1,467 research outputs found

    How visual cues to speech rate influence speech perception

    No full text
    Spoken words are highly variable and therefore listeners interpret speech sounds relative to the surrounding acoustic context, such as the speech rate of a preceding sentence. For instance, a vowel midway between short /ɑ/ and long /a:/ in Dutch is perceived as short /ɑ/ in the context of preceding slow speech, but as long /a:/ if preceded by a fast context. Despite the well-established influence of visual articulatory cues on speech comprehension, it remains unclear whether visual cues to speech rate also influence subsequent spoken word recognition. In two ‘Go Fish’-like experiments, participants were presented with audio-only (auditory speech + fixation cross), visual-only (mute videos of talking head), and audiovisual (speech + videos) context sentences, followed by ambiguous target words containing vowels midway between short /ɑ/ and long /a:/. In Experiment 1, target words were always presented auditorily, without visual articulatory cues. Although the audio-only and audiovisual contexts induced a rate effect (i.e., more long /a:/ responses after fast contexts), the visual-only condition did not. When, in Experiment 2, target words were presented audiovisually, rate effects were observed in all three conditions, including visual-only. This suggests that visual cues to speech rate in a context sentence influence the perception of following visual target cues (e.g., duration of lip aperture), which at an audiovisual integration stage bias participants’ target categorization responses. These findings contribute to a better understanding of how what we see influences what we hear

    Engaging the articulators enhances perception of concordant visible speech movements

    Full text link
    PURPOSE This study aimed to test whether (and how) somatosensory feedback signals from the vocal tract affect concurrent unimodal visual speech perception. METHOD Participants discriminated pairs of silent visual utterances of vowels under 3 experimental conditions: (a) normal (baseline) and while holding either (b) a bite block or (c) a lip tube in their mouths. To test the specificity of somatosensory-visual interactions during perception, we assessed discrimination of vowel contrasts optically distinguished based on their mandibular (English /ɛ/-/æ/) or labial (English /u/-French /u/) postures. In addition, we assessed perception of each contrast using dynamically articulating videos and static (single-frame) images of each gesture (at vowel midpoint). RESULTS Engaging the jaw selectively facilitated perception of the dynamic gestures optically distinct in terms of jaw height, whereas engaging the lips selectively facilitated perception of the dynamic gestures optically distinct in terms of their degree of lip compression and protrusion. Thus, participants perceived visible speech movements in relation to the configuration and shape of their own vocal tract (and possibly their ability to produce covert vowel production-like movements). In contrast, engaging the articulators had no effect when the speaking faces did not move, suggesting that the somatosensory inputs affected perception of time-varying kinematic information rather than changes in target (movement end point) mouth shapes. CONCLUSIONS These findings suggest that orofacial somatosensory inputs associated with speech production prime premotor and somatosensory brain regions involved in the sensorimotor control of speech, thereby facilitating perception of concordant visible speech movements. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.9911846R01 DC002852 - NIDCD NIH HHSAccepted manuscrip

    Attention fine-tunes auditory-motor processing of speech sounds

    Get PDF
    The earliest stages of cortical processing of speech sounds take place in the auditory cortex. Transcranial magnetic stimulation (TMS) studies have provided evidence that the human articulatory motor cortex contributes also to speech processing. For example, stimulation of the motor lip representation influences specifically discrimination of lip-articulated speech sounds. However, the timing of the neural mechanisms underlying these articulator-specific motor contributions to speech processing is unknown. Furthermore, it is unclear whether they depend on attention. Here, we used magnetoencephalography and TMS to investigate the effect of attention on specificity and timing of interactions between the auditory and motor cortex during processing of speech sounds. We found that TMS-induced disruption of the motor lip representation modulated specifically the early auditory-cortex responses to lip-articulated speech sounds when they were attended. These articulator-specific modulations were left-lateralized and remarkably early, occurring 60–100 ms after sound onset. When speech sounds were ignored, the effect of this motor disruption on auditory-cortex responses was nonspecific and bilateral, and it started later, 170 ms after sound onset. The findings indicate that articulatory motor cortex can contribute to auditory processing of speech sounds even in the absence of behavioral tasks and when the sounds are not in the focus of attention. Importantly, the findings also show that attention can selectively facilitate the interaction of the auditory cortex with specific articulator representations during speech processing

    Cortical mechanisms of seeing and hearing speech

    Get PDF
    In face-to-face communication speech is perceived through eyes and ears. The talker's articulatory gestures are seen and the speech sounds are heard simultaneously. Whilst acoustic speech can be often understood without visual information, viewing articulatory gestures aids hearing substantially in noisy conditions. On the other hand, speech can be understood, to some extent, by solely viewing articulatory gestures (i.e., by speechreading). In this thesis, electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) were utilized to disclose cortical mechanisms of seeing and hearing speech. One of the major challenges of modern cognitive neuroscience is to find out how the brain integrates inputs from different senses. In this thesis, integration of seen and heard speech was investigated using EEG and MEG. Multisensory interactions were found in the sensory-specific cortices at early latencies and in the multisensory regions at late latencies. Viewing other person's actions activate regions belonging to the human mirror neuron system (MNS) which are also activated when subjects themselves perform actions. Possibly, the human MNS enables simulation of other person's actions, which might be important also for speech recognition. In this thesis, it was demonstrated with MEG that seeing speech modulates activity in the mouth region of the primary somatosensory cortex (SI), suggesting that also the SI cortex is involved in simulation of other person's articulatory gestures during speechreading. The question whether there are speech-specific mechanisms in the human brain has been under scientific debate for decades. In this thesis, evidence for the speech-specific neural substrate in the left posterior superior temporal sulcus (STS) was obtained using fMRI. Activity in this region was found to be greater when subjects heard acoustic sine wave speech stimuli as speech than when they heard the same stimuli as non-speech.reviewe

    Interaction between articulatory gestures and inner speech in a counting task

    No full text
    International audienceInteraction between covert and overt orofacial gestures has been poorly studied apart from old and rather qualitative experiments. The question deserves special interest in the context of the debate between auditory and motor theories of speech perception, where dual tasks may be of great interest. It is shown here that dynamic mandible and lips movement produced by a participant result in strong and stable perturbations to an inner speech counting task that has to be realized at the same time, while static orofacial configurations and static or dynamic manual actions produce no perturbation. This enables the authors to discuss how such kinds of orofacial perturbations could be introduced in dual task paradigms to assess the role of motor processes in speech perception

    The Role of Speech Production System in Audiovisual Speech Perception

    Get PDF
    Seeing the articulatory gestures of the speaker significantly enhances speech perception. Findings from recent neuroimaging studies suggest that activation of the speech motor system during lipreading enhance speech perception by tuning, in a top-down fashion, speech-sound processing in the superior aspects of the posterior temporal lobe. Anatomically, the superior-posterior temporal lobe areas receive connections from the auditory, visual, and speech motor cortical areas. Thus, it is possible that neuronal receptive fields are shaped during development to respond to speech-sound features that coincide with visual and motor speech cues, in contrast with the anterior/lateral temporal lobe areas that might process speech sounds predominantly based on acoustic cues. The superior-posterior temporal lobe areas have also been consistently associated with auditory spatial processing. Thus, the involvement of these areas in audiovisual speech perception might partly be explained by the spatial processing requirements when associating sounds, seen articulations, and one’s own motor movements. Tentatively, it is possible that the anterior “what” and posterior “where / how” auditory cortical processing pathways are parts of an interacting network, the instantaneous state of which determines what one ultimately perceives, as potentially reflected in the dynamics of oscillatory activity

    Asymmetric discrimination of non-speech tonal analogues of vowels

    Full text link
    Published in final edited form as: J Exp Psychol Hum Percept Perform. 2019 February ; 45(2): 285–300. doi:10.1037/xhp0000603.Directional asymmetries reveal a universal bias in vowel perception favoring extreme vocalic articulations, which lead to acoustic vowel signals with dynamic formant trajectories and well-defined spectral prominences due to the convergence of adjacent formants. The present experiments investigated whether this bias reflects speech-specific processes or general properties of spectral processing in the auditory system. Toward this end, we examined whether analogous asymmetries in perception arise with non-speech tonal analogues that approximate some of the dynamic and static spectral characteristics of naturally-produced /u/ vowels executed with more versus less extreme lip gestures. We found a qualitatively similar but weaker directional effect with two-component tones varying in both the dynamic changes and proximity of their spectral energies. In subsequent experiments, we pinned down the phenomenon using tones that varied in one or both of these two acoustic characteristics. We found comparable asymmetries with tones that differed exclusively in their spectral dynamics, and no asymmetries with tones that differed exclusively in their spectral proximity or both spectral features. We interpret these findings as evidence that dynamic spectral changes are a critical cue for eliciting asymmetries in non-speech tone perception, but that the potential contribution of general auditory processes to asymmetries in vowel perception is limited.Accepted manuscrip

    Dissociating contributions of the motor cortex to speech perception and response bias by using transcranial magnetic stimulation

    Get PDF
    Recent studies using repetitive transcranial magnetic stimulation (TMS) have demonstrated that disruptions of the articulatory motor cortex impair performance in demanding speech perception tasks. These findings have been interpreted as support for the idea that the motor cortex is critically involved in speech perception. However, the validity of this interpretation has been called into question, because it is unknown whether the TMS-induced disruptions in the motor cortex affect speech perception or rather response bias. In the present TMS study, we addressed this question by using signal detection theory to calculate sensitivity (i.e., d′) and response bias (i.e., criterion c). We used repetitive TMS to temporarily disrupt the lip or hand representation in the left motor cortex. Participants discriminated pairs of sounds from a “ba”–“da” continuum before TMS, immediately after TMS (i.e., during the period of motor disruption), and after a 30-min break. We found that the sensitivity for between-category pairs was reduced during the disruption of the lip representation. In contrast, disruption of the hand representation temporarily reduced response bias. This double dissociation indicates that the hand motor cortex contributes to response bias during demanding discrimination tasks, whereas the articulatory motor cortex contributes to perception of speech sounds

    Sensorimotor Modulations by Cognitive Processes During Accurate Speech Discrimination: An EEG Investigation of Dorsal Stream Processing

    Get PDF
    Internal models mediate the transmission of information between anterior and posterior regions of the dorsal stream in support of speech perception, though it remains unclear how this mechanism responds to cognitive processes in service of task demands. The purpose of the current study was to identify the influences of attention and working memory on sensorimotor activity across the dorsal stream during speech discrimination, with set size and signal clarity employed to modulate stimulus predictability and the time course of increased task demands, respectively. Independent Component Analysis of 64–channel EEG data identified bilateral sensorimotor mu and auditory alpha components from a cohort of 42 participants, indexing activity from anterior (mu) and posterior (auditory) aspects of the dorsal stream. Time frequency (ERSP) analysis evaluated task-related changes in focal activation patterns with phase coherence measures employed to track patterns of information flow across the dorsal stream. ERSP decomposition of mu clusters revealed event-related desynchronization (ERD) in beta and alpha bands, which were interpreted as evidence of forward (beta) and inverse (alpha) internal modeling across the time course of perception events. Stronger pre-stimulus mu alpha ERD in small set discrimination tasks was interpreted as more efficient attentional allocation due to the reduced sensory search space enabled by predictable stimuli. Mu-alpha and mu-beta ERD in peri- and post-stimulus periods were interpreted within the framework of Analysis by Synthesis as evidence of working memory activity for stimulus processing and maintenance, with weaker activity in degraded conditions suggesting that covert rehearsal mechanisms are sensitive to the quality of the stimulus being retained in working memory. Similar ERSP patterns across conditions despite the differences in stimulus predictability and clarity, suggest that subjects may have adapted to tasks. In light of this, future studies of sensorimotor processing should consider the ecological validity of the tasks employed, as well as the larger cognitive environment in which tasks are performed. The absence of interpretable patterns of mu-auditory coherence modulation across the time course of speech discrimination highlights the need for more sensitive analyses to probe dorsal stream connectivity
    corecore