141 research outputs found

    Automated sleep classification using the new sleep stage standards

    Get PDF
    Sleep is fundamental for physical health and good quality of life, and clinicians and researchers have long debated how best to understand it. Manual approaches to sleep classification have been in use for over 40 years, and in 2007, the American Academy of Sleep Medicine (AASM) published a new sleep scoring manual. Over the years, many attempts have been made to introduce and validate machine learning and automated classification techniques in the sleep research field, with the goals of improving consistency and reliability. This thesis explored and assessed the use of automated classification systems with the updated sleep stage definitions and scoring rules using neuro-fuzzy system (NFS) and support vector machine (SVM) methodology. For both the NFS and SVM classification techniques, the overall percent correct was approximately 65%, with sensitivity and specificity rates around 80% and 95%, respectively. The overall Kappa scores, one means for evaluating system reliability, were approximately 0.57 for both the NFS and SVM, indicating moderate agreement that is not accidental. Stage 3 sleep was detected with an 87-89% success rate. The results presented in this thesis show that the use of NFS and SVM methods for classifying sleep stages is possible using the new AASM guidelines. While the current work supports and confirms the use of these classification techniques within the research community, the results did not indicate a significant difference in the accuracy of either approach-nor a difference in one over the other. The results suggest that the important clinical stage 3 (slow wave sleep) can be accurately scored with these classifiers; however, the techniques used here would need more investigation and optimization prior to serious use in clinical applications

    Usefulness of Artificial Neural Networks in the Diagnosis and Treatment of Sleep Apnea-Hypopnea Syndrome

    Get PDF
    Sleep apnea-hypopnea syndrome (SAHS) is a chronic and highly prevalent disease considered a major health problem in industrialized countries. The gold standard diagnostic methodology is in-laboratory nocturnal polysomnography (PSG), which is complex, costly, and time consuming. In order to overcome these limitations, novel and simplified diagnostic alternatives are demanded. Sleep scientists carried out an exhaustive research during the last decades focused on the design of automated expert systems derived from artificial intelligence able to help sleep specialists in their daily practice. Among automated pattern recognition techniques, artificial neural networks (ANNs) have demonstrated to be efficient and accurate algorithms in order to implement computer-aided diagnosis systems aimed at assisting physicians in the management of SAHS. In this regard, several applications of ANNs have been developed, such as classification of patients suspected of suffering from SAHS, apnea-hypopnea index (AHI) prediction, detection and quantification of respiratory events, apneic events classification, automated sleep staging and arousal detection, alertness monitoring systems, and airflow pressure optimization in positive airway pressure (PAP) devices to fit patients’ needs. In the present research, current applications of ANNs in the framework of SAHS management are thoroughly reviewed

    Low-complexity algorithms for automatic detection of sleep stages and events for use in wearable EEG systems

    Get PDF
    Objective: Diagnosis of sleep disorders is an expensive procedure that requires performing a sleep study, known as polysomnography (PSG), in a controlled environment. This study monitors the neural, eye and muscle activity of a patient using electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) signals which are then scored in to different sleep stages. Home PSG is often cited as an alternative of clinical PSG to make it more accessible, however it still requires patients to use a cumbersome system with multiple recording channels that need to be precisely placed. This thesis proposes a wearable sleep staging system using a single channel of EEG. For realisation of such a system, this thesis presents novel features for REM sleep detection from EEG (normally detected using EMG/EOG), a low-complexity automatic sleep staging algorithm using a single EEG channel and its complete integrated circuit implementation. Methods: The difference between Spectral Edge Frequencies (SEF) at 95% and 50% in the 8-16 Hz frequency band is shown to have high discriminatory ability for detecting REM sleep stages. This feature, together with other spectral features from single-channel EEG are used with a set of decision trees controlled by a state machine for classification. The hardware for the complete algorithm is designed using low-power techniques and implemented on chip using 0.18μm process node technology. Results: The use of SEF features from one channel of EEG resulted in 83% of REM sleep epochs being correctly detected. The automatic sleep staging algorithm, based on contextually aware decision trees, resulted in an accuracy of up to 79% on a large dataset. Its hardware implementation, which is also the very first complete circuit level implementation of any sleep staging algorithm, resulted in an accuracy of 98.7% with great potential for use in fully wearable sleep systems.Open Acces

    Sleep Stage Classification: A Deep Learning Approach

    Get PDF
    Sleep occupies significant part of human life. The diagnoses of sleep related disorders are of great importance. To record specific physical and electrical activities of the brain and body, a multi-parameter test, called polysomnography (PSG), is normally used. The visual process of sleep stage classification is time consuming, subjective and costly. To improve the accuracy and efficiency of the sleep stage classification, automatic classification algorithms were developed. In this research work, we focused on pre-processing (filtering boundaries and de-noising algorithms) and classification steps of automatic sleep stage classification. The main motivation for this work was to develop a pre-processing and classification framework to clean the input EEG signal without manipulating the original data thus enhancing the learning stage of deep learning classifiers. For pre-processing EEG signals, a lossless adaptive artefact removal method was proposed. Rather than other works that used artificial noise, we used real EEG data contaminated with EOG and EMG for evaluating the proposed method. The proposed adaptive algorithm led to a significant enhancement in the overall classification accuracy. In the classification area, we evaluated the performance of the most common sleep stage classifiers using a comprehensive set of features extracted from PSG signals. Considering the challenges and limitations of conventional methods, we proposed two deep learning-based methods for classification of sleep stages based on Stacked Sparse AutoEncoder (SSAE) and Convolutional Neural Network (CNN). The proposed methods performed more efficiently by eliminating the need for conventional feature selection and feature extraction steps respectively. Moreover, although our systems were trained with lower number of samples compared to the similar studies, they were able to achieve state of art accuracy and higher overall sensitivity

    EEG sleep stages identification based on weighted undirected complex networks

    Get PDF
    Sleep scoring is important in sleep research because any errors in the scoring of the patient's sleep electroencephalography (EEG) recordings can cause serious problems such as incorrect diagnosis, medication errors, and misinterpretations of patient's EEG recordings. The aim of this research is to develop a new automatic method for EEG sleep stages classification based on a statistical model and weighted brain networks. Methods each EEG segment is partitioned into a number of blocks using a sliding window technique. A set of statistical features are extracted from each block. As a result, a vector of features is obtained to represent each EEG segment. Then, the vector of features is mapped into a weighted undirected network. Different structural and spectral attributes of the networks are extracted and forwarded to a least square support vector machine (LS-SVM) classifier. At the same time the network's attributes are also thoroughly investigated. It is found that the network's characteristics vary with their sleep stages. Each sleep stage is best represented using the key features of their networks. Results In this paper, the proposed method is evaluated using two datasets acquired from different channels of EEG (Pz-Oz and C3-A2) according to the R&K and the AASM without pre-processing the original EEG data. The obtained results by the LS-SVM are compared with those by Naïve, k-nearest and a multi-class-SVM. The proposed method is also compared with other benchmark sleep stages classification methods. The comparison results demonstrate that the proposed method has an advantage in scoring sleep stages based on single channel EEG signals. Conclusions An average accuracy of 96.74% is obtained with the C3-A2 channel according to the AASM standard, and 96% with the Pz-Oz channel based on the R&K standard

    A role for spindles in the onset of rapid eye movement sleep.

    Get PDF
    Sleep spindle generation classically relies on an interplay between the thalamic reticular nucleus (TRN), thalamo-cortical (TC) relay cells and cortico-thalamic (CT) feedback during non-rapid eye movement (NREM) sleep. Spindles are hypothesized to stabilize sleep, gate sensory processing and consolidate memory. However, the contribution of non-sensory thalamic nuclei in spindle generation and the role of spindles in sleep-state regulation remain unclear. Using multisite thalamic and cortical LFP/unit recordings in freely behaving mice, we show that spike-field coupling within centromedial and anterodorsal (AD) thalamic nuclei is as strong as for TRN during detected spindles. We found that spindle rate significantly increases before the onset of rapid eye movement (REM) sleep, but not wakefulness. The latter observation is consistent with our finding that enhancing spontaneous activity of TRN cells or TRN-AD projections using optogenetics increase spindle rate and transitions to REM sleep. Together, our results extend the classical TRN-TC-CT spindle pathway to include non-sensory thalamic nuclei and implicate spindles in the onset of REM sleep

    Use of Telemetric EEG in Brain Injury

    Get PDF

    Automation of Sleep Staging

    Get PDF
    This thesis primarily covers the automation problem for sleep versus awake detection, which is sometimes accomplished by differentiating the various sleep stages prior to clustering. This thesis documents various experimentation into areas where the performance can be improved, including classifer design and feature selection from EEG, EOG and Context. In terms of classifers, it was found that the neural network MLP outperforms the continuous Hidden Markov Model with an accuracy of 91.91%, and additional performance requires better feature sets and more training data. Improved EEG features based on time frequency representation were optimized to differentiate Awake with 93.52% sensitivity and 94.60% specificity, differentiate REM with 96.12% sensitivity and 93.63% specificity, differentiate Stages II and III with 96.81% sensitivity and 89.28% specificity, and differentiate Stages III and IV with 93.60% sensitivity and 90.43% specificity. Due to the limited data set, an example of applying contextual information using a One-Cycle-Duo-Direction model was built and shown to improve EEG features by up to 10%. This level of performance is comparable if not superior to the human scorer accuracy of 88% to 94%. This thesis improved some aspects of sleep staging automation, but due to the limitations on resources, the full potential of these improvements could not be demonstrated. To further develop these improvements, additional data sets customized by sleep staging experts is crucial

    Towards Automating Sleep Stage Scoring to Diagnose Sleep Disorders

    Get PDF
    Overnight polysomnography (PSG) is an important tool used to characterize sleep and the gold standard procedure for diagnosing many sleep disorders. PSG is a non-invasive procedure that collects various physiological data, such as EEG, EMG, EOG and ECG signals. The data is then scored in a subjective, laborious and time-consuming process by sleep specialists who assign a sleep stage to every 30-second window of the data according to predefined scoring rules by the American Academy of Sleep Medicine (AASM). Finally, clinicians make a diagnosis based on this annotated data. Consequently, the current process is heavily dependent upon human factors, which can result in poor agreement between expert scorers, but inter-scorer reliability has been found to be only around 82%. In this study we developed an automatic sleep stage scoring method, using a likelihood ratio decision tree classifier, with the goal of improving the speed, reliability, accuracy and cost efficiency of the current PSG scoring process. The algorithm was developed using the AASM Manual for Scoring Sleep. We extracted features from various physiological recordings of the PSG, based on the predefined rules of the AASM Manual. The features were computed for each 30-second epoch, in either the time or the frequency domain. The most useful features were selected by looking at probability distributions for each metric conditioned on the sleep stage, and identifying the features giving the greatest separation between stages. Examples of meaningful features include the power in different frequency bands of EEG signals, EMG energy per epoch, and number of spindles per epoch, to mention a few. These features were then used as inputs to the classifier which assigned each epoch one of five possible stages:; N3, N2, N1, REM or Wake. The automatic scoring was trained and tested on PSG data from 39 healthy individuals (age range: 24.2±3.1 years) with no sleep disturbances. The overall scoring accuracy was 76.97% on the test set. Some of the stages, such as stage N2, have more distinctive characteristics and thus yielded a higher per-stage scoring accuracy, whereas the other stages, for example stages N1 and REM, got confused more easily, resulting in lower per-stage accuracies. As expected, most misclassifications occurred between adjacent sleep stages. Although this accuracy may at first seem low, it is likely that the stages that the tool classified inaccurately may be sleep stages that contribute to inter-scorer reliability. Therefore, we see this tool as assisting sleep scorers to enhance efficiency with the further goal of eventually improving inter-scorer reliability. Sleep stage scoring provides an important basis for diagnosis of sleep disorders in general. However, the detection of sleep disturbances is very costly and time-consuming, and relies on subjective measures. Automating the scoring process improves the efficiency and consistency of scoring procedures and offers a way to diagnose sleeping disorders in a more robust, quantitative manner
    corecore