734,369 research outputs found

    Artificial in its own right

    Get PDF
    Artificial Cells, , Artificial Ecologies, Artificial Intelligence, Bio-Inspired Hardware Systems, Computational Autopoiesis, Computational Biology, Computational Embryology, Computational Evolution, Morphogenesis, Cyborgization, Digital Evolution, Evolvable Hardware, Cyborgs, Mathematical Biology, Nanotechnology, Posthuman, Transhuman

    Evolving artificial datasets to improve interpretable classifiers

    Get PDF
    Differential Evolution can be used to construct effective and compact artificial training datasets for machine learning algorithms. In this paper, a series of comparative experiments are performed in which two simple interpretable supervised classifiers (specifically, Naive Bayes and linear Support Vector Machines) are trained (i) directly on “real” data, as would be the normal case, and (ii) indirectly, using special artificial datasets derived from real data via evolutionary optimization. The results across several challenging test problems show that supervised classifiers trained indirectly using our novel evolution-based approach produce models with superior predictive classification performance. Besides presenting the accuracy of the learned models, we also analyze the sensitivity of our artificial data optimization process to Differential Evolution's parameters, and then we examine the statistical characteristics of the artificial data that is evolved

    Selfishness versus functional cooperation in a stochastic protocell model

    Get PDF
    How to design an "evolvable" artificial system capable to increase in complexity? Although Darwin's theory of evolution by natural selection obviously offers a firm foundation, little hope of success seems to be expected from the explanatory adequacy of modern evolutionary theory, which does a good job at explaining what has already happened but remains practically helpless at predicting what will occur. However, the study of the major transitions in evolution clearly suggests that increases in complexity have occurred on those occasions when the conflicting interests between competing individuals were partly subjugated. This immediately raises the issue about "levels of selection" in evolutionary biology, and the idea that multi-level selection scenarios are required for complexity to emerge. After analyzing the dynamical behaviour of competing replicators within compartments, we show here that a proliferation of differentiated catalysts and/or improvement of catalytic efficiency of ribozymes can potentially evolve in properly designed artificial cells. Experimental evolution in these systems will likely stand as beautiful examples of artificial adaptive systems, and will provide new insights to understand possible evolutionary paths to the evolution of metabolic complexity

    Digital Genesis: Computers, Evolution and Artificial Life

    Full text link
    The application of evolution in the digital realm, with the goal of creating artificial intelligence and artificial life, has a history as long as that of the digital computer itself. We illustrate the intertwined history of these ideas, starting with the early theoretical work of John von Neumann and the pioneering experimental work of Nils Aall Barricelli. We argue that evolutionary thinking and artificial life will continue to play an integral role in the future development of the digital world.Comment: Extended abstract of talk presented at the 7th Munich-Sydney-Tilburg Philosophy of Science Conference: Evolutionary Thinking, University of Sydney, 20-22 March 2014. Presentation slides from talk available at http://www.tim-taylor.com/papers/digital-genesis-presentation.pd

    Evolution towards Smart Optical Networking: Where Artificial Intelligence (AI) meets the World of Photonics

    Full text link
    Smart optical networks are the next evolution of programmable networking and programmable automation of optical networks, with human-in-the-loop network control and management. The paper discusses this evolution and the role of Artificial Intelligence (AI)

    Analysing co-evolution among artificial 3D creatures

    Get PDF
    This paper is concerned with the analysis of coevolutionary dynamics among 3D artificial creatures, similar to those introduced by Sims (1). Coevolution is subject to complex dynamics which are notoriously difficult to analyse. We introduce an improved analysis method based on Master Tournament matrices [2], which we argue is both less costly to compute and more informative than the original method. Based on visible features of the resulting graphs, we can identify particular trends and incidents in the dynamics of coevolution and look for their causes. Finally, considering that coevolutionary progress is not necessarily identical to global overall progress, we extend this analysis by cross-validating individuals from different evolutionary runs, which we argue is more appropriate than single-record analysis method for evaluating the global performance of individuals
    corecore