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We have shown how the nine tiles in the projection-based model for cardinal directions can be partitioned into sets based on
horizontal and vertical constraints (called Horizontal and Vertical Constraints Model) in our previous papers (Kor and Bennett,
2003 and 2010). In order to come up with an expressive hybrid model for direction relations between two-dimensional single-
piece regions (without holes), we integrate the well-known RCC-8 model with the above-mentioned model. From this expressive
hybrid model, we derive 8 basic binary relations and 13 feasible as well as jointly exhaustive relations for the x- and y-directions,
respectively. Based on these basic binary relations, we derive two separate 8 × 8 composition tables for both the expressive and
weak direction relations. We introduce a formula that can be used for the computation of the composition of expressive and weak
direction relations between “whole or part” regions. Lastly, we also show how the expressive hybrid model can be used to make
several existential inferences that are not possible for existing models.

1. Introduction

Relative positions of regions in large-scale spaces, and partic-
ularly in the geographic domain, are often described by rela-
tions referring to cardinal directions. These relations specify
the direction from one region to another in terms of the
familiar compass bearings: north, south, east, and west. The
intermediate directions northwest, northeast, southwest, and
southeast are also often used. Somemodels for reasoningwith
cardinal directions are the cone-shaped [1, 2], projection-
based models (ibid), and direction matrix [3–5].

Papadias and Theodoridis [6] describe topological and
direction relations between regions using their minimum
bounding rectangles (MBRs). However, the language used
is not expressive enough to describe direction relations.
Additionally, the MBR technique yields erroneous outcome
when involving regions that are not rectangular in shape [4]
Somework has been done on hybrid directionmodels. Escrig
and Toledo [7] and Clementini et al. [8] integrated qualitative

orientation and distance to obtain positional information.
Isli [9] combined Frank’s [1, 2] cardinal direction relations
model and Freksa’s [10] orientation model to facilitate a more
expressive reasoning mechanism. Sharma and Flewelling
[11] infer spatial relations from integrated topological and
cardinal direction relations. Liu and colleagues [12] have
developed reasoning algorithms which combine RCC-8 [13]
for topological relations (discussed in Section 4) and the car-
dinal direction calculus (CDC [3–5], discussed in Section 2)
for direction relations. Li and colleagues’ work [14, 15]
focuses on the development and evaluation of an efficient
reasoningmechanism for RCC-8 andRA (Rectangle Algebra,
and further explanation can be found in [16, 17]) which is
employed to solve the satisfiability problem of these two joint
constraint networks.

Typically, composition tables are used to infer spatial
relations between objects. They have been employed to make
different inferences about cardinal directions relations [3, 19–
24]. One of the advantages of composition tables is that they
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Figure 2: Cardinal directions defined by half-planes.

can lead to tractable computation of inferences [25]. In this
paper, we have developed an expressive hybrid model for
direction relations. We will describe the binary relations in
themodel and define “whole and part” relations. Based on this
model, we derive two 8 × 8 composition tables for expressive
andweakdirection relations.This is followed by introducing a
formula which could be used to compute both expressive and
weak direction relations for “whole and part” regions. Finally,
we will demonstrate how the model could be used to make
several types of existential inferences.

2. Cardinal Direction Models

Frank [1, 2] defines cardinal directions as cones which
are related to the angular direction between an observer’s
position (in the form of a point) and a destination point.
The cone-shaped cardinal direction model could have 4, 8,
or more partitions (look at Figure 1).

Frank defines the four major cardinal directions (north,
south, east, and west) as pair-wise opposites and half planes.
When the two sets of half planes are combined, it yields
four intermediate cardinal directions (northeast, northwest,
southeast, and southwest) which are depicted in Figure 2.
Ligozat [21] applies the model to points in a two-dimensional
space.Thus, the referent object, Point B, will be given the four
major directions. However, the relations between two objects
will be denoted by one of the following basic relations: N, S,
E, W, NE, NW, SE, SW, or EQ.
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Figure 3: Cardinal directions defined by tiles for extended objects
[1, 2].

Frank [1, 2] extends the half-planes to tiles for regions (as
shown in Figure 3). In this projection-basedmodel, the plane
of an arbitrary single-piece region a is partitioned into nine
tiles, North-West, NW(a); North, N(a); North-East, NE(a);
South-West, SW(a); South, S(a); South-East, SE(a); West,
W(a); Neutral Zone, O(a); East, E(a). According to Frank,
the O tile is considered a neutral zone, because in this tile,
the relative cardinal direction between two regions cannot be
determined due to their proximity.

Frank compares and contrasts reasoning with the cone-
shaped and the projection-based models for cardinal direc-
tions.The reasoning capability for both the systems is limited
and weak though they do not differ substantially in their
reasoning outcomes. In order to create a more expressive rea-
soningmodel, Isli [26] integrates the Frank’s cone-shaped and
projection-basedmodels to facilitate reasoning about relative
position of points of the 2-dimensional space. This hybrid
model is well suited for applications of large-scale high-level
vision, such as, for example, satellite-like surveillance of a
geographic area.

The cardinal direction calculus (CDC) [3–5] is a very
expressive qualitative calculus for directional information of
extended objects. A direction relation matrix (DRM) in (1)
is used to represent direction relations between connected
plane regions. Liu and colleagues [27, 28] have shown that
consistency checking of complete networks of basic CDC
constraints is tractable, while reasoningwith the CDC in gen-
eral is NP hard. However, if some constraints are unspecified,
then consistency checking of incomplete networks of basic
CDC constraints is intractable.

The cardinal direction of a target object (region b) to a
referent object (region a) as shown in Figure 4 is described by
recording those tiles covered by the target object. According
to Goyal and Egenhofer [4], a 3 × 3 matrix is employed
to register the intersections between the target object and
the tiles of the referent object (see (1)). The elements in
the direction-relation matrix correspond to the tiles of the
referent object, region a (in Figure 4).

In (1), the symbol 0 represents empty tile while ¬0

represents nonempty tile. These are used to describe cardinal
directions at a coarse granularity level. In Figure 4, region 𝑏

occupies the N, NW, and E tiles of region 𝑎. Thus, these three



Advances in Artificial Intelligence 3

Region 𝑏

Region

NE( )

SE( )SW( ) S( )

W( )

N( )

E( )O( )

NW(𝑎

𝑎

𝑎 𝑎

𝑎 𝑎

𝑎
𝑎
𝑎

𝑎

)

Figure 4: Nine tiles with regions 𝑎 (as the referent object) and 𝑏 (as
the target object) [4, 5].
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Figure 5: Horizontal and vertical sets of tiles for a.

tiles are considered nonempty while the rest are considered
empty (as shown in (1)).

Goyal and Egenhofer [5] extend the direction relation
matrix, so that it will be more expressive. Instead of using
the empty and nonempty notations, it registers how much
(in terms of proportion) the target region occupies each tile
(see (2)). The expressive direction relation matrix in (2) has
6 elements of zero and three nonzero elements which sum
up to 1.0. If the matrix has only one nonzero element then it
is known as a single element direction relation matrix while
a matrix with more than one nonzero element is called a
multielement direction relation matrix (ibid).

Coarse direction relation matrix [4]:

dir
𝑅𝑅 (𝑎, 𝑏) = (

NW(𝑎) ∩ 𝑏 N(𝑎) ∩ 𝑏 NE(𝑎) ∩ 𝑏
W(𝑎) ∩ 𝑏 O(𝑎) ∩ 𝑏 E(𝑎) ∩ 𝑏
SW(𝑎) ∩ 𝑏 S(𝑎) ∩ 𝑏 SE(𝑎) ∩ 𝑏

) ,

dir
𝑅𝑅 (𝑎, 𝑏) = (

0 ¬0 ¬0

0 0 ¬0

0 0 0

) .

(1)

Expressive direction relation matrix [5]:

dir𝑅𝑅 (𝑎, 𝑏)

=
(
(

(

area (NW(𝑎) ∩ 𝑏)
area of 𝑏

area (N(𝑎) ∩ 𝑏)
area of 𝑏

area (NE(𝑎) ∩ 𝑏)
area of 𝑏

area (W(𝑎) ∩ 𝑏)
area of 𝑏

area (O(𝑎) ∩ 𝑏)
area of 𝑏

area (E(𝑎) ∩ 𝑏)
area of 𝑏

area (SW(𝑎) ∩ 𝑏)
area of 𝑏

area (S(𝑎) ∩ 𝑏)
area of 𝑏

area (SE(𝑎) ∩ 𝑏)
area of 𝑏

)
)

)

,

dir
𝑅𝑅 (𝑎, 𝑏) = (

0 0.05 0.45

0 0 0.50

0 0 0

) .

(2)

3. Horizontal and Vertical Constraints Model

Every region has a minimal bounding box with specific
minimum and maximum 𝑥 (and 𝑦) values. The boundaries
of the minimal bounding box of a region 𝑎 are depicted in
Figure 5. The set of boundaries of the minimal bounding
box for region 𝑎 could be represented as {𝑋min(𝑎), 𝑋max(𝑎),
𝑌min(𝑎),𝑌max(𝑎)}, and these values will be employed to define
each tile.

The definition of the nine tiles in terms of the boundaries
of the minimal bounding box is listed as below. Note, in this
paper, all the tiles are regarded as mutually exclusive. Thus
neighboring tiles cannot share common boundaries:

(i) N(𝑎) ≡ {⟨𝑥, 𝑦⟩ |𝑋min(𝑎)≤ 𝑥<𝑋max(𝑎) ∧ 𝑦≥𝑌max(𝑎)},
(ii) NE(𝑎) ≡ {⟨𝑥, 𝑦⟩ |𝑥≥𝑋max(𝑎)∧𝑦≥𝑌max(𝑎)},
(iii) NW(𝑎) ≡ {⟨𝑥, 𝑦⟩ |𝑥<𝑋min(𝑎)∧𝑦≥𝑌max(𝑎)},
(iv) S(𝑎) ≡ {⟨𝑥, 𝑦⟩ |𝑋min(𝑎)≤𝑥<𝑋max(𝑎)∧𝑦<𝑌min(𝑎)},
(v) SE(𝑎) ≡ {⟨𝑥, 𝑦⟩ |𝑥≥𝑋max(𝑎)∧𝑦<𝑌min(𝑎)},
(vi) SW(𝑎) ≡ {⟨𝑥, 𝑦⟩ |𝑥<𝑋min(𝑎)∧𝑦<𝑌min(𝑎)},
(vii) E(𝑎) ≡ {⟨𝑥, 𝑦⟩ |𝑥≥𝑋max(𝑎)∧𝑌min(𝑎)≤𝑦<𝑌max(𝑎)},
(viii) W(𝑎) ≡ {⟨𝑥, 𝑦⟩ |𝑥 < 𝑋min(𝑎)∧𝑌min(𝑎)≤𝑦<𝑌max(𝑎)},
(ix) O(𝑎) ≡ {⟨𝑥, 𝑦⟩ |𝑋min(𝑎) ≤𝑥<𝑋max(𝑎)∧𝑌min(𝑎) ≤𝑦<

𝑌max(𝑎)}.

In our previous papers [29, 30], we have shown how
to partition the nine tiles (in Figure 5) into sets based on
horizontal and vertical constraints called the Horizontal
and Vertical Constraints Model. However, in this paper, we
shall rename the sets for easy comprehension purposes. The
following are the definitions of the partitioned regions.

(i) WeakNorth(a) is the region that covers the tiles
NW(a), N(a), and NE(a). WeakNorth(a) ≡ NW(a) ∪
N(a) ∪ NE(a).

(ii) Horizontal(a) is the region that covers the tilesW(a),
O(a), and E(a). Horizontal(a) ≡W(a) ∪ O(a) ∪ E(a).

(iii) WeakSouth(a) is the region that covers the tiles
SW(a), S(a), and SE(a). WeakSouth(a) ≡ SW(a) ∪
S(a) ∪ SE(a).
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(iv) WeakWest(a) is the region that covers the tiles SW(a),
W(a), and NW(a). WeakWest(a) ≡ SW(a) ∪ W(a) ∪
NW(a).

(v) Vertical(a) is the region that covers the tiles S(a),O(a),
and N(a). Vertical(a) ≡ S(a) ∪ O(a) ∪ N(a).

(vi) WeakEast(a) is the region that covers the tiles SE(a),
E(a), and NE(a). WeakEast(a) ≡ SE(a) ∪ E(a) ∪

NE(a).

4. RCC Model

RCC stands for region connection calculus [13, 18, 31].
It is a first-order theory employed for qualitative spatial
representation as well as reasoning and is based on Clarke’s
logic of connection [32, 33]. The connection predicate, C(a,
b), which means “region a is connected with region b”, is the
only primitive predicate for RCC.This dyadic relation is both
reflexive and symmetric and holds whenever regions 𝑎 and 𝑏
are “connected.” The two main axioms expressing reflexivity
and symmetry [18] are as follows:

∀
𝑎 [C (𝑎, 𝑎)] (reflexive)

∀
𝑎
∀
𝑏 [C (𝑎, 𝑏) → C (𝑏, 𝑎)] (symmetric) .

(3)

Based on this primitive, a basic set of dyadic relations are
defined as shown in Table 1.

The relations P, PP, TPP, and NTPP are nonsymmetrical
and will have their respective inverses (Pi, PPi, TPPi, and
NTPPi). Of all the listed relations, only 8 relations in the
following set {DC, EC, PO, EQ, TPP, NTPP, TPPi, NTPPi}
are provably jointly exhaustive and pairwise disjoint (JEPD—
which means any two regions are related by exactly one of
these eight relations [34, 35]). Randell and colleagues [13]
refer this set of relations as RCC-8, and they are depicted in
Figure 6.

5. Expressive Hybrid Model

In our expressive hybrid model, we have combined our
Horizontal and Vertical Constraints Model [29, 30] and RCC-
8 [13].

5.1. Definitions. If there is a referent region a and another
arbitrary region b, the possible basic binary relations between
them can be defined as below.

In terms of weak relations,

(i) WeakNorth(b,a): b ⊆WeakNorth(a),
(ii) Horizontal(b,a): b ⊆Horizontal(a),
(iii) WeakSouth(b,a): b ⊆WeakSouth(a),
(iv) WeakEast(b,a): b ⊆WeakEast(a),
(v) Vertical(b,a): b ⊆ Vertical(a),
(vi) WeakWest(b,a): b ⊆WeakWest(a).

In terms of RCC-8 relations,

(i) DCy(a,b): y-dimension of 𝑎 is disconnected from y-
dimension of b,

(ii) EQy(a,b): y-dimension of 𝑎 is identical with y-
dimension of b,

(iii) POy(a,b): y-dimension of 𝑎 partially overlaps y-
dimension of b,

(iv) ECy(a,b): y-dimension of 𝑎 is externally connected to
y-dimension of b,

(v) TPPy(a,b): y-dimension of 𝑎 is a tangential proper
part of y-dimension of b,

(vi) NTPPy(a,b): y-dimension of 𝑎 is a nontangential
proper part of y-dimension of b,

(vii) TPPiy(a,b): y-dimension of 𝑏 is a tangential proper
part of y-dimension of a,

(viii) NTPPiy(a,b): y-dimension of 𝑏 is a non-tangential
proper part of y-dimension of a,

(ix) DCx(a,b): x-dimension of 𝑎 is disconnected from x-
dimension of b,

(x) EQx(a,b): x-dimension of 𝑎 is identical with x-
dimension of b,

(xi) POx(a,b): x-dimension of 𝑎 partially overlaps x-
dimension of b,

(xii) ECx(a,b): x-dimension of 𝑎 is externally connected to
x-dimension of b,

(xiii) TPPx(a,b): x-dimension of 𝑎 is a tangential proper
part of x-dimension of b,

(xiv) NTPPx(a,b): x-dimension of 𝑎 is a non-tangential
proper part of x-dimension of b,

(xv) TPPix(a,b): x-dimension of 𝑏 is a tangential proper
part of x-dimension of a,

(xvi) NTPPix(a,b): x-dimension of 𝑏 is a non-tangential
proper part of x-dimension of a.

5.2. Basic Binary Relations of the Hybrid Model. In this
section, we shall demonstrate how we come up with all
possible binary direction relations for the hybrid model. All
the possible basic binary relations for each horizontal set are
shown in Figure 7. The notations that will be used in this
section are as follows.

(i) RELy(b,Z) is any basic binary relation between 𝑏 and
the horizontally partitioned region, 𝑍.

(ii) RELx(b,Z) is any basic binary relation between 𝑏 and
the vertically partitioned region, 𝑍.

Based on Figure 7, the total number of possible binary
relations for the hybrid model in the y-direction is [(2 +

4 + 2) + (2 × 4) + (2 × 2) + (4 × 2) + (2 × 4 × 2)] which
equals 44 cases. However, due to the single-piece condition,
the following rules apply.

Rule 1. ¬(b ⊆WeakNorth(a) ∧ 𝑏 ⊆WeakSouth(a)).

Rule 2. Assume 𝑈 to be {WeakNorth(a), Horizontal(a),
WeakSouth(a)}.
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Figure 6: 8 basic JEPD RCC binary relations [13].

Table 1: Spatial relations defined in terms of C(𝑎, 𝑏) [18].

Relations Semantics Definition
DC(𝑎, 𝑏) a is disconnected from b ¬ C(𝑎, 𝑏)
P(𝑎, 𝑏) a is part of b ∀

𝑒
[C(𝑒, 𝑎) → C(𝑒, 𝑏)]

PP(𝑎, 𝑏) a is a proper part of b P(𝑎, 𝑏) ∧ ¬P(𝑏, 𝑎)
EQ(𝑎, 𝑏) a is identical with b P(𝑎, 𝑏) ∧P(𝑏, 𝑎)
O(𝑎, 𝑏) a overlaps b ∃

𝑒
[P(𝑒, 𝑎) ∧ P(𝑒, 𝑏)]

DR(𝑎, 𝑏) a is discrete from b ¬ O(𝑎, 𝑏)
PO(𝑎, 𝑏) a partially overlaps b O(𝑎, 𝑏) ∧ ¬ P(𝑎, 𝑏) ∧ ¬ P(𝑏, 𝑎)
EC(𝑎, 𝑏) a is externally connected to b C(𝑎, 𝑏) ∧ ¬ O(𝑎, 𝑏)
TPP(𝑎, 𝑏) a is a tangential proper part of b PP(𝑎, 𝑏) ∧ ∃

𝑒
[EC(𝑒, 𝑎) ∧EC(𝑒, 𝑏)]

NTPP(𝑎, 𝑏) a is a nontangential proper part of b PP(𝑎, 𝑏) ∧ ¬ ∃
𝑒
[EC(𝑒, 𝑎) ∧EC(𝑒, 𝑏)]

If NTPP𝑦(𝑏, 𝑅) where 𝑅 ∈ 𝑈 then ¬(NTPP𝑦(𝑏, 𝑅) ∧
REL𝑦(𝑏, 𝑆)),
where 𝑆 ∈ 𝑈 − 𝑅, or ¬(NTPP𝑦(𝑏, 𝑅)∧ REL𝑦(𝑏, 𝑆) ∧
REL𝑦(𝑏, 𝑇)),
where T ∈ 𝑈 − 𝑆.

Rule 3. Assume 𝑈 to be {WeakNorth(a), WeakSouth(a)}.
If (TPP𝑦(𝑏,Horizontal(𝑎)) ∧ EC𝑦(𝑏, 𝑅)), where 𝑅 ∈ 𝑈,
then ¬(TPP𝑦(𝑏,Horizontal) ∧ EC𝑦(𝑏, 𝑅)∧ REL𝑦(𝑏, 𝑆)),
where 𝑆 ∈ 𝑈 − 𝑅.

Based on the rules above, the total number of feasible
binary relations for single-piece regions in the y-direction is
(44-4-23-4) which equals 13 cases. The thirteen feasible and
jointly exhaustive binary relations for the hybrid model are
depicted in Figure 8.Thismeans that, in the hybridmodel, the
number of jointly exhaustive binary relations (in both the 𝑥-

and 𝑦-directions) that hold between two single-piece regions
will be 13 × 13. This concurs with the 13 × 13 basic relations
in the Rectangle Algebra Model [16, 17].

6. Combined Mereological, Topological, and
Cardinal Direction Relations

Mereology (from the Greek 𝜇𝜀𝜌o𝜍, “part”) is the theory of
parthood relations: of the relations of part to whole and the
relations, of part to part within a whole [36]. In this section,
we shall make two distinctions: “whole and part” cardinal
directions, as well as “weak and expressive” relations.We shall
rewrite the notations used in our previous paper [29]. 𝑃R(b,a)
means that only part of the destination extended region, b,
is in tile R(a). The direction relation 𝐴R(b, a) means that
whole destination extended region, b, is in the tile R(a). As



6 Advances in Artificial Intelligence
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EC𝑦(𝑏, Horizontal(𝑎))

NTPP𝑦(𝑏, WeakSouth(𝑎))

Figure 7: Possible basic binary relations for each horizontally partitioned region (note: it will be similar for vertically partitioned region).

an example, when 𝑏 is completely in the South-East tile of a,
this direction relation can be represented as shown below:

𝐴SE(𝑏, 𝑎) = ¬𝑃N(𝑏, 𝑎) ∧ ¬𝑃NE(𝑏, 𝑎) ∧ ¬𝑃NW(𝑏, 𝑎)

∧ ¬𝑃S(𝑏, 𝑎) ∧ 𝑃SE(𝑏, 𝑎) ∧ ¬𝑃SW(𝑏, 𝑎)

∧ ¬𝑃W(𝑏, 𝑎) ∧ ¬𝑃E(𝑏, 𝑎) ∧ ¬𝑃O(𝑏, 𝑎) .

(4)

The “whole and weak” direction relations are defined in
terms of horizontal and vertical sets:

(i) 𝐴N(𝑏, 𝑎) ≡WeakNorth(𝑏, 𝑎) ∧ Vertical(𝑏, 𝑎),
(ii) 𝐴NE(𝑏, 𝑎) ≡WeakNorth(𝑏, 𝑎) ∧WeakEast(𝑏, 𝑎),
(iii) 𝐴NW(𝑏, 𝑎) ≡WeakNorth(𝑏, 𝑎) ∧WeakWest(𝑏, 𝑎),
(iv) 𝐴S(𝑏, 𝑎) ≡WeakSouth(𝑏, 𝑎) ∧ Vertical(𝑏, 𝑎),
(v) 𝐴SE(𝑏, 𝑎) ≡WeakSouth(𝑏, 𝑎) ∧WeakEast(𝑏, 𝑎),

(vi) 𝐴SW(𝑏, 𝑎) ≡WeakSouth(𝑏, 𝑎) ∧WeakWest(𝑏, 𝑎),
(vii) 𝐴E(𝑏, 𝑎) ≡Horizontal(𝑏, 𝑎) ∧WeakEast(𝑏, 𝑎),
(viii) 𝐴W(𝑏, 𝑎) ≡Horizontal(𝑏, 𝑎) ∧WeakWest(𝑏, 𝑎),
(ix) 𝐴O(𝑏, 𝑎) ≡Horizontal(𝑏, 𝑎) ∧ Vertical(𝑏, 𝑎).

The “whole and expressive” direction relations are defined
in terms of expressive horizontal and vertical sets. A general
form of such direction relation can be represented as follows:

REL𝑦(𝑏,H(𝑎))
[𝐴
𝑅 (𝑏, 𝑎)]REL𝑥(𝑏,V(𝑎))

≡ REL𝑦 (𝑏,H (𝑎)) ∧ REL𝑥 (𝑏,V (𝑎)) ,

(5)

where H(a) and V(a) are horizontally and vertically parti-
tioned regions for 𝑎, respectively, where b ⊆ R(a) and R(a)
⊆ (H(a) ∩ V(a)).
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, WeakNorth(TPP𝑦(𝑏, WeakNorth(𝑎

𝑎 𝑎 𝑎

𝑎𝑎

𝑎

𝑎

𝑎𝑎

𝑎𝑎

𝑎

𝑎

))∧
EC𝑦(𝑏, Horizontal(𝑎))

TPP𝑦(𝑏, Horizontal(𝑎))∧

TPP𝑦(𝑏, Horizontal(𝑎))∧

EC𝑦(𝑏, WeakNorth(𝑎))

EC𝑦(𝑏 𝑎)), WeakSouth(

EC𝑦(𝑏 𝑎)), WeakSouth(

NTPP𝑦(𝑏, Horizontal(𝑎)) EQ𝑦(𝑏, Horizontal(𝑎))

TPP𝑦(𝑏, WeakSouth(𝑎))∧
EC𝑦(𝑏

𝑏
𝑏

𝑏

𝑏𝑏
𝑏

𝑏
𝑏

𝑏

𝑏
𝑏

𝑏

𝑏

, Horizontal(𝑎

𝑎
𝑎

𝑎

𝑎

𝑎

𝑎

))

NTPP𝑦(𝑏 𝑎))

NTPP𝑦(𝑏, WeakSouth(𝑎))

PO𝑦(𝑏, WeakNorth(  )) ∧
PO𝑦(𝑏, Horizontal(  )) ∧
DC𝑦(𝑏, WeakSouth(𝑎))

PO𝑦(𝑏, WeakNorth(  )) ∧
PO𝑦(𝑏, Horizontal(  )) ∧

PO𝑦(𝑏, WeakNorth(  )) ∧
PO𝑦(𝑏, WeakSouth(  )) ∧
NTPPi𝑦(𝑏, Horizontal(𝑎))

PO𝑦(𝑏, WeakSouth(  )) ∧
PO𝑦(𝑏, Horizontal(  )) ∧
DC𝑦(𝑏, WeakNorth(𝑎

𝑎 PO𝑦(𝑏, Horizontal(  )) ∧𝑎
𝑎 𝑎

))

PO𝑦(𝑏, WeakSouth(  )) ∧

EC𝑦(𝑏, WeakNorth(𝑎))

Figure 8: Thirteen feasible and jointly exhaustive binary relations in the y-direction for the hybrid model (note: this will be similar for
x-direction for the model).
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7. Composition Table

Composition is a common inference mechanism for a wide
range of relations and has been exploited for automated
reasoning. It has been employed for reasoning about temporal
descriptions of events based on intervals [37], topologi-
cal relations [5, 38–42], direction relations [1, 24, 29, 30],
and combined topological relations with cardinal direction
relations [19]. To reiterate, one of the main advantages of
using composition tables is that they can lead to tractable
computation of significant classes of inference [25].

Given the relation between 𝑎 and b and the relation
between 𝑏 and c, a composition table allows for concluding
the relation between 𝑎 and 𝑐. Bennett [41] defines the concept
of the composition of two binary relations as follows.

Given a theory Θ which is used to define a set 𝛽
of mutually exhaustive and pairwise disjoint dyadic
relations (i.e., a basis set), the composition, Comp(𝑅

1
,

𝑅
2
), of two relations 𝑅

1
and 𝑅

2
which are taken from

ß is defined to be the disjunction of all relations 𝑅
3

in ß, such that, for arbitrary constants 𝑎, 𝑏, and 𝑐, the
formula 𝑅

1
(𝑎, 𝑏)∧𝑅

2
(𝑏, 𝑐)∧𝑅

3
(𝑎, 𝑐) is consistent with

Θ.

7.1. Composition of Regions with Parts. In our previous paper
[29], the method for computing the composition of cardinal
direction relations for part regions is not robust enough,
because it does not hold for all cases. In order to address
this problem, we introduce a formula (obtained through
case analyses) for computing the composition of cardinal
direction relations. The basis of the formula is to consider
the direction relation between 𝑎 and each individual part of
𝑏 followed by the direction relation between each individual
part of 𝑏 and c.

Assume that the region covers one or more tiles of region
𝑎 while region 𝑐 covers one or more tiles of 𝑏. The direction
relation between 𝑎 and 𝑏 is𝑅(𝑏, 𝑎)while the direction relation
between 𝑏 and c is 𝑆(𝑐, 𝑏). The composition of direction
relations could be written as follows:

𝑅(𝑏, 𝑎) ∧ 𝑆(𝑐, 𝑏) . (6)

Firstly, establish the direction relation between 𝑎 and each
individual part of b:

𝑅(𝑏, 𝑎) ∧ 𝑆(𝑐, 𝑏)

≡ [𝑅
1
(𝑏
1
, 𝑎) ∧ 𝑅

2
(𝑏
2
, 𝑎) ⋅ ⋅ ⋅ ∧ 𝑅

𝑘
(𝑏
𝑘
, 𝑎)]

∧ [𝑆 (𝑐, 𝑏)] ,

(7)

where 1 ≤ 𝑘 ≤ 9.
Consider the direction relation of each individual part of

𝑏 and 𝑐. Equation (7) becomes

[[𝑅
1
(𝑏
1
, 𝑎) ∧ 𝑆

11
(𝑐
1
, 𝑏
1
)] ∨ [𝑅

1
(𝑏
1
, 𝑎) ∧ 𝑆

12
(𝑐
2
, 𝑏
1
)] ⋅ ⋅ ⋅

∨ [𝑅
1
(𝑏
1
, 𝑎) ∧ 𝑆

1𝑚
(𝑐
1𝑚
, 𝑏
1
)]]

∧ [[𝑅
2
(𝑏
2
, 𝑎) ∧ 𝑆

21
(𝑐
1
, 𝑏
2
)] ∨ [𝑅

2
(𝑏
2
, 𝑎) ∧ 𝑆

22
(𝑐
2
, 𝑏
2
)] ⋅ ⋅ ⋅

∨ [𝑅
2
(𝑏
2
, 𝑎) ∧ 𝑆

2𝑚
(𝑐
2𝑚
, 𝑏
2
)]]

∧ ⋅ ⋅ ⋅ [[𝑅
𝑘
(𝑏
𝑘
, 𝑎) ∧ 𝑆

𝑘1
(𝑐
1
, 𝑏
𝑘
)] ∨ [𝑅

𝑘
(𝑏
𝑘
, 𝑎) ∧ 𝑆

𝑘2
(𝑐
2
, 𝑏
𝑘
)] ⋅ ⋅ ⋅

∨ [𝑅
𝑘
(𝑏
𝑘
, 𝑎) ∧ 𝑆

𝑘𝑚
(𝑐
𝑘𝑚
, 𝑏
𝑘
)]] ,

(8)

where 1 ≤ 𝑘, 𝑚 ≤ 9.

7.2. Composition ofWeak Direction Relations. Firstly, we shall
demonstrate how to apply the formula for the composition
of weak direction relations followed by more expressive
direction relations.

Type 1. 𝐴
𝑅
(𝑏, 𝑎) ∧ 𝐴

𝑅
(𝑐, 𝑏).

Find the composition of 𝐴O(𝑏, 𝑎) ∧ 𝐴SW(𝑐, 𝑏).
Use (8) with 𝑘 = 1 and𝑚 = 1:

𝑅
1
(𝑏
1
, 𝑎) ∧ 𝑆

11
(𝑐
1
, 𝑏
1
)

≡ 𝐴O (𝑏, 𝑎) ∧ 𝐴SW (𝑐, 𝑏)

≡ [Horizontal (𝑏, 𝑎) ∧ Vertical (𝑏, 𝑎)]

∧ [WeakSouth (𝑐, 𝑏) ∧WeakWest (𝑐, 𝑏)]

≡ [Horizontal (𝑏, 𝑎) ∧WeakSouth (𝑐, 𝑏)]

∧ [Vertical (𝑏, 𝑎) ∧WeakWest (𝑐, 𝑏)] .

(9)

The outcome of the composition is

[Horizontal (𝑐, 𝑎) ∨WeakSouth (𝑐, 𝑎)]

∧ [Vertical (𝑐, 𝑎) ∨WeakWest (𝑐, 𝑎)] .
(10)

This means that the region c ⊆ O(a) ∨ W(a) ∨ S(a) ∨
SW(a).

Type 2. 𝐴
𝑅
(𝑏, 𝑎) ∧ 𝑃

𝑅
(𝑐, 𝑏).

Find the composition of𝐴E(𝑏, 𝑎) ∧ [𝑃NW(𝑐, 𝑏) ∧𝑃N(𝑐, 𝑏)].
Use (8) with k = 1, and 1 ≤ 𝑚 ≤ 2:

[[𝑅
1
(𝑏
1
, 𝑎) ∧ 𝑆

11
(𝑐
1
, 𝑏
1
)] ∨ [𝑅

1
(𝑏
1
, 𝑎) ∧ 𝑆

12
(𝑐
2
, 𝑏
1
)]]

≡ [[𝐴
𝐸 (𝑏, 𝑎) ∧ 𝐴𝑁𝑊 (𝑐1, 𝑏)] ∨ [𝐴𝐸 (𝑏, 𝑎) ∧ 𝐴𝑁 (𝑐2, 𝑏)]]

≡ [[Horizontal (𝑏, 𝑎) ∧WeakEast (𝑏, 𝑎)]

∧ [WeakNorth (𝑐
1
, 𝑏) ∧WeakWest (𝑐

1
, 𝑏)]]

∨ [[Horizontal (𝑏, 𝑎) ∧WeakEast (𝑏, 𝑎)]
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∧ [WeakNorth (𝑐
2
, 𝑏) ∧ Vertical (𝑐

2
, 𝑏)]]

≡ [[Horizontal (𝑏, 𝑎) ∧WeakNorth (𝑐
1
, 𝑏)]

∧ [WeakEast (𝑏, 𝑎) ∧WeakWest (𝑐
1
, 𝑏)]]

∨ [[Horizontal (𝑏, 𝑎) ∧WeakNorth (𝑐
2
, 𝑏)]

∧ [WeakEast (𝑏, 𝑎) ∧ Vertical (𝑐
2
, 𝑏)]] .

(11)

The outcome of the composition is

[[Horizontal (𝑐
1
, 𝑎) ∨WeakNorth (𝑐

1
, 𝑎)]

∧ [WeakEast (𝑐
1
, 𝑎) ∨ Vertical (𝑐

1
, 𝑎) ∨WeakWest (𝑐

1
, 𝑎)]]

∨ [[Horizontal (𝑐
2
, 𝑎) ∨WeakNorth (𝑐

2
, 𝑎)]

∧ [WeakEast (𝑐
2
, 𝑎)]] .

(12)

Viewing the fact that 𝑐
1
⊂ 𝑐 and 𝑐

2
⊂ 𝑐, the above outcome

can be written as

[[Horizontal (𝑐, 𝑎) ∨WeakNorth (𝑐, 𝑎)]

∧ [WeakEast (𝑐, 𝑎) ∨ Vertical (𝑐, 𝑎) ∨WeakWest (𝑐, 𝑎)]] .
(13)

This means that the region 𝑐 ⊆ E(a) ∨ O(a) ∨ W(a) ∨
NE(a) ∨ N(a) ∨ NW(a).

Type 3. 𝑃
𝑅
(𝑏, 𝑎) ∧ 𝐴

𝑅
(𝑐, 𝑏).

Find the composition of [𝑃O(𝑏1, 𝑎)∧𝑃N(𝑏2, 𝑎)]∧𝐴NE(𝑐, 𝑏).
Establish the relationship between 𝑐 and each individual part
of 𝑏. In this case, 𝐴NE(𝑐, 𝑏), 𝑃NE(𝑐, 𝑏1) and 𝑃NE(𝑐, 𝑏2) holds
(this is not necessarily true for all cases).

Use (8) with 1 ≤ 𝑘 ≤ 2 and𝑚 = 1.

[[𝑃
𝑅1
(𝑏
1
, 𝑎)] ∧ [𝑃

𝑅11
(𝑐
1
, 𝑏
1
)]]

∧ [[𝑃
𝑅2
(𝑏
2
, 𝑎)] ∧ [𝑃

𝑅21
(𝑐
1
, 𝑏
2
)]]

≡ [[𝑃O (𝑏1, 𝑎)] ∧ [𝑃NE (𝑐, 𝑏)]]

∧ [[𝑃N (𝑏2, 𝑎)] ∧ [𝑃NE (𝑐, 𝑏)]] .

(14)

Therefore, the above composition can be rewritten as

[[𝑃O (𝑏1, 𝑎)] ∧ [𝑃NE (𝑐, 𝑏1)]] ∧ [[𝑃N (𝑏2, 𝑎)] ∧ [𝑃NE (𝑐, 𝑏2)]]

≡ [[Horizontal (𝑏
1
, 𝑎) ∧ Vertical (𝑏

1
, 𝑎)]

Boundaries of minimal bounding box for region 𝑎

𝑎

Boundaries of minimal bounding box for region

𝑏2

𝑏

𝑏

1

𝑐

Figure 9: An example.

∧ [WeakNorth (𝑐, 𝑏
1
) ∧WeakEast (𝑐, 𝑏

1
)]]

∧ [[WeakNorth (𝑏
2
, 𝑎) ∧ Vertical (𝑏

2
, 𝑎)]

∧ [WeakNorth (𝑐, 𝑏
2
) ∧WeakEast (𝑐, 𝑏

2
)]]

≡ [[Horizontal (𝑏
1
, 𝑎) ∧WeakNorth (𝑐, 𝑏

1
)]

∧ [Vertical (𝑏
1
, 𝑎) ∧WeakEast (𝑐, 𝑏

1
)]]

∧ [[WeakNorth (𝑏
2
, 𝑎) ∧WeakNorth (𝑐, 𝑏

2
)]

∧ [Vertical (𝑏
2
, 𝑎) ∧WeakEast (𝑐, 𝑏

2
)]] .

(15)

The outcome of the composition is

[[Horizontal (𝑐, 𝑎) ∨WeakNorth (𝑐, 𝑎)]

∧ [WeakEast (𝑐, 𝑎) ∨ Vertical (𝑐, 𝑎)]]

∧ [[NTPP
𝑦 (𝑐,WeakNorth (𝑎))]

∧ [WeakEast (𝑐, 𝑎) ∨ Vertical (𝑐, 𝑎)]]

= [[NTPP
𝑦 (𝑐,WeakNorth (𝑎))]

∧ [WeakEast (𝑐, 𝑎) ∨ Vertical (𝑐, 𝑎)]] .

(16)

This means that the𝑌min(𝑐) of the minimal bounding box
for region 𝑐 is greater than 𝑌max(𝑎) of the minimal bounding
box for region 𝑎 and 𝑐 ⊆ NE(𝑎) ∨N(𝑎).

Type 4. 𝑃
𝑅
(𝑏, 𝑎) ∧ 𝑃

𝑅
(𝑐, 𝑏).

Find the composition of

[𝑃O(𝑏1, 𝑎) ∧ 𝑃NE (𝑏2, 𝑎)] ∧ [𝑃O(𝑐, 𝑏) ∧ 𝑃W (𝑐, 𝑏) ∧ 𝑃SW (𝑐, 𝑏)] .

(17)

Figure 9 has been drawn for this example. Establish the
direction relation between each individual part of 𝑏 and 𝑐.
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Use (8) with 1 ≤ 𝑘 ≤ 2; the value of𝑚
1
for 𝑏
1
is 1 ≤ 𝑚

1
≤

4, while the value𝑚
2
for 𝑏
2
is 1 ≤ 𝑚

2
≤ 7:

[[𝑃
𝑅1
(𝑏
1
, 𝑎) ∧ 𝑃

𝑅11
(𝑐
1
, 𝑏
1
)] ∨ [𝑃

𝑅1
(𝑏
1
, 𝑎) ∧ 𝑃

𝑅12
(𝑐
2
, 𝑏
1
)]

∨ [𝑃
𝑅1
(𝑏
1
, 𝑎) ∧ 𝑃

𝑅13
(𝑐
3
, 𝑏
1
)]

∨ [𝑃
𝑅1
(𝑏
1
, 𝑎) ∧ 𝑃

𝑅14
(𝑐
4
, 𝑏
1
)]]

∧ [[𝑃
𝑅2
(𝑏
2
, 𝑎) ∧ 𝑃

𝑅21
(𝑐
1
, 𝑏
2
)] ∨ [𝑃

𝑅2
(𝑏
2
, 𝑎) ∧ 𝑃

𝑅22
(𝑐
2
, 𝑏
2
)]

∨ [𝑃
𝑅2
(𝑏
2
, 𝑎) ∧ 𝑃

𝑅25
(𝑐
5
, 𝑏
2
)] ∨ [𝑃

𝑅2
(𝑏
2
, 𝑎) ∧ 𝑃

𝑅26
(𝑐
6
, 𝑏
2
)]

∨ [𝑃
𝑅2
(𝑏
2
, 𝑎) ∧ 𝑃

𝑅27
(𝑐
7
, 𝑏
2
)]]

≡ [[𝑃O (𝑏1, 𝑎) ∧ 𝑃S (𝑐1, 𝑏1)] ∨ [𝑃O (𝑏1, 𝑎) ∧ 𝑃SW (𝑐
2
, 𝑏
1
)]

∨ [𝑃O (𝑏1, 𝑎) ∧ 𝑃W (𝑐
3
, 𝑏
1
)]

∨ [𝑃O (𝑏1, 𝑎) ∧ 𝑃O (𝑐4, 𝑏1)]]

∧ [[𝑃NE (𝑏2, 𝑎) ∧ 𝑃NE (𝑐1, 𝑏2)]

∨ [𝑃NE (𝑏2, 𝑎) ∧ 𝑃N (𝑐2, 𝑏2)]

∨ [𝑃NE (𝑏2, 𝑎) ∧ 𝑃NW (𝑐
3
, 𝑏
2
)]

∨ [𝑃NE (𝑏2, 𝑎) ∧ 𝑃E (𝑐4, 𝑏2)]

∨ [𝑃NE (𝑏2, 𝑎) ∧ 𝑃O (𝑐5, 𝑏2)]

∨ [𝑃NE (𝑏2, 𝑎) ∧ 𝑃W (𝑐
6
, 𝑏
2
)]

∨ [𝑃NE (𝑏2, 𝑎) ∧ 𝑃SW (𝑐
7
, 𝑏
2
)]] .

(18)

In part (1) of the above composition, 𝑐
1
,𝑐
2
,𝑐
3
,𝑐
4

⊂ 𝑐.
To simplify the composition, we consider the combined
horizontal and vertical sets of all the parts of 𝑐.Thus, we have
the following:

[WeakNorth (𝑏
1
, 𝑎) ∧WeakEast (𝑏

1
, 𝑎)]

∧ [[Horizontal (𝑐, 𝑏
1
) ∨WeakSouth (𝑐, 𝑏

1
)]

∧ [Vertical (𝑐, 𝑏
1
) ∨WeakWest (𝑐, 𝑏

1
)]]

≡ [[WeakNorth (𝑏
1
, 𝑎)]

∧ [Horizontal (𝑐, 𝑏
1
) ∨WeakSouth (𝑐, 𝑏

1
)]]

∧ [[WeakEast (𝑏
1
, 𝑎)]

∧ [Vertical (𝑐, 𝑏
1
) ∨WeakWest (𝑐, 𝑏

1
)]]

= [WeakNorth (𝑐, 𝑎) ∨Horizontal (𝑐, 𝑎)

∨ WeakSouth (𝑐, 𝑎)]

∧ [WeakEast (𝑐, 𝑎) ∨ Vertical (𝑐, 𝑎) ∨WeakWest (𝑐, 𝑎)] .
(19)

In part (2) of the above composition, 𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑐
5
, 𝑐
6
,

𝑐
7
⊂ 𝑐.The simplified version of the composition is as follows:

[Horizontal (𝑏
2
, 𝑎) ∧ Vertical (𝑏

2
, 𝑎)]

∧ [[WeakNorth (𝑐, 𝑏
2
) ∨Horizontal (𝑐, 𝑏

2
)

∨ WeakSouth (𝑐, 𝑏
2
)]

∧ [WeakEast (𝑐, 𝑏
2
) ∨ Vertical (𝑐, 𝑏

2
)

∨ WeakWest (𝑐, 𝑏
2
)]]

≡ [[Horizontal (𝑏
2
, 𝑎)]

∧ [WeakNorth (𝑐, 𝑏
2
) ∨Horizontal (𝑐, 𝑏

2
)

∨ WeakSouth (𝑐, 𝑏
2
)]]

∧ [[Vertical (𝑏
2
, 𝑎)]

∧ [WeakEast (𝑐, 𝑏
2
) ∨ Vertical (𝑐, 𝑏

2
)

∨ WeakWest (𝑐, 𝑏
2
)]]

= [[WeakNorth (𝑐, 𝑎) ∨Horizontal (𝑐, 𝑎)

∨ WeakSouth (𝑐, 𝑎)]]

∧ [WeakEast (𝑐, 𝑎) ∨ Vertical (𝑐, 𝑎)

∨ WeakWest (𝑐, 𝑎)]] .

(20)

The final outcome of the composition is part (1) ∧ part
(2) is equivalent to

[WeakNorth (𝑐, 𝑎) ∨Horizontal (𝑐, 𝑎) ∨WeakSouth (𝑐, 𝑎)]

∧ [WeakEast (𝑐, 𝑎) ∨ Vertical (𝑐, 𝑎) ∨WeakWest (𝑐, 𝑎)] .
(21)

This means that the region c ⊆U which is the union of all
the 9 tiles of region a. However, based on Figure 9, region c ̸⊂

SW(a).

7.3. Composition of Expressive Direction Relations. We shall
use the following notations to represent the 13 binary y-
direction relations:

(i) REL1𝑦(𝑏, 𝑎)-NTPP𝑦(𝑏,WeakNorth(𝑎)),
(ii) REL2𝑦(𝑏, 𝑎)-TPP𝑦(𝑏,WeakNorth(𝑎))

∧EC𝑦(𝑏,Horizontal(𝑎)),
(iii) REL3𝑦(𝑏, 𝑎)-TPP𝑦(𝑏,Horizontal(𝑎))

∧EC𝑦(𝑏,WeakNorth(𝑎)),
(iv) REL4𝑦(𝑏, 𝑎)-TPP𝑦(𝑏,Horizontal(𝑎))

∧EC𝑦(𝑏,WeakSouth(𝑎)),
(v) REL5𝑦(𝑏, 𝑎)-NTPP𝑦(𝑏,Horizontal(𝑎)),
(vi) REL6𝑦(𝑏, 𝑎)-EQy(𝑏,Horizontal(𝑎)),
(vii) REL7𝑦(𝑏, 𝑎)-NTPP𝑦(𝑏,WeakSouth(𝑎)),
(viii) REL8𝑦(𝑏, 𝑎)-TPP𝑦(𝑏,WeakSouth(𝑎))

∧EC𝑦(𝑏,Horizontal(𝑎)),
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(ix) REL9𝑦(𝑏, 𝑎)-PO𝑦(𝑏,WeakNorth(𝑎))
∧PO𝑦(𝑏,Horizontal(𝑎)) ∧
DC𝑦(𝑏,WeakSouth(𝑎)),

(x) REL10𝑦(𝑏, 𝑎)-PO𝑦(𝑏,WeakNorth(𝑎))
∧PO𝑦(𝑏,Horizontal(𝑎)) ∧
EC𝑦(𝑏,WeakSouth(𝑎)),

(xi) REL11𝑦(𝑏, 𝑎)-PO𝑦(𝑏,WeakNorth(𝑎))
∧PO𝑦(𝑏,WeakSouth(𝑎)) ∧
NTPPi𝑦(𝑏,Horizontal(𝑎)),

(xii) REL12𝑦(𝑏, 𝑎)-PO𝑦(𝑏,WeakSouth(𝑎))
∧PO𝑦(𝑏,Horizontal(𝑎)) ∧
DC𝑦(𝑏,WeakNorth(𝑎)),

(xiii) REL13𝑦(𝑏, 𝑎)-PO𝑦(𝑏,WeakSouth(𝑎))
∧PO𝑦(𝑏,Horizontal(𝑎))∧
EC𝑦(𝑏,WeakNorth(𝑎)).

Similar notations will be used to represent the 13 binary
x-direction relations (WeakNorth is replaced by WeakEast,
Horizontal with Vertical, andWeakSouth byWeakWest).

Example 1. Find the composition of the following:

[[
REL3𝑦(𝑏

1
,𝑎)
[𝑃O (𝑏1, 𝑎)]REL3𝑥(𝑏

1
,𝑎)
]

∧ [
REL2𝑦(𝑏

2
,𝑎)
[𝑃NE (𝑏2, 𝑎)]REL2𝑥(𝑏

2
,𝑎)
]]

∧ [
REL1𝑦(𝑐,𝑏)

[𝐴N (𝑐, 𝑏)]REL5𝑥(𝑐,𝑏)] .

(22)

Establish the direction relation between 𝑐 and each
individual part of 𝑏. Use (8), with 1 ≤ 𝑘 ≤ 2 and 1 ≤ 𝑚

1
≤ 2,

and 1 ≤ 𝑚
2
≤ 2:

[[𝑃
𝑅1
(𝑏
1
, 𝑎)] ∧ [𝑃

𝑅11
(𝑐
1
, 𝑏
1
) ∨ 𝑃
𝑅12

(𝑐
2
, 𝑏
1
)]]

∧ [[𝑃
𝑅2
(𝑏
2
, 𝑎)] ∧ [𝑃

𝑅21
(𝑐
1
, 𝑏
2
) ∨ 𝑃
𝑅22

(𝑐
2
, 𝑏
2
)]] .

(23)

Use (5), and the above composition can be rewritten in
the following expressive form:

[[REL3𝑦 (𝑏
1
, 𝑎) ∧ REL3𝑥 (𝑏

1
, 𝑎)]]

∧ [[REL1𝑦 (𝑐
1
, 𝑏
1
) ∧ REL3𝑥 (𝑐

1
, 𝑏
1
)]

∨ [REL1𝑦 (𝑐
2
, 𝑏
1
) ∧ REL2𝑥 (𝑐

2
, 𝑏
1
)]]

∧ [[REL2𝑦 (𝑏
2
, 𝑎) ∧ REL2𝑥 (𝑏

2
, 𝑎)]]

∧ [[REL1𝑦 (𝑐
1
, 𝑏
2
) ∧ REL8𝑥 (𝑐

1
, 𝑏
2
)]

∨ [REL1𝑦 (𝑐
2
, 𝑏
2
) ∧ REL4𝑥 (𝑐

2
, 𝑏
2
)]]

≡ [REL3𝑦 (𝑏
1
, 𝑎) ∧ [REL1𝑦 (𝑐

1
, 𝑏
1
) ∨ REL1𝑦 (𝑐

2
, 𝑏
1
)]]

∧ [REL3𝑥 (𝑏
1
, 𝑎) ∧ [REL3𝑥 (𝑐

1
, 𝑏
1
) ∨ REL2𝑥 (𝑐

2
, 𝑏
1
)]]

∧ [REL2𝑦 (𝑏
2
, 𝑎) ∧ [REL1𝑦 (𝑐

1
, 𝑏
2
) ∨ REL1𝑦 (𝑐

2
, 𝑏
2
)]]

∧ [REL2𝑥 (𝑏
2
, 𝑎) ∧ [REL8𝑥 (𝑐

1
, 𝑏
2
) ∨ REL4𝑥 (𝑐

2
, 𝑏
2
)]] .

(24)

Use Tables 2 and 3, and 𝑐
1
⊂ 𝑐 and 𝑐

2
⊂ 𝑐. Thus, the

outcome of the composition can be written as follows:
REL1𝑦 (𝑐, 𝑎) ∧ [REL2𝑥 (𝑐, 𝑎) ∨ REL3𝑥 (𝑐, 𝑎)] ∧ REL1𝑦 (𝑐, 𝑎)

∧ [REL2𝑥 (𝑐, 𝑎) ∨ REL3𝑥 (𝑐, 𝑎)

∨ REL6𝑥 (𝑐, 𝑎) ∨ REL13𝑥 (𝑐, 𝑎)]

= REL1𝑦 (𝑐, 𝑎) ∧ [REL2𝑥 (𝑐, 𝑎) ∨ REL3𝑥 (𝑐, 𝑎)] .
(25)

The outcome of the composition is:
NTPP𝑦 (𝑐,WeakNorth (𝑎))

∧ [TPP𝑥 (𝑐,WeakEast (𝑎)) ∧ EC𝑦 (𝑐,Horizontal (𝑎))

∨TPP𝑥 (𝑐,Vertical (𝑎)) ∧ EC𝑦 (𝑐,Horizontal (𝑎))] .

(26)

Example 2. This example is similar to the fourth example in
the previous section of this paper.

Find the composition of
[𝑃O (𝑏1, 𝑎) ∧ 𝑃NE (𝑏2, 𝑎)]

∧ [𝑃O (𝑐, 𝑏) ∧ 𝑃W (𝑐, 𝑏) ∧ 𝑃SW (𝑐, 𝑏)] .

(27)

Establish the direction relation between 𝑐 and each
individual part of 𝑏. Use (8), with 1 ≤ k ≤ 2 and 1 ≤ 𝑚

1
≤

4, and 1 ≤ 𝑚
2
≤ 7.

The composition in expressive form will be as follows.

For part 𝑏
1
,

[[REL2𝑦 (𝑏
1
, 𝑎) ∧ REL2𝑥 (𝑏

1
, 𝑎)]]

∧ [[REL4𝑦 (𝑐
1
, 𝑏
1
) ∧ REL4𝑥 (𝑐

1
, 𝑏
1
)]

∨ [REL8𝑦 (𝑐
2
, 𝑏
1
) ∧ REL4𝑥 (𝑐

2
, 𝑏
1
)]

∨ [REL4𝑦 (𝑐
3
, 𝑏
1
) ∧ REL8𝑥 (𝑐

3
, 𝑏
1
)]

∨ [REL8𝑦 (𝑐
4
, 𝑏
1
) ∧ REL8𝑥 (𝑐

4
, 𝑏
1
)]] .

(28)

The regions 𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
⊂ 𝑐; the above composition can be

written as follows:

[REL2𝑦 (𝑏
1
, 𝑎)

∧ [REL4𝑦 (𝑐, 𝑏
1
) ∨ REL8𝑦 (𝑐, 𝑏

1
)

∨ REL4𝑦 (𝑐, 𝑏
1
) ∨ REL8𝑦 (𝑐, 𝑏

1
)]]

∧ [REL2𝑥 (𝑏
1
, 𝑎)

∧ [REL4𝑥 (𝑐, 𝑏
1
) ∨ REL4𝑥 (𝑐, 𝑏

1
)

∨ REL8𝑥 (𝑐, 𝑏
1
) ∨ REL8𝑥 (𝑐, 𝑏

1
)]]

= [REL2𝑦 (𝑐, 𝑎) ∨ REL3𝑦 (𝑐, 𝑎)

∨ REL6𝑦 (𝑐, 𝑎) ∨ REL13𝑦 (𝑐, 𝑎)]

∧ [REL2𝑥 (𝑐, 𝑎) ∨ REL3𝑥 (𝑐, 𝑎)

∨ REL6𝑥 (𝑐, 𝑎) ∨ REL13𝑥 (𝑐, 𝑎)] .

(29a)
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For part 𝑏
2

[[REL3𝑦 (𝑏
2
, 𝑎) ∧ REL3𝑥 (𝑏

2
, 𝑎)]]

∧ [[REL8𝑦 (𝑐
1
, 𝑏
2
) ∧ REL7𝑥 (𝑐

1
, 𝑏
2
)]

∨ [REL6𝑦 (𝑐
2
, 𝑏
2
) ∧ REL8𝑥 (𝑐

2
, 𝑏
2
)]

∨ [REL2𝑦 (𝑐
3
, 𝑏
2
) ∧ REL8𝑥 (𝑐

3
, 𝑏
2
)]

∨ [REL2𝑦 (𝑐
4
, 𝑏
2
) ∧ REL6𝑥 (𝑐

4
, 𝑏
2
)]

∨ [REL3𝑦 (𝑐
5
, 𝑏
2
) ∧ REL6𝑥 (𝑐

5
, 𝑏
2
)]

∨ [REL3𝑦 (𝑐
6
, 𝑏
2
) ∧ REL2𝑥 (𝑐

6
, 𝑏
2
)]

∨ [REL2𝑦 (𝑐
7
, 𝑏
2
) ∧ REL2𝑥 (𝑐

7
, 𝑏
2
)]]

= [[REL2𝑦 (𝑐, 𝑎) ∨ REL3𝑦 (𝑐, 𝑎)

∨ REL5𝑦 (𝑐, 𝑎) ∨ REL12𝑦 (𝑐, 𝑎)]

∧ [REL2𝑥 (𝑐, 𝑎) ∨ REL3𝑥 (𝑐, 𝑎)

∨ REL4𝑥 (𝑐, 𝑎) ∨ REL5𝑥 (𝑐, 𝑎)

∨REL7𝑥 (𝑐, 𝑎) ∨ REL8𝑥 (𝑐, 𝑎) ∨ REL12𝑥 (𝑐, 𝑎)]] .
(29b)

The final outcome of the composition is the composition of
part 𝑏

1
(29a) ∧ part 𝑏

2
(29b).

Apply Rule 3 from the earlier part of the paper, and we
will get the following:

[[REL2𝑦 (𝑐, 𝑎) ∨ REL3𝑦 (𝑐, 𝑎)

∨ REL6𝑦 (𝑐, 𝑎) ∨ REL13𝑦 (𝑐, 𝑎)]

∧ [REL2𝑦 (𝑐, 𝑎) ∨ REL3𝑦 (𝑐, 𝑎) ∨ REL12𝑦 (𝑐, 𝑎)]

∧ [REL2𝑥 (𝑐, 𝑎) ∨ REL3𝑥 (𝑐, 𝑎)

∨ REL4𝑥 (𝑐, 𝑎) ∨ REL8𝑥 (𝑐, 𝑎) ∨ REL12𝑥 (𝑐, 𝑎)]

∧ [REL2𝑥 (𝑐, 𝑎) ∨ REL3𝑥 (𝑐, 𝑎)

∨ REL6𝑥 (𝑐, 𝑎) ∨ REL13𝑥 (𝑐, 𝑎)]] .

(30)

We collapse some of the disjunction of relations:

REL6𝑦 (𝑐, 𝑎) ∨ REL13𝑦 (𝑐, 𝑎) = REL13𝑦 (𝑐, 𝑎)

REL4𝑥 (𝑐, 𝑎) ∨ REL8𝑥 (𝑐, 𝑎) ∨ REL12𝑥 (𝑐, 𝑎) = REL12𝑦 (𝑐, 𝑎)

REL6𝑥 (𝑐, 𝑎) ∨ REL13𝑥 (𝑐, 𝑎) = REL13𝑥 (𝑐, 𝑎) .
(31)

Equation (30) becomes

[REL2𝑦 (𝑐, 𝑎) ∨ REL3𝑦 (𝑐, 𝑎) ∨ REL13𝑦 (𝑐, 𝑎)]

∧ [REL2𝑦 (𝑐, 𝑎) ∨ REL3𝑦 (𝑐, 𝑎) ∨ REL12𝑦 (𝑐, 𝑎)]

∧ [REL2𝑥 (𝑐, 𝑎) ∨ REL3𝑥 (𝑐, 𝑎) ∨ REL12𝑥 (𝑐, 𝑎)]

∧ [REL2𝑥 (𝑐, 𝑎) ∨ REL3𝑥 (𝑐, 𝑎) ∨ REL13𝑥 (𝑐, 𝑎)] .

(32)

Region 𝑐 is single piece. Therefore, (32) becomes

[PO𝑦 (𝑐,WeakNorth (𝑎)) ∧ PO𝑦 (𝑐,WeakSouth (𝑎))

∧ NTPP𝑖𝑦 (𝑐,Horizontal (𝑎))]
(33)

∧ [PO𝑥 (𝑐,WeakEast (𝑎)) ∧ PO𝑥 (𝑐,WeakWest (𝑎))

∧ NTPP𝑖𝑥 (𝑐,Vertical (𝑎))] .
(34)

This means that the region c ⊆U which is the union of all the
9 tiles of region 𝑎. As mentioned earlier, based on Figure 9,
region c ̸⊂ SW(a). Thus, the outcome of the composition for
weak relations (in the previous section) yields the same result
as this composition. However, the computation for the latter
is more tedious and complex when involving regions with
many parts.

8. Existential Inference

The composition table in Table 2 is the result of transitive
inferences made about regions 𝑎 and c, given the hybrid
cardinal direction relations for regions 𝑎 and 𝑏 as well as
regions 𝑏 and 𝑐. In the context of this paper, an existential
inference is the inference made about the spatial relation
between 𝑎 and b, given the relations between 𝑐 and 𝑎 or/and
the given relations between 𝑐 and 𝑏. We shall demonstrate
how our expressive hybrid cardinal direction model could
be used to make several existential inferences which are not
possible in existing models.

Example 3 (Find 𝑅(𝑏, 𝑎) such that 𝑐 ⊂WeakNorth(𝑏) and 𝑐 ⊂
WeakNorth(𝑎)). To answer this query, we must first specify
the expressive relation between 𝑎 and c.

There are two possible relations: TPP𝑦(c,WeakNorth(a))
or WeakNorth(c,a). If it is the former then composition is
WeakNorth(b,a) ∧ WeakNorth(c,b) which means R(b,a) is
WeakNorth(b,a). If it is the latter, there are several combina-
tions:

(i) WeakNorth(𝑏, 𝑎) ∧Horizontal(𝑐, 𝑏)
(ii) WeakNorth(𝑏, 𝑎) ∧WeakSouth(𝑐, 𝑏)
(iii) Horizontal(𝑏, 𝑎) ∧WeakNorth(𝑐, 𝑏)
(iv) WeakSouth(𝑏, 𝑎) ∧WeakNorth(𝑐, 𝑏).

This means 𝑅(𝑏, 𝑎) are Horizontal(b,a) or WeakSouth
(b,a) when 𝑐 ⊂WeakNorth(b) and 𝑐 ⊂WeakNorth(a).

Example 4 (Find R(b,a) and S(c,b) such that T(a,c) is
¬[TPP𝑦(c,Horizontal(a)) ∧ EC𝑦(c,WeakSouth(a))]). Based
on Table 2, 9 different compositions will yield the following
outcome:

TPP𝑦(c,Horizontal(a)) ∧ EC𝑦(c,WeakSouth(a))
The set of possible compositions, Q, is:
{REL1𝑦(𝑏, 𝑎) ∧ REL7𝑦(𝑐, 𝑏), REL2𝑦(𝑏, 𝑎) ∧ REL7𝑦(𝑐, 𝑏),
REL3𝑦(𝑏, 𝑎) ∧ REL7𝑦(𝑐, 𝑏), REL3𝑦(𝑏, 𝑎) ∧ REL8𝑦(𝑐, 𝑏),
REL5𝑦(𝑏, 𝑎) ∧ REL7𝑦(𝑐, 𝑏), REL5𝑦(𝑏, 𝑎) ∧ REL8𝑦(𝑐, 𝑏),
REL6𝑦(𝑏, 𝑎) ∧ REL4𝑦(𝑐, 𝑏), REL7𝑦(𝑏, 𝑎) ∧ REL1𝑦(𝑐, 𝑏),
REL8𝑦(𝑏, 𝑎) ∧ REL12(𝑐, 𝑏)}.



Advances in Artificial Intelligence 19

If𝑈 equals 8 × 8 basic binary direction relations, then the
set of all possible ordered pairs of 𝑅 and 𝑆 which satisfy the
above query will be 𝑈 − 𝑄.

Example 5 (Find R(b,a) and S(c,b) such that T(a,c) is
PO𝑦(c,WeakSouth(a)) ∧ PO𝑦(c,Horizontal(a)) ∧ EC𝑦(c,
WeakNorth(a))). Based on Table 2, we have 4 pairs of 𝑅 and
𝑆 which satisfy 𝑇. They are: REL1y(b,a) ∧ REL7y(c,b),
REL2y(b,a) ∧ REL8y(c,b), REL7y(b,a) ∧ REL1y(c,b),
REL7𝑦(𝑏, 𝑎) ∧ REL2𝑦(𝑐, 𝑏).

9. Conclusion

In this paper, we have shown how topological and direction
relations can be integrated to produce a more expressive
hybrid model for cardinal directions. The composition table
derived from thismodel could be used to infer bothweak and
expressive direction relations between regions. We have also
introduced and demonstrated how to use a formula to com-
pute the composition of weak or expressive relations between
“whole and part” regions.We have also demonstrated how the
composition tablewith expressive direction relations could be
used to make several difficult existential inferences.
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