6,750 research outputs found

    Deadlock detection of Java Bytecode

    Full text link
    This paper presents a technique for deadlock detection of Java programs. The technique uses typing rules for extracting infinite-state abstract models of the dependencies among the components of the Java intermediate language -- the Java bytecode. Models are subsequently analysed by means of an extension of a solver that we have defined for detecting deadlocks in process calculi. Our technique is complemented by a prototype verifier that also covers most of the Java features.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Voronoi and Voids Statistics for Super-homogeneous Point Processes

    Full text link
    We study the Voronoi and void statistics of super-homogeneous (or hyperuniform) point patterns in which the infinite-wavelength density fluctuations vanish. Super-homogeneous or hyperuniform point patterns arise in one-component plasmas, primordial density fluctuations in the Universe, and in jammed hard-particle packings. We specifically analyze a certain one-dimensional model by studying size fluctuations and correlations of the associated Voronoi cells. We derive exact results for the complete joint statistics of the size of two Voronoi cells. We also provide a sum rule that the correlation matrix for the Voronoi cells must obey in any space dimension. In contrast to the conventional picture of super-homogeneous systems, we show that infinitely large Voronoi cells or voids can exist in super-homogeneous point processes in any dimension. We also present two heuristic conditions to identify and classify any super-homogeneous point process in terms of the asymptotic behavior of the void size distribution.Comment: 27 pages, and 4 figure

    Automated Analysis of MUTEX Algorithms with FASE

    Full text link
    In this paper we study the liveness of several MUTEX solutions by representing them as processes in PAFAS s, a CCS-like process algebra with a specific operator for modelling non-blocking reading behaviours. Verification is carried out using the tool FASE, exploiting a correspondence between violations of the liveness property and a special kind of cycles (called catastrophic cycles) in some transition system. We also compare our approach with others in the literature. The aim of this paper is twofold: on the one hand, we want to demonstrate the applicability of FASE to some concrete, meaningful examples; on the other hand, we want to study the impact of introducing non-blocking behaviours in modelling concurrent systems.Comment: In Proceedings GandALF 2011, arXiv:1106.081

    Perfect lattice action for asymptotically free theories

    Full text link
    There exist lattice actions which give cut--off independent physical predictions even on coarse grained lattices. Rotation symmetry is restored, the spectrum becomes exact and, in addition, the classical equations have scale invariant instanton solutions. This perfect action can be made short ranged. It can be determined by combining analytical calculations with numerical simulations on small lattices. We illustrate the method and the benefits on the d=2d=2 non--linear σ\sigma--model.Comment: 29 pages(part 1) + 9 postscript figures(part 2, compressed by uufiles). No changes, replaced due to transmission error observed, BUTP-93/1

    Weak violation of universality for Polyelectrolyte Chains: Variational Theory and Simulations

    Full text link
    A variational approach is considered to calculate the free energy and the conformational properties of a polyelectrolyte chain in dd dimensions. We consider in detail the case of pure Coulombic interactions between the monomers, when screening is not present, in order to compute the end-to-end distance and the asymptotic properties of the chain as a function of the polymer chain length NN. We find RNν(logN)γR \simeq N^{\nu}(\log N)^{\gamma} where ν=3λ+2\nu = \frac{3}{\lambda+2} and λ\lambda is the exponent which characterize the long-range interaction U1/rλU \propto 1/r^{\lambda}. The exponent γ\gamma is shown to be non-universal, depending on the strength of the Coulomb interaction. We check our findings, by a direct numerical minimization of the variational energy for chains of increasing size 24<N<2152^4<N<2^{15}. The electrostatic blob picture, expected for small enough values of the interaction strength, is quantitatively described by the variational approach. We perform a Monte Carlo simulation for chains of length 24<N<2102^4<N<2^{10}. The non universal behavior of the exponent γ \gamma previously derived within the variational method, is also confirmed by the simulation results. Non-universal behavior is found for a polyelectrolyte chain in d=3d=3 dimension. Particular attention is devoted to the homopolymer chain problem, when short range contact interactions are present.Comment: to appear in European Phys. Journal E (soft matter

    The problem of Coulomb interactions in the theory of the quantum Hall effect

    Full text link
    We summarize the main ingredients of a unifying theory for abelian quantum Hall states. This theory combines the Finkelstein approach to localization and interaction effects with the topological concept of an instanton vacuum as well as Chern-Simons gauge theory. We elaborate on the meaning of a new symmetry (F\cal F invariance) for systems with an infinitely ranged interaction potential. We address the renormalization of the theory and present the main results in terms of a scaling diagram of the conductances.Comment: 9 pages, 3 figures. To appear in Proceedings of the International Conference "Mesoscopics and Strongly Correlated Electron Systems", July 2000, Chernogolovka, Russi
    corecore