131,654 research outputs found

    Multi-level agent-based modeling - A literature survey

    Full text link
    During last decade, multi-level agent-based modeling has received significant and dramatically increasing interest. In this article we present a comprehensive and structured review of literature on the subject. We present the main theoretical contributions and application domains of this concept, with an emphasis on social, flow, biological and biomedical models.Comment: v2. Ref 102 added. v3-4 Many refs and text added v5-6 bibliographic statistics updated. v7 Change of the name of the paper to reflect what it became, many refs and text added, bibliographic statistics update

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Bounded Rationality and Heuristics in Humans and in Artificial Cognitive Systems

    Get PDF
    In this paper I will present an analysis of the impact that the notion of “bounded rationality”, introduced by Herbert Simon in his book “Administrative Behavior”, produced in the field of Artificial Intelligence (AI). In particular, by focusing on the field of Automated Decision Making (ADM), I will show how the introduction of the cognitive dimension into the study of choice of a rational (natural) agent, indirectly determined - in the AI field - the development of a line of research aiming at the realisation of artificial systems whose decisions are based on the adoption of powerful shortcut strategies (known as heuristics) based on “satisficing” - i.e. non optimal - solutions to problem solving. I will show how the “heuristic approach” to problem solving allowed, in AI, to face problems of combinatorial complexity in real-life situations and still represents an important strategy for the design and implementation of intelligent systems

    Application of Artificial Intelligence in Transportation Demand Management: Development and Implementation of E-sutra

    Full text link
    Allowing traffic to grow to a level at which there is extensive and regular congestion is economically inefficient. Although the construction of additional roads can alleviate some of the effects of congestion, the benefits may be counterbalanced unless the growth in traffic volumes can be restrained. Therefore, another alternative is by implementing Transportation Demand Management (TDM), which means people still travel but at the same time the private car USAge is reduced. This paper presents the development of an expert system for sustainable transportation (E-SUTRA) through implementation of TDM. The overall result of 69% accuracy indicates the high possibility of the E-SUTRA system to be used as an advisory tool for sustainable transportation through TDM

    A Hybrid Reasoning Model for “Whole and Part” Cardinal Direction Relations

    Get PDF
    We have shown how the nine tiles in the projection-based model for cardinal directions can be partitioned into sets based on horizontal and vertical constraints (called Horizontal and Vertical Constraints Model) in our previous papers (Kor and Bennett, 2003 and 2010). In order to come up with an expressive hybrid model for direction relations between two-dimensional single-piece regions (without holes), we integrate the well-known RCC-8 model with the above-mentioned model. From this expressive hybrid model, we derive 8 basic binary relations and 13 feasible as well as jointly exhaustive relations for the x- and y-directions, respectively. Based on these basic binary relations, we derive two separate composition tables for both the expressive and weak direction relations. We introduce a formula that can be used for the computation of the composition of expressive and weak direction relations between “whole or part” regions. Lastly, we also show how the expressive hybrid model can be used to make several existential inferences that are not possible for existing models
    corecore