1,062 research outputs found

    Oil and Gas flow Anomaly Detection on offshore naturally flowing wells using Deep Neural Networks

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceThe Oil and Gas industry, as never before, faces multiple challenges. It is being impugned for being dirty, a pollutant, and hence the more demand for green alternatives. Nevertheless, the world still has to rely heavily on hydrocarbons, since it is the most traditional and stable source of energy, as opposed to extensively promoted hydro, solar or wind power. Major operators are challenged to produce the oil more efficiently, to counteract the newly arising energy sources, with less of a climate footprint, more scrutinized expenditure, thus facing high skepticism regarding its future. It has to become greener, and hence to act in a manner not required previously. While most of the tools used by the Hydrocarbon E&P industry is expensive and has been used for many years, it is paramount for the industry’s survival and prosperity to apply predictive maintenance technologies, that would foresee potential failures, making production safer, lowering downtime, increasing productivity and diminishing maintenance costs. Many efforts were applied in order to define the most accurate and effective predictive methods, however data scarcity affects the speed and capacity for further experimentations. Whilst it would be highly beneficial for the industry to invest in Artificial Intelligence, this research aims at exploring, in depth, the subject of Anomaly Detection, using the open public data from Petrobras, that was developed by experts. For this research the Deep Learning Neural Networks, such as Recurrent Neural Networks with LSTM and GRU backbones, were implemented for multi-class classification of undesirable events on naturally flowing wells. Further, several hyperparameter optimization tools were explored, mainly focusing on Genetic Algorithms as being the most advanced methods for such kind of tasks. The research concluded with the best performing algorithm with 2 stacked GRU and the following vector of hyperparameters weights: [1, 47, 40, 14], which stand for timestep 1, number of hidden units 47, number of epochs 40 and batch size 14, producing F1 equal to 0.97%. As the world faces many issues, one of which is the detrimental effect of heavy industries to the environment and as result adverse global climate change, this project is an attempt to contribute to the field of applying Artificial Intelligence in the Oil and Gas industry, with the intention to make it more efficient, transparent and sustainable

    Case studies in causal inference and anomaly detection

    Get PDF
    The study of parent-child well interactions in unconventional shales has generated high interest both in the industry and academia over the last decade. This is largely because of the growing number of child wells and their immediate impact on the parent well production owing to several dynamic factors, one of them, including well spacing. Evaluating the impact of well spacing on parent and child well production performance is challenging. Several studies have resorted to geomechanical stress and fracture modeling combined with dynamic simulation techniques while a few operators have chosen field trials to evaluate optimal well spacing. Several data-driven approaches to address the well-spacing problem have also become popular. One such commonly used data-driven approach simply calculates the difference in cumulative production over a specified period of time for parent and child wells grouped by spacing. This approach has been the method of choice for several different recent analyses of well spacing; however, given that the method of simple averages does not account for formation properties or completion design, the results may be compromised and can lead to counterintuitive results. In this thesis, I introduce a new data-driven approach leveraging the power of causal inference as seen in clinical trials for multivariate observational studies. The causal approach addresses the problem behind the routinely used simple averages approach by providing a formalism to control for reservoir and completion variables when evaluating the impact of well spacing on production performance. I apply the causal inference workflow to a dataset from a prolific oil basin in Texas with over 700 wells in the analyses. It includes the formation properties, fluid volume, proppant weight, landing zones and the downhole locations of the wells. Using the causal inference workflow, I evaluate the effect of well spacing on well performance at different parent-child spacing ranges. The optimal well spacing is then estimated for this shale play based on the magnitude of the causal effects. These estimates are then compared with the simple averages approach to demonstrate the power and utility of causality. In the second part of the thesis, I transition into a discussion on anomaly detection approaches applied in the oil and gas industry. I discuss current anomaly detection methods for a widely used artificial lift method – the Sucker Rod Pump (SRP). Today, there is a growing need for fast and accurate anomaly detection systems given the emergence of Internet of Things (IoT) and access to Big Data. Anomaly detection using human operators can be expensive, is often subject to bias and experience-levels and does not scale very well with the need to monitor more than a few tens of wells. With SRPs, the problem of anomaly detection becomes a problem of image classification where dynamometer cards are evaluated for signatures of failure. While this has been the mainstay of anomaly detection for pumpjacks, in this thesis, I automate this task of monitoring and detecting the anomalies from the SRP pump cards. Several thousand synthetic pump cards specific to pump failures modes are generated from the literature and fed to a deep learning model. This deep learning model is a Convolutional Neural Network (CNN) which is commonly used in image classification tasks, speech recognition tasks as well as many other modern-day technology applications including smart phones, self-driving cars, aerospace etc. The CNN used in this work offers a very high accuracy for detecting a variety of pump failures modes thereby offering the potential to save costs, time and unnecessary workovers for the operator

    A Data-Driven Approach For Monitoring And Predictive Diagnosis Of Sucker Rod Pump System

    Get PDF
    Given its long operational history, a sucker-rod pump (SRP) has been widely utilized as a lifting solution to bring reservoir fluids to the surface with low cost and high efficiency. However, debugging the rod pump issues requires on-site activities that could cost time and money for operators. With the vast dataset collected from years of operation, numerous companies are looking to turn these engineering processes into automated systems in the oilfield network, despite the complexity of data and lack of knowledge. The integral approach is to develop real-time diagnostics for downhole conditions. The emerging artificial intelligence and big-data analytics have provided relatively precise downhole condition forecasting based on available data, enabling better decision-making. This thesis focuses on collecting representative data and utilizing machine learning techniques to predict operational anomalies of sucker-rod pumps. An experimental design at the University of Oklahoma, referred to as Interactive Digital Sucker Rod Pumping Unit (IDSRP), was used to facilitate a data-driven solution and monitor SRP performance and diagnostics. The physical framework includes a 50-ft transparent casing and tubing with a downhole rod pump at the bottom. A linear actuator provides the rod string’s reciprocal movement and simulates different surface units and operating scenarios. This facility uses proper instrumentation and a data acquisition system for signal sensor readings. A workflow is developed to translate surface dynamometer cards to downhole ones and train predictive models in time-driven pressure and rate data. Though primarily focusing on the normal pump operation, the test matrix varies in stroke length, pump speed, and rod movement shape. The tests validate the model to classify and detect various operational conditions in sucker-rod pumps. The model dynamically categorizes the pumps into key states of ideal condition and over-pumping with a regression fit of accuracy higher than 0.7 and overall classification accuracy of 92%. Moreover, the real-time model anticipates an event in which the pump experiences a slight pumping-off that could potentially deteriorate the rod. The results also help understand key features that drive sucker rod pump performance prediction and help detect anomalous pump behavior. The machine learning algorithms, developed by the physics-based inputs, generate predictive models, thus classifying operational conditions or failures of the pump. The diagnosis for the pump’s anomalies is also predicted by a real time analysis. The visualization enables to recognize the patterns and abnormal phases early. The explainable machine learning (i.e. Shapley additive explanation) helps decoding the predictive models with feature importance, local and global sensitivities in categorizing SRP conditions. The developed unit has the capability of working with different well conditions, combining with real-time training and applying models, to initiate early warnings. The developed processes and workflows have the potential of becoming a generic optimizing and monitoring model for rod pumps. The novelty of this setup consists not only in its mechatronic design but also in through monitoring of the pump operations

    Exploring the adoption of a conceptual data analytics framework for subsurface energy production systems: a study of predictive maintenance, multi-phase flow estimation, and production optimization

    Get PDF
    Als die Technologie weiter fortschreitet und immer stĂ€rker in der Öl- und Gasindustrie integriert wird, steht eine enorme Menge an Daten in verschiedenen Wissenschaftsdisziplinen zur VerfĂŒgung, die neue Möglichkeiten bieten, informationsreiche und handlungsorientierte Informationen zu gewinnen. Die Konvergenz der digitalen Transformation mit der Physik des FlĂŒssigkeitsflusses durch poröse Medien und Pipeline hat die Entwicklung und Anwendung von maschinellem Lernen (ML) vorangetrieben, um weiteren Mehrwert aus diesen Daten zu gewinnen. Als Folge hat sich die digitale Transformation und ihre zugehörigen maschinellen Lernanwendungen zu einem neuen Forschungsgebiet entwickelt. Die Transformation von Brownfields in digitale Ölfelder kann bei der Energieproduktion helfen, indem verschiedene Ziele erreicht werden, einschließlich erhöhter betrieblicher Effizienz, Produktionsoptimierung, Zusammenarbeit, Datenintegration, EntscheidungsunterstĂŒtzung und Workflow-Automatisierung. Diese Arbeit zielt darauf ab, ein Rahmenwerk fĂŒr diese Anwendungen zu prĂ€sentieren, insbesondere durch die Implementierung virtueller Sensoren, Vorhersageanalytik mithilfe von Vorhersagewartung fĂŒr die Produktionshydraulik-Systeme (mit dem Schwerpunkt auf elektrischen Unterwasserpumpen) und prĂ€skriptiven Analytik fĂŒr die Produktionsoptimierung in Dampf- und Wasserflutprojekten. In Bezug auf virtuelle Messungen ist eine genaue SchĂ€tzung von Mehrphasenströmen fĂŒr die Überwachung und Verbesserung von Produktionsprozessen entscheidend. Diese Studie prĂ€sentiert einen datengetriebenen Ansatz zur Berechnung von Mehrphasenströmen mithilfe von Sensormessungen in elektrischen untergetauchten Pumpbrunnen. Es wird eine ausfĂŒhrliche exploratorische Datenanalyse durchgefĂŒhrt, einschließlich einer Ein Variablen Studie der ZielausgĂ€nge (FlĂŒssigkeitsrate und Wasseranteil), einer Mehrvariablen-Studie der Beziehungen zwischen Eingaben und Ausgaben sowie einer Datengruppierung basierend auf Hauptkomponentenprojektionen und Clusteralgorithmen. Feature Priorisierungsexperimente werden durchgefĂŒhrt, um die einflussreichsten Parameter in der Vorhersage von Fließraten zu identifizieren. Die Modellvergleich erfolgt anhand des mittleren absoluten Fehlers, des mittleren quadratischen Fehlers und des Bestimmtheitskoeffizienten. Die Ergebnisse zeigen, dass die CNN-LSTM-Netzwerkarchitektur besonders effektiv bei der Zeitreihenanalyse von ESP-Sensordaten ist, da die 1D-CNN-Schichten automatisch Merkmale extrahieren und informative Darstellungen von Zeitreihendaten erzeugen können. Anschließend wird in dieser Studie eine Methodik zur Umsetzung von Vorhersagewartungen fĂŒr kĂŒnstliche Hebesysteme, insbesondere bei der Wartung von Elektrischen Untergetauchten Pumpen (ESP), vorgestellt. Conventional maintenance practices for ESPs require extensive resources and manpower, and are often initiated through reactive monitoring of multivariate sensor data. Um dieses Problem zu lösen, wird die Verwendung von Hauptkomponentenanalyse (PCA) und Extreme Gradient Boosting Trees (XGBoost) zur Analyse von Echtzeitsensordaten und Vorhersage möglicher AusfĂ€lle in ESPs eingesetzt. PCA wird als unsupervised technique eingesetzt und sein Ausgang wird weiter vom XGBoost-Modell fĂŒr die Vorhersage des Systemstatus verarbeitet. Das resultierende Vorhersagemodell hat gezeigt, dass es Signale von möglichen AusfĂ€llen bis zu sieben Tagen im Voraus bereitstellen kann, mit einer F1-Bewertung grĂ¶ĂŸer als 0,71 im Testset. Diese Studie integriert auch Model-Free Reinforcement Learning (RL) Algorithmen zur UnterstĂŒtzung bei Entscheidungen im Rahmen der Produktionsoptimierung. Die Aufgabe, die optimalen Injektionsstrategien zu bestimmen, stellt Herausforderungen aufgrund der KomplexitĂ€t der zugrundeliegenden Dynamik, einschließlich nichtlinearer Formulierung, zeitlicher Variationen und ReservoirstrukturheterogenitĂ€t. Um diese Herausforderungen zu bewĂ€ltigen, wurde das Problem als Markov-Entscheidungsprozess reformuliert und RL-Algorithmen wurden eingesetzt, um Handlungen zu bestimmen, die die Produktion optimieren. Die Ergebnisse zeigen, dass der RL-Agent in der Lage war, den Netto-Barwert (NPV) durch kontinuierliche Interaktion mit der Umgebung und iterative Verfeinerung des dynamischen Prozesses ĂŒber mehrere Episoden signifikant zu verbessern. Dies zeigt das Potenzial von RL-Algorithmen, effektive und effiziente Lösungen fĂŒr komplexe Optimierungsprobleme im Produktionsbereich zu bieten.As technology continues to advance and become more integrated in the oil and gas industry, a vast amount of data is now prevalent across various scientific disciplines, providing new opportunities to gain insightful and actionable information. The convergence of digital transformation with the physics of fluid flow through porous media and pipelines has driven the advancement and application of machine learning (ML) techniques to extract further value from this data. As a result, digital transformation and its associated machine-learning applications have become a new area of scientific investigation. The transformation of brownfields into digital oilfields can aid in energy production by accomplishing various objectives, including increased operational efficiency, production optimization, collaboration, data integration, decision support, and workflow automation. This work aims to present a framework of these applications, specifically through the implementation of virtual sensing, predictive analytics using predictive maintenance on production hydraulic systems (with a focus on electrical submersible pumps), and prescriptive analytics for production optimization in steam and waterflooding projects. In terms of virtual sensing, the accurate estimation of multi-phase flow rates is crucial for monitoring and improving production processes. This study presents a data-driven approach for calculating multi-phase flow rates using sensor measurements located in electrical submersible pumped wells. An exhaustive exploratory data analysis is conducted, including a univariate study of the target outputs (liquid rate and water cut), a multivariate study of the relationships between inputs and outputs, and data grouping based on principal component projections and clustering algorithms. Feature prioritization experiments are performed to identify the most influential parameters in the prediction of flow rates. Model comparison is done using the mean absolute error, mean squared error and coefficient of determination. The results indicate that the CNN-LSTM network architecture is particularly effective in time series analysis for ESP sensor data, as the 1D-CNN layers are capable of extracting features and generating informative representations of time series data automatically. Subsequently, the study presented herein a methodology for implementing predictive maintenance on artificial lift systems, specifically regarding the maintenance of Electrical Submersible Pumps (ESPs). Conventional maintenance practices for ESPs require extensive resources and manpower and are often initiated through reactive monitoring of multivariate sensor data. To address this issue, the study employs the use of principal component analysis (PCA) and extreme gradient boosting trees (XGBoost) to analyze real-time sensor data and predict potential failures in ESPs. PCA is utilized as an unsupervised technique and its output is further processed by the XGBoost model for prediction of system status. The resulting predictive model has been shown to provide signals of potential failures up to seven days in advance, with an F1 score greater than 0.71 on the test set. In addition to the data-driven modeling approach, The present study also in- corporates model-free reinforcement learning (RL) algorithms to aid in decision-making in production optimization. The task of determining the optimal injection strategy poses challenges due to the complexity of the underlying dynamics, including nonlinear formulation, temporal variations, and reservoir heterogeneity. To tackle these challenges, the problem was reformulated as a Markov decision process and RL algorithms were employed to determine actions that maximize production yield. The results of the study demonstrate that the RL agent was able to significantly enhance the net present value (NPV) by continuously interacting with the environment and iteratively refining the dynamic process through multiple episodes. This showcases the potential for RL algorithms to provide effective and efficient solutions for complex optimization problems in the production domain. In conclusion, this study represents an original contribution to the field of data-driven applications in subsurface energy systems. It proposes a data-driven method for determining multi-phase flow rates in electrical submersible pumped (ESP) wells utilizing sensor measurements. The methodology includes conducting exploratory data analysis, conducting experiments to prioritize features, and evaluating models based on mean absolute error, mean squared error, and coefficient of determination. The findings indicate that a convolutional neural network-long short-term memory (CNN-LSTM) network is an effective approach for time series analysis in ESPs. In addition, the study implements principal component analysis (PCA) and extreme gradient boosting trees (XGBoost) to perform predictive maintenance on ESPs and anticipate potential failures up to a seven-day horizon. Furthermore, the study applies model-free reinforcement learning (RL) algorithms to aid decision-making in production optimization and enhance net present value (NPV)

    Reliability assessment of nuclear power plant fault-diagnostic systems using artificial neural networks

    Get PDF
    The assurance of the diagnosis obtained from a nuclear power plant (NPP) fault-diagnostic advisor based on artificial neural networks (ANNs) is essential for the practical implementation of the advisor to transient detection and identification. The objectives of this study are to develop a validation and verification technique suitable for ANNs and apply it to the fault-diagnostic advisor. The validation and verification is realized by estimating error bounds on the advisor\u27s diagnoses. The two different partition criteria are developed to create computationally effective partitions for generating the error information associated with the advisor performance. The bootstap partition criterion (BPC) and the modified bootstap partition criterion (MBPC) can alleviate the computational requirements significantly. In addition, a new error-bound prediction scheme called error estimation by series association (EESA) is constructed not only to infer error-bounds but also to alleviate the training complexity of an error predictor neural network. The EESA scheme is applied to validate the outputs of the ANNs modeled for a simple nonlinear mapping and more complicated NPP fault-diagnostic problems. Two independent sets of data simulated at San Onofre Nuclear Generating Station, a pressurized water reactor, and Duane Arnold Energy Center, a boiling water reactor, are used to design the fault-diagnostic advisor systems and to perform the reliability assessment of the advisor systems. The results of this research show that the fault-diagnostic systems developed using ANNs with EESA are effective at producing proper diagnoses with predicted error even when degraded by noise. In general, EESA can also be used to verify an ANN system by indicating that the ANN system requires training on more data in order to increase generalization. The EESA scheme developed in this study can be implemented to any ANN system regardless of ANN learning paradigm

    A review on predictive maintenance technique for nuclear reactor cooling system using machine learning and augmented reality

    Get PDF
    Reactor TRIGA PUSPATI (RTP) is the only research nuclear reactor in Malaysia. Maintenance of RTP is crucial which affects its safety and reliability. Currently, RTP maintenance strategies used corrective and preventative which involved many sensors and equipment conditions. The existing preventive maintenance method takes a longer time to complete the entire system’s maintenance inspection. This study has investigated new predictive maintenance techniques for developing RTP predictive maintenance for primary cooling systems using machine learning (ML) and augmented reality (AR). Fifty papers from recent referred publications in the nuclear areas were reviewed and compared. Detailed comparison of ML techniques, parameters involved in the coolant system and AR design techniques were done. Multiclass support vector machines (SVMs), artificial neural network (ANN), long short-term memory (LSTM), feed forward back propagation (FFBP), graph neural networks-feed forward back propagation (GNN-FFBP) and ANN were used for the machine learning techniques for the nuclear reactor. Temperature, water flow, and water pressure were crucial parameters used in monitoring a nuclear reactor. Image marker-based techniques were mainly used by smart glass view and handheld devices. A switch knob with handle switch, pipe valve and machine feature were used for object detection in AR markerless technique. This study is significant and found seven recent papers closely related to the development of predictive maintenance for a research nuclear reactor in Malaysia

    Machine learning approach for predictive maintenance of the electrical submersible pumps (ESPs)

    Get PDF
    Electrical submersible pumps (ESPs) are considered the second-most widely used artificial lift method in the petroleum industry. As with any pumping artificial lift method, ESPs exhibit failures. The maintenance of ESPs expends a lot of resources, and manpower and is usually triggered and accompanied by the reactive process monitoring of multivariate sensor data. This paper presents a methodology to deploy the principal component analysis and extreme gradient boosting trees (XGBoosting) in predictive maintenance in order to analyze real-time sensor data to predict failures in ESPs. The system contributes to an efficiency increase by reducing the time required to dismantle the pumping system, inspect it, and perform failure analysis. This objective is achieved by applying the principal component analysis as an unsupervised technique; then, its output is pipelined with an XGBoosting model for further prediction of the system status. In comparison to traditional approaches that have been utilized for the diagnosis of ESPs, the proposed model is able to identify deeper functional relationships and longer-term trends inferred from historical data. The novel workflow with the predictive model can provide signals 7 days before the actual failure event, with an F1-score more than 0.71 on the test set. Increasing production efficiencies through the proactive identification of failure events and the avoidance of deferment losses can be accomplished by means of the real-time alarming system presented in this work

    Multi-fuel operation of modern engines; on board fuel identification

    Get PDF
    Modern engines require enhancement of electronic controls to achieve better fuel economy, higher power density and satisfactory emissions levels while operating safely. Military vehicles should be capable to run safely and efficiently on any fuel available in the field, therefore on-board fuel identification and adaptation of engine controls to the type of fuel becomes extremely important. In these conditions, the use of an inexpensive, nonintrusive sensor is highly desirable. The development of a technique based on the measurement of the instantaneous crankshaft speed and engine dynamics could be a convenient solution. Several such methods have been elaborated at the Center for Automotive Research (CAR) in the Mechanical Engineering Department at Wayne State University. Each of these methods yields plausible results regarding on-board fuel identification

    Towards Sustainable and Intelligent Machining:Energy Footprint and Tool Condition Monitoring for Media-Assisted Processes

    Get PDF
    Reducing energy consumption is a necessity towards achieving the goal of net-zero manufacturing. In this paper, the overall energy footprint of machining Ti-6Al-4V using various cooling/lubrication methods is investigated taking the embodied energy of cutting tools and cutting fluids into account. Previous studies concentrated on reducing the energy consumption associated with the machine tool and cutting fluids. However, the investigations in this study show the significance of the embodied energy of cutting tool. New cooling/lubrication methods such as WS2-oil suspension can reduce the energy footprint of machining through extending tool life. Cutting tools are commonly replaced early before reaching their end of useful life to prevent damage to the workpiece, effectively wasting a portion of the embodied energy in cutting tools. A deep learning method is trained and validated to identify when a tool change is required based on sensor signals from a wireless sensory toolholder. The results indicated that the network is capable of classifying over 90% of the tools correctly. This enables capitalising on the entirety of a tool’s useful life before replacing the tool and thus reducing the overall energy footprint of machining processes
    • 

    corecore