525 research outputs found

    From the arrow of time in Badiali's quantum approach to the dynamic meaning of Riemann's hypothesis

    Get PDF
    The novelty of the Jean Pierre Badiali last scientific works stems to a quantum approach based on both (i) a return to the notion of trajectories (Feynman paths) and (ii) an irreversibility of the quantum transitions. These iconoclastic choices find again the Hilbertian and the von Neumann algebraic point of view by dealing statistics over loops. This approach confers an external thermodynamic origin to the notion of a quantum unit of time (Rovelli Connes' thermal time). This notion, basis for quantization, appears herein as a mere criterion of parting between the quantum regime and the thermodynamic regime. The purpose of this note is to unfold the content of the last five years of scientific exchanges aiming to link in a coherent scheme the Jean Pierre's choices and works, and the works of the authors of this note based on hyperbolic geodesics and the associated role of Riemann zeta functions. While these options do not unveil any contradictions, nevertheless they give birth to an intrinsic arrow of time different from the thermal time. The question of the physical meaning of Riemann hypothesis as the basis of quantum mechanics, which was at the heart of our last exchanges, is the backbone of this note.Comment: 13 pages, 2 figure

    On the relationship between plane and solid geometry

    Get PDF
    Traditional geometry concerns itself with planimetric and stereometric considerations, which are at the root of the division between plane and solid geometry. To raise the issue of the relation between these two areas brings with it a host of different problems that pertain to mathematical practice, epistemology, semantics, ontology, methodology, and logic. In addition, issues of psychology and pedagogy are also important here. To our knowledge there is no single contribution that studies in detail even one of the aforementioned area

    Taxonomies of Model-theoretically Defined Topological Properties

    Get PDF
    A topological classification scheme consists of two ingredients: (1) an abstract class K of topological spaces; and (2) a taxonomy , i.e. a list of first order sentences, together with a way of assigning an abstract class of spaces to each sentence of the list so that logically equivalent sentences are assigned the same class.K, is then endowed with an equivalence relation, two spaces belonging to the same equivalence class if and only if they lie in the same classes prescribed by the taxonomy. A space X in K is characterized within the classification scheme if whenever Y E K, and Y is equivalent to X, then Y is homeomorphic to X. As prime example, the closed set taxonomy assigns to each sentence in the first order language of bounded lattices the class of topological spaces whose lattices of closed sets satisfy that sentence. It turns out that every compact two-complex is characterized via this taxonomy in the class of metrizable spaces, but that no infinite discrete space is so characterized. We investigate various natural classification schemes, compare them, and look into the question of which spaces can and cannot be characterized within them

    Reverse engineering reverse mathematics

    Get PDF

    A primordial, mathematical, logical and computable, demonstration (proof) of the family of conjectures known as Goldbach´s

    Get PDF
    licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.In this document, by means of a novel system model and first order topological, algebraic and geometrical free-­‐context formal language (NT-­‐FS&L), first, we describe a new signature for a set of the natural numbers that is rooted in an intensional inductive de-­‐embedding process of both, the tensorial identities of the known as “natural numbers”, and the abstract framework of theirs locus-­‐positional based symbolic representations. Additionally, we describe that NT-­‐FS&L is able to: i.-­‐ Embed the De Morgan´s Laws and the FOL-­‐Peano´s Arithmetic Axiomatic. ii.-­‐ Provide new points of view and perspectives about the succession, precede and addition operations and of their abstract, topological, algebraic, analytic geometrical, computational and cognitive, formal representations. Second, by means of the inductive apparatus of NT-­‐FS&L, we proof that the family of conjectures known as Glodbach’s holds entailment and truth when the reasoning starts from the consistent and finitary axiomatic system herein describedWe wish to thank the Organic Chemistry Institute of the Spanish National Research Council (IQOG/CSIC) for its operative and technical support to the Pedro Noheda Research Group (PNRG). We also thank the Institute for Physical and Information Technologies (ITETI/CSIC) of the Spanish National Research Council for their hospitality. We also thank for their long years of dedicated and kind support Dr. Juan Martínez Armesto (VATC/CSIC), Belén Cabrero Suárez (IQOG/CSIC, Administration), Mar Caso Neira (IQOG/CENQUIOR/CSIC, Library) and David Herrero Ruíz (PNRG/IQOG/CSIC). We wish to thank to Bernabé-­‐Pajares´s brothers (Dr. Manuel Bernabé-­‐Pajares, IQOG/CSIC Structural Chemistry & Biochemistry; Magnetic Nuclear Resonance and Dr. Alberto Bernabé Pajares (Greek Philology and Indo-­‐European Linguistics/UCM), for their kind attention during numerous and kind discussions about space, time, imaging and representation of knowledge, language, transcription mistakes, myths and humans always holding us familiar illusion and passion for knowledge and intellectual progress. We wish to thank Dr. Carlos Cativiela Marín (ISQCH/UNIZAR) for his encouragement and for kind listening and attention. We wish to thank Miguel Lorca Melton for his encouragement and professional point of view as Patent Attorney. Last but not least, our gratitude to Nati, María and Jaime for the time borrowed from a loving husband and father. Finally, we apologize to many who have not been mentioned today, but to whom we are grateful. Finally, let us point out that we specially apologize to many who have been mentioned herein for any possible misunderstanding regarding the sense and intension of their philosophic, scientific and/or technical hard work and milestone ideas; we hope that at least Goldbach, Euler and Feymann do not belong to this last human´s collectivity.Peer reviewe

    The ontology of number

    Get PDF
    What is a number? Answering this will answer questions about its philosophical foundations - rational numbers, the complex numbers, imaginary numbers. If we are to write or talk about something, it is helpful to know whether it exists, how it exists, and why it exists, just from a common-sense point of view [Quine, 1948, p. 6]. Generally, there does not seem to be any disagreement among mathematicians, scientists, and logicians about numbers existing in some way, but currently, in the mainstream arena only definitions, descriptions of properties, and effects are presented as evidence. Enough historical description of numbers in history provides an empirical basis of number, although a case can be made that numbers do not exist by themselves empirically. Correspondingly, numbers exist as abstractions. All the while, though, these "descriptions" beg the question of what numbers are ontologically. Advocates for numbers being the ultimate reality have the problem of wrestling with the nature of reality. I start on the road to discovering the ontology of number by looking at where people have talked about numbers as already existing: history. Of course, we need to know not only what ontology is but the problems of identifying one, leading to the selection between metaphysics and provisional approaches. While we seem to be dimensionally limited, at least we can identify a more suitable bootstrapping ontology than mere definitions, leading us to the unity of opposites. The rest of the paper details how this is done and modifies Peano's Postulates
    corecore