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ABSTRACT 

 

 

Internal models mediate the transmission of information between anterior and 

posterior regions of the dorsal stream in support of speech perception, though it remains 

unclear how this mechanism responds to cognitive processes in service of task demands.  

The purpose of the current study was to identify the influences of attention and working 

memory on sensorimotor activity across the dorsal stream during speech discrimination, 

with set size and signal clarity employed to modulate stimulus predictability and the time 

course of increased task demands, respectively.  Independent Component Analysis of 64–

channel EEG data identified bilateral sensorimotor mu and auditory alpha components 

from a cohort of 42 participants, indexing activity from anterior (mu) and posterior 

(auditory) aspects of the dorsal stream.  Time frequency (ERSP) analysis evaluated task-

related changes in focal activation patterns with phase coherence measures employed to 

track patterns of information flow across the dorsal stream.  ERSP decomposition of mu 

clusters revealed event-related desynchronization (ERD) in beta and alpha bands, which 

were interpreted as evidence of forward (beta) and inverse (alpha) internal modeling 

across the time course of perception events.  Stronger pre-stimulus mu alpha ERD in 

small set discrimination tasks was interpreted as more efficient attentional allocation due 

to the reduced sensory search space enabled by predictable stimuli.  Mu-alpha and mu-

beta ERD in peri- and post-stimulus periods were interpreted within the framework of 

Analysis by Synthesis as evidence of working memory activity for stimulus processing 

and maintenance, with weaker activity in degraded conditions suggesting that covert 

rehearsal mechanisms are sensitive to the quality of the stimulus being retained in 

working memory.  Similar ERSP patterns across conditions despite the differences in 

stimulus predictability and clarity, suggest that subjects may have adapted to tasks.  In 

light of this, future studies of sensorimotor processing should consider the ecological 

validity of the tasks employed, as well as the larger cognitive environment in which tasks 

are performed.  The absence of interpretable patterns of mu-auditory coherence 

modulation across the time course of speech discrimination highlights the need for more 

sensitive analyses to probe dorsal stream connectivity. 
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CHAPTER 1.    INTRODUCTION 

 

 

Anterior (i.e., motor/premotor cortices) and posterior (i.e., primary and 

association auditory cortices) portions of the dorsal stream sensorimotor speech network, 

linking sound to action (Hickok and Poeppel, 2000; 2004; 2007), activate during speech 

production, facilitating online monitoring of speech by internal modeling (Jenson et al., 

2014; Jenson et al., 2015).  Activation of this same network also occurs during speech 

perception (Callan et al., 2006a; Osnes et al., 2011; Bowers et al., 2014), though the level 

of activity appears task specific (Sato et al., 2009; Fowler and Xie, 2016) and is thought 

to be correlated with task demands (Alho et al., 2012a; Deng et al., 2012; Peschke et al., 

2012; Alho et al., 2014) and task goals (Wostmann et al., 2017).  In contrast to passive 

perception, active discrimination tasks require subjects to attend to stimuli, perform some 

sensory processing, and retain the stimuli in working memory prior to response.  

However, it remains unclear how these cognitive demands affect sensorimotor 

processing.  In order to address this question, it is necessary to consider dorsal stream 

activation in speech perception in light of the tasks that elicit it.  Specifically, dorsal 

stream activity must be examined with respect to the contributions of attention (Mottonen 

et al., 2014) and working memory (Heald and Nusbaum, 2014; Ritz, 2016; Thornton et 

al., 2017) to task demands and goals (Wostmann et al., 2017). 

 

To delineate the contributions of cognitive process such as attention (i.e., focus of 

processing) and working memory to sensorimotor processing, it is necessary to consider 

how dorsal stream activity unfolds over time.  While attention is required for all 

perceptual tasks, early dorsal stream activity may be linked to the heightened attentional 

demands (Alho et al., 2014) imposed by difficult tasks through both predictive and 

inhibitory processes.  Predictive Coding (Rao and Ballard, 1999; Kilner et al., 2007; 

Sohoglu et al., 2012) emerges during heightened attentional states (e.g., expectation) and 

relays motor-based predictions to sensory regions through forward internal models (i.e., 

motor to sensory projections) to instill production-based constraints on upcoming sensory 

analysis (Skipper et al., 2017).  Concurrent with Predictive Coding processes, early 

inhibitory processes mediate attentional demands through resource allocation (Brinkman 

et al., 2014; van Diepen and Mazaheri, 2017).  Activity emerges in cortical regions 

processing the stimuli of interest, while regions processing other types of information are 

inhibited (Jensen and Mazaheri, 2010; Haegens et al., 2012).  For example, in dichotic 

listening paradigms, inhibitory activity emerges over the hemisphere processing 

information to be ignored (Frey et al., 2014), thus preferentially allocating cognitive 

resources to the region processing the target sensory stream.  Thus, dorsal stream activity 

while awaiting a stimulus may represent both predictive and inhibitory contributions to 

sensorimotor processing.  Dorsal stream activity can also occur during stimulus 

presentation.  This activity may index automatic sensory to motor mapping (i.e., inverse 

models), consistent with reports of dorsal stream recruitment in passive perception tasks 

that can be achieved with minimal attention (Pulvermuller et al., 2006; Wilson and 

Iacoboni, 2006; Santos-Oliveira, 2017).  Dorsal stream activity may also occur following 

speech perception, such as in discrimination tasks requiring categorization or decision-

making (Callan et al., 2010; Bowers et al., 2013).  This activity may reflect the retention 
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and processing of stimuli in phonological working memory (Baddeley, 2003; Hickok and 

Poeppel, 2007).  This aligns with previous reports that working memory mediates dorsal 

stream contributions to perceptual tasks (Lutzenberger et al., 2002; Hickok and Poeppel, 

2004; Buchsbaum et al., 2005; Herman et al., 2013).  In light of the time-varying 

contributions of cognitive processes to sensorimotor processing, temporally precise 

neural data is necessary to address the critical question of when the dorsal stream 

activates during speech perception tasks (Skipper et al., 2017).   

 

The precise temporal resolution of electroencephalography (EEG) makes it a 

prime avenue for charting the temporal profile of dorsal stream activity in speech 

perception tasks.  EEG is sensitive to the sensorimotor mu rhythm, typically recorded 

over anterior dorsal stream regions (Tamura et al., 2012; Jenson et al., 2014; Denis et al., 

2017) and consisting of peaks in alpha (~10 Hz; sensory) and beta (~20 Hz; motor) 

frequency bands (Hari, 2006).  Event related spectral perturbations (ERSP) are time-

frequency analyses that can be applied to the mu rhythm to reveal patterns of 

enhancement (event related synchronization; ERS) and suppression (event related 

desynchronization; ERD) corresponding to cortical inhibition and disinhibition, 

respectively.  While generally linked to motor processing, early mu beta ERD in 

perception tasks has been considered a measure of motor-based prediction (Arnal and 

Giraud, 2012), serving to focus attention on relevant stimulus features (Alho et al., 2014; 

Schwager et al., 2016).  When characterized by ERS, early mu alpha activity has been 

linked to inhibitory sensory gating (Klimesch et al., 2007; Jensen and Mazaheri, 2010; 

Schroeder et al., 2010) and maximizing resource allocation (Brinkman et al., 2014), both 

processes that enhance attention.  Mu alpha ERD has been reported during perception of 

biologically relevant movements (Muthukumaraswamy and Johnson, 2004; Oberman et 

al., 2005; Crawcour et al., 2009; Frenkel-Toledo et al., 2013) and sounds (Pineda et al., 

2013), suggesting sensory to motor processing.  These findings have been interpreted to 

suggest a contribution of alpha activity to inverse modeling (Sebastiani et al., 2014).  

Both alpha and beta bands of the mu rhythm have a demonstrated sensitivity to speech 

(Bowers et al., 2013; Bartoli et al., 2016; Mandel et al., 2016; Saltuklaroglu et al., 2017), 

and thus ERSP analysis of the mu rhythm may capture the contributions of internal 

modeling and inhibitory processes across the time course of speech processing.  The 

dynamics of mu alpha and mu beta activity across the time course of speech perception 

may identify early predictive coding/inhibitory activity, peri-stimulus sensory processing, 

and late activity corresponding to working memory maintenance.  

 

To assess the contributions of these processes in speech perception, Jenson et al. 

(2014) employed Independent Component Analysis (ICA; Stone, 2004) to identify the 

mu rhythm during accurate discrimination of /ba/ /da/ syllable pairs in quiet and noisy 

backgrounds.  Discrimination accuracy was high (above 95%) and did not differ between 

quiet and noisy backgrounds.  ERSP decomposition of data from correctly discriminated 

trials revealed activity characterized by beta ERD and alpha ERS in the pre-stimulus 

period and persisting through stimulus presentation.  While present in both quiet and 

noisy backgrounds, alpha ERS appeared stronger in the presence of noise.  Post-stimulus 

activity was marked by the emergence of robust alpha and beta ERD.  The authors 

interpreted these findings as evidence of predictive coding (beta) and inhibitory control 
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(alpha) during the pre-stimulus window, followed by working memory maintenance via 

covert rehearsal in the post-stimulus window.  However, questions remain regarding how 

early and late activity reflects the contributions of sensorimotor activity to cognitive 

processes in the service of task demands.   

 

First, the relationship between stimulus predictability and pre-stimulus beta 

activity remains unclear.  Pre-stimulus mu activity from both quiet and noisy 

discrimination tasks was characterized by beta ERD, which Jenson et al. (2014) 

interpreted under the framework of Analysis by Synthesis (Stevens and Halle, 1967; 

Bever and Poeppel, 2010) as evidence of predictive coding.  It should be noted that as the 

study required discrimination of /ba/ /da/ syllable pairs, only four stimulus combinations 

were possible, and the stimuli employed in Jenson et al. (2014) were thus highly 

predictable.  Pre-stimulus beta ERD was therefore considered evidence of a motor-based 

hypothesis, derived on the basis of context (e.g., predictability) and constituting a forward 

model projection to auditory regions for comparison with the incoming acoustic signal.  

This aligns with previous reports that context modulates sensory processing (Skipper et 

al., 2007b; Sohoglu et al., 2012; Kleinsorge and Scheil, 2016; Sohoglu and Davis, 2016), 

and that the selective attention enabled by this predictive activity (Alho et al., 2014) is 

mediated by the beta band (Arnal and Giraud, 2012; Bastos et al., 2012; Bressler and 

Richter, 2015; Gao et al., 2017).  In contrast to Jenson et al. (2014), Thornton et al. 

(2017) employed 18 possible stimulus combinations in a pseudo-word discrimination task 

that required segmentation.  Thornton et al. (2017) did not observe pre-stimulus mu beta 

ERD, raising the possibility that the larger stimulus set size made individual stimulus 

pairs less predictable, thus reducing subjects’ ability to predictively code.  This aligns 

with notions that the demands associated with correcting an erroneous prediction (Philipp 

et al., 2008) constrain predictive coding to situations in which predictions are likely to be 

reliable (Kleinsorge and Scheil, 2016).  However, as Jenson et al. (2014) and Thornton et 

al. (2017) differed in regard to stimulus length/complexity and the presence of a 

segmentation requirement, it is necessary to examine pre-stimulus mu beta ERD in tasks 

employing large and small set sizes in the same study to clarify the effect of stimulus 

predictability on predictive coding.  A difference between small and large set sizes 

suggests that stimulus predictability modulates predictive coding, while the absence of an 

effect may be interpreted to suggest that set size does not modulate stimulus 

predictability. 

 

The second problem pertains to the interpretation of early alpha activity.  Jenson 

et al. (2014) identified pre-stimulus mu alpha ERS persisting through stimulus 

presentation in both quiet and noisy discrimination conditions, though it appeared 

stronger in the presence of noise.  As alpha activity is associated with attentional 

modulation (Pesonen et al., 2006; Sadaghiani et al., 2010; Wostmann et al., 2017), Jenson 

et al. (2014) interpreted pre-stimulus alpha ERS as an index of inhibitory control 

(Klimesch et al., 2007; Jensen and Mazaheri, 2010; Schroeder et al., 2010) over 

sensorimotor processing in the service of task demands.  Since alpha ERS was present in 

quiet, some portion of this pre-stimulus activity may be interpreted as the allocation of 

cognitive resources (Perry and Bentin, 2010; Brinkman et al., 2014) to achieve successful 

discrimination.  However, it must be noted that noise masking was present throughout the 



 

4 

pre-stimulus period in Jenson et al. (2014).  It therefore remains unclear whether the 

increased alpha ERS in noisy discrimination reflects additional resource allocation to 

meet the increased processing demands associated with degraded stimuli (Downs and 

Crum, 1978) or represents the inhibition of noise via sensory gating (Stenner et al., 2014).  

Inhibition of information detrimental to task goals (Wostmann et al., 2017) via sensory 

gating has been linked with alpha ERS across sensory modalities (Mathewson et al., 

2011; Haegens et al., 2012; Hartmann et al., 2012), suggesting that the increased alpha 

ERS in noisy discrimination may represent gating of the noise masking.  Removing bands 

of spectral information from the speech signal (Gilbert and Lorenzi, 2010; Ramos de 

Miguel et al., 2015) provides a way to control the time course of increased task demands 

without introducing a competing signal, thereby delineating the contributions of resource 

allocation and sensory gating to pre-stimulus alpha ERS.  Increased alpha ERS 

throughout the pre-stimulus period in band-removed discrimination tasks supports 

interpretations of increased resource allocation, while the emergence of increased alpha 

ERS during stimulus presentation suggests an attempt to inhibit irrelevant information via 

sensory gating.  A clearer understanding of the role of pre-stimulus alpha activity is 

critical to clarifying the way in which activity across alpha and beta channels of the mu 

rhythm cooperate to support speech perception (Bastos et al., 2012; Brinkman et al., 

2014). 

 

The third problem pertains to the interpretation of activity following stimulus 

offset.  Post stimulus activity in Jenson et al. (2014) was marked by robust ERD in both 

alpha and beta bands of the mu rhythm.  This finding has been observed in speech 

discrimination tasks across multiple studies (Bowers et al., 2013; Saltuklaroglu et al., 

2017; Thornton et al., 2017), suggesting that late mu ERD may characterize neural 

responses to speech discrimination.  Based on the similarity of these patterns to those 

reported in overt speech production (Gunji et al., 2007; Tamura et al., 2012; Jenson et al., 

2014) as well as previous reports of alpha and beta ERD in working memory (Tsoneva et 

al., 2011; Behmer and Fournier, 2014) and motor imagery tasks (Brinkman et al., 2014; 

Li et al., 2015), the authors interpreted post-stimulus mu activity as evidence of covert 

rehearsal to retain the stimuli in working memory (Hickok et al., 2003).  This is 

consistent with the notion of covert production being instantiated by paired forward and 

inverse models (Pickering and Garrod, 2013) and the association of beta and alpha mu 

frequency bands with these models, respectively.  However, it should be noted that when 

asked, subjects did not report covertly replaying the stimuli and interpretations of covert 

rehearsal therefore require further validation.  As the forward internal models involved in 

covert production (Tian and Poeppel, 2010; 2012; Pickering and Garrod, 2013; Tian and 

Poeppel, 2013) are known to have an inhibitory effect on posterior dorsal stream (i.e., 

auditory) activity (Kauramaki et al., 2010; Tian and Poeppel, 2015), this suggests that 

analysis of temporally sensitive data from auditory regions during speech discrimination 

may clarify interpretations regarding post-stimulus mu activity.  Specifically, activity in 

posterior dorsal stream regions may be viewed alongside anterior dorsal stream activity to 

validate notions of covert rehearsal.   

 

To investigate activity in posterior dorsal stream regions, Jenson et al. (2015) 

employed ICA/ERSP to identify and decompose the auditory alpha rhythm from the same 
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dataset as Jenson et al. (2014).  The auditory alpha is an oscillatory rhythm localized over 

posterior dorsal stream regions (i.e., posterior superior temporal gyrus; pSTG) and 

responsive to auditory stimulation (Tiihonen et al., 1991; Lehtela et al., 1997; Weisz et 

al., 2011).  Auditory alpha responses are characterized by ERD during perception of 

speech (Weisz et al., 2011; Muller et al., 2015), and have been linked to cortical 

disinhibition to facilitate stimulus processing (Lehtela et al., 1997; Muller and Weisz, 

2012).  In contrast, auditory alpha ERS emerges during active inhibition of distractors 

(Muller and Weisz, 2012; van Diepen and Mazaheri, 2017; Wostmann et al., 2017).  This 

alpha inhibitory effect has been documented across sensory modalities (Foxe et al., 1998; 

Worden et al., 2000; Mathewson et al., 2009; Hartmann et al., 2012), suggesting a 

contribution of amodal attentional mechanisms (Haegens et al., 2012) to acoustic 

stimulus processing.  Jenson et al. (2015) identified auditory alpha ERS following 

stimulus offset, which was interpreted through the framework of Gating by Inhibition 

(Jensen and Mazaheri, 2010) as a marker of functional deactivation of auditory regions.  

Based on the temporal alignment of auditory alpha ERS and the mu ERD in Jenson et al. 

(2014), the authors suggested that a forward model arising from covert production (Tian 

and Poeppel, 2010; 2013) inhibited auditory activity akin to speech-induced suppression 

reported in overt speech tasks (Curio et al., 2000; Houde et al., 2002; Heinks-Maldonado 

et al., 2005).  However, this interpretation is circumstantial, based on patterns of temporal 

concordance between mu ERD and auditory alpha ERS.  In order to more fully 

interrogate Jenson et al. (2015) interpretation of post-stimulus activity as forward model 

inhibition of auditory regions during covert rehearsal, it is necessary to consider 

interactions between mu and auditory alpha rhythms across the time course of speech 

perception. 

 

Despite evidence of motor-auditory communication during speech perception 

(Gow Jr and Segawa, 2009; Park et al., 2015), interpretation is hampered by two primary 

weaknesses.  First, data from alpha and beta bands is lacking, a critical omission given 

the spectral profile of mu and auditory alpha rhythms and the proposed role of alpha and 

beta bands in mediating sensorimotor transformations between them.  Second, the way in 

which patterns of information flow unfold over time remains unclear, a critical weakness 

considering timing and direction of information flow respond dynamically to tasks 

(Fontolan et al., 2014).  Temporally sensitive measures of connectivity between mu and 

auditory alpha rhythms within alpha and beta bands may be viewed alongside focal time-

frequency activation patterns to supplement interpretations regarding dorsal stream 

dynamics during speech perception.  Phase synchronization (i.e., coherence) constitutes 

the principal method for inter-areal communication across the cortex (Fries, 2005; Weisz 

and Obleser, 2014), and has been successfully measured with ICA decomposed EEG data 

(Hong et al., 2005), suggesting its suitability to the mu and auditory alpha source signals 

to be identified by ICA in the current study.  While phase coherence is a measure of 

functional connectivity (Friston, 2011), agnostic to the direction of information flow, 

theoretical interpretations of beta and alpha bands as indices of forward and inverse 

modeling, respectively, may enable the interpretation of directionality. Specifically, 

forward modeling should be revealed by mu-auditory coherence in the beta band, while 

inverse modeling will be revealed by mu-auditory coherence in the alpha band.  This 

potential for the assessment of directionality allows testing of hypotheses regarding 
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forward and inverse internal model contributions to dorsal stream activation in speech 

perception.   

 

The overarching goal of the current study is to better understand early and late 

dorsal stream activity in light of the cognitive demands imposed by speech discrimination 

tasks.  The specific goals are to address the questions highlighted above by 1) 

determining the effect of set size on predictive coding, 2) clarifying the contributions of 

resource allocation and sensory gating to pre-stimulus inhibitory mu alpha by 

manipulating the time course of increased task demands, and 3) better understanding the 

role of sensorimotor activity while stimuli are held in working memory.  Consistent with 

predictive coding accounts, it is first hypothesized that pre-stimulus mu beta ERD will be 

stronger in conditions with a smaller stimulus set size, and that pre-stimulus coherence 

measures will demonstrate beta band coupling between mu and auditory alpha rhythms.  

In accord with the notion that pre-stimulus alpha is sensitive to both resource allocation 

and sensory gating, it is hypothesized that differences in alpha ERS will be found 

between quiet, noise masked, and filtered discrimination tasks.  Finally, in line with the 

notion that internal models mediate dorsal stream contributions to sensorimotor 

processing, it is hypothesized that coherence measures will identify patterns of forward 

and inverse internal models across the time course of speech perception.  Support of these 

hypotheses will clarify dorsal stream contributions to perceptual processes and their 

relationship to the underlying cognitive demands. 
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CHAPTER 2.    LITERATURE REVIEW 

 

 

The Dorsal Stream 

 

The dorsal stream network consists of anterior motor (i.e., premotor/primary 

motor cortices) and posterior sensory (i.e., auditory and somatosensory cortices) regions 

(Hickok and Poeppel, 2000; 2004; 2007).  The dynamics of this dorsal stream network 

have been thoroughly investigated in speech production paradigms (Houde and 

Nagarajan, 2011; Kell et al., 2011; Gehrig et al., 2012; Hickok, 2012; Rauschecker, 2012; 

Herman et al., 2013; Cogan et al., 2014; Tian and Poeppel, 2015; Ylinen et al., 2015) and 

tied to the process of internal modeling.  Forward internal models constitute a mapping 

from the motor domain to the sensory domain and have been considered a mechanism for 

the motor control system to predict the sensory consequences of an upcoming motor plan 

(Blakemore et al., 2000; Wolpert and Flanagan, 2001).  Conversely, inverse internal 

models constitute a mapping from the sensory domain to the motor domain and have 

been considered a mechanism for implementing corrective motor commands based on 

detected (Tourville and Guenther, 2011; Guenther and Vladusich, 2012) or predicted 

(Houde and Nagarajan, 2011; Houde and Chang, 2015) sensory discrepancies.  These 

internal model sensorimotor transformations are vital to efficient speech production as 

motor control is implemented in the motor domain yet gives rise to a signal in the sensory 

domain.  Co-activation of anterior and posterior dorsal stream regions during speech 

production has thus been considered a reliable index of internal modeling. 

 

Activation of this dorsal stream network has also been reported in a variety of 

speech perception tasks (Davis and Johnsrude, 2003; Giraud et al., 2004; Callan et al., 

2010), and interpreted to suggest an essential contribution of motor regions to speech 

perception.  However, this interpretation has been questioned by authors who either fail 

to find anterior dorsal stream activity (Menenti et al., 2011), or have found that such 

activation is not specific to speech (LoCasto et al., 2004; Agnew et al., 2011; Rogalsky et 

al., 2014).  The role of the dorsal stream in speech perception is thus hotly debated 

(Meister et al., 2007; Möttönen and Watkins, 2009; Bever and Poeppel, 2010; Hickok et 

al., 2011b; Fowler and Xie, 2016).  Central to these equivocal findings is the diversity of 

tasks that have been employed, each imposing distinct task demands requiring differential 

contributions of underlying cognitive processes.  Given reports that cortical networks 

dynamically reorganize in response to task (Skipper et al., 2017), it may be proposed that 

differential task demands underlie the equivocal findings regarding anterior dorsal stream 

involvement in speech perception.  It is therefore critical to consider experimental 

findings in light of the tasks that elicit them. 

 

 

Necessity of Considering Cognitive Processes in Speech Perception 

 

Passive speech perception tasks provide a unique window into dorsal stream 

processing of speech, as neural responses are uncontaminated by decision-making and 

response selection.  A number of functional magnetic resonance imaging (fMRI) studies 
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have reported anterior dorsal stream activation during the passive perception of speech.  

Wilson et al. (2004) reported that bilateral motor and premotor regions active during the 

production of meaningless CV syllables also activate during perception of the same 

syllables, which the authors interpreted as evidence for the mapping of acoustic input to a 

phonetic code.  Similarly, Callan et al. (2006b) identified bilateral premotor cortex 

(PMC) activity to the passive perception of both spoken and sung speech, with greater 

right hemisphere activity noted for sung speech in accord with notions of right 

hemisphere processing of prosodic features (Poeppel, 2003).  Wilson and Iacoboni (2006) 

investigated responses to auditory presentation of native and non-native syllables.  PMC 

activity was reported to all stimuli, with greater activity noted for non-native syllables.  

This elevated response to non-native stimuli was interpreted to suggest that motor regions 

respond dynamically to stimuli even in the absence of directed attention.  Taken together, 

these findings suggest that anterior motor regions reliably activate during the passive 

perception of speech.  However, as Binder et al. (2008) reported bilateral PMC activation 

during passive perception of both syllables and tones, it remains unclear whether anterior 

dorsal stream activations during perception tasks are speech specific.  

 

Evidence for a speech specific activation profile for the anterior dorsal stream 

comes from studies demonstrating somatotopic specificity during passive tasks.  

Pulvermuller et al. (2006) identified /p/ and /t/ specific regions of motor cortex with 

fMRI during overt production, reporting that regions involved in production of /p/ or /t/ 

activated preferentially to the passive presentation of compatible stimuli (though see 

Arsenault and Buchsbaum, 2016 for a failure to replicate this finding).  An alternative 

line of evidence demonstrating somatotopic activation of motor regions comes from a set 

of studies employing single pulse transcranial magnetic stimulation (spTMS) to assess 

articulator-specific motor evoked potentials (MEP) during speech perception.  Fadiga et 

al. (2002) employed spTMS over tongue motor cortex during the passive perception of 

disyllabic (CVCV) stimuli in which the second syllable was initiated by either an alveolar 

trill (i.e., /r/) or labiodental fricative (i.e., /f/).  MEPs recorded from anterior tongue 

muscles were larger for stimuli with embedded alveolar trills, with the authors suggesting 

that the greater tongue tip mobilization required for production of an alveolar trill gave 

rise to the enhanced MEPs through mediation by the human mirror neuron system 

(Rizzolatti and Craighero, 2004; Fadiga et al., 2005).  In a similar vein, Watkins et al. 

(2003) assessed the modulation of MEPs from the orbicularis oris by spTMS to bilateral 

labial motor cortex during the passive perception of auditory speech, non-speech auditory 

signals, visual speech, and non-speech facial movements.  Enhanced MEPs were noted to 

both auditory speech and visual speech (see Sundara et al., 2001 for reports of modality-

specific MEP modulation), with the authors tying this finding to motor resonance, akin to 

the mirror neuron interpretation of Fadiga et al. (2002).  While evidence of somatotopic 

activation suggests speech specific response properties for the anterior dorsal stream, it 

remains unclear whether this represents a coarse articulator-specific effect or a precise 

articulatory-kinematic effect.  D'Ausilio et al. (2014) paired spTMS of tongue motor 

cortex with Doppler ultrasound of the oral cavity during passive perception of /ki/, /ko/, 

/ti/, and /to/ syllables, with lingual motor synergies paralleling those generated by 

production of the same syllables.  This finding suggests that anterior dorsal stream 
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activation in passive perception is specific to the articulatory kinematics of the perceived 

stimulus.   

 

The presence of this articulatory-kinematic specific activation of motor regions 

during passive speech perception has been interpreted to suggest that anterior dorsal 

stream activity represents an inverse mapping from acoustic stimulus to a phoneme-

specific motor code (Correia et al., 2015).  This notion aligns with the tenets of Direct 

Realism, which proposes that motor activation is a default concomitant of perception, 

rooted in the embodied nature of language and cognition (Fowler, 1986; Fowler et al., 

2003; Fowler and Xie, 2016).  That is, these anterior motor regions do not actively 

contribute to speech perception but represent an automatic acoustic-articulatory inverse 

mapping that occurs irrespective of task.  While this interpretation for anterior dorsal 

stream activity is consistent with the results from passive tasks reviewed above, an 

alternative explanation is needed to account for the results of studies demonstrating 

behavioral effects when activity in anterior dorsal stream regions is externally modulated 

(Grabski et al., 2013). 

 

Disruption of anterior dorsal stream activity through repetitive transcranial 

magnetic stimulation (rTMS) is known to lead to decreased performance in syllable 

identification and discrimination tasks.  Möttönen and Watkins (2009) applied rTMS to 

lip motor cortex during the identification of ambiguous phonemes along a place of 

articulation continuum as well as discrimination of unambiguous syllable pairs.  A 

reduced category boundary slope was noted for the ambiguous phonemes and 

discrimination accuracy was impaired in discrimination, though these effects only 

emerged in the presence of bilabial sounds.  In a follow up task evaluating the mismatch 

negativity (MMN) to trains of syllables and tones under rTMS to lip motor cortex, 

Mottonen et al. (2013) confirmed the specificity of the effect to speech stimuli, though it 

should be noted that this effect only emerges when attention is directed to the auditory 

stimuli (Möttönen et al., 2014).  Similar effects have been noted with stimulation of the 

PMC.  Meister et al. (2007) applied rTMS to left PMC or left superior temporal gyrus 

(STG) while subjects discriminated voiceless stop consonants, noting decreased 

performance for syllable discrimination with PMC stimulation only.  The authors 

interpreted these findings to suggest that PMC is essential for speech perception.  

However, this interpretation has been questioned by Sato et al. (2009) who applied rTMS 

or sham stimulation to left PMC during phoneme identification, syllable discrimination, 

and phoneme discrimination requiring segmentation. There was an increase in reaction 

time with stimulation on the phoneme discrimination task only, suggesting that 

contributions of PMC may be task specific. 

 

The notion of task specific contributions of the dorsal stream is also suggested by 

D'Ausilio et al. (2012) who monitored the effect of spTMS to lip and tongue motor cortex 

on identification of alveolar and bilabial syllables in quiet and noisy backgrounds.  No 

effect was noted in quiet, while faster reaction times were noted during somatotopic 

stimulation (relative to stimuli) in the presence of noise (though see Bartoli et al., 2015 

for reports of somatotopic response facilitation in quiet).  The authors advanced the 

notion of task demands as a mediating factor on anterior dorsal stream activation during 
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speech perception, suggesting that degraded stimuli impose increased processing 

demands that must be addressed through attentional processes.  A similar role of task 

demands was proposed by Sato et al. (2009) to explain the presence of an rTMS effect 

only in phoneme discrimination requiring segmentation, suggesting that working memory 

processes required for segmentation recruited anterior dorsal stream regions (Burton et 

al., 2000; LoCasto et al., 2004; Burton and Small, 2006).  The presence of both 

attentional and working memory modulation of anterior dorsal stream activity is 

consistent with the view of speech perception as an active cognitive process (Heald and 

Nusbaum, 2014). 

 

In summary, the available evidence suggests that anterior dorsal stream activity 

reported during speech perception is speech specific and occurs in the absence of active 

task demands.  This may reflect the instantiation of an inverse internal model, consistent 

with the tenets of Direct Realism, or may also reflect the activity of an intrinsic speech-

motor rhythm rooted in the underlying neural architecture (Assaneo and Poeppel, 2018).  

However, variable performance decrements following disruption to the anterior dorsal 

stream suggest that anterior motor activity contributes to perception, and that this 

contribution is mediated by the engagement of cognitive processes including attention 

and working memory to achieve task goals (Wostmann et al., 2017).  Yet, the precise 

manner in which attentional and working memory processes mediate dorsal stream 

contributions to speech processing remains unclear, and thus further investigation is 

warranted.   

 

 

Attentional Modulation of Dorsal Stream Activity in Speech Perception 

 

In contrast to passive tasks, active tasks with increased attentional demands elicit 

higher levels of activation in the anterior dorsal stream (Binder et al., 2008; Osnes et al., 

2011; Du et al., 2014), particularly in the left hemisphere.  These increased activations 

may reflect the implementation of two distinct yet complementary processes, Predictive 

Coding (Rao and Ballard, 1999; Kilner et al., 2007; Sohoglu et al., 2012) and inhibitory 

control (Brinkman et al., 2014), for the purpose of accomplishing task demands 

(Wostmann et al., 2017).  While they operate in tandem, both predictive and inhibitory 

processes are sensitive to distinct characteristics of the perceptual environment and must 

be considered individually. 

 

 

Predictive Coding Contributions to Attention 

 

Predictive coding is a component of Constructivist Analysis by Synthesis 

(Stevens and Halle, 1967; Bever and Poeppel, 2010; Poeppel and Monahan, 2011) 

theories, which propose that early motor-based predictions are generated in anterior 

dorsal stream regions on the basis of the available context and relayed via forward 

internal models to posterior sensory regions for comparison with the incoming stimulus 

(Poeppel et al., 2008).  Following a comparison of prediction and afference, any 

mismatch (i.e., prediction error) is propagated up the cortical hierarchy via an inverse 
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internal model for hypothesis revision (Sohoglu et al., 2012).  This hypothesis-test-refine 

process continues in an iterative manner until the sensory mismatch is reconciled and the 

stimulus is identified.  Involvement of motor regions within this paradigm is deemed 

necessary based on the paucity of the acoustic signal and the lack of invariant phoneme-

specific cues for perception (Liberman, 1957; Liberman et al., 1967; Galantucci et al., 

2006).  Predictive coding refers to the active generation of motor-based hypotheses 

within this framework, which is thought to focus attention on relevant stimulus features 

(Schwager et al., 2016).  

 

This predictive coding mechanism was initially described in visual perception 

(Srinivasan et al., 1982), and much of its empirical validation has come through the 

visual modality (Rao and Ballard, 1999; Schellekens et al., 2016; Schindler and Bartels, 

2017).  However, behavioral evidence suggests that this predictive coding mechanism is 

both active in the auditory domain and sensitive to context across multiple sources.  

Perhaps the most well-known example is the McGurk-MacDonald effect, in which 

simultaneous presentation of an auditory /pa/ and visual /ka/ leads the perception of /ta/ 

(McGurk and MacDonald, 1976).  This effect is thought to be mediated by the earlier 

arrival of visual cues, which provide viseme-based hypotheses (i.e., context) that 

constrain upcoming analysis of acoustic information (van Wassenhove et al., 2005; 

Skipper et al., 2007b).  This interpretation aligns with experimental evidence 

demonstrating superior perception in noise for audio-visual compared to auditory only 

speech (Sumby and Pollack, 1954).  Somatosensory stimulation is also known to mediate 

perception of speech, as demonstrated by Ito et al. (2009).  Participants identified 

ambiguous syllables on the continuum of /hεd/ to /hæd/ while their facial skin was 

stretched in a manner consistent with production of /hεd/ or /hæd/.  The psychometric 

profile was shifted by tactile perturbation, with subjects more likely to perceive stimuli in 

a manner consistent with the direction of skin stretching.  Taken together, these studies 

suggest that auditory processing of speech may be influenced by the sensory context in 

which stimuli are presented.  That is, predictions formulated on the basis of available 

context are relayed to sensory cortices, with the final percept resulting from the fusion of 

sensory streams.  However, while visual and auditory concomitants of speech elicit 

sensory predictions, it remains unclear what other sources of context may be sufficient to 

elicit predictive coding. 

 

Emerging evidence suggests that even non-articulatory context is sufficient to 

elicit predictive coding.  For example, orthographic representations, which elicit abstract 

phonological forms and semantic concepts, have been shown to alter perception of 

aurally presented speech (Sohoglu et al., 2014).  Sohoglu and Davis (2016) asked 

subjects to rate the perceptual clarity of monosyllabic words degraded through noise 

vocoding (Shannon et al., 1995), with each stimulus preceded by presentation of a 

matched, mismatched, or neutral orthographic representation.  Matched orthographic 

primes enhanced the perceived clarity of stimuli, suggesting that they were mapped onto 

articulatory constraints to facilitate subsequent auditory processing.  Predictions may also 

be based on syntactic constraints, as demonstrated by DeLong et al. (2005) through 

analysis of the N400 response as an index of prediction error in high cloze probability 

sentences.  In addition to the expected effect of a greater N400 response for unpredicted 
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words, the authors reported an effect for the indefinite article associated with the 

predicted item.  These findings may be interpreted to suggest that predictions are 

sensitive to both semantic and syntactic components of linguistic context (Pickering and 

Garrod, 2007).  While the studies reviewed above provide ample support for the 

existence of predictive coding processes during speech perception and their sensitivity to 

a wide variety of contextual cues, it remains necessary to demonstrate that this hypothesis 

generation occurs in the anterior dorsal stream. 

 

Several fMRI studies have linked elevated activity in anterior dorsal stream 

regions to predictive coding.  Davis and Johnsrude (2003) required subjects to rate the 

intelligibility of degraded and non-degraded sentences, identifying increased activity over 

left inferior frontal gyrus (IFG) and PMC for degraded sentences.  The authors 

interpreted these findings as the use of context to recover content that cannot be decoded 

from the sensory signal.   Similarly, Clos et al. (2014) found increased left PMC and IFG 

activity while subjects discriminated a degraded target sentence and a degraded or non-

degraded prior.  PMC activity was found in all trials, while non-degraded trials were 

associated with stronger activity in IFG.  Results were interpreted as support for 

predictive coding, with propositional (i.e., non-degraded) priors providing context for 

degraded targets.  Blank and Davis (2016) presented subjects with degraded and non-

degraded monosyllabic words preceded by a matched or mismatched orthographic cue, 

interpreting elevated activity in left PMC during presentation of degraded speech as a 

marker of predictive coding.  Taken together, these studies suggest that left hemisphere 

anterior dorsal stream regions contribute to predictive coding.  However, this 

interpretation is necessarily tentative based on the inability of fMRI to clearly delineate 

the time course of activity, and the sensitivity of these regions to task-related factors 

(Blank and von Kriegstein, 2013) such as decision-making and response selection 

(Binder et al., 2004).   

 

A clear link between anterior dorsal stream activity and predictive coding may be 

derived from Skipper et al.’s (2007b) fMRI investigation of the McGurk-MacDonald 

effect.  Skipper and colleagues identified a set of cortical regions (i.e., inferior frontal, 

premotor, and primary motor cortices) responsive to both perception and production of 

syllables that elicit the McGurk-MacDonald effect in participants who were and were not 

susceptible to the McGurk-MacDonald effect.  Anterior motor responses from subjects 

who reported hearing the fusion percept (i.e., /ta/ to APVK) were most like their responses 

to the veridical audio-visual /ta/ stimulus.  In contrast, anterior responses from subjects 

prone to visual capture (i.e., /ka/ to APVK) were most similar to their responses to the 

veridical audio-visual /ka/ stimulus.  The authors interpreted these findings to suggest 

that frontal motor areas formulate early hypotheses rather than directly encoding sensory 

information.  While clarifying the role that anterior motor regions play in perception, the 

results of Skipper et al. (2007b) still leave the time course of the observed effect 

unresolved.  Sohoglu et al. (2012) addressed the lack of temporal specificity in predictive 

coding studies by employing joint EEG-magnetoencephalography (MEG) while subject 

rated the perceptual clarity of parametrically degraded words preceded by matching or 

mismatching orthographic primes, identifying differential effects of sensory detail and 

prior knowledge.  Sensory detail modulated activity over posterior auditory regions (i.e., 
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pSTG), while prior knowledge modulated activity over a patch of cortex encompassing 

left IFG, premotor, and motor cortices.  The anterior effect temporally preceded the 

posterior effect, which the authors interpreted as evidence that top down predictions are 

compared against the incoming signal, and only unexplained information is propagated 

up the cortical hierarchy (Todorovic et al., 2011).  Taken together, these studies provide 

strong support for the notion that anterior dorsal stream regions engage in active 

hypothesis generation during speech perception. 

 

In summary, there is compelling behavioral evidence to suggest that the predictive 

coding mechanism described in the visual system also operates in the auditory system.  

These motor-based predictions may be elicited by context across a variety of areas 

including both the sensory concomitants of speech and more abstract phonological and 

linguistic cues.  Both neuro- and electro-physiologic studies implicate anterior dorsal 

stream regions in the generation of these early motor-based hypotheses, which are 

thought to enhance attention by directing processing to relevant stimulus features 

(Schwager et al., 2016).  A description of cortical processes supporting attention would 

not be complete, however, without considering the role of inhibitory control.  

 

 

Inhibitory Contributions to Attention 

 

Concurrent with implementation of predictive coding, attentional demands are 

also mediated by early inhibitory processes.  fMRI studies have reported reduced 

activation of sensory cortex processing the unattended sensory modality in cross-modal 

attention studies.  Johnson and Zatorre (2005) required subjects to identify target stimuli 

in unimodal (audio or visual) and bimodal (audiovisual) tasks, identifying reduced blood 

oxygen level dependent (BOLD) activity in the sensory cortex processing the non-

presented modality in unimodal tasks and the non-target modality in bimodal tasks.  The 

authors suggested this reduced activity was a gating of sensory input, enhancing the 

processing of one modality at the expense of the other.  Similar findings were reported by 

Regenbogen et al. (2012), in which subjects completed a visual n-back task while being 

instructed to ignore a concurrent auditory oddball paradigm.  Decreased activity over 

bilateral auditory cortices with increased visual working memory load was interpreted as 

allocation of cognitive resources to regions processing primary tasks when the brain is 

under high cognitive demands.  While it is apparent that information in one sensory 

modality may be preferentially attended at the expense of another, it still remains to be 

demonstrated that such preferential processing occurs within the same sensory modality.  

In support of this notion, Amaral and Langers (2013) identified stronger BOLD activity 

in auditory cortex contralateral to the attended ear in a dichotic n-back task, interpreting 

their results as evidence of increased resource allocation.  While these studies are 

consistent with notions of attentional modulation through inhibitory control, two primary 

questions remain.  First, due to the limited temporal resolution of fMRI, the observed 

inhibitory activity cannot be clearly allocated to the pre-stimulus period.  Second, as all 

studies included a distractor, it is not possible to determine whether this inhibitory 

activity reflects the gating of irrelevant information or the allocation of additional 

cognitive resources (Brinkman et al., 2014) to the target sensory stream. 
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The time course of inhibitory activity may be assessed by oscillatory dynamics, as 

activity within the alpha band (~10 Hz) is inversely correlated with the BOLD signal 

(Laufs et al., 2003; Brookes et al., 2005; Mayhew et al., 2013; Scheeringa et al., 2016), 

rendering alpha enhancement a temporally sensitive proxy for inhibition.  The majority of 

the work investigating the role of alpha activity in selective attention has been performed 

in the visual modality.  Bonnefond and Jensen (2012) recorded MEG during a modified 

Sternberg task with strong and weak distractors, interpreting greater occipital alpha 

enhancement preceding strong distractors than weak distractors as a gating of information 

detrimental to task performance.  Both Rihs et al. (2007) and Worden et al. (2000) 

required subjects to respond with a button press to a visual stimulus in a cued location 

while recording EEG.  In both studies, alpha enhancement was noted in the occipital lobe 

over the hemisphere processing the non-attended hemi-field.  As no distractors were 

present, it was proposed that all information irrelevant to task performance is inhibited, 

not only stimuli specifically detrimental to task completion.  The results of van Dijk et al. 

(2008), however, suggest a slightly more nuanced interpretation.  Subjects discriminated 

pairs of visual stimuli of the same color or with barely detectable color differences (i.e., 

difference limen), with incorrectly discriminated trials characterized by greater occipital 

alpha power than correct trials.  The authors interpreted this as a mechanism of gain 

control over the incoming sensory signal, and it must therefore be acknowledged that 

inhibitory control is likely more nuanced than a binary on/off mechanism.  It remains to 

be demonstrated, however, that such an inhibitory gain control mechanism operates in the 

auditory domain. 

 

Much of the evidence for inhibitory attentional control in the auditory modality is 

based on dichotic tasks.  Muller and Weisz (2012) asked participants to identify target 

tones in a visually cued ear while recording the MEG signal.  Alpha enhancement was 

noted over the auditory cortex ipsilateral to the cued ear (processing information from the 

unattended ear), which was interpreted as active gating of the non-target sensory stream.  

Similar results of a hemispheric laterality effect were reported by Frey et al. (2014) 

during a cued auditory identification task.  However, based on the nature of dichotic 

tasks, it is not possible to determine whether the hemisphere effect indicates gating of 

irrelevant information or increased resource allocation to the target sensory stream.  The 

results of van Diepen and Mazaheri (2017), in which subjects identified a target in a cued 

modality (auditory or visual) with or without a cross-modal distractor, suggests that these 

two effects may operate in concert.  Conditions with a cross-modal distractor exhibited an 

early increase in alpha activity over the sensory cortex processing the non-cued modality, 

while conditions without a distractor did not elicit this alpha enhancement, suggestive of 

sensory gating.  However, there was no difference in the absolute level of alpha power 

between these two conditions, leading the authors to interpret these findings as evidence 

of early top-down modulation of cognitive resource allocation in a task-dependent 

manner.  Thus, it may be that early inhibitory activity in active perception tasks reflects 

the contributions of paired sensory gating and resource allocation processes to attention. 

 

In summary, it is apparent that attentional demands are supported by early 

inhibitory activity to focus attention on relevant sensory information.  This attentional 
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focus operates both between and within sensory modalities, including the auditory 

domain.  Evidence suggests that both resource allocation and sensory gating processes 

may operate in concert to facilitate rapid and efficient stimulus processing.  As these 

inhibitory processes are concurrent with the predictive coding mechanisms described 

above, it may be proposed that predictive and inhibitory attentional mechanisms function 

in tandem and are employed dynamically on the basis of task demands (Wostmann et al., 

2017), characterizing early dorsal stream contributions to speech perception.  

 

 

Working Memory Contributions to Dorsal Stream Activity in Speech Perception 

 

In addition to a role in attention, it has been proposed that dorsal stream activation 

in speech perception tasks may be mediated by working memory processes (Hickok et 

al., 2003; Hickok et al., 2011b).  This notion has been advanced in support of the 

perspective that anterior portions of the dorsal stream are not essential for speech 

perception, but that their activation simply represents an effect of task (Hickok et al., 

2011a).  Late dorsal stream activity in speech perception tasks may therefore be 

representative of the phonological loop component of Baddeley (2003)’s working 

memory model.  Wilson (2001) reviewed the literature on working memory, deeming 

sensory only and motor only explanations insufficient to account for the diversity of 

experimental findings.  Instead, Wilson (2001) proposed a sensorimotor coding scheme 

in which items are maintained in phonological storage but refreshed through articulatory 

rehearsal.  This is consistent with the perspective of Buchsbaum et al. (2005), who 

dissociated an echoic memory system subject to rapid decay from an articulatory 

rehearsal mechanism, which can be updated endlessly.   An articulatory rehearsal account 

of working memory is consistent with the findings of Ellis and Hennelly (1980), who 

performed digit span tasks with Welsh-English bilinguals.  Within the same subject pool, 

memory span was longer for English than Welsh numbers, which the authors suggested 

was due to the longer articulation time for Welsh numbers.  Similar results have been 

reported in other cross-language studies (Stigler et al., 1986), albeit not in within groups 

contrasts.  While these studies suggest that working memory maintenance relies on 

articulatory processes, it remains unclear whether this articulatory rehearsal is responsible 

for dorsal stream activation in some speech perception tasks.  To resolve this ambiguity, 

it is necessary to consider the imaging literature linking articulatory rehearsal processes 

to dorsal stream regions. 

 

Both Burton et al. (2000) and LoCasto et al. (2004) required subjects to 

discriminate initial sounds in words and tone sequences both with and without 

segmentation requirements, noting increased hemodynamic activity in left IFG during 

trials requiring segmentation.  This was considered evidence of motor recruitment to 

accomplish working memory demands through rehearsal mechanisms, though 

interpretations were tentative as the patterns of activity were not speech specific.  

Buchsbaum et al. (2001) required subjects to covertly produce pseudowords during a 

silent retention period, noting increased BOLD activity compared to passive perception in 

left IFG and PMC.  IFG activation was considered evidence of articulatory rehearsal, 

with the authors stating that the role of PMC was less clear.   Hickok et al. (2003) 
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employed a similar design, including a set of conditions with tonal stimuli.  PMC and 

IFG activations were noted for both tonal and speech stimuli, and the authors proposed 

that both anterior motor regions participate in the process of articulatory rehearsal.  Thus, 

while there appears to be consensus regarding involvement of the IFG in articulatory 

rehearsal, the inconsistent activation of the PMC in working memory tasks deserves 

further consideration. 

 

The variable findings of PMC versus IFG activation in working memory tasks 

may be due to slightly different functions which are differentially recruited based on the 

demands of the specific task.  Henson et al. (2000) required subjects to perform symbol 

matching, letter matching, letter probe, and sequence probe tasks while recording fMRI.  

Letters elicited greater activation than symbols in both IFG and PMC, consistent with 

previous reports implicating these regions in articulatory rehearsal.  However, PMC was 

additionally associated with the sub-vocal rehearsal of serial order, a necessary process 

for the sequence probe task.  A similar interpretation was advanced by Chein and Fiez 

(2001) to account for their results from a delayed pseudoword recall task with a 

prolonged retention period.  Delayed recall elicited increased hemodynamic activity in 

left IFG and PMC, with IFG demonstrating a decreased activation profile along the time 

course of retention, while PMC activity was stable across this window.  The authors 

interpreted their results to propose a two-stage mechanism for articulatory rehearsal, with 

the first stage capitalizing on the capacity of the IFG for articulatory recoding to generate 

an articulatory plan.  In the second stage, this articulatory plan is continually executed, 

instantiated in PMC activity.  This mechanism for articulatory rehearsal accounts for the 

ubiquitous activation of IFG in working memory tasks, as well as the more equivocal 

findings regarding PMC activity.  Taken together these reports suggest a dynamic 

contribution of anterior dorsal stream regions to working memory processes in speech 

perception, though such an interpretation would be bolstered by a clear link between 

activation of these regions and working memory capacity. 

 

In order to lend credence to this proposed articulatory rehearsal network for 

working memory, it is imperative to demonstrate a contribution to behavioral 

performance.  Romero et al. (2006) employed rTMS over IFG, inferior parietal lobule 

(IPL), or the vertex while subjects performed digit span, phonological judgment, and 

visual judgment tasks, noting increased reaction times and decreased accuracy for digit 

span and phonological judgment tasks during rTMS to both IFG and IPL, while no 

effects were noted for vertex stimulation.  The decreased performance corresponding to 

IFG stimulation was considered evidence for a role in articulatory rehearsal, while 

performance modulation associated with IPL activation was considered evidence that the 

phonological store must also be intact to enable effective rehearsal.  Liao et al. (2014) 

applied rTMS and sham stimulation to left motor cortex while subjects performed 

modified Sternberg tasks with pseudowords, words, and Chinese characters, reporting 

slowed reaction times compared to sham stimulation for pseudowords and Chinese 

characters.  As subjects reported employing articulatory recoding for pseudowords and 

covert tracing for Chinese characters, the authors suggested that motor representations are 

activated during retention when working memory demands increase, especially for 

stimuli that may benefit from a motor-based encoding scheme.  The performance 
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decrement observed during exogenous inhibition of anterior dorsal stream activations 

during working memory tasks therefore suggests a role in stimulus retention via 

articulatory rehearsal.  

 

In summary, there is strong support for the existence of a sensorimotor coding 

scheme for working memory maintenance implemented through articulatory rehearsal, an 

interpretation consistent with the phonological loop of Baddeley (2003).  This 

articulatory rehearsal mechanism reliably activates anterior dorsal stream regions, though 

this likely indicates the recruitment of paired articulatory recoding and rehearsal 

mechanisms rather than a unitary process.  Further bolstering the link between anterior 

dorsal stream activations and articulatory rehearsal based working memory maintenance 

is the performance decrease elicited by deactivation of anterior dorsal stream regions.  

When considered alongside the findings implicating the anterior dorsal stream in early 

attentional modulation through paired predictive and inhibitory processes, it becomes 

evident that the role of the dorsal stream in speech perception is multifaceted.  

Specifically, the contributions of the dorsal stream are dynamic across the time course of 

speech perception rooted in the rapidly fluctuating contributions of cognitive processes 

including attention and working memory to task demands.  Thus, in order to clearly 

determine the contributions of each of these processes to speech perception, a temporally 

sensitive metric is needed which is capable of identifying the dynamic patterns of dorsal 

stream activation across the time course of perception events. 

 

 

Electroencephalography and the Mu Rhythm 

 

Temporally sensitive neural data reflecting the dynamic contributions of anterior 

dorsal stream regions to speech perception may be garnered through consideration of the 

sensorimotor mu rhythm.  The mu is an oscillatory rhythm typically recorded over 

anterior dorsal stream regions (Tamura et al., 2012; Hauswald et al., 2013; Jenson et al., 

2014; Friedrich et al., 2015; Denis et al., 2017) which captures sensorimotor 

contributions to both motor and non-motor (i.e., cognitive) tasks.  While early 

descriptions of the mu rhythm focused on activity within the alpha (~10 Hz) band (see 

Fox et al., 2016 for a comprehensive review), multiple lines of evidence suggest that a 

complete characterization of the mu rhythm must consider activity across both alpha and 

beta (~20 Hz) frequency bands.   

 

First, MEG work has identified unified mu rhythms with spectral peaks in both 

alpha and beta bands localized over anterior motor regions (Hari et al., 1997; Hari, 2006; 

Tiihonen et al., 1989).  Second, the use of blind source separation techniques to 

decompose scalp-recorded EEG signals into a series of independent sources has revealed 

similar unified mu rhythms which can be localized to a point source over the anterior 

dorsal stream across a variety of tasks (Bowers et al., 2013; 2014; Cuellar et al., 2016; 

Jenson et al., 2014; 2015; Seeber et al., 2014).  Finally, recent work demonstrates that 

while activity in alpha and beta bands may be highly correlated (Carlqvist et al., 2005; de 

Lange et al., 2008), there is evidence of dissociation (Brinkman et al., 2014), suggesting 

that they index distinct processes (Jurgens et al., 1995; Sugata et al., 2014).  In support of 
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this notion, alpha and beta bands demonstrate different response profiles, with activity in 

the beta band sensitive to motor processes (Hari, 2006; Kilavik et al., 2013) and activity 

in the alpha band considered an index of sensory processing across modalities (Arroyo et 

al., 1993; Cheyne et al., 2003; Kuhlman, 1978; Tamura et al., 2012).  Given these 

considerations, it is critical to consider activity within both bands of the mu rhythm in 

order to accurately describe the participation of anterior dorsal stream regions in speech 

perception. 

 

The mu rhythm can be recorded through temporally sensitive instrumentation 

such as EEG and MEG and decomposed across time and frequency via ERSP to track the 

activity of the underlying neuronal assemblies across both alpha and beta bands.  

Increases in spectral power compared to baseline (ERS; enhancement) are considered a 

marker of cortical inhibition, while reduced spectral power (ERD; suppression) compared 

to baseline represents cortical disinhibition.  By tracking the time course of ERS and 

ERD across alpha and beta frequency bands of the mu rhythm, it is therefore possible to 

ascertain the time-varying contributions of motor and sensory processes to speech 

perception tasks.  

 

 

Mu Alpha 

 

Despite the dual peak nature of the mu rhythm, a large number of studies probing 

sensorimotor dynamics have focused exclusively on the alpha band.  In addition to the 

sensitivity of alpha oscillations to inhibitory gating and resource allocation discussed 

above, suppression of the alpha band of the mu rhythm has also been investigated as a 

proxy for the engagement of the mirror neuron system (Arnstein et al., 2011; Braadbaart 

et al., 2013), thought to provide the link between perception and action (Gallese et al., 

1996; Rizzolatti et al., 1996; Rizzolatti and Craighero, 2004; Iacoboni, 2005; Iacoboni 

and Dapretto, 2006).  Muthukumaraswamy and Johnson (2004) recorded EEG over 

central electrodes while subjects viewed a hand engaged in a neutral position, a precision 

grip, or a grasping motion, interpreting greater mu alpha suppression during perception of 

precision grip and grasping motions as preferential engagement of the mirror neuron 

system for goal-direction actions (Gallese et al., 1996).  Similarly, Frenkel-Toledo et al. 

(2013) reported greater mu alpha suppression over central regions for the perception of 

grasping/reaching movements compared to non-biologic movements, suggesting that it 

represented a mirroring response.  Ulloa and Pineda (2007) also reported greater mu 

alpha suppression during the perception of biologic versus scrambled point light 

representations, proposing that humans have a stored set of motor patterns that can be 

engaged by the mirror neuron system during the perception of familiar sequences.  This 

interpretation is supported by Cannon et al. (2014), who identified greater mu alpha 

suppression during action observation for observers who had executed the action than for 

observers who had only observed the action.  Results were interpreted to suggest that the 

mirror neuron system is more readily engaged when the observer is skilled at the 

observed task.  This aligns with the findings of greater mu alpha ERD in experienced 

than novice tennis players during the perception of tennis shots reported by Denis et al. 



 

19 

(2017).  In sum, these findings suggest that mu alpha ERD is sensitive to activity of the 

mirror neuron system. 

 

Even though a clear relationship exists between mu alpha ERD and engagement 

of the mirror neuron system, few authors have extrapolated beyond mirror neuron 

accounts to propose a role for mu alpha as a marker for inverse modeling.  Engagement 

of the mirror neuron system involves mapping from a sensory signal to a corresponding 

motor representation, with these sensory to motor mappings constituting an inverse 

model projection.  In support of this notion, Sebastiani et al. (2014) presented subjects 

with videos of finger tapping movements, identifying alpha ERD in the MEG signal 

across the dorsal stream.  The emergence of alpha ERD in a posterior to anterior direction 

was interpreted to suggest that mu alpha encodes an inverse model in action observation.  

This proposal is additionally consistent with reports of mu alpha suppression during 

passive limb movement (Kuhlman, 1978; Arroyo et al., 1993), in which inverse model 

transformations may be used to update the current state of the motor system.   Thus, 

while it has been proposed that mu alpha is a reliable index of the mirror neuron system 

(Fox et al., 2016) (though see Hobson and Bishop, 2017 for a contrasting account), it 

must be considered that mu alpha ERD during perception tasks may be more 

parsimoniously interpreted as evidence of inverse modeling.   

 

In summary, the alpha band of the mu rhythm is a rich source of information 

sensitive to a variety of cognitive processes engaged during speech perception.  

Specifically, mu alpha ERS is considered a metric of inhibitory contributions to attention, 

which may be engaged for the purpose of sensory gating or resource allocation processes.  

In contrast, mu alpha ERD during perception tasks likely reflects sensory to motor 

inverse model projections, a process commonly interpreted as evidence for engagement 

of the mirror neuron system.  Given that inverse models may play a role in covert 

production (Pickering and Garrod, 2007; Pickering and Garrod, 2009; Pickering and 

Garrod, 2013) akin to the articulatory rehearsal mechanism underlying working memory, 

consideration of the temporal dynamics of mu alpha is expected to illuminate the 

contribution of attention and working memory across the time course of speech 

perception. 

 

 

Mu Beta 

 

In contrast to the role of mu alpha in inverse modeling, the beta band of the mu 

rhythm is typically considered to correspond to motor processing (Hari, 2006).  It has 

been proposed that activity within the beta band of the mu rhythm during perception tasks 

may be involved in the generation of sensory predictions (Arnal et al., 2011; Arnal and 

Giraud, 2012), a process potentially mediated by forward internal models.  This is 

consistent with various reports implicating beta oscillations in inter-areal communication 

encoding top-down signals (Kopell et al., 2000; von Stein and Sarnthein, 2000; Wang, 

2010).  However, in order to draw a clear connection between beta oscillations and 

forward models, it is necessary to consider the way in which mu beta responds during 

production tasks, as this is the environment in which forward models are often 
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considered.  Beta suppression is a ubiquitous finding in tasks requiring a motor response, 

and does not appear to be effector specific, emerging over anterior motor regions during 

the movement of fingers (Stancak, 2000; Gaetz et al., 2010), wrist (Alegre et al., 2006), 

shoulder (Stancak et al., 2000), foot (Pfurtscheller and Lopes da Silva, 1999), and tongue 

(Crone et al., 1998; Cuellar et al., 2016).  Of note, this effect also emerges during 

isometric contraction, when there is no overt displacement of the target effector 

(Nasseroleslami et al., 2014).  The pervasive nature of beta suppression during movement 

tasks has been interpreted to suggest a role in motor execution (Zaepffel et al., 2013), an 

assertion consistent with reports that an individual-specific threshold of absolute beta 

power must be reached before movement can be initiated (Heinrichs-Graham and Wilson, 

2016).  This also aligns with the role proposed for beta oscillations by Engel and Fries 

(2010), who suggested that it facilitated maintenance of the current sensorimotor state, 

while reduction in beta power facilitates a change in the status quo, enabling movement.  

While these findings clearly implicate beta oscillations in motor execution, the role 

proposed for mu beta ERD in perception necessitates disambiguation of neural responses 

corresponding to execution and forward modeling.  Compelling evidence exists to 

suggest that mu beta ERD is sensitive to forward modeling.   

 

First, beta ERD has been reported in motor imagery tasks, in which no motor act 

is executed.  Di Nota et al. (2017) reported beta ERD over bilateral PMC when subjects 

engaged in kinesthetic motor imagery of a previously displayed ballet dance.  

Additionally, Yi et al. (2016) observed beta ERD over contralateral motor regions during 

the mental imagery of manual movement sequences.  Similarly, Brinkman et al. (2014) 

reported beta ERD over contralateral sensorimotor cortex during a decision task based on 

manual motor imagery.  As greater ERD was noted in trials with more possible 

responses, they suggested that larger cell assemblies were disinhibited on the basis of task 

difficulty.  Kraeutner et al. (2014) employed execution and motor imagery of button press 

sequences, identifying beta ERD over contralateral motor regions during both tasks with 

stronger ERD during execution.  They proposed that computation of movement 

parameters and execution of the motor act may both influence sensorimotor beta 

oscillations, consistent with a review by Kilavik et al. (2013).  Despite apparent 

interpretational difficulties due to its sensitivity to multiple processes, the presence of 

beta ERD over motor regions during motor imagery suggests that it is not tied directly to 

motor execution but may also reflect motor planning. 

 

Further support for the notion that mu beta ERD encodes motor planning arises 

from delayed response paradigms demonstrating beta suppression during the delay 

period.  Zaepffel et al. (2013) required subjects to perform a grasping motion with a 

precision or non-precision grip and differential force magnitudes following cues about 

grip type, force load, both, or neither.  Beta ERD emerged during the delay period only 

when the cue indicated the grip type, which the authors interpreted as contingent motor 

planning in motor/premotor regions, in which force cannot be encoded without the 

movement parameters.  Critically, as subjects were anticipating movement in all trials, 

the beta ERD cannot be considered a general effect of movement expectation and is most 

parsimoniously considered planning for the specific movement.  A similar interpretation 

was advanced by Alegre et al. (2006) to account for the beta ERD during the delay period 
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in a go/no-go paradigm involving wrist extension.  Further confirming the 

preparatory/planning nature of mu beta ERD are the results of Kaiser et al. (2001), who 

instructed participants to perform finger-lifting movements upon hearing a response tone 

with the response side cued by either a spatially lateralized tone or phonological 

evaluation of a cue vowel.  Beta ERD emerged earlier during the delay period for trials 

cued by lateralized tones than for trials cued by phonological analysis, which was 

interpreted as earlier response preparation based on the earlier availability of movement 

parameters.  While beta ERD in motor imagery and delayed movement tasks is consistent 

with a role in motor preparation and planning, theoretical models of speech production 

must be considered in order to propose a role in forward modeling. 

 

The anterior motor regions over which the mu rhythm is recorded (particularly 

PMC; (Hauswald et al., 2013; Cuellar et al., 2016), are integral to both the Directions Into 

Velocities of Articulators (DIVA; Guenther, 2016) and State Feedback Control (SFC; 

Houde and Chang, 2015) models of speech production.  In DIVA, projections from the 

speech sound map in ventral PMC to primary auditory and somatosensory cortices 

encode the sensory predictions (i.e., forward models) defining the auditory and 

somatosensory target maps (Guenther, 2016).  In contrast, SFC proposes that the PMC 

contains the predicted state of the vocal tract, with projections (i.e., forward models) to 

auditory and somatosensory cortices encoding sensory predictions against which 

reafference is compared (Houde et al., 2014; Houde and Chang, 2015).  In both DIVA 

and SFC, the issuance of these forward models occurs concurrent with motor execution, 

which aligns with the interpretations of Kraeutner et al. (2014) and Kilavik et al. (2013) 

regarding the sensitivity of beta ERD to multiple motor-based processes.  The presence of 

beta ERD in delayed execution and motor imagery tasks additionally coheres with a 

simplified model presented by Tian and Poeppel (2012) in which they propose a role for 

forward models in mental imagery (i.e., covert production).  It may be proposed then that 

in addition to a role in motor execution, beta ERD is sensitive to the generation of 

forward models in anterior dorsal stream regions.  This is consistent with interpretations 

of reduced pre-movement beta ERD as weak forward modeling in clinical populations 

including those with Parkinson’s Disease (Delval et al., 2006; Degardin et al., 2009; 

Heinrichs-Graham et al., 2014; Moisello et al., 2015), amyotrophic lateral sclerosis 

(Bizovicar et al., 2014), and schizophrenia (Bickel et al., 2012; Dias et al., 2013).  Thus, 

while it is plausible based on empirical data and computational models to suggest that mu 

beta ERD reflects motor to sensory predictions (Arnal and Giraud, 2012) in perception 

tasks (though see Hickok, 2013 for a dissenting opinion), it is necessary to consider direct 

evidence from perception tasks for a role of forward internal models. 

 

Despite the proposal of Arnal and Giraud (2012), clear evidence demonstrating a 

role for beta in sensory predictions during perception tasks is limited (Sedley et al., 

2016).  Haegens et al. (2012) recorded MEG while requiring subjects to discriminate 

near-threshold tactile stimuli in the presence of a contralateral tactile distractor, 

interpreting bilateral pre-stimulus beta ERD over somatosensory cortex as a predictive 

mechanism serving to enhance active stimulus processing.  Schubert et al. (2009) 

employed a similar tactile discrimination task, with detected stimuli preceded by beta 

ERD first over frontal followed by central electrodes.  The authors proposed that central 
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beta ERD represented a downstream measure of expectancy mediated by frontal beta 

activity.  A similar predictive interpretation for beta ERD during perception was 

proposed by Sebastiani et al. (2014), who recorded MEG while subjects observed and 

performed complex finger tapping sequences.  Beta ERD was identified over 

sensorimotor cortex during both execution and observation, with the authors suggesting 

that this activity reflected the predictive activation of forward internal models during 

action observation (Press et al., 2011; Leveque and Schon, 2013).  While these studies 

suggest a role for mu beta ERD in forward model generation during perception tasks, it is 

not yet apparent that such a mechanism is engaged during auditory perception. 

 

Few studies have directly assessed the predictive role of beta ERD in auditory 

perception, though the evidence that exists is consistent with the generation of forward 

models.  Fujioka et al. (2012) presented subjects with isochronous stimulus trains, noting 

beta band phase synchrony between auditory cortices and anterior motor regions, 

consistent with the inter-areal communication effected by a forward model.  In a follow 

up study, Fujioka et al. (2015) presented subjects with unaccented beats, instructing them 

to imagine them as either a march (2 step) or waltz (3 step) pattern, identifying stronger 

beta ERD prior to the onset of the first beat in each sequence.  They proposed that beta 

modulation during the perception of rhythm reflects the transformation of timing 

information into a sensorimotor code.  Under this framework beta ERD in perception 

may reflect timing-based predictions, in contrast to other authors who consider beta ERD 

an updating of the content of sensory predictions (Sedley et al., 2016).  Thus, while there 

is compelling evidence to consider pre-stimulus beta ERD as a marker for forward model 

generation, further work is necessary to clarify the precise nature of the sensory 

prediction instantiated by this forward model.  

 

In summary, as alpha and beta bands of the mu rhythm are reliable markers of 

inverse and forward modeling, respectively, reports that speech perception modulates 

activity within both bands (Bowers et al., 2013; Bartoli et al., 2016; Mandel et al., 2016; 

Saltuklaroglu et al., 2017) may be considered support for Constructivist proposals that 

predictive internal processes contribute to speech perception.  ERSP analysis of the mu 

rhythm may be employed to ascertain the time course of forward and internal modeling 

contributions to speech perception in the service of task demands.  Specifically, mu beta 

ERD across the time course of speech perception may index early predictive 

coding/inhibitory activity, peri-stimulus sensory processing, and post-stimulus activity 

reflective of working memory maintenance.  Mu alpha activity, in contrast, may be 

interpreted to reflect sensory gating, resource allocation, and inverse modeling across the 

time course of perception events.   

 

 

Internal Modeling in Speech Perception 

 

To assess the contributions of internal modeling processes to speech perception, 

Jenson et al. (2014) recorded 64-channel EEG data while subjects discriminated /ba/ /da/ 

syllable pairs in quiet and noisy backgrounds.  Discrimination accuracy was high (above 

95%), and neural data from correctly discriminated trials were submitted to Independent 
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Component Analysis (ICA; Stone, 2004) to extract bilateral mu rhythms from the scalp 

recorded signal.  ERSP decomposition of mu rhythms revealed distinct patterns of task-

related power modulation in both alpha and beta bands.  In both quiet and noisy 

discrimination conditions, pre-stimulus and peri-stimulus periods were characterized by 

beta ERD and alpha ERS.  Pre-stimulus alpha ERS appeared stronger in the presence of 

noise, though this was not tested by direct statistical comparison.  The post-stimulus 

period was characterized by robust ERD in both frequency bands of the mu rhythm in 

both quiet and noisy conditions.  Patterns of mu rhythm modulation were similar 

bilaterally, though appeared stronger in the left hemisphere.  Based on both this power 

difference and the well-documented left hemisphere preference for speech (Specht, 

2014), only left mu activity was considered further.  Pre- and peri-stimulus results were 

interpreted within the framework of Analysis by Synthesis, with beta ERD considered a 

measure of predictive hypothesis generation during the pre-stimulus window.  Peri-

stimulus beta ERD, in contrast, was interpreted as hypothesis testing against the afferent 

signal.  Alpha ERS across the pre- and peri-stimulus epochs was interpreted as a measure 

of inhibitory control.  Post-stimulus mu ERD was interpreted as evidence of internal 

modeling contributions to working memory maintenance (Baddeley, 2003) through 

covert rehearsal.  However, it must be acknowledged that several pertinent questions 

remain regarding how early and late mu activity reflect the influence of cognitive 

processes on sensorimotor activity in the service of task demands. 

 

 

Pre-stimulus Beta and Predictability 

 

First, the relationship between pre-stimulus beta activity and stimulus 

predictability deserves further investigation.  The interpretation of early beta ERD as 

predictive coding in Jenson et al. (2014) under the framework of Analysis by Synthesis 

was based on its presence prior to stimulus onset and the previously reviewed evidence 

implicating mu beta ERD in forward internal models.  However, it should be noted that 

Analysis by Synthesis is generally considered in perceptual paradigms providing strong 

contextual cues.  For example, discourse (Poeppel et al., 2008; Pickering and Garrod, 

2009; Bever and Poeppel, 2010) and sentence-level comprehension tasks (Bendixen et 

al., 2014; Lewis and Bastiaansen, 2015; Lewis et al., 2016) provide robust semantic and 

syntactic cues.  Audiovisual speech tasks (Skipper et al., 2007b; Olasagasti et al., 2015; 

Peelle and Sommers, 2015) provide early viseme-based cues, which invoke articulatory 

constraints regarding the auditory stimulus (Dubois et al., 2012).  Orthographic (Sohoglu 

et al., 2012; 2014; Sohoglu and Davis, 2016) or pictorial (Kay et al., 1996; Cole‐Virtue 

and Nickels, 2004; McKelvey et al., 2010) primes provide robust phonological and 

semantic contextual cues, respectively.  It is unclear, however, what contextual cues are 

available to facilitate predictive coding during the discrimination of syllable pairs in 

isolation.   

 

Context for prediction may have arisen from the nature of the task (i.e., /ba/ /da/ 

discrimination), in which only four syllable combinations were possible across the 160 

trials (80 trials per condition).  Moreover, each individual syllable could be predicted 

with 50% accuracy.  Thus, it may be proposed that due to the small set size, stimulus 
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predictability was high enough to compensate for the lack of other contextual cues, 

thereby enabling predictive coding.  This notion is plausible considering similar 

interpretations of pre-stimulus beta ERD as predictive coding during the 

discrimination/identification of syllable pairs drawn from small sets.  Callan et al. (2010) 

identified pre-stimulus beta ERD over left PMC during the correct identification of /b/ 

and /d/ phonemes in noise, though not for either incorrect trials or for /a/ and /o/ 

phonemes.  The authors interpreted pre-stimulus beta ERD within the framework of 

predictive coding, proposing that the absence of an effect during the identification of 

vowels was rooted in task difficulty, as background noise degrades consonant 

information more than vowel information.  Task demands were also proposed as a 

mediating factor in the emergence of pre-stimulus mu beta ERD by Bowers et al. (2013) 

during the passive perception and active discrimination of syllable pairs and tone sweeps 

at low (-6 dB) and high (+4 dB) signal to noise ratios (SNR).  Pre-stimulus beta ERD was 

present during active discrimination of syllable pairs, regardless of SNR, while it was 

absent during the active discrimination of tones as well as all passive tasks.  The absence 

of pre-stimulus beta activity in the passive tasks suggests that predictions are only 

generated when required by the task, while the lack of an effect during tone 

discrimination precludes interpretation as a general attentional mechanism.  Instead, the 

authors proposed that internal models are deployed in a predictive fashion to tune neural 

assemblies to expected stimulus features.  Taken together, these studies suggest that, 

when using a small set, sufficient context exists to enable predictive coding with syllable 

stimuli, and that this predictive coding activity is encoded in the mu beta band. 

 

Further support for the notion of a set size effect comes from the results of 

Thornton et al. (2017), who failed to find evidence of predictive coding during the 

discrimination of pseudo-word pairs with and without a segmentation requirement.  In 

contrast to the studies discussed above, no pre-stimulus beta ERD was present in any 

condition.  The authors suggested that based on the larger set size (18 distinct pseudo-

word pairs), individual stimuli were less predictable (Kleinsorge and Scheil, 2016).  This 

interpretation is consistent with the results of Tan et al. (2016), who investigated post-

movement beta synchronization (PMBS) during a manual reaching task under rotational 

perturbation which was preceded by a priming period with either a random or stable 

rotational perturbation.  Reduced PMBS in participants exposed to random priming 

environments was interpreted to suggest that in periods of elevated uncertainty, (i.e., 

when sensory consequences cannot be predicted), implementation and updating of 

internal models is reduced.  In a series of studies investigating switch costs, Kleinsorge 

and Scheil have demonstrated a performance cost in terms of both speed and accuracy 

when an incorrect prediction must be corrected (Kleinsorge and Scheil, 2014; 2015; 

2016).  Paired with the reduced predictability of individual stimuli in Thornton et al. 

(2017), it may be proposed that the cost of correcting erroneous predictions constrains the 

implementation of predictive coding to situations in which predictions are expected to be 

reliable (Philipp et al., 2008), such as discrimination tasks involving a small stimulus set.   

 

It should be noted, that in addition to stimulus set size, Thornton et al. (2017) and 

Jenson et al. (2014) differed in regard to stimulus length/complexity (CV syllables vs. 

CVC pseudo-words), the presence of a segmentation requirement, and the presence of 
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background noise, all parameters that exert a modulatory effect on task difficulty.  As the 

contributions of anterior dorsal stream regions to speech perception are thought to be 

sensitive to task difficulty (Callan et al., 2010; Osnes et al., 2011; Alho et al., 2012a; 

Peschke et al., 2012; Alho et al., 2014), it may be proposed that the lack of pre-stimulus 

beta ERD in Thornton et al. (2017) represented differential dorsal stream recruitment by a 

parameter other than set size.  It is unlikely, however, that different levels of dorsal 

stream recruitment are responsible for the difference in pre-stimulus beta activity 

between the two studies, considering the robust modulation of mu power during the peri- 

and post-stimulus periods in both studies.  However, as the effect of large and small set 

sizes on predictive coding has not been investigated in the same study, it is necessary to 

demonstrate an effect of set size on pre-stimulus mu beta activity in the absence of other 

differential stimulus parameters.  A pre-stimulus beta difference between small and large 

set sizes may be interpreted to suggest that set size modulates predictive coding through 

stimulus predictability, while the absence of an effect suggests that set size does not 

sufficiently modulate stimulus predictability to alter predictive coding. 

 

 

Early Alpha ERS and Inhibitory Control 

 

Second, the interpretation of early mu alpha activity in Jenson et al. (2014) 

remains unclear.  Discrimination in both quiet and noisy backgrounds was characterized 

by ERS in the mu alpha band beginning prior to stimulus onset and persisting through 

stimulus presentation.  Alpha ERS appeared stronger in the noisy discrimination 

condition, though this was not tested with direct statistical comparison.  Alpha activity 

was interpreted as a form of active sensing (Schroeder et al., 2010), similar to that 

employed in the cocktail party effect, where selective attention to relevant speech cues 

filters out competing sensory signals (Bidet-Caulet et al., 2007; Zion Golumbic et al., 

2012).  The increased ERS in noise was considered sensory gating of the noise masker to 

enable accurate discrimination (Stenner et al., 2014).  However, an alternative account 

must be considered as alpha ERS has also been linked to the allocation of additional 

cognitive resources (Brinkman et al., 2014) in service of task demands (see “Attentional 

Modulation Across the Dorsal Stream”).  It may therefore be proposed that the increased 

alpha ERS in the presence of noise represents the allocation of additional cognitive 

resources to meet the increased processing demands associated with degraded stimuli 

(Downs and Crum, 1978; Wostmann et al., 2017).   

 

A cognitive resource allocation account for increased mu alpha ERS suggests that 

additional processes outside of PMC, which compete for resources, are recruited during 

the discrimination of syllables in noise.  Such an interpretation aligns with Giraud et al. 

(2004), who presented subjects with clear and noise degraded sentences, requiring them 

to judge whether the stimuli contained speech or noise.  Following an intervening 

condition, in which subjects heard clear and degraded pairs of the same sentences 

together, subjects repeated the perceptual judgment task.  Greater hemodynamic activity 

was found over left IFG when compared to the first exposure, which the authors 

interpreted as the implementation of an additional cognitive mechanism after subjects 

learned that noisy trials might contain meaningful cues.  Similarly, Wild et al. (2012b) 
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reported a noise-elevated BOLD response over left IFG during the presentation of 

degraded over clear speech in the presence of auditory and visual distractors.  Critically, 

this response only emerged when subjects were cued to attend to the speech stimuli; it 

was absent when subjects were cued to attend to either of the distractors.  This was 

interpreted as evidence that additional cognitive processes are engaged when subjects are 

attending to degraded speech, a finding supported by a differential attention effect on 

recognition performance for clear and degraded stimuli.  As the left IFG is thought to 

house a ‘mental syllabary’ containing speech sound motor programs (Tourville and 

Guenther, 2011; Guenther and Vladusich, 2012), these reports of increased left IFG 

during the perception of degraded speech may be interpreted as greater recruitment of the 

mental syllabary.  Given the proximity between IFG and PMC, alpha ERS over PMC 

may be a necessary mechanism to minimize competition for metabolic and cognitive 

resources.  Of note, resource allocation levels may be set in advance of task initiation 

(van Diepen and Mazaheri, 2017), which gives rise to a conundrum regarding 

interpretations of increased alpha ERS during noisy discrimination in Jenson et al. 

(2014). 

 

Specifically, based on the presence of noise masking throughout the pre- and peri-

stimulus windows in Jenson et al. (2014), the time courses of increased alpha ERS 

predicted by both sensory gating and resource allocation mechanisms are identical.  

Consequently, it is not possible to unequivocally ascribe a function to the increased alpha 

activity present during syllable discrimination in a noisy background.  Doing so requires 

a task in which resource allocation and sensory gating would elicit differential temporal 

patterns of alpha ERS.  Robust filtering, in which some frequency bands are removed 

from the signal, provides an avenue to degrade the stimulus without introducing a 

masking signal which must be gated (i.e., inhibited) during the pre-stimulus period.  

Filtering has been employed to assess neural (Carter et al., 2013; Easwar et al., 2015a; b) 

and behavioral (Ardoint and Lorenzi, 2010; Martin et al., 2012; Freyman et al., 2013) 

responses to degraded stimuli in both clinical (Vinay and Moore, 2010; Goswami et al., 

2016) and non-clinical (Martin et al., 2012; Leibold et al., 2014; Ramos de Miguel et al., 

2015) populations.  As robust filtering elicits differences in the intelligibility of resulting 

stimuli (Gilbert and Lorenzi, 2010), it may provide a means of signal degradation that 

does not depend on a competing stimulus (i.e., noise).  By degrading speech stimuli with 

both filtering and noise masking methods, it is possible to disentangle resource allocation 

and sensory gating explanations for the increased early alpha ERS present during 

discrimination in noise.  No difference between filtered and noise masked conditions is 

most consistent with allocation of additional cognitive resources secondary to the 

increase in task difficulty, while an alpha power difference in the pre-stimulus window is 

most consistent with sensory gating accounts.  Clarifying the role that pre-stimulus alpha 

activity plays during the perception of degraded speech is critical to understanding the 

way in which alpha and beta bands of the mu rhythm cooperate to support speech 

perception (Bastos et al., 2012; Brinkman et al., 2014).  Mu rhythm dynamics during the 

perception of degraded speech are an especially salient issue given reports that speech is 

degraded during most normal communication (Wild et al., 2012b), and degraded speech 

tasks are therefore the most ecologically valid means for probing dorsal stream 

contributions to perceptual processes. 
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Late Mu Activity and Covert Rehearsal 

 

Finally, the relationship between late mu activity and the cognitive demands 

associated with discrimination tasks deserves further clarification.  Activity following 

stimulus offset in Jenson et al. (2014) was characterized by robust ERD across both 

frequency bands of the mu rhythm.  This finding of late mu ERD has now been reported 

in a number of studies employing syllable discrimination tasks (Bowers et al., 2013; 

Saltuklaroglu et al., 2017; Thornton et al., 2017), suggesting that it may characterize 

sensorimotor responses to the cognitive demands imposed by the task.  As this activity 

was found during the time period prior to the response cue, the authors tentatively 

proposed that subjects were engaging in covert rehearsal to maintain the stimuli in 

working memory, possibly via Baddeley’s phonological loop (Baddeley, 2003).  This 

interpretation of concurrent alpha and beta mu ERD as evidence of covert rehearsal 

supporting working memory maintenance was based on several factors. 

 

First, alpha and beta ERD are commonly reported during working memory tasks 

and may serve as an index of stimulus retention.  Tsoneva et al. (2011) identified robust 

alpha and beta ERD across central and parietal electrodes while subjects completed a 

visual n-back task, proposing that sustained activity served to integrate freshly encoded 

information with that already in working memory.  Similarly, Erickson et al. (2017) 

observed that control subjects exhibited alpha and beta ERD throughout both encoding 

and retention periods during a visual change tasks, while patients with schizophrenia 

produced ERD only during stimulus encoding.  Greater ERD during the maintenance 

window was associated with superior task performance, suggesting that alpha and beta 

ERD are essential for successful retention.  Scharinger et al. (2017) employed digit span, 

n-back, and a complex operations span tasks, observing stronger alpha and beta ERD in 

the n-back and complex operations span task than the digit span.  The authors proposed 

that ERD magnitude scales with working memory load, suggesting that task difficulty is a 

mediating factor in working memory processes. Behmer and Fournier (2014) advanced a 

similar proposal to account for higher levels of mu alpha and beta ERD during a retention 

period for low memory span subjects than high span subjects.  Results were interpreted 

through the framework of neural efficiency (Grabner et al., 2004; Del Percio et al., 2008) 

to suggest elevated working memory engagement based on increased task difficulty.  

Taken together, these studies demonstrate that concurrent alpha and beta ERD reliably 

emerge during working memory tasks, consistent with the proposal of Jenson et al. 

(2014) that subjects were engaged in working memory maintenance following stimulus 

offset.   

 

It should be noted, however, that working memory in tasks employing real words 

may be supported by activity in both dorsal and ventral streams (Majerus, 2013).  To 

unambiguously ascribe a role for the dorsal stream in working memory maintenance, it is 

therefore necessary to consider tasks involving non-words, free from semantic 

associations and the consequent ventral stream activation.  Herman et al. (2013) 

employed a delayed syllable sequence repetition task in which subjects repeated an 
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aurally presented two or four syllable sequences upon the presentation of a visual cue.  

The authors identified alpha and beta ERD over anterior motor regions during the 

stimulus retention window, which was interpreted as evidence that interactions across the 

dorsal stream may serve as a maintenance buffer for storing syllable representations 

within the phonological loop.  The authors additionally proposed that at least once cycle 

of this internal feedback loop may be necessary for successful speech production.  

However, despite clear evidence implicating the dorsal stream in working memory 

maintenance, it still remains to be demonstrated that subjects employed covert rehearsal 

to facilitate stimulus retention. 

 

In addition to working memory tasks, concurrent alpha and beta mu ERD have 

additionally been reported during overt speech production and are thought to characterize 

normal sensorimotor processing for speech.  Mandel et al. (2016) identified robust alpha 

and beta ERD over left sensorimotor regions from dyads engaged in natural conversation.  

Similarly, Gunji et al. (2007) recorded alpha and beta ERD over bilateral PMC during 

speech, song, and humming.  While investigating speech related sensorimotor differences 

in people who stutter, Mersov et al. (2016) identified concurrent alpha and beta ERD over 

premotor cortex in their control subjects, interpreting it as normal sensorimotor function 

serving to integrate motor networks for speech.  Additionally, while the discussion of 

Jenson et al. (2014) thus far has pertained to their speech perception data, it should be 

noted that they also included overt production of syllable pairs and words, which 

produced similar patterns of mu ERD to that found in the late perception window.  

Despite the diverse focuses of the aforementioned studies, the factor most relevant to the 

current line of inquiry is that all studies interpreted concurrent alpha and beta ERD over 

motor regions as indicative of normal sensorimotor activity for speech.  Given that mu 

activity during the post-stimulus period in Jenson et al. (2014) consists of patterns 

characteristic of sensorimotor control for speech, notions of articulatory rehearsal are 

tenable.  However, it still remains to be demonstrated that similar patterns of mu alpha 

and beta ERD are produced during covert speech.   

 

Much of the evidence comparing neural responses to overt and covert tasks comes 

from brain computer interface (BCI) applications, as the ability to recover movement 

parameters from the neural signal in the absence of overt movement is critical to effective 

BCI (Yuan et al., 2010a).  To date we are unaware of any studies investigating time-

frequency decomposed, scalp-recorded activity over anterior motor regions during covert 

speech production, with the literature consequently disproportionately weighted towards 

gait and limb control.  This notwithstanding, there is compelling evidence that covert 

movement produces similar patterns of neural activity across alpha and beta bands as 

overt movement.  Holler et al. (2013) reported reduced alpha and beta ERD over central 

electrodes during imagination and execution of hand clenching movements, suggesting 

that similar sensorimotor mechanisms underlie both processes.  However, as results were 

referenced to a control condition rather than a pre-stimulus baseline, interpretations 

regarding task-related dynamics are unclear.  Yuan et al. (2010b) evaluated neural 

responses to overt and imagined clenching of the hands at different rates, training a linear 

classifier to recover movement parameters from alpha and beta ERD over central 

electrodes during both overt and imagined tasks.  Results were interpreted to suggest that 
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neural activity in covert tasks encodes similar parameters as that arising from execution.  

Similarly, de Lange et al. (2008) observed concurrent alpha and beta ERD during the 

mental imagery of hand rotation, suggesting that motor imagery entails an internally 

executed motor program with a similar temporal and spectral profile to that observed 

during execution.  While these studies did not specifically compare time-frequency 

patterns underlying overt and covert speech, they provide compelling evidence that 

similar patterns of activity support both overt and covert movement. 

 

The recovery of speech-based motor parameters from the neural signal is 

significantly more challenging than limb movement parameters based on the elevated 

motoric complexity of speech production (Ackermann, 2008; Kent, 2000).  This 

consideration notwithstanding, emerging evidence using electrocorticography (ECoG) 

suggests such decoding may be possible (Blakely et al., 2008).  Kellis et al. (2010) 

collected ECoG data in the gamma band from face motor cortex during overt speech 

production, training a classifier to identify the spoken word from a set of ten possibilities 

on the basis of the neural data.  The ability of the classifier to identify targets 

significantly above chance was interpreted as evidence of the feasibility of recovering 

speech motor parameters from the ECoG signal.  Guenther and colleagues (2009) 

demonstrated the efficacy of a similar technique for covert speech decoding by training a 

patient with locked in syndrome to control a speech synthesizer through an electrode 

implanted in left precentral gyrus.  The patient was able to mimic formant transitions 

characterizing different vowels, suggesting that covert speech generates movement 

parameters that can be used to duplicate overt speech.  However, the authors provided no 

information about the frequency range used, thus it remains unclear whether alpha and 

beta bands contributed to the observed effect.  Pei et al. (2011) recorded ECoG from a 

series of pre-operative epileptic patients with subdural electrode grids over left peri-

sylvian cortex during overt and covert production of CVC words.  The authors trained a 

classifier to identify both the vowel and consonant pair in each utterance from the neural 

signal, identifying premotor and primary motor cortices as the regions with the highest 

discriminability in both overt and covert conditions.  The authors stated that activity in 

alpha, beta, and high gamma bands were used, but did not provide any information about 

the contributions of individual frequency bands to classification accuracy.  While the 

results of Pei et al. (2011) may be interpreted to suggest that similar patterns of neural 

activity from the anterior dorsal stream may support overt and covert speech production, 

a limitation must be addressed.  While above chance level, classification accuracy did not 

exceed 38% in the covert speech tasks, suggesting that the recorded signal does not allow 

for complete decoding.  Despite this limitation, when considered alongside previously 

discussed reports that alpha and beta ERD emerge during overt speech, the similarity of 

neural responses to overt and covert movement further supports Jenson et al. (2014)’s 

interpretation of covert rehearsal to facilitate working memory maintenance. 

 

In summary, late (i.e., post-stimulus) mu activity in Jenson et al. (2014) was 

characterized by concurrent mu alpha and beta ERD, a pattern that is known to emerge 

during working memory maintenance, overt speech, and covert (i.e., imagined) 

movement.  It is therefore logical to suggest that subjects engaged in covert replay to 

retain stimuli in working memory prior to discrimination response.  Such a proposal is 
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consistent with interpretations of alpha and beta bands of the mu rhythm as indices of 

forward and inverse modeling, respectively.  The involvement of forward models in 

covert production is uncontroversial (Tian and Poeppel, 2010; Poeppel and Monahan, 

2011; Tian and Poeppel, 2012; Tian et al., 2016), and it has been proposed that covert 

speech may be instantiated by paired forward and inverse models (Pickering and Garrod, 

2013).  However, it should be noted that when probed, subjects in Jenson et al. (2014) did 

not report engaging in covert rehearsal.  Such an interpretation of the neural data 

therefore requires further validation, potentially via examination of speech induced 

suppression (SIS), the process whereby auditory responses are attenuated during speech 

production (Numminen et al., 1999; Curio et al., 2000; Heinks-Maldonado et al., 2005; 

Sitek et al., 2013).  SIS has been tied to the inhibitory effect that forward models exert on 

posterior sensory regions (Blakemore et al., 2000; Wolpert and Flanagan, 2001), and it 

has additionally been demonstrated that the same inhibitory mechanism is active during 

covert speech (Kauramaki et al., 2010; Tian and Poeppel, 2015).  Interpretations 

regarding late mu activity in Jenson et al. (2014) may therefore be validated by analysis 

of temporally sensitive data from the posterior dorsal stream, as inhibition of auditory 

regions concurrent with mu ERD is a necessary consequence of covert rehearsal 

accounts. 

 

 

Auditory Alpha as an Index of Posterior Dorsal Stream Activity 

 

The contributions of posterior dorsal stream (i.e., auditory) regions to task 

demands may be reliably evaluated by time-frequency decomposition of the auditory 

alpha rhythm.  As addressed above (see “Electroencephalography and the Mu Rhythm”), 

alpha oscillations are ubiquitous across the brain, having been implicated in a variety of 

cognitive and sensory processes.  However, emerging evidence supports the existence of 

a distinct oscillatory generator located over posterior superior temporal regions with 

response properties specific to auditory stimulation (Tiihonen et al., 1991; Lehtela et al., 

1997; Weisz et al., 2011; Hartmann et al., 2012).  Disambiguation of this auditory alpha 

rhythm from other more widely known alpha generators such as the sensorimotor mu and 

the occipital alpha rhythm governing visual processing (Pollen and Trachtenberg, 1972) 

is based on two primary factors.  First, the auditory alpha rhythm is localized close to the 

source of the N100/M100 auditory response (Hari, 1990; Tiihonen et al., 1991), 

consistent with a role in auditory processing.  Second, the fact that it does not respond to 

closing of the eyes or clenching of the fist (Tiihonen et al., 1991; Lehtela et al., 1997), 

tasks known to modulate the occipital alpha and sensorimotor mu rhythms, suggests its 

distinct nature.  Given this selective (i.e., auditory only) response profile and general 

interpretations of alpha power as an index of the excitatory/inhibitory balance of the 

underlying neural tissue (Jensen and Mazaheri, 2010; Weisz et al., 2011; Mazaheri et al., 

2014), time frequency decomposition of the may be employed to track auditory alpha 

activity across a variety of sensory processes and cognitive functions.   

 

Auditory alpha ERD is generally considered to reflect disinhibition of auditory 

neuronal assemblies for the purpose of stimulus processing (Muller and Weisz, 2012).  

Lehtela et al. (1997) identified bilateral temporal alpha ERD during the perception of 
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transient tones, suggesting that the auditory alpha rhythm is sensitive to the processing of 

exogenous auditory stimuli.  Leske et al. (2015) confirmed the behavioral relevance of 

this activity, noting that detected trials in a near-threshold detection paradigm were 

marked by significantly reduced auditory alpha power.  In addition to a role in the 

bottom-up processing of exogenous input, auditory alpha ERD has also been implicated 

in subjective, rather than veridical, perceptual experiences such as tinnitus (Weisz et al., 

2011) and the illusory perception of music in noise (Muller et al., 2013).  Taken together, 

these findings suggest that while the auditory alpha exhibits a bottom-up, stimulus driven 

response profile, it may also be prone to top-down modulation as evidenced by alpha 

ERD during non-veridical perception.  Reduced alpha power over auditory regions in 

advance of expected auditory stimulation (Bastiaansen et al., 2001; Bastiaansen and 

Brunia, 2001) has been interpreted to suggest a role for attention in top-down modulation.  

This is corroborated by the results of Hartmann et al. (2012), who demonstrated stronger 

auditory alpha ERD for salient than non-salient stimuli.  Thus, while alpha ERD may 

represent the influence of attention on sensory processing, top-down attentional effects 

may also exert inhibitory influence on the auditory alpha rhythm.  

 

Auditory alpha ERS has often been interpreted as a measure of top down 

inhibitory modulation of auditory responses.  Muller and Weisz (2012) identified alpha 

ERS over auditory cortex ipsilateral to the cued ear in dichotic stimulation, which was 

interpreted as gating of the unattended sensory stream.  Similar results and interpretations 

arise from Payne et al. (2017), who identified alpha ERS over auditory cortex 

contralateral to the non-cued ear in a modified dichotic Sternberg task.  In both of these 

studies, this inhibitory effect was dominated by the right hemisphere, which was 

proposed to represent the processing of stimuli from both ears in the right hemisphere 

(Zatorre and Penhune, 2001; Spierer et al., 2009), necessitating a stronger inhibitory 

signal for the competing sensory stream.  The sensitivity of this effect to task demands is 

demonstrated by the results of Wostmann et al. (2017), in which the magnitude of alpha 

ERS elicited by a dichotic distractor scaled parametrically with the spectral detail of the 

distractor.  Stronger auditory alpha ERS in the presence of less degraded distractors was 

interpreted to suggest that more salient distractors must be more strongly inhibited in 

order to achieve task goals.  The effectiveness of this top down inhibitory control is 

suggested by studies demonstrating that the conscious modulation of auditory alpha 

power through neurofeedback has clinical efficacy for reducing (Dohrmann et al., 2007a; 

Hartmann et al., 2014) or abolishing (Dohrmann et al., 2007b) the tinnitus percept.  Two 

critical points emerge from the synthesis of these experimental findings.  First, the 

auditory alpha rhythm is subject to top-down modulation.  Second, auditory alpha ERS 

may be interpreted as evidence of inhibitory control over auditory responses.  This 

inhibitory interpretation constitutes a prime avenue for testing the presence of covert 

rehearsal in the post-stimulus window in Jenson et al. (2014), as auditory alpha ERS 

constitutes an oscillatory marker for the speech induced suppression predicted by covert 

rehearsal accounts. 

 

Jenson et al. (2015) identified the auditory alpha rhythm from the same subjects 

performing the same tasks as Jenson et al. (2014), employing ERSP analysis to identify 

task-related patterns of enhancement and suppression.  Alpha ERD lagged slightly behind 
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stimulus onset, persisting slightly beyond stimulus offset.  The late portion of the trial 

epoch was marked by the transition from ERD to ERS in the alpha band, suggesting 

functional inhibition of auditory regions.   As the timelines were identical between the 

two studies (Jenson et al., 2014; 2015), mu and auditory alpha ERSP data could be 

viewed alongside each other to assess auditory activity in the wider context of dorsal 

stream processing.  Based on the temporal concordance of alpha and beta mu ERD and 

the emergence of auditory alpha ERS, the authors suggested that a forward model arising 

from covert production attenuated activity in posterior auditory regions.  This 

interpretation is additionally consistent with reports that auditory attenuation via speech-

induced suppression occurs during covert production.  Specifically, Kauramaki et al. 

(2010) identified reduced amplitude of the N100 response to probe tones during covert 

vowel production.  This suppression of activity was localized to auditory regions 

bilaterally by a follow up study employing fMRI with the same tasks (Balk et al., 2013).  

As Tian and Poeppel (2015) identified reduced modulation of auditory responses to pitch-

shifted and temporally delayed feedback compared to unperturbed feedback, it must be 

considered that the observed effect is not a generalized attenuation of auditory responses, 

but rather a specific modulation driven by the content of the forward model.  Thus, the 

results of (Jenson et al., 2014) may be cautiously interpreted as evidence of auditory 

attenuation via forward model delivery during covert articulatory rehearsal for the 

purpose of working memory maintenance.  

 

While the temporal alignment of mu ERD and auditory alpha ERS during the late 

post-stimulus period in Jenson et al. (2015) is consistent with what would be predicted by 

covert rehearsal accounts, it must be acknowledged that no causal link can be established 

on the basis of temporal concordance alone.  Establishing such a link is necessary to 

validate covert rehearsal accounts given that alternative explanations exist for auditory 

alpha ERS which are reliant on supramodal attentional mechanisms and do not invoke 

speech-specific processes.  van Dijk et al. (2010) identified auditory alpha ERS over the 

left hemisphere during the retention period in a delayed tone matching task, suggesting 

that alpha ERS served to allocate cognitive resources towards the functionally relevant 

right hemisphere (Herholz et al., 2008).  A similar explanation was offered by Leiberg et 

al. (2006) to account for the presence of right auditory alpha ERS with increasing 

memory load during a Sternberg task using syllables.  Post-stimulus activity in Jenson et 

al. (2015) may therefore be interpreted as an index of resource allocation processes.  

However, as Wostmann et al. (2016) reported that alpha ERS over the non-attended 

hemisphere during dichotic stimulation was modulated in synchrony with the speech rate, 

attentional modulation by the inhibition of distractors (Strauss et al., 2014) must also be 

considered.  As participants in Jenson et al. (2015) were engaged in working memory 

maintenance prior to the response cue, it is plausible that either distractor inhibition or 

resource allocation may account for the functional inhibition of auditory regions 

indicated by alpha ERS.  In order to demonstrate that a speech specific mechanism reliant 

on forward models is responsible for auditory attenuation during the post-stimulus 

window, it is critical to demonstrate information flow between anterior and posterior 

aspects of the dorsal stream during the post-stimulus period. 
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Connectivity Across the Dorsal Stream in Speech Perception 

 

A large number of studies have demonstrated communication between motor and 

auditory regions during speech perception tasks (Husain et al., 2006; Patel et al., 2006; 

Skipper et al., 2007a; Londei et al., 2010; Osnes et al., 2011; Wild et al., 2012a; Sharda et 

al., 2015; Li et al., 2017), an unsurprising finding considering their connection via arcuate 

and superior longitudinal fasciculi (Specht, 2014).  However, the majority of these 

studies have employed fMRI, which limits the ability to interpret connectivity patterns 

for two primary reasons.  First, fMRI does not possess sufficient temporal resolution to 

identify the timeline of the observed connectivity, critical considering reports that the 

timing and directionality of information flow respond dynamically to tasks (Fontolan et 

al., 2014).  Second, the reported findings do not indicate the direction of information flow 

(Friston, 2011).  As the current study is concerned primarily with forward and inverse 

models, which encode opposite directions of information flow across the dorsal stream, it 

is critical to ascertain the direction of information flow between motor and auditory 

regions across the time course of speech perception.  

 

Temporally sensitive analyses of speech perception have identified patterns of 

effective connectivity across the dorsal stream consistent with bidirectional auditory-

motor information flow.  Gow Jr and Segawa (2009) employed Granger Causality 

(Granger, 1969; 1988) analysis of multimodal imaging data while subjects perceived 

word pairs with an ambiguous final consonant, interpreting information flow from PMC 

to bilateral pSTG as evidence of forward model delivery.  Giordano et al. (2017) 

interpreted bidirectional Directed Information (Massey, 1990; Amblard and Michel, 

2011) between motor regions and auditory regions during an audiovisual speech 

perception task as evidence of recurrent processing of speech, consistent with the 

dynamics of both forward and inverse internal models within the Analysis by Synthesis 

paradigm.  However, while it is clear that anterior and posterior dorsal stream regions 

reciprocally communicate during speech perception, it should be noted that 

interpretations of these two studies were hampered by the lack of spectral detail.  As it 

has been previously argued that the anterior dorsal stream encodes forward and inverse 

internal models in the beta and alpha bands, respectively, it may be proposed that a 

similar spectral differentiation is employed for internal model delivery.  Specifically, 

auditory-motor interactions in the beta band may be interpreted as evidence of forward 

modeling, and auditory-motor alpha band connectivity may represent inverse modeling.  

It is therefore necessary to consider evidence that that anterior and posterior aspects of 

the dorsal stream communicate along alpha and beta frequency channels.   

 

Studies implementing spectrally detailed measures of information flow have 

provided weak, but consistent support for the notion that beta band connectivity encodes 

forward model transformations across the dorsal stream.  Park et al. (2015) assessed 

dorsal stream connectivity during the passive perception of intelligible and unintelligible 

speech with Transfer Entropy (Schreiber, 2000).  Activity in the left PMC was shown to 

modulate the phase of activity in left auditory cortex, which the authors interpreted as 

evidence of top-down signaling of motor regions during speech perception.  While the 

study focused primarily on lower delta/theta bands, the authors did note that a similar 
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top-down effect existed in the beta band and was consistent with general notions of beta 

oscillations encoding descending information (Bastos et al., 2012; Fontolan et al., 2014; 

Bastos et al., 2015).  Alho et al. (2014) confirmed a role for beta band connectivity in 

dorsal stream processing by computing the weighted phase lag index (Vinck et al., 2011; 

Ortiz et al., 2012) between PMC and auditory sources during a syllable identification 

task, with beta connectivity noted approximately 100 ms following stimulus onset.  

Although it was not possible to determine the direction of information flow in Alho et al. 

(2014), the results of these two studies may be taken together to suggest that beta band 

connectivity across the dorsal stream encodes forward model predictions. 

 

Despite evidence supporting a role for beta band connectivity in internal modeling 

across the dorsal stream, scant evidence is available regarding the role of alpha band 

dorsal stream connectivity in speech perception.  Evidence does exist, however, 

suggesting that PMC communicates with sensory cortices in the alpha band across a 

variety of tasks.  Pollok et al. (2009) identified alpha band phase synchrony between left 

STG and dorsal PMC when subjects performed an aurally paced, but not visually paced, 

finger-tapping task, suggesting a role in relaying sensory information necessary for motor 

planning.  Palva et al. (2010) identified a network of regions involved in visual working 

memory, including PMC and visual cortex, during a delayed match to sample task 

exhibiting alpha band synchrony, suggesting that interareal alpha phase synchronization 

may constitute a method for regulating the maintenance of sensory objects in working 

memory (Ono et al., 2013).  While lacking directional specificity, these studies do 

suggest that PMC communicates with sensory regions in the alpha band.  Kujala et al. 

(2007) identified a network including visual cortex, left STG, and anterior motor regions 

while subjects performed a reading task, with Granger causality analysis indicating a 

posterior to anterior direction of information flow in the alpha band, consistent with the 

dynamics of an inverse sensory to motor mapping.  While none of these studies directly 

assessed alpha band connectivity across the dorsal stream during speech perception, the 

results confirm that anterior and posterior aspects of the dorsal stream communicate 

along the alpha frequency channel, with results consistent with a role in inverse 

modeling.  This bolsters the notion that the frequency band of cortical interactions may 

serve as a proxy for directional information, with beta connectivity suggestive of top-

down forward modeling influences and alpha band connectivity indexing sensory-driven 

inverse modeling. 

 

In summary, anterior and posterior aspects of the dorsal stream communicate 

bidirectionally across alpha and beta frequency channels, consistent with the notion that 

the same spectral differentiation of forward and inverse models employed in the anterior 

dorsal stream governs information flow across the dorsal stream.  However, no studies to 

date have examined communication across the dorsal stream within these frequency 

bands together during speech perception.  Such connectivity data would supplement 

current understandings of the role that internal models play in speech perception, the 

mechanism of their transmission, and the manner in which they are modulated by 

cognitive processes such as attention and working memory.  In order to ensure the 

sensitivity and specificity of this analysis, two primary factors must be considered when 

selecting the connectivity metric.  First, it must possess sufficient temporal resolution to 
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track the rapid fluctuations in information flow arising from task-dependent network 

reorganization (Fontolan et al., 2014; Skipper et al., 2017).  Second, it must be sensitive 

to interactions across distinct frequency bands.  This is critical given the proposal that the 

frequency of auditory-motor interactions may serve as a proxy for directional 

information.  Analysis of dorsal stream connectivity with a spectrally and temporally 

sensitive metric is critical to accurate classification of the role of sensorimotor processing 

in speech perception and its modulation by cognitive processes such as attention and 

working memory. 

 

Phase coherence analysis of time-frequency decomposed EEG data from anterior 

and posterior aspects of the dorsal stream has the potential to identify connectivity 

modulations in response to task demands.  The use of phase coherence to probe 

connectivity is based on the notion that neural ensembles instantiate communication 

through alignment of their oscillatory phase (Fries, 2005; Weisz and Obleser, 2014).  

Phase coherence is a well-established method for probing interactions between cortical 

sites, having been employed in a variety of motor (Leocani et al., 1997; Abdul-latif et al., 

2004; Melgari et al., 2013) and cognitive tasks including working memory (Yokota and 

Naruse, 2015; Wiesman et al., 2016), attention, (van Schouwenburg et al., 2016; Hasan et 

al., 2017), response inhibition (Muller and Anokhin, 2012), nociception (Drewes et al., 

2006), and speech perception (Sengupta et al., 2016; Steinmann et al., 2018).  As anterior 

and posterior dorsal stream regions are directly connected via the arcuate fasciculus 

(Specht, 2014), it is proposed that phase coherence will capture the interactions between 

them given its maximal sensitivity to direct connections (Friston, 2011).  Also, critical for 

the current study, which will employ ICA to identify the sensorimotor mu and auditory 

alpha rhythms from a larger complex of scalp recorded signals, it has been shown to be 

suitable for use with ICA decomposed EEG data (Hong et al., 2005).  The spectral and 

temporal detail afforded by coherence analysis is expected to reliably identify 

fluctuations in information flow over alpha and beta frequency bands across the time 

course of perceptual events, with frequency specificity serving as a proxy for 

directionality.  Time periods characterized by forward modeling should demonstrate mu-

auditory coherence in the beta band, while periods of inverse modeling should be 

characterized by mu-auditory coherence in the alpha band.   

 

In summary, the aims of the current study are to characterize the influence of 

cognitive processes such as attention and working memory on the contributions of dorsal 

stream processing to speech perception.  By considering ERSP decomposed data from 

anterior and posterior aspects of the dorsal stream alongside measures of phase coherence 

across the dorsal stream, it is possible to probe the dynamics of internal modeling across 

the time course of speech perception.  Specifically, early activity is expected to reveal the 

contributions of predictive and inhibitory processes to attentional modulation of dorsal 

stream activity.  Late activity is anticipated to reveal covert articulatory rehearsal 

mechanisms to facilitate working memory maintenance prior to discrimination response.  

Validation of these hypotheses has the potential to disambiguate diverse theoretical 

orientations regarding the contributions of anterior motor regions to speech perception, as 

well as clarifying how cognitive processes such as attention and working memory 

modulate internal modeling across the dorsal stream in light of task demands.   
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CHAPTER 3.    METHODOLOGY 

 

 

Participants 

 

42 female native English speakers (mean age = 24.1; 3 left handed) with no 

history of cognitive, communicative, or hearing impairment recruited from the University 

of Tennessee student body participated in the current study.  Handedness was assessed 

via the Edinburgh Handedness inventory (Oldfield, 1971).  Prior to participation all 

subjects provided informed consent, approved by the University of Tennessee 

Institutional Review Board. 

 

 

Stimuli 

 

The stimuli consisted of pairs of monosyllabic CV syllables initiated by a voiced 

consonant (i.e., /b/, /d/, /g/, /l/) and followed by a vowel (/i/, /ɑ/, /ɛ/) recorded by a male 

native English speaker.  Fully crossing consonant and vowels yielded twelve syllables.  

However, in order to eliminate potential effects of lexicality (Pratt et al., 1994; Chiappe 

et al., 2001; Kotz et al., 2010; Ostrand et al., 2016), two syllables (/bi/, /li/) were not used 

for generation of syllable pairs.  Ten tokens of each syllable were recorded with an AKG 

C520 microphone using a Mackie 402-VLZ3 pre-amp and a Krohn-Hite Model 3384 

amplifier implementing a Butterworth bandpass filter from 20 Hz – 20 kHz, then 

digitized at 44.1 kHz.  From this corpus, the best exemplar of each syllable was selected 

for use in the discrimination tasks on the basis of overall duration, vowel clarity, and 

consonant clarity.  Selected syllable tokens were then filtered from 300 to 3400 Hz 

(Callan et al., 2010) and normalized for intensity and duration in Audacity 2.0.6.  The 

duration of all syllables was pruned to 200 ms, and intensity was set to approximately 70 

dB SPL. 

 

From the normalized speech tokens, syllable pairs were generated and 200 ms of 

silence was inserted between the syllables.  An additional 1400 ms of silence was 

inserted after the offset of the second syllable so that the total length of stimuli was two 

seconds.  While not necessary for successful discrimination, it should be noted that 

segmentation is known to recruit anterior dorsal stream regions (Burton et al., 2000; 

LoCasto et al., 2004; Sato et al., 2009; Thornton et al., 2017).  To mitigate against this 

potential confound, pairs of syllables differed only by the initial consonant.  Subject to 

this constraint, 36 syllable pairs were possible. 

 

The initial syllable pairs with a quiet background were subjected to two distinct 

methods of signal degradation, yielding three forms of each syllable pairing.  In the 

Masked conditions, syllable pairs were embedded in white noise at +4 dB SNR.  This 

signal to noise ratio was chosen as it has been shown to reliably elicit sensorimotor 

activity while still allowing discrimination with a high degree of accuracy (Osnes et al., 

2011; Bowers et al., 2013; Jenson et al., 2015).  In the Filtered conditions, stimuli were 

filtered into 24 bands according to the Bark frequency scale (Smith and Abel, 1999) 
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using custom Matlab scripts.  The amplitude of frequency bands ranging from 20 – 400 

Hz and 1480 – 2700 Hz were retained, while the amplitude of all other frequency bands 

was set to zero.  The resulting frequency bands were then combined into a single signal, 

and syllable pairs were normalized for RMS amplitude.  A pilot study confirmed both the 

discriminability of the resulting syllable pairs as well as similar levels of discrimination 

accuracy for Masked and Filtered syllable pairs. 

 

 

Design 

 

The experiment consisted of a seven condition within-subjects design.  The 

conditions were derived by crossing set size with signal clarity.  The conditions were: 

 

a) Passive listening to white noise (PasN); 

b) Discrimination of small set in quiet (SQuiet); 

c) Discrimination of small set in noise (SMask); 

d) Discrimination of small bandpass filtered set (SFilt); 

e) Discrimination of large set in quiet (LQuiet); 

f) Discrimination of large set in noise (LMask); and 

g) Discrimination of large bandpass filtered set (LFilt). 

 

Condition 1 was used as a control condition and conditions 2 – 7 were active 

discrimination conditions.  To control for the presence of a button press in the 

discrimination conditions, a button press was included in the PasN condition.  The 

stimulus set for the S- conditions (2 – 4) used syllable pairs consisting of /ba/ and /da/ 

(i.e., four possible pairings).  The stimulus set for the L- conditions (5 – 7) contained all 

permissible syllable pairs subject to the one phoneme difference constraint described 

above (i.e., 36 possible pairings).  Stimuli were randomly in a block design with an equal 

number of same and different trials in each block to mitigate the potential effects of 

response bias (Venezia et al., 2012; Smalle et al., 2015). 

 

 

Procedures 

 

The experiment was conducted in an electromagnetically shielded, double-walled, 

sound-treated booth fit with a faraday cage.  Participants were seated in a comfortable 

chair with their head and neck well supported.  Stimuli were presented, and button press 

responses recorded by a computer running Compumedics NeuroScan Stim 2, version 

4.3.3.  All stimuli were presented binaurally at 70 dB SPL through Etymotic ER3-14A 

insert earphones.  The response cue for all conditions was a 100 ms 1000 Hz tone 

presented 3000 ms following stimulus onset.  Given reports that anticipatory motor 

planning can occur up to 2000 ms before movement onset (Graimann and Pfurtscheller, 

2006), this timeline was chosen to eliminate the potential contamination of 

discrimination-related neural activity by motor planning for the button press.  In addition 

to controlling for anticipatory neural activity corresponding to motor planning, the 

inclusion of a button press response in the PasN condition ensured that subjects were 
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attending to stimuli (Alho et al., 2012b; Alho et al., 2015).  In the PasN condition 

subjects were instructed to press the button when they heard the response cue.  In the 

discrimination conditions, subjects were instructed to press one of two buttons based on 

whether the syllables were judged to be the same or different.  Handedness of button 

press responses was counterbalanced within subjects.   

 

All trial epochs were five seconds in length, ranging from -3000 to +2000 ms 

around time zero, defined as the onset of the syllable pair.  All epochs contained a 

baseline consisting of 1000 ms of silence (i.e., -3000 -> -2000 ms) to allow subsequent 

time-frequency decomposition.  In the PasN and Masked conditions (1, 3, 6) white noise 

began 1500 – 2000 ms prior to syllable onset (i.e., -2000 -> -1500 ms) and persisted until 

1400 ms following syllable offset (i.e., +2000 ms).  The temporal jitter of noise onset was 

implemented to reduce the temporal cues provided to participants.  Each of the conditions 

was presented in 2 blocks of 40 trials each, yielding fourteen blocks (2 blocks x 7 

conditions).  The order of block presentation was randomized across subjects.  The 

timeline for trial epochs is illustrated in Figure 3-1. 

 

 

Neural Data Acquisition 

 

Whole head EEG data was recorded from 68 channels, with 64 neural channels 

will supplemented with four EMG channels to capture the electrocardiogram, electro-

oculogram, and peri-labial muscle movement.  The electro-oculogram was captured by 

means of two channel pairs placed above and below the orbit of the left eye (VEOU, 

VEOL) and on the lateral canthi of the left and right eyes (HEOL, HEOR) to measure 

vertical and horizontal eye movement, respectively.  Two surface EMG electrodes were 

placed over the medial and lateral portions of the orbicularis oris muscle to capture peri-

labial muscle movement.  The EKG channels were placed over the left and right carotid 

complex.  All data were recorded from an unlinked, sintered NeuroScan Quik Cap 

arranged according to the extended 10 – 20 system (Jasper, 1958).  In order to increase 

the precision of source localization, and consequently the proportion of contributing 

subjects, individual channel locations were recorded via a Polhemus Patriot 3D digitizer.  

A source generation was held in place on the forehead, while a stylus was used to identify 

3D locations for each recording electrode relative to the source.  Individual channel 

locations were recorded following cap placement but prior to neural data acquisition and 

stored offline for later use during individual data pre-processing.   

 

EEG data were acquired using Compumedics NeuroScan Scan 4.3.3 software 

coupled with the Synamps 2 system.  During signal acquisition, data were band-pass 

filtered (0.15 – 100 Hz) and digitized with a 24-bit analog to digital converter at a 

sampling rate of 500 Hz.  Data were time locked to the onset of syllable presentation in 

all discrimination conditions.  Thus, time zero corresponds to stimulus onset in the 

discrimination conditions and to a random point in the middle of white noise in the PasN 

condition. 
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Figure 3-1. Timeline for single trial epochs. 

 

Top line corresponds to Quiet and Filtered conditions, while bottom line corresponds to 

Masked conditions. 
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Data Processing 

 

Data processing was performed in EEGLAB 12.0.2.6b (Brunner et al., 2013), an 

open source toolbox for electro-physiologic data running on Matlab 8.2.  Data were 

processed at the individual level to identify the oscillatory rhythms of interest.  

Subsequent group analyses identified condition differences in both focal time-frequency 

and inter-regional connectivity patterns.  The processing pipeline listed here is discussed 

in greater detail below: 

 

• Individual processing: 

 

a) Pre-processing of all 14 data files per subject; 

b) ICA of concatenated data files per subject to identify neural components 

common across conditions; and 

c) Localization of all independent components for each subject. 

 

• Group processing: 

 

a)  Pre-processed data files from all subjects and conditions were submitted to 

the EEGLAB STUDY module; 

b) Independent components common across subjects clustered via Principal 

Component Analysis (PCA); 

c) Bilateral mu and auditory alpha clusters were identified from the results of 

PCA; 

d) ERSP analysis performed to achieve time-frequency decomposition of 

bilateral mu and auditory alpha clusters; 

e) Mu and auditory alpha clusters were localized through ECD techniques; and 

f) Paired mu and auditory alpha components per subject were submitted to 

coherence analyses via custom Matlab scripts. 

 

 

Pre-processing 

 

Both raw EEG data files from each condition were appended to create a single 

data file containing 80 trials.  This aggregate data file was then downsampled from the 

original sample rate (500 Hz) to 256 Hz to reduce the computational demands of further 

processing steps.  All channels were then referenced to the mastoids (M1 M2) for the 

reduction of common mode noise.  Following this step, any channels deemed to be noisy 

were removed from the data.  Additionally, correlation coefficients were computed for all 

channel pairs to monitor salt-bridging across channels (Greischar et al., 2004; Alschuler 

et al., 2014), with correlations of .99 or higher considered evidence of salt bridging.  For 

salt bridged channel pairs, one channel was removed to eliminate signal redundancy.  To 

enable successful comparison across conditions, the identified channels were removed 

from all condition datasets for a given subject.  Five-second epochs ranging from -3000 

ms to +2000 ms around stimulus onset were extracted from the continuous signal, 

yielding 80 epochs per condition.  Trial epochs were visually inspected and removed 
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from the data if they contain gross artifact.  Additionally, all trials in which subjects did 

not discriminate syllables accurately or failed to respond within 2000 ms of the response 

cue were excluded.  All usable trials were then submitted to further processing steps. 

 

 

Independent Component Analysis 

 

Prior to ICA decomposition all pre-processed datasets for each subject were 

concatenated, allowing ICA to extract a single set of channel weights common to all 

conditions.  This step enabled the comparison of component activations across 

conditions.  The concatenated datasets were then decorrelated through the use of an 

extended Infomax algorithm (Lee et al., 1999).  The data were subjected to ICA training 

via the extended “runica” algorithm with an initial learning weight of .001 and a stopping 

weight of 10-7.  As the number of independent components (ICs) returned corresponds to 

the number of channels submitted, a maximum of 66 components (68 recording channels 

– 2 reference channels) were returned for each subject.  The true number of resultant 

components differed across subjects, however, depending on the number of channels 

excluded during pre-processing.  Scalp maps, corresponding to coarse estimates of 

component scalp distribution, were then generated by the projection of the inverse weight 

matrix (W-1) back onto the original channel montage. 

 

 

Dipole Localization 

 

An equivalent current dipole (ECD) model (i.e., point source estimate) was 

generated in the DIPFIT toolbox (Oostenveld and Oostendorp, 2002) for each component 

identified by ICA.  Individual digitized channel locations for each subject were 

referenced to the extended 10-20 system (Jasper, 1958) and warped to the BESA 

(spherical) head model.  This process minimizes the distance between the digitized 

channel locations and the 10-20 channel locations while retaining the true arrangement of 

the recording channels on the scalp.  Due to an equipment error, individual channel 

locations were not available for four subjects, and standard 10-20 channel locations were 

used instead.  Automated coarse and fine fitting to the head model resulted in a single 

dipole model for each of the 2205 components.  The resulting ECD models represent 

physiologically plausible solutions to the inverse problem, which were then projected 

onto the original channel configuration (Delorme et al., 2012).  The residual variance 

(RV%), considered a measure of “goodness of fit” for the dipole model, was determined 

by the mismatch between this projection to the scalp and the original scalp-recorded 

signal. 

 

 

Study Module 

 

Group level analyses were performed in the EEGLAB STUDY module, which 

enables the analysis of ICA data across subjects and conditions.  Data files from all 

subjects and conditions were loaded into the STUDY module.  Any component with RV 
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higher than 20% or an ECD model localized outside the cortical volume was excluded 

from further analysis.  The RV threshold of 20% was chosen as higher levels are likely 

indicative of artifact or noise.   

 

 

PCA Clustering 

 

Component pre-clustering was implemented on the basis of similarities in 

component spectra, scalp maps, and ECD model localizations.  The K-means statistical 

toolbox was used to group similar components on the basis of the specified criteria via 

PCA.  Components were assigned to 40 clusters, from which bilateral mu and auditory 

alpha clusters were identified.  Final component attribution to clusters of interest was 

based predominantly on the results of PCA.  However, all clusters were visually 

inspected to ensure that each member of the clusters of interest met the inclusion criteria, 

and that no components meeting cluster membership had been omitted.  Inclusion criteria 

for the mu clusters were a characteristic mu spectrum (i.e., peaks at ~10 Hz and ~20 Hz), 

RV < 20%, and source localization to Brodmann’s area 1-4 or 6.  Inclusion criteria for the 

auditory alpha cluster were an alpha spectrum, RV < 20%, and source localization to 

pSTG or posterior middle temporal gyrus (pMTG).  Any mis-allocated components were 

re-allocated to correct clusters. 

 

 

Source Localization 

 

Once final designation to component clusters of interest was complete, bilateral 

mu and auditory alpha clusters were localized through ECD methods.  The ECD cluster 

localization is the mean of the Talairach coordinates (x, y, z) of all dipoles contributing to 

the cluster.  These stereotactic coordinates were converted to anatomic locations with the 

Talairach Client, yielding estimates of most likely cortical locations and Brodmann’s 

areas. 

 

 

ERSP Analysis 

 

ERSP analysis was employed to investigate fluctuations in spectral power (in 

normalized dB units) over time across the frequency range of interest (7 – 30 Hz).  

Component activations were decomposed with a Morlet wavelet expanding linearly from 

3 cycles at 7 Hz to 6.4 cycles at 30 Hz.  ERSP data were referenced to a 1000 ms silent 

baseline extracted from the inter-trial interval with a surrogate distribution generated 

from 200 randomly sampled time points within this baseline window (Makeig et al., 

2004).  Calculation of individual ERSP changes across time employed a bootstrap 

resampling method (p < .05, uncorrected).  Single trial data between 7 and 30 Hz from all 

conditions were submitted for time-frequency decomposition. 

 

Statistical analyses employed permutation statistics (2000 permutations) with an 

FDR correction for multiple comparisons (Benjamini and Hochberg, 1995) to assess 
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differences across conditions.  A 2 x 3 Repeated Measures ANOVA was performed to 

decompose the 1 x 7 omnibus test.  As no interaction term was present in the 2 x 3 

design, subsequent statistical comparisons collapsed across variables.  As direct 

comparison of small and large set size conditions did not reveal significant differences, 

both sets of conditions were compared to PasN separately, and the differences were 

compared.  Additionally, a 1 x 3 ANOVA was performed to test the effect of Signal 

Clarity, with paired t-tests performed to decompose the Signal Clarity effect.  

 

 

Connectivity 

 

Analysis of coherence between mu and auditory component clusters was 

performed using custom Matlab scripts.  Pairs of mu and auditory alpha components 

contributed by the same subjects were identified from the STUDY module in EEGLAB, 

extracted from the larger datasets per condition, and submitted to coherence analysis.  

Separate analyses were completed for left and right hemispheres.  The steps in the phase 

coherence pipeline are listed here, and explained in greater detail below: 

 

a) Extraction of matching mu and auditory alpha components for all subjects, 

conditions, and hemispheres; 

b) Removal of phase-locked activity; 

c) Wavelet decomposition; 

d) Coherence estimation; and 

e) Statistical comparisons. 

 

 

Extraction of Component Pairs 

 

Subjects contributing matched pairs of mu and auditory alpha components to 

either hemisphere were identified from the STUDY module.  For each identified subject, 

mu and auditory alpha component activations were extracted from the larger dataset in 

each condition, yielding seven pruned datasets per subject.  Component extraction was 

performed to reduce the computational demands of subsequent processing steps and was 

deemed appropriate based on the nature of the coherence measures employed in the 

current study.  Specifically, as phase coherence exclusively probes bivariate 

relationships, and does not distinguish direct from indirect interactions, there was no 

benefit to retaining additional components in the coherence analysis.  Based on the 

number of contributing subjects (27 – left hemisphere, 28 – right hemisphere), 385 

pruned datasets were generated (55 pairs x 7 conditions), with separate analyses 

performed for left and right hemispheres. 

 

 

Removal of Phase Locked Activity 

 

The focus of the current study was on intrinsic connectivity between mu and 

auditory alpha rhythms, and it was therefore necessary to exclude coherence resulting 
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from synchronization to an external event.  To accomplish this, the ERP was removed 

from all mu and auditory alpha components by subtracting the mean across trials from 

each component activation, with the resulting signals passed on to further analysis.   

 

 

Wavelet Decomposition 

 

To enable the recovery of phase information from the time-domain signals, a 

family of 25 complex Morlet wavelets linearly spaced between 7 and 30 Hz was 

generated, ranging from 3 cycles at 7 Hz to 19 at 30 Hz.  Wavelet decomposition was 

performed by element-wise multiplication of the fft from each wavelet with the fft of mu 

and auditory alpha rhythms, with the inverse Fourier transform performed to convert 

results back to the time domain.  Phase angles (in radians) were extracted from the 

decomposed data, yielding matrices of size 2 (components) x 25 (frequencies) x 1280 

(time points) x number of trials.   

 

 

Coherence Estimation 

 

Coherence at every time frequency point for each trial was computed using 

Euler’s formula (eik) with k representing the pair of phase angles from mu and auditory 

alpha rhythms.  The coherence value across trials for each dataset was calculated as the 

mean across trials of the absolute value of the coherence estimates.  As coherence was 

evaluated separately for each condition, there were seven 25 x 1280 (frequencies x time 

points) matrices for each subject per hemisphere.  

 

 

Statistical Comparisons 

 

Coherence estimates were concatenated across subjects, yielding seven (one per 

condition) 27 x 25 x 1280 matrices for the left hemisphere, and 28 x 25 x 1280 matrices 

for the right hemisphere.  Statistical comparisons of coherence differences across 

conditions employed permutation statistics (2000 permutations) with FDR corrections for 

multiple comparisons (Benjamini and Hochberg, 1995).  Analyses were performed with 

the statcond() function included in EEGLAB.  1 x 7 omnibus ANOVAs were performed 

separately for each hemisphere in addition to paired t-tests between PasN and all 

discrimination conditions. 
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CHAPTER 4.    RESULTS 

 

 

One subject was excluded from the study for failure to comply with instructions, 

as she reported that she only used one hand for all button press responses.  Consequently, 

data from only 41 subjects was submitted to further analysis.   

 

 

Condition Accuracy 

 

A multivariate repeated measures ANOVA with Greenhouse-Geisser corrections 

for violations of sphericity [ = .86, p = .034] was computed on arcsine transformed 

discrimination accuracy for subjects contributing to neural clusters of interest.  

Significant effects of set size [F(1,39) = 112.82, p < .01], signal clarity [F(2,78) = 66.8, p 

< .05], and a set size x signal clarity interaction [F(1.77,67.1) = 15.69, p < .05] were 

noted.  Discrimination accuracy was higher in small set size [mean = 1.42, se = .012] 

than large set size [mean = 1.31, se = .014], and differed across all three levels of signal 

clarity with Quiet [mean = 1.48, se = .014] higher than Masked [mean = 1.27, se = .016], 

which was higher than Filt [mean – 1.34, se = .017].  Decomposition of the interaction 

term by paired t-tests revealed that accuracy was lower [t(39) = -6.55, p < .05] in LMask 

[mean = 1.16, sd = .1] than LFilt [mean = 1.3, sd = .14], but did not differ [t(39) = .16, p 

> .05] between SMask and SFilt (See Figure 4-1). 

 

 

Number of Usable Trials 

 

For the subjects contributing to neural clusters of interest, the average number of 

usable trials per condition were: PasN = 58 (SD = 6.9), SQuiet = 56.5 (SD = 9.2), SMask 

= 54.4 (SD = 8.8), SFilt = 54.9 (SD = 5.6), LQuiet = 53.5 (SD = 6.9), LMask = 49.5 (SD 

= 6.5), and LFilt = 51.1 (SD = 6.6).   

 

 

Cluster Characteristics 

 

Figure 4-2 and Figure 4-3 show the distribution of components contributing to 

left and right mu and auditory alpha clusters, respectively.  Of the 41 subjects whose data 

was submitted to neural analysis, 40 contributed to the clusters of interest.  Specifically, 

31 contributed to the left mu cluster, 35 contributed to the left auditory cluster, 34 

contributed to the right mu cluster, and 32 contributed to the right auditory cluster.  27 

and 28 subjects contributed matching mu and auditory components in the left and right 

hemisphere, respectively, which were used for the analysis of connectivity.  Table 4-1 

shows the contributions of each subject to clusters of interest. 
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Figure 4-1. Mean discrimination accuracy for active discrimination conditions. 
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Figure 4-2. Left mu cluster characteristics. 

 

A) Left mu spectra.  B) Mean scalp map for components contributing to left mu cluster.  

C) Equivalent current dipole localization for contributing components.  D) Dipole density 

function for contributing components. 

 

 

 

 

 
 

Figure 4-3. Right mu cluster characteristics. 

 

A) Right mu spectra.  B) Mean scalp map for components contributing to right mu 

cluster.  C) Equivalent current dipole localization for contributing components.  D) 

Dipole density function for contributing components. 
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Table 4-1. Subject contribution to neural clusters of interest. 

 

Subject ID Left Mu Left Auditory Right Mu Right Auditory 

1 X    

2     

3 X X  X 

4 X X X X 

5     

6 X X X X 

7  X X  

8 X X X X 

9  X X  

10 X X X X 

11   X X 

12  X  X 

13  X  X 

14 X X X X 

15 X X X X 

16 X X X X 

17 X X X X 

18 X X X  

19 X X X X 

20 X X X X 

21 X X X X 

22  X  X 

23 X X X X 

24 X X X X 

25 X X X X 

26 X X X  

27 X X X X 

28 X X X X 

29 X X X  

30  X X X 

31  X X  

32 X X X X 

33 X X X X 

34 X    

35 X X X X 

36 X X X X 

37 X  X X 

38 X X X X 

39  X X X 

40 X X X X 

41 X  X X 

42 X X X X 
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Left Mu 

 

The mean ECD location for the left mu cluster was at Talairach [-41, -8, 41] in the 

precentral gyrus (BA – 6) with an unexplained residual variance of 3.73%. 

 

 

Left Auditory 

 

The mean ECD location for the left auditory cluster was at Talairach [-50, -43, 4] 

in the middle temporal gyrus (BA – 22) with an unexplained residual variance of 4.02%. 

 

 

Right Mu 

 

The mean ECD location for the right mu cluster was at Talairach [45, -4, 38] in 

the precentral gyrus (BA – 6) with an unexplained residual variance of 3.86%. 

 

 

Right Auditory 

 

The mean ECD location for the left mu cluster was at Talairach [51, -45, 7] in the 

middle temporal gyrus (BA – 21) with an unexplained residual variance of 4.39%. 

 

 

ERSP Characteristics 

 

 

Omnibus 

 

Left Mu.  ERSP data from the left hemisphere mu rhythm was characterized by 

ERD across both alpha and beta bands in all discrimination conditions, with no activity 

noted during the control condition.  Alpha / beta mu ERD emerged during stimulus 

presentation, persisting across the late trial epoch.  An omnibus 1 x 7 ANOVA employing 

permutation statistics with FDR corrections for multiple comparisons revealed significant 

differences from ~280 ms following stimulus onset until the end of the trial in the alpha 

band and from ~200 ms post stimulus onset through the end of the trial in the beta band.  

Figure 4-4 shows the ERSP data from the left and right mu clusters alongside the results 

of the omnibus tests. 

 

Right Mu.  ERSP data from the right hemisphere was characterized by alpha and 

beta ERD lagging slightly behind stimulus onset in all active discrimination conditions, 

with no activity noted during the control condition.  An omnibus 1 x 7 ANOVA 

employing permutation statistics with FDR corrections for multiple comparisons revealed 

significant differences from ~400 ms post stimulus onset through the end of the trial in 

the alpha band, and from ~350 ms post stimulus onset through the end of the trial in the 

beta band.  Patterns from the right hemisphere were similar to those observed in the left  
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Figure 4-4. Time-frequency decomposition of left and right mu clusters. 

 

Top row corresponds to left mu cluster and bottom row corresponds to right mu cluster.  

Columns correspond to experimental conditions, with right-most column displaying 

results of the omnibus F-test across conditions with FDR corrections for multiple 

comparisons.  Red voxels indicate time-frequency bins displaying condition differences 

at  = .05. 
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hemisphere, albeit with weaker spectral power, consistent with reports that sensorimotor 

transformations for speech are bilateral (Cogan et al., 2014) yet left hemisphere dominant 

(Hickok and Poeppel, 2000; 2004; 2007).  As the right hemisphere results did not reveal 

different significance patterns from those found in the left hemisphere, statistical 

contrasts for the purpose of testing were restricted to the left hemisphere. 

 

 

Factorial Design 

 

The results of a 2 x 3 repeated measures ANOVA with FDR corrections for 

multiple comparisons did not reveal a significant interaction term.  Consequently, the 

statistical contrasts for hypothesis testing reported below were collapsed across factors to 

increase statistical power. 

 

 

Results Pertaining to Hypothesis 1 

 

In contrast to the first hypothesis that stronger pre-stimulus mu beta ERD would 

be present in small set than large set size conditions, the results of a paired t-test 

employing permutation statistics with FDR corrections for multiple comparisons did not 

reveal a set size effect in bilateral mu clusters.  Additionally, only weak pre-stimulus beta 

ERD was observed in both small and large set sizes. 

 

Despite the absence of a pre-stimulus set size effect in direct comparison of the 

discrimination conditions, comparison of small and large set size conditions to the control 

condition individually revealed interesting differences in the left hemisphere (Figure  

4-5).  While similar patterns of robust alpha and beta mu ERD were present in the post-

stimulus window for both small and large set discrimination, patterns were different in 

the pre- and peri-stimulus windows.  The comparison of small set discrimination to the 

control condition in the left hemisphere revealed robust differences in the alpha band 

across the pre- and peri-stimulus windows, with robust differences in peri-stimulus beta.  

In contrast, comparison of large set discrimination to the control condition in the left 

hemisphere revealed only weak, transient alpha differences early in the pre-stimulus 

window, with weak beta differences in the peri-stimulus window.  Additionally, the onset 

of peri-stimulus beta differences in large set discrimination was ~200 ms later than in 

small set discrimination. 

 

 

Results Pertaining to Hypothesis 2 

 

In accord with the second hypothesis that differences would be found between 

quiet, masked, and filtered discrimination conditions, a 1 x 3 ANOVA employing 

permutations stats with FDR corrections for multiple comparisons revealed significant 

differences between degradation levels.  Differences were present in the alpha band from 

~350 to ~1200 ms post stimulus onset, and in the beta band from ~300 ms post stimulus 
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Figure 4-5. Set size effects. 

 

The top and bottom rows represent the statistical comparison of Small and Large set 

conditions, respectively, to the PasN condition, with significantly different time-

frequency bins indicated by red in the right column (pFDR < .05).  The middle row 

indicates time-frequency bins significant in Small but not Large set discrimination 

conditions. 
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onset through the remainder of the epoch.  In order to decompose the source of these 

effects, a series of paired t-tests employing permutations stats with FDR corrections for 

multiple comparisons were conducted between the levels of stimulus degradation.  

Figure 4-6 displays the results of the ANOVA and the t-tests. 

 

The contrast between Masked and Filtered conditions revealed significant 

differences in the beta band from ~1200 ms following stimulus onset through the end of 

the trial epoch, comprising the late post-stimulus window.  The contrast between Quiet 

and Masked conditions revealed differences in the alpha band from ~400 to ~750 ms 

following stimulus onset, encompassing the late peri-stimulus and early post-stimulus 

windows.  The contrast of Quiet and Filtered conditions revealed robust differences in 

both alpha and beta bands.  Alpha differences were present from ~400 to ~950 ms post 

stimulus onset, while beta differences were present from ~400 to ~1200 ms post stimulus 

onset, encompassing the late peri-stimulus and early post-stimulus windows. 

 

 

Results Pertaining to Hypothesis 3 

 

The results from the mu-auditory coherence analysis failed to support the third 

hypothesis that patterns of forward and inverse modeling would be present across the trial 

epoch.  No clearly discernable pattern of coherence between mu and auditory clusters 

was observed across conditions in either hemisphere.  The results of the coherence 

analysis for left and right hemispheres are displayed in Figure 4-7 and Figure 4-8, 

respectively.  The omnibus ANOVA did not reveal any differences surviving corrections 

for multiple comparisons.  Additionally, a series of paired t-tests employing permutation 

statistics with FDR corrections for multiple comparisons comparing coherence values 

between PasN and each of the discrimination conditions failed to demonstrate significant 

differences across the trial epoch. 
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Figure 4-6. Signal clarity effects. 

 

The top row corresponds to the F-test across levels of signal clarity with significantly 

different time-frequency bins indicated in red in the right-most column.  The remaining 

rows display the results of paired t-tests to decompose the signal clarity effect.  All 

differences significant at pFDR < .05. 
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Figure 4-7. Left hemisphere mu-auditory alpha phase coherence. 

 

Columns correspond to experimental conditions, with the right-most column representing 

the uncorrected F values for the omnibus test across conditions.  No differences survived 

corrections for multiple comparisons. 

 

 

 

 

 
 

Figure 4-8. Right hemisphere mu-auditory alpha phase coherence. 

 

Columns correspond to experimental conditions, with the right-most column representing 

the uncorrected F values for the omnibus test across conditions.  No differences survived 

corrections for multiple comparisons. 
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CHAPTER 5.    DISCUSSION 

 

 

In the current study, ICA identified bilateral sensorimotor mu and auditory alpha 

components from a cohort of typical speakers across an array of speech discrimination 

tasks.  Consistent with other studies employing similar inclusion criteria for cluster 

membership (Bowers et al., 2014; Jenson et al., 2015; Cuellar et al., 2016; Saltuklaroglu 

et al., 2017), 88% and 93% of subjects contributed to mu and auditory alpha clusters, 

respectively (see Table 4-1 for full description of cluster contribution).  ECD models 

localized mu clusters to premotor cortex (BA-6) bilaterally, consistent with accepted 

generator sites of the mu rhythm (Pineda, 2005; Hari, 2006).  Auditory alpha component 

clusters were localized to posterior middle temporal gyrus bilaterally (left: BA-22; right: 

BA-21) in accord with previous localizations of the auditory alpha rhythm (Muller and 

Weisz, 2012; Herman et al., 2013; Bowers et al., 2014).  Critical to the investigation of 

mu to auditory coherence, matching mu and auditory alpha components were contributed 

by 66% and 68% of subjects in left and right hemispheres, respectively.  Given the high 

proportion of subjects contributing neural components, it was possible to test 

experimental hypotheses regarding set size, stimulus degradation, and covert rehearsal. 

 

 

Set Size Differences 

 

In contrast to the first hypothesis that small set conditions would produce stronger 

pre-stimulus mu beta ERD than large set conditions, set size effects were present in pre-

stimulus alpha and peri-stimulus alpha and beta activity when compared to PasN.  While 

not in direct support of the first hypothesis, these differences from PasN may be 

tentatively interpreted to inform regarding the influence of stimulus predictability on 

sensorimotor processes.  Stronger pre- and peri-stimulus alpha ERD was noted in small 

set discrimination, with peri-stimulus beta differences emerging ~200 ms earlier in small 

set than large set discrimination.  Thus, rather than stimulus predictability moderating 

attention by predictive generation of forward models as hypothesized, an alternative 

mechanism must be considered.  Pre-stimulus alpha ERD in perception tasks is typically 

interpreted as a measure of increased attentional allocation to a target sensory stream 

(Jones et al., 2010; Muller and Weisz, 2012; Frey et al., 2014).  However, as none of the 

discrimination tasks employed in the current study required preferential processing of a 

target sensory stream, the nature of differential attentional allocation based on set size 

requires further consideration.   

 

In visual search tasks, the reduction of the search space by prior knowledge leads 

to increased performance (Barrett et al., 2016) as well as pre-stimulus alpha ERD 

(Worden et al., 2000; Rihs et al., 2007; Bonnefond and Jensen, 2012).  As alpha ERD 

tracks the spatial locus of attention (Foster et al., 2017) and reflects the cortical 

prioritization of memory representations serving as the current selection filter (de Vries et 

al., 2017), it may be proposed that the a priori narrowing of the search space enables 

increased attentional allocation to relevant stimulus parameters.  A corollary mechanism 

in the auditory domain, akin to the perceptual narrowing experienced by infants (Pons et 
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al., 2009; Fava et al., 2014; Ortiz-Mantilla et al., 2016), may have enabled a similar 

sensory narrowing in the small set tasks employed in the current study.  That is, since the 

sub-region of the auditory signal necessary to perform the discrimination task is known a 

priori in small set discrimination, the brain may constrain sensory analysis to a task-

relevant subsection of the incoming signal.  Rather than enacting predictive forward 

models, the repetitive nature of the discrimination tasks may have enabled subjects to 

narrow the auditory search space by probabilistic (Clayards et al., 2008; Kleinschmidt 

and Jaeger, 2015) or statistical (Maye et al., 2008; Virtala et al., 2018) learning methods.  

This sensory narrowing may account for the earlier onset of mu alpha and beta ERD in 

the peri-stimulus window, as more efficient attentional allocation would enable the earlier 

extraction of relevant stimulus parameters and their mapping onto articulatory gestures.   

 

It must also be considered that stronger early alpha ERD in small set conditions 

may represent an effect of repetition priming.  Under this interpretation, recently 

presented items possess a residual level of activity and are more readily activated.  

However, several factors render this interpretation untenable.  First, as the current 

analysis pipeline entails referencing ERSP data to a pre-stimulus baseline, residual 

activation from previous trials is present in the baseline.  Consequently, selection of a 

recently activated item would be expected to elicit weaker, rather than stronger activity.  

Second, data from ERP studies demonstrate weaker processing of primed compared to 

unprimed items (Holcomb et al., 2005; Grainger and Holcomb, 2015; Grisoni et al., 2016; 

Rommers and Federmeier, 2018).  To date, no studies have examined repetition priming 

effects on the sensorimotor mu rhythm, though Tavabi et al. (2011) examined the 

oscillatory consequences of repetition priming over auditory regions, identifying reduced 

alpha ERD for primed compared to unprimed words.  Taken together, these results 

preclude a priming explanation for the set size differences reported in the current study, 

lending credence to interpretations of more efficient attentional allocation based on 

reduced sensory search space.  However, given the absence of significant condition 

differences in direct comparison of small and large set conditions, it must also be 

considered that set size may not constitute a meaningful experimental manipulation of 

stimulus predictability.  Consequently, future studies probing the role of stimulus 

predictability on dorsal stream activity should employ a variety of experimental 

manipulations to ensure robust predictability changes. 

 

 

Signal Clarity Differences 

 

In contrast to the second hypothesis that pre-stimulus alpha differences would be 

found between Quiet, Masked, and Filtered discrimination conditions, differences were 

found across alpha and beta bands in the peri- and post-stimulus windows (i.e., during 

and following stimulus presentation).  The absence of pre-stimulus alpha differences was 

unexpected given the findings of Jenson et al. (2014) and may reflect an adaptation to the 

task based on the large number of discriminations (i.e., 480) employed in the current 

study.  Weaker alpha ERD compared to Quiet conditions was present in the late peri- and 

early post-stimulus windows in both degraded conditions, persisting later in the Filtered 

condition.  Due to the similar time course of reduced alpha ERD in the current study and 
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alpha ERS in Jenson et al. (2014), results may be considered evidence of relative 

inhibition of the anterior dorsal stream in degraded compared to Quiet conditions.  That 

is, considering reports that alpha ERD indexes a release from inhibition (Klimesch et al., 

2007; Klimesch, 2012), results may be interpreted to suggest a reduced release from 

inhibition in degraded conditions.  In light of the research question, such an interpretation 

suggests a resource allocation account of early inhibitory activity since no pre- or peri-

stimulus differences were found between Masked and Filtered conditions.  This 

interpretation is made tentatively however, as theoretical models linking alpha activity to 

inhibitory function generally consider inhibition from baseline rather than a relative 

effect between conditions (Klimesch et al., 2007; Jensen and Mazaheri, 2010; Schroeder 

et al., 2010; Strauss et al., 2014). 

 

An alternate account emerges when results are considered within the framework 

of Analysis by Synthesis (Stevens and Halle, 1967; Poeppel and Monahan, 2011), which 

proposes that early motor-based hypotheses from a of quick sketch of the stimulus are 

subjected to iterative loops of hypothesis testing and revision until the stimulus is 

identified (Bever and Poeppel, 2010).  As mu alpha corresponds to sensory processing, 

the reduced peri-stimulus alpha ERD in degraded conditions may be considered evidence 

of a weak early sketch based on the low fidelity of the auditory signal.  While this may 

appear to contradict reports of elevated dorsal stream activity during perception in noise 

(Osnes et al., 2011; Cuellar et al., 2012), it is critical to consider the timeline of activity.  

During Masked conditions, weak alpha ERD resolves quickly, with similar patterns of 

late activity as found in Quiet tasks.  This normalization of late activity may be explained 

through the hypothesis-test loops in Analysis by Synthesis.  While the source signal is 

degraded by the presence of noise, it still contains all of the information necessary to 

confirm forward model transformations of motor-based hypotheses.  That is, sufficient 

detail exists in the source signal to confirm or revise hypotheses, allowing the 

sensorimotor system to converge on the stimulus identity and replay it in working 

memory. 

 

In contrast, Filtered conditions were characterized by reduced alpha and beta ERD 

across the peri- and post-stimulus windows when compared to Quiet conditions.  

Reduced beta activity has been linked to weak forward models (Delval et al., 2006; 

Bickel et al., 2012; Bizovicar et al., 2014), suggesting that insufficient information exists 

to compensate for the weak early sketch of the stimulus.  Since the mode of signal 

degradation in Filtered conditions entailed the removal of spectral information, 

hypothesis testing through forward model transformations specifies acoustic 

consequences that can neither be verified nor refuted.  The inability of the sensorimotor 

system to effectively test and revise hypotheses may lead to a failure to converge on the 

stimulus identity, resulting in the persistence of weak internal modeling across the trial 

epoch.  Given previous interpretations of late post-stimulus activity as working memory 

maintenance via covert rehearsal (Jenson et al., 2014; Saltuklaroglu et al., 2017; Thornton 

et al., 2017), this suggests that the ability to encode and maintain stimuli in working 

memory is mediated by the quality of the source signal.  Support for this notion comes 

from evidence of decreased working memory capacity in normal aging (Cervera et al., 

2009) and hearing impaired (Nittrouer et al., 2013; AuBuchon et al., 2015; Bharadwaj et 
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al., 2015) populations, both of whom have reduced access to spectral detail in the source 

signal.  Taken together, these results suggest that articulatory rehearsal is not a modular 

process deployed identically across working memory tasks, but is sensitive to stimulus 

characteristics (Gathercole, 1995; Gathercole et al., 2001), and may additionally 

contribute to stimulus processing.   

 

However, as increased working memory load typically elicits stronger beta ERD 

(Behmer and Fournier, 2014; Scharinger et al., 2017) (c.f. Schneider et al., 2017) , an 

alternative interpretation must be considered.  Reduced beta has been linked to increased 

levels of uncertainty (Tan et al., 2014; Tan et al., 2016), while weaker responses to 

sensory mismatches (encoded in the alpha band) have been reported under conditions of 

reduced confidence (Acerbi et al., 2017).  It may then be proposed that the weaker 

activity in alpha and beta bands during Filtered tasks constitutes a neural marker for 

uncertainty.  Under this interpretation, the reduced late beta ERD in Filtered conditions 

compared to Masked conditions suggests a mediating effect of confidence/uncertainty on 

the strength of covert rehearsal.  However, as uncertainty is likely mediated by the 

paucity of the source signal, it remains unclear whether this constitutes a truly alternative 

interpretation.  Further work is therefore necessary to clarify the contributions of working 

memory load, signal clarity, and uncertainty to late mu beta activity in discrimination 

tasks.  

 

 

Coherence 

 

The results of the mu-auditory coherence analysis failed to support the third 

hypothesis that patterns of forward and inverse modeling would be present across the trial 

epoch.  While differences were present in the omnibus test across conditions in the alpha 

and beta bands, none of these differences survived corrections for multiple comparisons.  

Subsequent post hoc tests also did not reveal significant differences between the control 

condition and any of the discrimination conditions.  This result was unexpected for 

several reasons.  First, ERSP data replicated the findings from Jenson et al. (2015) 

demonstrating temporal concordance between the onset of mu ERD and the emergence of 

auditory alpha ERS (see Figure 5-1).  Second, theoretical interpretations of alpha and 

beta bands as sensory feedback and forward modeling channels, respectively, suggest 

oscillatory coupling within those frequencies.  Finally, recent evidence suggests that 

anterior and posterior dorsal stream regions communicate in alpha and beta bands during 

speech perception (Alho et al., 2014; Park et al., 2015; Elmer et al., 2017).    

 

Several factors may have contributed to the failure to identify mu-auditory 

coherence in the current study.  First, passive listening to noise may not have been an 

effective control condition.  While it does not elicit activity in the anterior dorsal stream 

(Bowers et al., 2013; Jenson et al., 2014), little is known about its effects on dorsal 

stream connectivity, and its use as a control condition may have obscured discrimination-

related effects.  Second, while anterior and posterior aspects of the dorsal stream are 

directly connected via the arcuate and superior longitudinal fasciculi, it remains unclear 

whether communication entails intermediate processing stages.  As coherence is  
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Figure 5-1. Temporal concordance between left hemisphere mu and auditory 

alpha rhythms. 

 

The top row corresponds to sensorimotor mu activity across conditions, while the bottom 

row corresponds to the auditory alpha rhythm.  The first column depicts the dipole 

density function from clusters of interest, while the remaining columns depict time-

frequency activity across experimental conditions. 
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maximally sensitive to direct connections, intermediate processing may have reduced the 

sensitivity of the analysis.  Third, alpha and beta bands may not constitute the primary 

channel of communication across the dorsal stream, as recent evidence suggests auditory-

motor coupling in the theta band (von Stein and Sarnthein, 2000; Giraud et al., 2007; 

Park et al., 2015) consistent with the syllabic rate.  Finally, it may be that patterns of 

dorsal stream coherence vary considerably across individuals and are not interpretable at 

the group level.  In support of this notion, a high degree of inter-subject variability was 

noted in the ERSP data from auditory alpha components in the current study.  As these 

results suggest that phase coherence in the alpha and beta ranges is not an effective 

means for probing auditory-motor interactions, future dorsal stream investigations should 

employ connectivity measures capable of addressing the weaknesses in the current 

paradigm. 

 

 

General Discussion 

 

The current study leveraged the temporal sensitivity of EEG to investigate the 

dynamic influences of cognitive demands including attention and working memory on 

sensorimotor processing.  The temporal and spectral detail afforded by the current 

methodology enabled the tracking of multiple concurrent processes over the time course 

of speech perception events, with set size and stimulus clarity employed to modulate 

attentional demands through predictive and inhibitory mechanisms, respectively.  

Accordingly, the presence of stronger mu alpha ERD throughout the pre- and peri-

stimulus windows coupled with earlier peri-stimulus beta ERD in small set 

discrimination is interpreted as evidence of more efficient attentional allocation based on 

the reduced sensory search space.  Such an interpretation aligns with findings of 

preparatory attentional allocation during speech perception (Wostmann et al., 2015) and 

the role of attention in filtering and weighting sensory information according to task 

demands (Forschack et al., 2017).  However, the manner in which these data correspond 

to the extant literature demonstrating elevated anterior dorsal stream activity during more 

difficult perception tasks (Osnes et al., 2011) remains unclear.   

 

It must be considered that subjects may have adapted to the tasks, employing 

similar processing strategies across conditions despite the differences in stimuli.  This is 

suggested by the failure to replicate previously reported pre-stimulus mu alpha ERS and 

mu beta ERD in speech discrimination tasks (Bowers et al., 2013; Jenson et al., 2014).  In 

contrast to those studies, which employed a small number of speech discrimination tasks 

among a larger set of conditions, the current study consisted entirely of speech 

discrimination tasks.  Similarly, the lack of robust pre-stimulus activity in Thornton et al. 

(2017) may be attributed to the exclusive use of active discrimination tasks.  Under this 

interpretation, novel tasks may elicit processing strategies optimal for successful 

performance, while over time repetitive tasks may elicit processing strategies designed 

for maximum efficiency (i.e., minimal energy expenditure) while still allowing task 

completion.  This proposal expands upon previous concerns regarding the ecological 

validity of tasks employed to probe dorsal stream processing (Hickok et al., 2011a).  
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Specifically, not only do tasks need to be considered in regard to naturalness, but also the 

larger experimental environment in which tasks are completed.  

 

Concurrent alpha and beta mu ERD in the late trial epoch has now been reported 

in a large corpus of speech and non-speech discrimination studies (Bowers et al., 2013; 

Jenson et al., 2014; Jenson et al., 2015; Saltuklaroglu et al., 2017; Thornton et al., 2017; 

Thornton et al., In Prep), and appears to characterize sensorimotor responses to 

discrimination tasks.  Based on its presence in the post-stimulus window and its similarity 

to patterns emerging during overt speech, this pattern has been interpreted as evidence of 

covert rehearsal to support working memory maintenance.  The data from the current 

study, however, suggest a more nuanced interpretation.  While subjects were able to 

perform the discrimination task with degraded stimuli, patterns of covert rehearsal were 

weaker in Filtered conditions than in both Quiet and Masked conditions.  One possible 

explanation for this is that subjects were unable to recover the articulatory features 

required for covert rehearsal from the Filtered signal.  As covert rehearsal mechanisms 

serve to refresh the sensory trace in working memory (Wilson, 2001; Buchsbaum et al., 

2005), it may be proposed that while access to articulatory features is not necessary to 

perform the discrimination task, it is necessary to refresh the sensory trace in working 

memory through articulatory rehearsal.  Weaker late activity in Filtered conditions may 

additionally represent uncertainty resulting from the inability to confirm forward model 

predictions.  While in agreement with previous suggestions that late mu ERD 

corresponding to covert rehearsal characterizes discrimination tasks, the results of the 

current study suggest that this articulatory rehearsal is not a modular phenomenon 

deployed similarly in all cases.  Rather, it is a dynamic process sensitive to both 

uncertainty and the quality of the signal being retained in working memory.   

 

 

Limitations 

 

While the current study identified robust effects of cognitive demands on 

sensorimotor processing during speech perception, some limitations should be addressed.  

First, only 88% and 93% of subjects contributed to mu and auditory clusters, with only 

66% and 68% contributing to both clusters in left and right hemispheres, respectively.  

Reduced participant contribution is common in EEG research (Nystrom, 2008; Bowers et 

al., 2013), and has been linked to the use of standard head models.  While subject specific 

electrode locations were used in the current study to mitigate this, mapping of these 

individualized locations to a standard head model yielded reduced participant 

contribution. Second, as the cohort consisted exclusively of female participants, it 

remains unclear how the findings of the current study apply to the larger population.  

Such a consideration is critical given reports that males and females may employ 

different sensorimotor processing strategies (Popovich et al., 2010; Kumari, 2011; 

Thornton et al., In Prep).   
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Conclusions and Future Directions 

 

The current study exploited the temporal and spectral detail afforded by time-

frequency decomposed EEG data to track the contributions of attentional and working 

memory processes to dorsal stream sensorimotor processing across the time course of 

speech discrimination.  The differences emerging upon manipulation of set size and 

stimulus clarity confirmed the sensitive of dorsal stream processing to task demands.  

Specifically, the increased pre- and peri-stimulus mu alpha ERD in small set conditions 

was considered evidence of more efficient attentional allocation on the basis of a reduced 

sensory search space.  Differences among the levels of stimulus clarity were considered 

support for Constructivist Analysis by Synthesis models, with motor-based hypotheses 

derived from an early sketch of the stimulus being an essential step for loading and 

maintaining the stimuli in working memory to enable task completion.  Additional work, 

however, is necessary to validate this interpretation.  Further confirmation and 

elucidation of the dynamic contributions of task demands to dorsal stream processing 

should consider the larger cognitive environment in which tasks are being completed. 

The cost-effective nature of the methodology employed in the current study supports its 

continued use to probe the dynamic influences of cognitive processes on dorsal stream 

processing. 
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