14 research outputs found

    Artificial intelligence to enhance aerodynamic shape optimisation of the Aegis UAV

    Get PDF
    This article presents an optimisation framework that uses stochastic multi-objective optimisation, combined with an Artificial Neural Network (ANN), and describes its application to the aerodynamic design of aircraft shapes. The framework uses the Multi-Objective Particle Swarm Optimisation (MOPSO) algorithm and the obtained results confirm that the proposed technique provides highly optimal solutions in less computational time than other approaches to the same design problem. The main idea was to focus computational effort on worthwhile design solutions rather than exploring and evaluating all possible solutions in the design space. It is shown that the number of valid solutions obtained using ANN-MOPSO compared to MOPSO for 3000 evaluations grew from 529 to 1006 (90% improvement) with a penalty of only 8.3% (11 min) in computational time. It is demonstrated that including an ANN, the ANN-MOPSO with 3000 evaluations produced a larger number of valid solutions than the MOPSO with 5500 evaluations, and in 33% less computational time (64 min). This is taken as confirmation of the potential power of ANNs when applied to this type of design problem

    Modelling and aerodynamic design of optimisation of the twin-boom aegis UAV.

    Get PDF
    The aircraft industry gives considerable attention to computational optimisation tools in order to enhance the design process and product quality in terms of efficiency and performance, respectively. In reality, most real-world applications contain many complicating factors and constraints that affect system behaviour. Consequently, finding optimal solutions, or even only those viable for a given design problem, in an economical computational time is a difficult task, even with the availability of superfast computers. Thus, it is important to optimise the use of available computational resources. This research project presents a method for using stochastic multi-objective optimisation approaches combined with Artificial Intelligence and Interactive Design techniques to support the decision-making process. The improved ability of the developed methods to accelerate the search while retaining all the useful information in the design space was the main area of work. Both the efficiency and reliability of the proposed methodology have been demonstrated through the aerodynamic design of the Aegis-UAV. Initially, the optimisation platform Nimrod/O was deployed to enable the designer to manipulate and better understand different design scenarios. This happened before any commitment to a specific design architecture to allow for a wider exploration of the design space before a decision was made for a more detailed study of the problem. This had the potential to improve the quality of the product and reduce the design cycle time. The optimisation was performed using the Multi-Objective Tabu Search (MOTS) algorithm, chosen for its suitability for this type of complex aerodynamic design problem. Prior to the optimisation process, a parametric study was performed using the Sweep Method (SM) to explore the design space and identify design limitations. Analysis and investigation of the SM results were used to help determine the formulation of the design problem. SM was chosen because it has been proven to be reliable, effective, and able to provide a large amount of structured information about the design problem to the decision maker (DM) at this stage. Next, since most decisions of a DM in practical applications concern regions of the Pareto front, an interactive optimisation framework was proposed where the DM was involved with the optimisation process in real time. The framework used the Multi-Objective Particle Swarm Optimisation (MOPSO) algorithm for its suitability to this type of design problem. The results obtained confirmed the ability of the DM to use its preferences effectively, to steer the search to the Region of Interest (ROI) without degrading the aerodynamic performance of the optimised configurations. Even using only half the evaluations, the DM was able to obtain results similar to, or better than those obtained by the non-interactive use of MOTS and MOPSO. Furthermore, it was possible for the DM to stop the search at any iteration, which is not possible in non-interactive approaches even though the solutions do not converge or may be infeasible. Finally an Artificial Neural Network (ANN) was introduced to guide the MOPSO algorithm in deciding whether the trial solution was worthy of full evaluation, or not. The results obtained showed the success of the ANN in recognising non-valid particles. Consequently, the solver avoided wasting computational efforts on non-worthwhile particles. The optimisation process provides particles that are more valid for almost the same computational time. Demonstrating the algorithm’s effectiveness was done by comparing results of the ANN-MOPSO solutions with those obtained by the other approaches for the same design problems. In conclusion, future avenues of research have been identified and presented in the final chapter of the thesis.PhD in Aerospac

    The interactive design approach for aerodynamic shape design optimisation of the Aegis UAV

    Get PDF
    In this work, an interactive optimisation framework—a combination of a low fidelity flow solver, Athena Vortex Lattice (AVL), and an interactive Multi-Objective Particle Swarm Optimisation (MOPSO)—is proposed for aerodynamic shape design optimisation of any aerial vehicle platform. This paper demonstrates the benefits of interactive optimisation—reduction of computational time with high optimality levels. Progress towards the most preferred solutions is made by having the Decision Maker (DM) periodically provide preference information once the MOPSO iterations are underway. By involving the DM within the optimisation process, the search is directed to the region of interest, which accelerates the process. The flexibility and eciency of undertaking optimisation interactively have been demonstrated by comparing the interactive results with the non-interactive results of an optimum design case obtained using Multi-Objective Tabu Search (MOTS) for the Aegis UAV. The obtained results show the superiority of using an interactive approach for the aerodynamic shape design, compared to posteriori approaches. By carrying out the optimisation using interactive MOPSO it was shown to be possible to obtain similar results to non-interactive MOTS with only half the evaluations. Moreover, much of the usual complexity of post-data-analysis with posteriori approaches is avoided, since the DM is involved in the search process

    Machine Learning in Aerodynamic Shape Optimization

    Get PDF
    Machine learning (ML) has been increasingly used to aid aerodynamic shape optimization (ASO), thanks to the availability of aerodynamic data and continued developments in deep learning. We review the applications of ML in ASO to date and provide a perspective on the state-of-the-art and future directions. We first introduce conventional ASO and current challenges. Next, we introduce ML fundamentals and detail ML algorithms that have been successful in ASO. Then, we review ML applications to ASO addressing three aspects: compact geometric design space, fast aerodynamic analysis, and efficient optimization architecture. In addition to providing a comprehensive summary of the research, we comment on the practicality and effectiveness of the developed methods. We show how cutting-edge ML approaches can benefit ASO and address challenging demands, such as interactive design optimization. Practical large-scale design optimizations remain a challenge because of the high cost of ML training. Further research on coupling ML model construction with prior experience and knowledge, such as physics-informed ML, is recommended to solve large-scale ASO problems

    Social work with airports passengers

    Get PDF
    Social work at the airport is in to offer to passengers social services. The main methodological position is that people are under stress, which characterized by a particular set of characteristics in appearance and behavior. In such circumstances passenger attracts in his actions some attention. Only person whom he trusts can help him with the documents or psychologically

    Aeronautical engineering: A continuing bibliography with indexes (supplement 257)

    Get PDF
    This bibliography lists 560 reports, articles, and other documents introduced into the NASA scientific and technical information system in September 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Air Traffic Management Abbreviation Compendium

    Get PDF
    As in all fields of work, an unmanageable number of abbreviations are used today in aviation for terms, definitions, commands, standards and technical descriptions. This applies in general to the areas of aeronautical communication, navigation and surveillance, cockpit and air traffic control working positions, passenger and cargo transport, and all other areas of flight planning, organization and guidance. In addition, many abbreviations are used more than once or have different meanings in different languages. In order to obtain an overview of the most common abbreviations used in air traffic management, organizations like EUROCONTROL, FAA, DWD and DLR have published lists of abbreviations in the past, which have also been enclosed in this document. In addition, abbreviations from some larger international projects related to aviation have been included to provide users with a directory as complete as possible. This means that the second edition of the Air Traffic Management Abbreviation Compendium includes now around 16,500 abbreviations and acronyms from the field of aviation
    corecore