35. Updates Could Be Downloaded [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by downloading the updates from TCU (Primary).
Justification: <no mitigation provided>
Attack method: Reverse engineer the head unit firmware to find information about the update server and download software update files which may

contain sensitive information.
Recommendation: Ensure that connections to the delivery server are authenticated and encrypted and access should be limited to only the required files.

36. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending on what type of data an attacker can read, it may be

used to attack other parts of the system or simply be a disclosure of information leading to compliance violations. In general, as a way to
compromise both integrity and availability. Severity might change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using HTTPS.

37. Car Could be Tracked [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by performing a MITM attack in order to track a car.
Justification: <no mitigation provided>
Attack method: Downgrade or false base station attack.
Recommendation: Encrypt communications so that passive interception cannot identify specific vehicles. Rolling/unique identifiers that change over time, to

prevent tracking.

38. TCU (Primary) Denies Writing Data [State: Not Started] [Priority: High]

Category: Repudiation
Description: TCU (Primary) claims that it did not write data received from an entity on the other side of the trust boundary.
Justification: <no mitigation provided>
Attack method: An attacker is able to write data on TCU (Primary).
Recommendation: Consider using logging or auditing to record the source, time, and summary of the received data.

39. Modify Data Being Sent to the TCU (Primary) While in Transit [State: Not Started] [Priority: High]

Category: Tampering
Description: Tamper with data in trasit sent to the TCU (Primary).
Justification: <no mitigation provided>
Attack method: MITM on the TCU for example a 3g to 2g downgrade attack, or false base station attack.
Recommendation: Disable 2G communications, only 3G and 4G should be allowed. Use a secure communication channel between the car and the server.

Interaction: Signed Tokens

40. Compromise the Time Server in Order to Deliver Malicious Updates [State: Not Started] [Priority: High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to exploit the Time Server.
Justification: <no mitigation provided>
Attack method: Network based vulnerabilities, through outdated software or configuration weaknesses.
Recommendation: Ensure that the server is kept up to date and perform regular security testing.

41. Take the Time Server Offline [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Time Server.
Justification: <no mitigation provided>

Attack method: Perform an network attack and case resource exhaustion.
Recommendation: Have a number of Time Server delivery servers across a broad geographic radius, in the event of one server failing the system should

continue unhindered.

42. Flood Time Server With Invalid Data [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Time Server by flooding with invalid data.
Justification: <no mitigation provided>
Attack method: Either physically by clipping onto the sensor wires and inject valid data or with external input e.g. a bright torch.
Recommendation: Rely on additional sensors in the event of one is unavailable.

43. Cause the Time Server to Crash or Stop Remotely [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Time Server that crashes, halts, stops or runs slowly; in all cases violating an availability metric.
Justification: <no mitigation provided>
Attack method: Flooding Time Server with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to Time Server if flooding is detected. Potentially enter in a special

safety mode if Time Server is unavalaible.

44. Updates Could Be Downloaded [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by downloading the updates from Time Server.
Justification: <no mitigation provided>
Attack method: Reverse engineer the head unit firmware to find information about the update server and download software update files which may

contain sensitive information.
Recommendation: Ensure that connections to the delivery server are authenticated and encrypted and access should be limited to only the required files.

45. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending on what type of data an attacker can read, it may be

used to attack other parts of the system or simply be a disclosure of information leading to compliance violations. In general, as a way to
compromise both integrity and availability. Severity might change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using HTTPS.

46. Time Server Denies Writing Data [State: Not Started] [Priority: High]

Category: Repudiation
Description: Time Server claims that it did not write data received from an entity on the other side of the trust boundary.
Justification: <no mitigation provided>
Attack method: An attacker is able to write data on Time Server.
Recommendation: Consider using logging or auditing to record the source, time, and summary of the received data.

Interaction: Vehicle Manifest

47. Compromise the Director Repo in Order to Deliver Malicious Updates [State: Not Started] [Priority: High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to exploit the Director Repo.
Justification: <no mitigation provided>
Attack method: Network based vulnerabilities, through outdated software or configuration weaknesses.
Recommendation: Ensure that the server is kept up to date and perform regular security testing.

48. Take the Director Repo Offline [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Director Repo.
Justification: <no mitigation provided>
Attack method: Perform an network attack and case resource exhaustion.
Recommendation: Have a number of Director Repo delivery servers across a broad geographic radius, in the event of one server failing the system should

continue unhindered.

49. Flood Director Repo With Invalid Data [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Director Repo by flooding with invalid data.
Justification: <no mitigation provided>
Attack method: Either physically by clipping onto the sensor wires and inject valid data or with external input e.g. a bright torch.
Recommendation: Rely on additional sensors in the event of one is unavailable.

50. Cause the Director Repo to Crash or Stop Remotely [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Director Repo that crashes, halts, stops or runs slowly; in all cases violating an availability metric.
Justification: <no mitigation provided>
Attack method: Flooding Director Repo with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to Director Repo if flooding is detected. Potentially enter in a special

safety mode if Director Repo is unavalaible.

51. Updates Could Be Downloaded [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by downloading the updates from Director Repo.
Justification: <no mitigation provided>
Attack method: Reverse engineer the head unit firmware to find information about the update server and download software update files which may

contain sensitive information.
Recommendation: Ensure that connections to the delivery server are authenticated and encrypted and access should be limited to only the required files.

52. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending on what type of data an attacker can read, it may be

used to attack other parts of the system or simply be a disclosure of information leading to compliance violations. In general, as a way to
compromise both integrity and availability. Severity might change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using HTTPS.

53. Director Repo Denies Writing Data [State: Not Started] [Priority: High]

Category: Repudiation
Description: Director Repo claims that it did not write data received from an entity on the other side of the trust boundary.
Justification: <no mitigation provided>
Attack method: An attacker is able to write data on Director Repo.
Recommendation: Consider using logging or auditing to record the source, time, and summary of the received data.

APPENDIX C. THREAT MODELING REPORTS 214

C.2 Adaptive Cruise Control Threat Modeling

Report

This threat modeling report presents the details of all the threats summarized in Section
5.2 of Chapter 5.

Threat Modeling Report
Created on 20/12/2020 22:09:15

Threat Model Name:

Owner:

Reviewer:

Contributors:

Description:

Assumptions:

External Dependencies:

Threat Model Summary:

Not Started 52
Not Applicable 0
Needs Investigation 0
Mitigation Implemented 0
Total 52
Total Migrated 0

Diagram: Adapative Cruise Control

Adapative Cruise Control Diagram Summary:

Not Started 52
Not Applicable 0
Needs Investigation 0
Mitigation Implemented 0
Total 52
Total Migrated 0

Interaction: CAN Bus Data Flow

1. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending

on what type of data an attacker can read, it may be used to attack other parts of
the system or simply be a disclosure of information leading to compliance violations.
In general, as a way to compromise both integrity and availability. Severity might
change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using

HTTPS.
Justification for
Status Change:

2. Updates Could Be Downloaded From a Web Server Resulting in Potentially Sensitive Information Being
Disclosed [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by downloading the updates from Adaptive Cruise Control

ECU.
Justification: <no mitigation provided>
Attack method: Reverse engineer the head unit firmware to find information about the update

server and download software update files which may contain sensitive information.
Recommendation: Ensure that connections to the delivery server are authenticated and encrypted and

access should be limited to only the required files.
Justification for
Status Change:

3. Cause the Adaptive Cruise Control ECU to Crash or Stop [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Adaptive Cruise Control ECU that crashes, halts, stops or runs slowly; in all

cases violating an availability metric.
Justification: <no mitigation provided>
Attack method: Flooding Adaptive Cruise Control ECU with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to Adaptive

Cruise Control ECU if flooding is detected. Potentially enter in a special safety mode
if Adaptive Cruise Control ECU is unavalaible.

Justification for
Status Change:

4. Cause the Adaptive Cruise Control ECU to Crash or Stop Remotely [State: Not Started] [Priority:
High]

Category: Denial of Service
Description: DoS on Adaptive Cruise Control ECU that crashes, halts, stops or runs slowly; in all

cases violating an availability metric.
Justification: <no mitigation provided>
Attack method: Flooding Adaptive Cruise Control ECU with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to Adaptive

Cruise Control ECU if flooding is detected. Potentially enter in a special safety mode
if Adaptive Cruise Control ECU is unavalaible.

Justification for
Status Change:

5. Flood Adaptive Cruise Control ECU With Invalid Data [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Adaptive Cruise Control ECU by flooding with invalid data.
Justification: <no mitigation provided>
Attack method: Either physically by clipping onto the sensor wires and inject valid data or with

external input e.g. a bright torch.
Recommendation: Rely on additional sensors in the event of one is unavailable.
Justification for Status
Change:

6. Take the Adaptive Cruise Control ECU Offline [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Adaptive Cruise Control ECU.
Justification: <no mitigation provided>
Attack method: Perform an network attack and case resource exhaustion.

Recommendation: Have a number of Adaptive Cruise Control ECU delivery servers across a broad
geographic radius, in the event of one server failing the system should continue
unhindered.

Justification for
Status Change:

7. Compromise the Adaptive Cruise Control ECU in Order to Deliver Malicious Updates [State: Not
Started] [Priority: High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to exploit the Adaptive Cruise Control ECU.
Justification: <no mitigation provided>
Attack method: Network based vulnerabilities, through outdated software or configuration

weaknesses.
Recommendation: Ensure that the server is kept up to date and perform regular security

testing.
Justification for Status
Change:

8. Reflash the Adaptive Cruise Control ECU From the CAN Bus in Order to Send Arbitrary CAN
Messages [State: Not Started] [Priority: High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to reflash the Adaptive Cruise Control ECU.
Justification: <no mitigation provided>
Attack method: As the radar units are external it would be possible to connect into the private CAN

network and use diagnostic CAN messages to reflash the ACC ECU.
Recommendation: Ensure that diagnostic messages are ignored when received from the private CAN.

Additionally all firmware should be signed and validated to prevent malicious
updates from being flashes to the ECU.

Justification for
Status Change:

Interaction: CAN Bus Data Flow

9. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending

on what type of data an attacker can read, it may be used to attack other parts of
the system or simply be a disclosure of information leading to compliance violations.
In general, as a way to compromise both integrity and availability. Severity might
change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using

HTTPS.
Justification for
Status Change:

10. Updates Could Be Downloaded From a Web Server Resulting in Potentially Sensitive Information
Being Disclosed [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by downloading the updates from Gateway.
Justification: <no mitigation provided>
Attack method: Reverse engineer the head unit firmware to find information about the update

server and download software update files which may contain sensitive information.
Recommendation: Ensure that connections to the delivery server are authenticated and encrypted and

access should be limited to only the required files.
Justification for
Status Change:

11. Cause the Gateway to Crash or Stop [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Gateway that crashes, halts, stops or runs slowly; in all cases violating an

availability metric.
Justification: <no mitigation provided>
Attack method: Flooding Gateway with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to Gateway if

flooding is detected. Potentially enter in a special safety mode if Gateway is
unavalaible.

Justification for
Status Change:

12. Cause the Gateway to Crash or Stop Remotely [State: Not Started] [Priority: High]

Category: Denial of Service

Description: DoS on Gateway that crashes, halts, stops or runs slowly; in all cases violating an
availability metric.

Justification: <no mitigation provided>
Attack method: Flooding Gateway with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to Gateway if

flooding is detected. Potentially enter in a special safety mode if Gateway is
unavalaible.

Justification for
Status Change:

13. Flood Gateway With Invalid Data [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Gateway by flooding with invalid data.
Justification: <no mitigation provided>
Attack method: Either physically by clipping onto the sensor wires and inject valid data or with

external input e.g. a bright torch.
Recommendation: Rely on additional sensors in the event of one is unavailable.
Justification for Status
Change:

14. Take the Gateway Offline [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Gateway.
Justification: <no mitigation provided>
Attack method: Perform an network attack and case resource exhaustion.
Recommendation: Have a number of Gateway delivery servers across a broad geographic radius, in the

event of one server failing the system should continue unhindered.
Justification for
Status Change:

15. Compromise the Gateway in Order to Deliver Malicious Updates [State: Not Started] [Priority:
High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to exploit the Gateway.
Justification: <no mitigation provided>
Attack method: Network based vulnerabilities, through outdated software or configuration

weaknesses.
Recommendation: Ensure that the server is kept up to date and perform regular security

testing.
Justification for Status
Change:

Interaction: CAN Bus Data Flow

16. Modify Data Being Sent to the TCU While in Transit [State: Not Started] [Priority: High]

Category: Tampering
Description: Tamper with data in trasit sent to the TCU.
Justification: <no mitigation provided>
Attack method: MITM on the TCU for example a 3g to 2g downgrade attack, or false base station

attack.
Recommendation: Disable 2G communications, only 3G and 4G should be allowed. Use a secure

communication channel between the car and the server.
Justification for
Status Change:

17. Car Could be Tracked [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by performing a MITM attack in order to track a car.
Justification: <no mitigation provided>
Attack method: Downgrade or false base station attack.
Recommendation: Encrypt communications so that passive interception cannot identify specific

vehicles. Rolling/unique identifiers that change over time, to prevent tracking.
Justification for
Status Change:

18. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending

on what type of data an attacker can read, it may be used to attack other parts of
the system or simply be a disclosure of information leading to compliance violations.
In general, as a way to compromise both integrity and availability. Severity might
change depending on the attacker's access vector.

Justification: <no mitigation provided>

Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using

HTTPS.
Justification for
Status Change:

19. Updates Could Be Downloaded From a Web Server Resulting in Potentially Sensitive Information
Being Disclosed [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by downloading the updates from TCU.
Justification: <no mitigation provided>
Attack method: Reverse engineer the head unit firmware to find information about the update

server and download software update files which may contain sensitive information.
Recommendation: Ensure that connections to the delivery server are authenticated and encrypted and

access should be limited to only the required files.
Justification for
Status Change:

20. Cause the TCU to Crash or Stop [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on TCU that crashes, halts, stops or runs slowly; in all cases violating an

availability metric.
Justification: <no mitigation provided>
Attack method: Flooding TCU with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to TCU if flooding

is detected. Potentially enter in a special safety mode if TCU is unavalaible.
Justification for
Status Change:

21. Cause the TCU to Crash or Stop Remotely [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on TCU that crashes, halts, stops or runs slowly; in all cases violating an

availability metric.
Justification: <no mitigation provided>
Attack method: Flooding TCU with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to TCU if flooding

is detected. Potentially enter in a special safety mode if TCU is unavalaible.
Justification for
Status Change:

22. Flood TCU With Invalid Data [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on TCU by flooding with invalid data.
Justification: <no mitigation provided>
Attack method: Either physically by clipping onto the sensor wires and inject valid data or with

external input e.g. a bright torch.
Recommendation: Rely on additional sensors in the event of one is unavailable.
Justification for Status
Change:

23. Take the TCU Offline [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on TCU.
Justification: <no mitigation provided>
Attack method: Perform an network attack and case resource exhaustion.
Recommendation: Have a number of TCU delivery servers across a broad geographic radius, in the

event of one server failing the system should continue unhindered.
Justification for
Status Change:

24. Compromise the TCU in Order to Deliver Malicious Updates [State: Not Started] [Priority: High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to exploit the TCU.
Justification: <no mitigation provided>
Attack method: Network based vulnerabilities, through outdated software or configuration

weaknesses.
Recommendation: Ensure that the server is kept up to date and perform regular security

testing.
Justification for Status
Change:

25. Reflash the TCU Firmware in Order to Send Arbitrary CAN Messages [State: Not Started] [Priority:
High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to reflash the TCU firmware.
Justification: <no mitigation provided>
Attack method: Physically connect to the target is [TCU] and attempt to reflash the chip.
Recommendation: All firmware should be encrypted and signed to prevent modification. There should

be a secure boot process to prevent any invalid firmware from booted.
Justification for
Status Change:

Interaction: CAN Bus Data Flow

26. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending

on what type of data an attacker can read, it may be used to attack other parts of
the system or simply be a disclosure of information leading to compliance violations.
In general, as a way to compromise both integrity and availability. Severity might
change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using

HTTPS.
Justification for
Status Change:

27. Updates Could Be Downloaded From a Web Server Resulting in Potentially Sensitive Information
Being Disclosed [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by downloading the updates from Gateway.
Justification: <no mitigation provided>
Attack method: Reverse engineer the head unit firmware to find information about the update

server and download software update files which may contain sensitive information.
Recommendation: Ensure that connections to the delivery server are authenticated and encrypted and

access should be limited to only the required files.

Justification for
Status Change:

28. Cause the Gateway to Crash or Stop [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Gateway that crashes, halts, stops or runs slowly; in all cases violating an

availability metric.
Justification: <no mitigation provided>
Attack method: Flooding Gateway with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to Gateway if

flooding is detected. Potentially enter in a special safety mode if Gateway is
unavalaible.

Justification for
Status Change:

29. Cause the Gateway to Crash or Stop Remotely [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Gateway that crashes, halts, stops or runs slowly; in all cases violating an

availability metric.
Justification: <no mitigation provided>
Attack method: Flooding Gateway with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to Gateway if

flooding is detected. Potentially enter in a special safety mode if Gateway is
unavalaible.

Justification for
Status Change:

30. Flood Gateway With Invalid Data [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Gateway by flooding with invalid data.
Justification: <no mitigation provided>
Attack method: Either physically by clipping onto the sensor wires and inject valid data or with

external input e.g. a bright torch.
Recommendation: Rely on additional sensors in the event of one is unavailable.
Justification for Status
Change:

31. Take the Gateway Offline [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Gateway.

Justification: <no mitigation provided>
Attack method: Perform an network attack and case resource exhaustion.
Recommendation: Have a number of Gateway delivery servers across a broad geographic radius, in the

event of one server failing the system should continue unhindered.
Justification for
Status Change:

32. Compromise the Gateway in Order to Deliver Malicious Updates [State: Not Started] [Priority:
High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to exploit the Gateway.
Justification: <no mitigation provided>
Attack method: Network based vulnerabilities, through outdated software or configuration

weaknesses.
Recommendation: Ensure that the server is kept up to date and perform regular security

testing.
Justification for Status
Change:

Interaction: Sensor Data

33. Trick ACC ECU Into Triggering an Emergency Stop [State: Not Started] [Priority: High]

Category: Spoofing
Description: Spoofing the Radar in order to trick the Adaptive Cruise Control ECU into triggering

an emergency stop.
Justification: <no mitigation provided>
Attack method: As the radar units are external it would be possible to intercept communications, in

an attempt to inject a malicious target list. This could be done by physically
connecting to the wires used by the radar units.

Recommendation: Relocate unit so the wires are harder to reach.

Justification for
Status Change:

34. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending

on what type of data an attacker can read, it may be used to attack other parts of
the system or simply be a disclosure of information leading to compliance violations.
In general, as a way to compromise both integrity and availability. Severity might
change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using

HTTPS.
Justification for
Status Change:

35. Reflash the ACC ECU From the CAN Bus in Order to Send Arbitrary CAN Messages [State: Not
Started] [Priority: High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to reflash the Adaptive Cruise Control ECU.
Justification: <no mitigation provided>
Attack method: As the radar units are external it would be possible to connect into the private CAN

network and use diagnostic CAN messages to reflash the ACC ECU.
Recommendation: Ensure that diagnostic messages are ignored when received from the private CAN.

Additionally all firmware should be signed and validated to prevent malicious
updates from being flashes to the ECU.

Justification for
Status Change:

Interaction: Sensor Data

36. Cause the Car to Perform Emergency Braking [State: Not Started] [Priority: High]

Category: Spoofing
Description: Spoofing front Camera Cameras and Sensors data in order to trigger emergency

braking.
Justification: <no mitigation provided>
Attack method: Spoof front radar data in order to cause the car to emergency break. The front

sensor module connects directly to the ACC ECU therefore it is not protected by the
gateway module, allowing for messages to be spoofed.

Recommendation: Implement a gateway module so that the the Cameras and Sensors modules can
only send messages relating to themselves.

Justification for
Status Change:

37. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending

on what type of data an attacker can read, it may be used to attack other parts of
the system or simply be a disclosure of information leading to compliance violations.
In general, as a way to compromise both integrity and availability. Severity might
change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using

HTTPS.
Justification for
Status Change:

38. Reflash the ACC ECU From the CAN Bus in Order to Send Arbitrary CAN Messages [State: Not
Started] [Priority: High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to reflash the Adaptive Cruise Control ECU.
Justification: <no mitigation provided>
Attack method: As the radar units are external it would be possible to connect into the private CAN

network and use diagnostic CAN messages to reflash the ACC ECU.
Recommendation: Ensure that diagnostic messages are ignored when received from the private CAN.

Additionally all firmware should be signed and validated to prevent malicious
updates from being flashes to the ECU.

Justification for
Status Change:

Interaction: UDS

39. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending

on what type of data an attacker can read, it may be used to attack other parts of
the system or simply be a disclosure of information leading to compliance violations.
In general, as a way to compromise both integrity and availability. Severity might
change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using

HTTPS.
Justification for
Status Change:

40. Updates Could Be Downloaded From a Web Server Resulting in Potentially Sensitive Information
Being Disclosed [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by downloading the updates from Gateway.
Justification: <no mitigation provided>
Attack method: Reverse engineer the head unit firmware to find information about the update

server and download software update files which may contain sensitive information.
Recommendation: Ensure that connections to the delivery server are authenticated and encrypted and

access should be limited to only the required files.
Justification for
Status Change:

41. Cause the Gateway to Crash or Stop [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Gateway that crashes, halts, stops or runs slowly; in all cases violating an

availability metric.
Justification: <no mitigation provided>
Attack method: Flooding Gateway with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to Gateway if

flooding is detected. Potentially enter in a special safety mode if Gateway is
unavalaible.

Justification for
Status Change:

42. Cause the Gateway to Crash or Stop Remotely [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Gateway that crashes, halts, stops or runs slowly; in all cases violating an

availability metric.
Justification: <no mitigation provided>
Attack method: Flooding Gateway with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to Gateway if

flooding is detected. Potentially enter in a special safety mode if Gateway is
unavalaible.

Justification for
Status Change:

43. Flood Gateway With Invalid Data [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Gateway by flooding with invalid data.
Justification: <no mitigation provided>
Attack method: Either physically by clipping onto the sensor wires and inject valid data or with

external input e.g. a bright torch.
Recommendation: Rely on additional sensors in the event of one is unavailable.
Justification for Status
Change:

44. Take the Gateway Offline [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Gateway.
Justification: <no mitigation provided>
Attack method: Perform an network attack and case resource exhaustion.
Recommendation: Have a number of Gateway delivery servers across a broad geographic radius, in the

event of one server failing the system should continue unhindered.
Justification for
Status Change:

45. Compromise the Gateway in Order to Deliver Malicious Updates [State: Not Started] [Priority:
High]

Category: Elevation of Privilege

Description: Elevation of privileges in order to exploit the Gateway.
Justification: <no mitigation provided>
Attack method: Network based vulnerabilities, through outdated software or configuration

weaknesses.
Recommendation: Ensure that the server is kept up to date and perform regular security

testing.
Justification for Status
Change:

Interaction: UDS

46. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending

on what type of data an attacker can read, it may be used to attack other parts of
the system or simply be a disclosure of information leading to compliance violations.
In general, as a way to compromise both integrity and availability. Severity might
change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using

HTTPS.
Justification for
Status Change:

47. Updates Could Be Downloaded From a Web Server Resulting in Potentially Sensitive Information
Being Disclosed [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by downloading the updates from OBD II.
Justification: <no mitigation provided>
Attack method: Reverse engineer the head unit firmware to find information about the update

server and download software update files which may contain sensitive information.
Recommendation: Ensure that connections to the delivery server are authenticated and encrypted and

access should be limited to only the required files.
Justification for
Status Change:

48. Cause the OBD II to Crash or Stop [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on OBD II that crashes, halts, stops or runs slowly; in all cases violating an

availability metric.
Justification: <no mitigation provided>
Attack method: Flooding OBD II with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to OBD II if

flooding is detected. Potentially enter in a special safety mode if OBD II is
unavalaible.

Justification for
Status Change:

49. Cause the OBD II to Crash or Stop Remotely [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on OBD II that crashes, halts, stops or runs slowly; in all cases violating an

availability metric.
Justification: <no mitigation provided>
Attack method: Flooding OBD II with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to OBD II if

flooding is detected. Potentially enter in a special safety mode if OBD II is
unavalaible.

Justification for
Status Change:

50. Flood OBD II With Invalid Data [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on OBD II by flooding with invalid data.
Justification: <no mitigation provided>
Attack method: Either physically by clipping onto the sensor wires and inject valid data or with

external input e.g. a bright torch.
Recommendation: Rely on additional sensors in the event of one is unavailable.
Justification for Status
Change:

51. Take the OBD II Offline [State: Not Started] [Priority: High]

Category: Denial of Service

Description: DoS on OBD II.
Justification: <no mitigation provided>
Attack method: Perform an network attack and case resource exhaustion.
Recommendation: Have a number of OBD II delivery servers across a broad geographic radius, in the

event of one server failing the system should continue unhindered.
Justification for
Status Change:

52. Compromise the OBD II in Order to Deliver Malicious Updates [State: Not Started] [Priority: High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to exploit the OBD II.
Justification: <no mitigation provided>
Attack method: Network based vulnerabilities, through outdated software or configuration

weaknesses.
Recommendation: Ensure that the server is kept up to date and perform regular security

testing.
Justification for Status
Change:

APPENDIX C. THREAT MODELING REPORTS 235

C.3 In-Vehicle Infotainment System Threat Mod-

eling Report

The detailed threat modeling report presented below provides full descriptions of the
threats presented in Section 4.3.2 of Chapter 4.

Threat Modeling Report
Created on 26/12/2020 00:20:58

Threat Model Name:

Owner:

Reviewer:

Contributors:

Description:

Assumptions:

External Dependencies:

Threat Model Summary:

Not Started 86
Not Applicable 0
Needs Investigation 0
Mitigation Implemented 0
Total 86
Total Migrated 0

Diagram: In-Vehicle Infotainment

In-Vehicle Infotainment Diagram Summary:

Not Started 86
Not Applicable 0
Needs Investigation 0
Mitigation Implemented 0
Total 86
Total Migrated 0

Interaction: Data Flow

1. Hardware Teardown and Reverse Engineering on IVI System [State: Not Started] [Priority: High]

Category: Elevation of Privilege
Description: An attacker gains access to all the files on the In-Vehicle Infotainment system. In

addtion, the attacker can extract sensitive data e.g. login credentials and develop

further attacks. Morever, it can reverse engineer files and find vulnerabilities over
time.

Justification: <no mitigation provided>
Attack method: An attacker purchases IVI System from an online auction site, dismantles the unit,

removes the memory chips, extracts their content and analyses the software.
Recommendation: Hardware security technical assessment of the IVI System.

2. Compromise the IVI System in Order to Deliver Malicious Updates [State: Not Started] [Priority:
High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to exploit the IVI System.
Justification: <no mitigation provided>
Attack method: Network based vulnerabilities, through outdated software or configuration

weaknesses.
Recommendation: Ensure that the server is kept up to date and perform regular security testing.

3. Take the IVI System Offline [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on IVI System.
Justification: <no mitigation provided>
Attack method: Perform an network attack and case resource exhaustion.
Recommendation: Have a number of IVI System delivery servers across a broad geographic radius, in

the event of one server failing the system should continue unhindered.

4. Flood IVI System With Invalid Data [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on IVI System by flooding with invalid data.
Justification: <no mitigation provided>
Attack method: Either physically by clipping onto the sensor wires and inject valid data or with

external input e.g. a bright torch.
Recommendation: Rely on additional sensors in the event of one is unavailable.

5. Cause the IVI System to Crash or Stop Remotely [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on IVI System that crashes, halts, stops or runs slowly; in all cases violating an

availability metric.
Justification: <no mitigation provided>
Attack method: Flooding IVI System with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to IVI System if

flooding is detected. Potentially enter in a special safety mode if IVI System is
unavalaible.

6. Cause the IVI System to Crash or Stop [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on IVI System that crashes, halts, stops or runs slowly; in all cases violating an

availability metric.
Justification: <no mitigation provided>
Attack method: Flooding IVI System with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to IVI System if

flooding is detected. Potentially enter in a special safety mode if IVI System is
unavalaible.

7. Updates Could Be Downloaded From a Web Server Resulting in Potentially Sensitive Information Being
Disclosed [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by downloading the updates from IVI System.
Justification: <no mitigation provided>
Attack method: Reverse engineer the head unit firmware to find information about the update

server and download software update files which may contain sensitive information.
Recommendation: Ensure that connections to the delivery server are authenticated and encrypted and

access should be limited to only the required files.

8. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending

on what type of data an attacker can read, it may be used to attack other parts of
the system or simply be a disclosure of information leading to compliance violations.
In general, as a way to compromise both integrity and availability. Severity might
change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using

HTTPS.

Interaction: Data Flow

9. Compromise the HMI in Order to Deliver Malicious Updates [State: Not Started] [Priority: High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to exploit the HMI.
Justification: <no mitigation provided>
Attack method: Network based vulnerabilities, through outdated software or configuration

weaknesses.
Recommendation: Ensure that the server is kept up to date and perform regular security testing.

10. Take the HMI Offline [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on HMI.
Justification: <no mitigation provided>
Attack method: Perform an network attack and case resource exhaustion.
Recommendation: Have a number of HMI delivery servers across a broad geographic radius, in the

event of one server failing the system should continue unhindered.

11. Prevent ADAS Information Being Displayed [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on the HMI that prevents Advanced Driver Assistance Systems (ADAS) data

being visualised.
Justification: <no mitigation provided>
Attack method: Flood CAN bus with invalid messages.
Recommendation: Have a direct connection from the ADAS ECU to the HMI interface.

12. Flood HMI With Invalid Data [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on HMI by flooding with invalid data.
Justification: <no mitigation provided>
Attack method: Either physically by clipping onto the sensor wires and inject valid data or with

external input e.g. a bright torch.
Recommendation: Rely on additional sensors in the event of one is unavailable.

13. Cause the HMI to Crash or Stop Remotely [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on HMI that crashes, halts, stops or runs slowly; in all cases violating an

availability metric.
Justification: <no mitigation provided>
Attack method: Flooding HMI with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to HMI if

flooding is detected. Potentially enter in a special safety mode if HMI is unavalaible.

14. Cause the HMI to Crash or Stop [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on HMI that crashes, halts, stops or runs slowly; in all cases violating an

availability metric.
Justification: <no mitigation provided>
Attack method: Flooding HMI with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to HMI if

flooding is detected. Potentially enter in a special safety mode if HMI is unavalaible.

15. Updates Could Be Downloaded From a Web Server Resulting in Potentially Sensitive Information
Being Disclosed [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by downloading the updates from HMI.
Justification: <no mitigation provided>
Attack method: Reverse engineer the head unit firmware to find information about the update

server and download software update files which may contain sensitive information.
Recommendation: Ensure that connections to the delivery server are authenticated and encrypted and

access should be limited to only the required files.

16. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending

on what type of data an attacker can read, it may be used to attack other parts of
the system or simply be a disclosure of information leading to compliance violations.
In general, as a way to compromise both integrity and availability. Severity might
change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using

HTTPS.

Interaction: Data Flow

17. Reflash the TCU Firmware in Order to Send Arbitrary CAN Messages [State: Not Started] [Priority:
High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to reflash the TCU firmware.
Justification: <no mitigation provided>
Attack method: Physically connect to the target is [TCU] and attempt to reflash the chip.
Recommendation: All firmware should be encrypted and signed to prevent modification. There should

be a secure boot process to prevent any invalid firmware from booted.

18. Compromise the TCU in Order to Deliver Malicious Updates [State: Not Started] [Priority: High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to exploit the TCU.
Justification: <no mitigation provided>
Attack method: Network based vulnerabilities, through outdated software or configuration

weaknesses.
Recommendation: Ensure that the server is kept up to date and perform regular security testing.

19. Take the TCU Offline [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on TCU.
Justification: <no mitigation provided>
Attack method: Perform an network attack and case resource exhaustion.
Recommendation: Have a number of TCU delivery servers across a broad geographic radius, in the

event of one server failing the system should continue unhindered.

20. Flood TCU With Invalid Data [State: Not Started] [Priority: High]

Category: Denial of Service

Description: DoS on TCU by flooding with invalid data.
Justification: <no mitigation provided>
Attack method: Either physically by clipping onto the sensor wires and inject valid data or with

external input e.g. a bright torch.
Recommendation: Rely on additional sensors in the event of one is unavailable.

21. Cause the TCU to Crash or Stop Remotely [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on TCU that crashes, halts, stops or runs slowly; in all cases violating an

availability metric.
Justification: <no mitigation provided>
Attack method: Flooding TCU with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to TCU if flooding

is detected. Potentially enter in a special safety mode if TCU is unavalaible.

22. Cause the TCU to Crash or Stop [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on TCU that crashes, halts, stops or runs slowly; in all cases violating an

availability metric.
Justification: <no mitigation provided>
Attack method: Flooding TCU with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to TCU if flooding

is detected. Potentially enter in a special safety mode if TCU is unavalaible.

23. Updates Could Be Downloaded From a Web Server Resulting in Potentially Sensitive Information
Being Disclosed [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by downloading the updates from TCU.
Justification: <no mitigation provided>
Attack method: Reverse engineer the head unit firmware to find information about the update

server and download software update files which may contain sensitive information.
Recommendation: Ensure that connections to the delivery server are authenticated and encrypted and

access should be limited to only the required files.

24. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending

on what type of data an attacker can read, it may be used to attack other parts of
the system or simply be a disclosure of information leading to compliance violations.

In general, as a way to compromise both integrity and availability. Severity might
change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using

HTTPS.

25. Car Could be Tracked [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by performing a MITM attack in order to track a car.
Justification: <no mitigation provided>
Attack method: Downgrade or false base station attack.
Recommendation: Encrypt communications so that passive interception cannot identify specific

vehicles. Rolling/unique identifiers that change over time, to prevent tracking.

26. Modify Data Being Sent to the TCU While in Transit [State: Not Started] [Priority: High]

Category: Tampering
Description: Tamper with data in trasit sent to the TCU.
Justification: <no mitigation provided>
Attack method: MITM on the TCU for example a 3g to 2g downgrade attack, or false base station

attack.
Recommendation: Disable 2G communications, only 3G and 4G should be allowed. Use a secure

communication channel between the car and the server.

Interaction: Data Flow

27. Pretend to Be the TCU in Order to Exploit the IVI System [State: Not Started] [Priority: High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to exploit the IVI System.
Justification: <no mitigation provided>
Attack method: If data from the server is not sufficiently validated an attacker could pretend to be

the TCU in order to deliver a malicious update to the IVI System.
Recommendation: Ensure that connections to the TCU are authenticated and encrypted and access

should be limited to only the required files. All firmware should be encrypted and
signed to prevent modification.

28. Hardware Teardown and Reverse Engineering on IVI System [State: Not Started] [Priority: High]

Category: Elevation of Privilege
Description: An attacker gains access to all the files on the In-Vehicle Infotainment system. In

addtion, the attacker can extract sensitive data e.g. login credentials and develop
further attacks. Morever, it can reverse engineer files and find vulnerabilities over
time.

Justification: <no mitigation provided>
Attack method: An attacker purchases IVI System from an online auction site, dismantles the unit,

removes the memory chips, extracts their content and analyses the software.
Recommendation: Hardware security technical assessment of the IVI System.

29. Compromise the IVI System in Order to Deliver Malicious Updates [State: Not Started] [Priority:
High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to exploit the IVI System.
Justification: <no mitigation provided>
Attack method: Network based vulnerabilities, through outdated software or configuration

weaknesses.
Recommendation: Ensure that the server is kept up to date and perform regular security testing.

30. Take the IVI System Offline [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on IVI System.
Justification: <no mitigation provided>
Attack method: Perform an network attack and case resource exhaustion.
Recommendation: Have a number of IVI System delivery servers across a broad geographic radius, in

the event of one server failing the system should continue unhindered.

31. Flood IVI System With Invalid Data [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on IVI System by flooding with invalid data.

Justification: <no mitigation provided>
Attack method: Either physically by clipping onto the sensor wires and inject valid data or with

external input e.g. a bright torch.
Recommendation: Rely on additional sensors in the event of one is unavailable.

32. Cause the IVI System to Crash or Stop Remotely [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on IVI System that crashes, halts, stops or runs slowly; in all cases violating an

availability metric.
Justification: <no mitigation provided>
Attack method: Flooding IVI System with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to IVI System if

flooding is detected. Potentially enter in a special safety mode if IVI System is
unavalaible.

33. Cause the IVI System to Crash or Stop [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on IVI System that crashes, halts, stops or runs slowly; in all cases violating an

availability metric.
Justification: <no mitigation provided>
Attack method: Flooding IVI System with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to IVI System if

flooding is detected. Potentially enter in a special safety mode if IVI System is
unavalaible.

34. Updates Could Be Downloaded From a Web Server Resulting in Potentially Sensitive Information
Being Disclosed [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by downloading the updates from IVI System.
Justification: <no mitigation provided>
Attack method: Reverse engineer the head unit firmware to find information about the update

server and download software update files which may contain sensitive information.
Recommendation: Ensure that connections to the delivery server are authenticated and encrypted and

access should be limited to only the required files.

35. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending

on what type of data an attacker can read, it may be used to attack other parts of
the system or simply be a disclosure of information leading to compliance violations.

In general, as a way to compromise both integrity and availability. Severity might
change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using

HTTPS.

Interaction: Data Flow

36. Remote Attack Against Vehicle over the Internet [State: Not Started] [Priority: High]

Category: Spoofing
Description: Attacker tricks the vehicle infotainment system to connect to a malicious Wi-Fi

hotspot. Attacker chains together vulnerabilities discovered in previous scenarios and
is able to authenticate to the vehicle’s own Wi-Fi hotspot. Attacker gains full
administrative control of the infotainment system and can extract PII (Personally
Identifiable Information) from the address book database, which would constitute a
data breach under existing Data Protection regulations and the GDPR (General Data
Protection Regulation) legislation. The attacker can also disable vehicle safety
functions, which potentially impacts driver and vehicle occupant safety. In addition,
malware such as ransomware could be installed

Justification: <no mitigation provided>
Attack method: An attacker spoofs a Wi-Fi hotspot to which the car has previously been connected

and then exploits multiple vulnerabilities to eventually connect to the vehicle’s own
Wi-Fi hotspot and gain full administrative access to the IVI System. This attack is
performed over a wireless network and therefore, does not require physical access
to the car.

Recommendation: Ensure that the wireless network to which the car connects are protected by strong
authentication mechanisms and using a strong pre-shared key for authentication.
This would prevenet the car to connect to the malicious hotspot and prevent
chaining a number of vulnerabilities together in order to gain remote access to IVI
System.

37. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending

on what type of data an attacker can read, it may be used to attack other parts of

the system or simply be a disclosure of information leading to compliance violations.
In general, as a way to compromise both integrity and availability. Severity might
change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using

HTTPS.

38. Updates Could Be Downloaded From a Web Server Resulting in Potentially Sensitive Information
Being Disclosed [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by downloading the updates from IVI System.
Justification: <no mitigation provided>
Attack method: Reverse engineer the head unit firmware to find information about the update

server and download software update files which may contain sensitive information.
Recommendation: Ensure that connections to the delivery server are authenticated and encrypted and

access should be limited to only the required files.

39. Cause the IVI System to Crash or Stop [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on IVI System that crashes, halts, stops or runs slowly; in all cases violating an

availability metric.
Justification: <no mitigation provided>
Attack method: Flooding IVI System with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to IVI System if

flooding is detected. Potentially enter in a special safety mode if IVI System is
unavalaible.

40. Cause the IVI System to Crash or Stop Remotely [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on IVI System that crashes, halts, stops or runs slowly; in all cases violating an

availability metric.
Justification: <no mitigation provided>
Attack method: Flooding IVI System with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to IVI System if

flooding is detected. Potentially enter in a special safety mode if IVI System is
unavalaible.

41. Flood IVI System With Invalid Data [State: Not Started] [Priority: High]

Category: Denial of Service

Description: DoS on IVI System by flooding with invalid data.
Justification: <no mitigation provided>
Attack method: Either physically by clipping onto the sensor wires and inject valid data or with

external input e.g. a bright torch.
Recommendation: Rely on additional sensors in the event of one is unavailable.

42. Take the IVI System Offline [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on IVI System.
Justification: <no mitigation provided>
Attack method: Perform an network attack and case resource exhaustion.
Recommendation: Have a number of IVI System delivery servers across a broad geographic radius, in

the event of one server failing the system should continue unhindered.

43. Compromise the IVI System in Order to Deliver Malicious Updates [State: Not Started] [Priority:
High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to exploit the IVI System.
Justification: <no mitigation provided>
Attack method: Network based vulnerabilities, through outdated software or configuration

weaknesses.
Recommendation: Ensure that the server is kept up to date and perform regular security testing.

44. Hardware Teardown and Reverse Engineering on IVI System [State: Not Started] [Priority: High]

Category: Elevation of Privilege
Description: An attacker gains access to all the files on the In-Vehicle Infotainment system. In

addtion, the attacker can extract sensitive data e.g. login credentials and develop
further attacks. Morever, it can reverse engineer files and find vulnerabilities over
time.

Justification: <no mitigation provided>
Attack method: An attacker purchases IVI System from an online auction site, dismantles the unit,

removes the memory chips, extracts their content and analyses the software.
Recommendation: Hardware security technical assessment of the IVI System.

Interaction: Data Flow

45. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending

on what type of data an attacker can read, it may be used to attack other parts of
the system or simply be a disclosure of information leading to compliance violations.
In general, as a way to compromise both integrity and availability. Severity might
change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using

HTTPS.

46. Updates Could Be Downloaded From a Web Server Resulting in Potentially Sensitive Information
Being Disclosed [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by downloading the updates from Wi Fi Access Point.
Justification: <no mitigation provided>
Attack method: Reverse engineer the head unit firmware to find information about the update

server and download software update files which may contain sensitive information.
Recommendation: Ensure that connections to the delivery server are authenticated and encrypted and

access should be limited to only the required files.

47. Cause the Wi Fi Access Point to Crash or Stop [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Wi Fi Access Point that crashes, halts, stops or runs slowly; in all cases

violating an availability metric.
Justification: <no mitigation provided>
Attack method: Flooding Wi Fi Access Point with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to Wi Fi Access

Point if flooding is detected. Potentially enter in a special safety mode if Wi Fi Access
Point is unavalaible.

48. Cause the Wi Fi Access Point to Crash or Stop Remotely [State: Not Started] [Priority: High]

Category: Denial of Service

Description: DoS on Wi Fi Access Point that crashes, halts, stops or runs slowly; in all cases
violating an availability metric.

Justification: <no mitigation provided>
Attack method: Flooding Wi Fi Access Point with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to Wi Fi Access

Point if flooding is detected. Potentially enter in a special safety mode if Wi Fi Access
Point is unavalaible.

49. Flood Wi Fi Access Point With Invalid Data [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Wi Fi Access Point by flooding with invalid data.
Justification: <no mitigation provided>
Attack method: Either physically by clipping onto the sensor wires and inject valid data or with

external input e.g. a bright torch.
Recommendation: Rely on additional sensors in the event of one is unavailable.

50. Take the Wi Fi Access Point Offline [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Wi Fi Access Point.
Justification: <no mitigation provided>
Attack method: Perform an network attack and case resource exhaustion.
Recommendation: Have a number of Wi Fi Access Point delivery servers across a broad geographic

radius, in the event of one server failing the system should continue unhindered.

51. Compromise the Wi Fi Access Point in Order to Deliver Malicious Updates [State: Not Started]
[Priority: High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to exploit the Wi Fi Access Point.
Justification: <no mitigation provided>
Attack method: Network based vulnerabilities, through outdated software or configuration

weaknesses.
Recommendation: Ensure that the server is kept up to date and perform regular security testing.

Interaction: Data Flow

52. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending

on what type of data an attacker can read, it may be used to attack other parts of
the system or simply be a disclosure of information leading to compliance violations.
In general, as a way to compromise both integrity and availability. Severity might
change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using

HTTPS.

53. Updates Could Be Downloaded From a Web Server Resulting in Potentially Sensitive Information
Being Disclosed [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by downloading the updates from USB.
Justification: <no mitigation provided>
Attack method: Reverse engineer the head unit firmware to find information about the update

server and download software update files which may contain sensitive information.
Recommendation: Ensure that connections to the delivery server are authenticated and encrypted and

access should be limited to only the required files.

54. Cause the USB to Crash or Stop [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on USB that crashes, halts, stops or runs slowly; in all cases violating an

availability metric.
Justification: <no mitigation provided>

Attack method: Flooding USB with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to USB if flooding

is detected. Potentially enter in a special safety mode if USB is unavalaible.

55. Cause the USB to Crash or Stop Remotely [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on USB that crashes, halts, stops or runs slowly; in all cases violating an

availability metric.
Justification: <no mitigation provided>
Attack method: Flooding USB with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to USB if flooding

is detected. Potentially enter in a special safety mode if USB is unavalaible.

56. Flood USB With Invalid Data [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on USB by flooding with invalid data.
Justification: <no mitigation provided>
Attack method: Either physically by clipping onto the sensor wires and inject valid data or with

external input e.g. a bright torch.
Recommendation: Rely on additional sensors in the event of one is unavailable.

57. Take the USB Offline [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on USB.
Justification: <no mitigation provided>
Attack method: Perform an network attack and case resource exhaustion.
Recommendation: Have a number of USB delivery servers across a broad geographic radius, in the

event of one server failing the system should continue unhindered.

58. Compromise the USB in Order to Deliver Malicious Updates [State: Not Started] [Priority: High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to exploit the USB.
Justification: <no mitigation provided>
Attack method: Network based vulnerabilities, through outdated software or configuration

weaknesses.
Recommendation: Ensure that the server is kept up to date and perform regular security testing.

Interaction: Data Flow

59. Gaining Network Level Access to IVI System Components [State: Not Started] [Priority: High]

Category: Tampering
Description: An attacker can scan for available newtork services on the IVI System. Attacker will

find login services available but will not know the correct credentials. Attacker
identifies that the IVI System system actually comprises two separate, connected
components. Attacker discovers a “backdoor” service that appears to provide some
kind of interactive access that does not require a password. Attacker discovers
another service that can be used to remotely control the IVI System and retrieve
sensitive information. Attacker discovers how to leverage the “backdoor” service to
gain full administrative control of the IVI System, retrieve valid admin login
credentials and extract PII (Personally Identifiable Information) from the address book
database, which would constitute a data breach under existing Data Protection
regulations and GDPR (General Data Protection Regulation) legislation. The attacker
can also disable vehicle safety functions, which potentially impacts driver and vehicle
occupant safety. In addition, malware such as ransomware could be installed.

Justification: <no mitigation provided>
Attack method: An attacker purchases a USB network adaptor and connects their laptop to the

infotainment system via the USB port within the vehicle. This potentially results in an
attacker with physical access to the USB port e.g. valet parking attendant, being able
to gain full administrative control of the IVI System.

Recommendation: Infrastructure assessment of the available network interfaces and services access via
USB port.

60. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending

on what type of data an attacker can read, it may be used to attack other parts of
the system or simply be a disclosure of information leading to compliance violations.

In general, as a way to compromise both integrity and availability. Severity might
change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using

HTTPS.

61. Updates Could Be Downloaded From a Web Server Resulting in Potentially Sensitive Information
Being Disclosed [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by downloading the updates from IVI System.
Justification: <no mitigation provided>
Attack method: Reverse engineer the head unit firmware to find information about the update

server and download software update files which may contain sensitive information.
Recommendation: Ensure that connections to the delivery server are authenticated and encrypted and

access should be limited to only the required files.

62. Cause the IVI System to Crash or Stop [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on IVI System that crashes, halts, stops or runs slowly; in all cases violating an

availability metric.
Justification: <no mitigation provided>
Attack method: Flooding IVI System with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to IVI System if

flooding is detected. Potentially enter in a special safety mode if IVI System is
unavalaible.

63. Cause the IVI System to Crash or Stop Remotely [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on IVI System that crashes, halts, stops or runs slowly; in all cases violating an

availability metric.
Justification: <no mitigation provided>
Attack method: Flooding IVI System with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to IVI System if

flooding is detected. Potentially enter in a special safety mode if IVI System is
unavalaible.

64. Flood IVI System With Invalid Data [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on IVI System by flooding with invalid data.

Justification: <no mitigation provided>
Attack method: Either physically by clipping onto the sensor wires and inject valid data or with

external input e.g. a bright torch.
Recommendation: Rely on additional sensors in the event of one is unavailable.

65. Take the IVI System Offline [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on IVI System.
Justification: <no mitigation provided>
Attack method: Perform an network attack and case resource exhaustion.
Recommendation: Have a number of IVI System delivery servers across a broad geographic radius, in

the event of one server failing the system should continue unhindered.

66. Compromise the IVI System in Order to Deliver Malicious Updates [State: Not Started] [Priority:
High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to exploit the IVI System.
Justification: <no mitigation provided>
Attack method: Network based vulnerabilities, through outdated software or configuration

weaknesses.
Recommendation: Ensure that the server is kept up to date and perform regular security testing.

67. Hardware Teardown and Reverse Engineering on IVI System [State: Not Started] [Priority: High]

Category: Elevation of Privilege
Description: An attacker gains access to all the files on the In-Vehicle Infotainment system. In

addtion, the attacker can extract sensitive data e.g. login credentials and develop
further attacks. Morever, it can reverse engineer files and find vulnerabilities over
time.

Justification: <no mitigation provided>
Attack method: An attacker purchases IVI System from an online auction site, dismantles the unit,

removes the memory chips, extracts their content and analyses the software.
Recommendation: Hardware security technical assessment of the IVI System.

Interaction: Data Flow

68. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending

on what type of data an attacker can read, it may be used to attack other parts of
the system or simply be a disclosure of information leading to compliance violations.
In general, as a way to compromise both integrity and availability. Severity might
change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using

HTTPS.

69. Hardware Teardown and Reverse Engineering on IVI System [State: Not Started] [Priority: High]

Category: Elevation of Privilege
Description: An attacker gains access to all the files on the In-Vehicle Infotainment system. In

addtion, the attacker can extract sensitive data e.g. login credentials and develop
further attacks. Morever, it can reverse engineer files and find vulnerabilities over
time.

Justification: <no mitigation provided>
Attack method: An attacker purchases IVI System from an online auction site, dismantles the unit,

removes the memory chips, extracts their content and analyses the software.
Recommendation: Hardware security technical assessment of the IVI System.

Interaction: Data Flow

70. Potential SQL Injection Vulnerability for IVI System Embedded Data Store [State: Not Started]
[Priority: High]

Category: Tampering
Description: SQL injection is an attack in which malicious code is inserted into strings that are

later passed to an instance of SQL Server for parsing and execution. Any procedure
that constructs SQL statements should be reviewed for injection vulnerabilities
because SQL Server will execute all syntactically valid queries that it receives. Even
parameterized data can be manipulated by a skilled and determined attacker.

Justification: <no mitigation provided>
Attack method: An attacker uses both manual and automated tools to inject SQL statements within

IVI System Embedded Data Store.
Recommendation: Ensure that user supplied input cannot be included in the SQL statements which are

executed against the database. In general, dynamic SQL should not be used within
the application.

71. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending

on what type of data an attacker can read, it may be used to attack other parts of
the system or simply be a disclosure of information leading to compliance violations.
In general, as a way to compromise both integrity and availability. Severity might
change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using

HTTPS.

72. Updates Could Be Downloaded From a Web Server Resulting in Potentially Sensitive Information
Being Disclosed [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Information disclosure by downloading the updates from IVI System Embedded Data

Store.
Justification: <no mitigation provided>
Attack method: Reverse engineer the head unit firmware to find information about the update

server and download software update files which may contain sensitive information.
Recommendation: Ensure that connections to the delivery server are authenticated and encrypted and

access should be limited to only the required files.

73. Cause the IVI System Embedded Data Store to Crash or Stop [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on IVI System Embedded Data Store that crashes, halts, stops or runs slowly; in

all cases violating an availability metric.
Justification: <no mitigation provided>
Attack method: Flooding IVI System Embedded Data Store with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to IVI System

Embedded Data Store if flooding is detected. Potentially enter in a special safety
mode if IVI System Embedded Data Store is unavalaible.

74. Cause the IVI System Embedded Data Store to Crash or Stop Remotely [State: Not Started]
[Priority: High]

Category: Denial of Service
Description: DoS on IVI System Embedded Data Store that crashes, halts, stops or runs slowly; in

all cases violating an availability metric.
Justification: <no mitigation provided>
Attack method: Flooding IVI System Embedded Data Store with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to IVI System

Embedded Data Store if flooding is detected. Potentially enter in a special safety
mode if IVI System Embedded Data Store is unavalaible.

75. Flood IVI System Embedded Data Store With Invalid Data [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on IVI System Embedded Data Store by flooding with invalid data.
Justification: <no mitigation provided>
Attack method: Either physically by clipping onto the sensor wires and inject valid data or with

external input e.g. a bright torch.
Recommendation: Rely on additional sensors in the event of one is unavailable.

76. Take the IVI System Embedded Data Store Offline [State: Not Started] [Priority: High]

Category: Denial of Service

Description: DoS on IVI System Embedded Data Store.
Justification: <no mitigation provided>
Attack method: Perform an network attack and case resource exhaustion.
Recommendation: Have a number of IVI System Embedded Data Store delivery servers across a broad

geographic radius, in the event of one server failing the system should continue
unhindered.

77. Compromise the IVI System Embedded Data Store in Order to Deliver Malicious Updates [State:
Not Started] [Priority: High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to exploit the IVI System Embedded Data Store.
Justification: <no mitigation provided>
Attack method: Network based vulnerabilities, through outdated software or configuration

weaknesses.
Recommendation: Ensure that the server is kept up to date and perform regular security testing.

Interaction: Data Flow

78. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending

on what type of data an attacker can read, it may be used to attack other parts of
the system or simply be a disclosure of information leading to compliance violations.
In general, as a way to compromise both integrity and availability. Severity might
change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using

HTTPS.

79. Hardware Teardown and Reverse Engineering on IVI System [State: Not Started] [Priority: High]

Category: Elevation of Privilege
Description: An attacker gains access to all the files on the In-Vehicle Infotainment system. In

addtion, the attacker can extract sensitive data e.g. login credentials and develop
further attacks. Morever, it can reverse engineer files and find vulnerabilities over
time.

Justification: <no mitigation provided>
Attack method: An attacker purchases IVI System from an online auction site, dismantles the unit,

removes the memory chips, extracts their content and analyses the software.
Recommendation: Hardware security technical assessment of the IVI System.

Interaction: Data Flow

80. Data Flow Sniffing [State: Not Started] [Priority: High]

Category: Information Disclosure
Description: Data flowing across [Generic Data Flow] may be sniffed by an attacker. Depending

on what type of data an attacker can read, it may be used to attack other parts of
the system or simply be a disclosure of information leading to compliance violations.
In general, as a way to compromise both integrity and availability. Severity might
change depending on the attacker's access vector.

Justification: <no mitigation provided>
Attack method: Man-in-the-middle using attack using hardware or software.
Recommendation: Consider encrypting the data flow. For web traffic this can be achieved by using

HTTPS.

81. Updates Could Be Downloaded From a Web Server Resulting in Potentially Sensitive Information
Being Disclosed [State: Not Started] [Priority: High]

Category: Information Disclosure

Description: Information disclosure by downloading the updates from Navigation Maps Data
Store.

Justification: <no mitigation provided>
Attack method: Reverse engineer the head unit firmware to find information about the update

server and download software update files which may contain sensitive information.
Recommendation: Ensure that connections to the delivery server are authenticated and encrypted and

access should be limited to only the required files.

82. Cause the Maps Data Store to Crash or Stop [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Navigation Maps Data Store that crashes, halts, stops or runs slowly; in all

cases violating an availability metric.
Justification: <no mitigation provided>
Attack method: Flooding Maps Data Store with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to Maps Data

Store if flooding is detected. Potentially enter in a special safety mode if Maps Data
Store is unavalaible.

83. Cause the Maps Data Store to Crash or Stop Remotely [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Navigation Maps Data Store that crashes, halts, stops or runs slowly; in all

cases violating an availability metric.
Justification: <no mitigation provided>
Attack method: Flooding Maps Data Store with invalid messages or data.
Recommendation: Implement data validation and shutdown communications channel to Maps Data

Store if flooding is detected. Potentially enter in a special safety mode if Maps Data
Store is unavalaible.

84. Flood Maps Data Store With Invalid Data [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Navigation Maps Data Store by flooding with invalid data.
Justification: <no mitigation provided>
Attack method: Either physically by clipping onto the sensor wires and inject valid data or with

external input e.g. a bright torch.
Recommendation: Rely on additional sensors in the event of one is unavailable.

85. Take the Maps Data Store Offline [State: Not Started] [Priority: High]

Category: Denial of Service
Description: DoS on Navigation Maps Data Store.
Justification: <no mitigation provided>

Attack method: Perform an network attack and case resource exhaustion.
Recommendation: Have a number of Maps Data Store delivery servers across a broad geographic

radius, in the event of one server failing the system should continue unhindered.

86. Compromise the Maps Data Store in Order to Deliver Malicious Updates [State: Not Started]
[Priority: High]

Category: Elevation of Privilege
Description: Elevation of privileges in order to exploit the Navigation Maps Data Store.
Justification: <no mitigation provided>
Attack method: Network based vulnerabilities, through outdated software or configuration

weaknesses.
Recommendation: Ensure that the server is kept up to date and perform regular security testing.

Appendix D

Ethics Documentation

264

