11 research outputs found

    Neural End-to-End Learning for Computational Argumentation Mining

    Full text link
    We investigate neural techniques for end-to-end computational argumentation mining (AM). We frame AM both as a token-based dependency parsing and as a token-based sequence tagging problem, including a multi-task learning setup. Contrary to models that operate on the argument component level, we find that framing AM as dependency parsing leads to subpar performance results. In contrast, less complex (local) tagging models based on BiLSTMs perform robustly across classification scenarios, being able to catch long-range dependencies inherent to the AM problem. Moreover, we find that jointly learning 'natural' subtasks, in a multi-task learning setup, improves performance.Comment: To be published at ACL 201

    Arguments extraction for e-health services based on text mining tools

    Get PDF
    The task of recognizing arguments and their components in text is known as argument extraction. Most arguments might be broken down into a petition and at least one premise that support it. A method to extract arguments is suggested in this work. The major words which are of high importance in arguments extraction were included in the suggested method on the basis of Arabic lexicon. The lexicon tool was used to apply classic text mining stages. The dataset, which includes over 3000 petitions, was collected from the Citizen Affairs Department in the Ministry of Health-Iraq. In addition, the experimental results exhibit that the suggested method extracts arguments from collected dataset with a 93.5% accuracy ratio

    Parsing Argumentation Structures in Persuasive Essays

    Full text link
    In this article, we present a novel approach for parsing argumentation structures. We identify argument components using sequence labeling at the token level and apply a new joint model for detecting argumentation structures. The proposed model globally optimizes argument component types and argumentative relations using integer linear programming. We show that our model considerably improves the performance of base classifiers and significantly outperforms challenging heuristic baselines. Moreover, we introduce a novel corpus of persuasive essays annotated with argumentation structures. We show that our annotation scheme and annotation guidelines successfully guide human annotators to substantial agreement. This corpus and the annotation guidelines are freely available for ensuring reproducibility and to encourage future research in computational argumentation.Comment: Under review in Computational Linguistics. First submission: 26 October 2015. Revised submission: 15 July 201

    Argumentation Mining in User-Generated Web Discourse

    Full text link
    The goal of argumentation mining, an evolving research field in computational linguistics, is to design methods capable of analyzing people's argumentation. In this article, we go beyond the state of the art in several ways. (i) We deal with actual Web data and take up the challenges given by the variety of registers, multiple domains, and unrestricted noisy user-generated Web discourse. (ii) We bridge the gap between normative argumentation theories and argumentation phenomena encountered in actual data by adapting an argumentation model tested in an extensive annotation study. (iii) We create a new gold standard corpus (90k tokens in 340 documents) and experiment with several machine learning methods to identify argument components. We offer the data, source codes, and annotation guidelines to the community under free licenses. Our findings show that argumentation mining in user-generated Web discourse is a feasible but challenging task.Comment: Cite as: Habernal, I. & Gurevych, I. (2017). Argumentation Mining in User-Generated Web Discourse. Computational Linguistics 43(1), pp. 125-17

    Sketching the vision of the Web of Debates

    Get PDF
    The exchange of comments, opinions, and arguments in blogs, forums, social media, wikis, and review websites has transformed the Web into a modern agora, a virtual place where all types of debates take place. This wealth of information remains mostly unexploited: due to its textual form, such information is difficult to automatically process and analyse in order to validate, evaluate, compare, combine with other types of information and make it actionable. Recent research in Machine Learning, Natural Language Processing, and Computational Argumentation has provided some solutions, which still cannot fully capture important aspects of online debates, such as various forms of unsound reasoning, arguments that do not follow a standard structure, information that is not explicitly expressed, and non-logical argumentation methods. Tackling these challenges would give immense added-value, as it would allow searching for, navigating through and analyzing online opinions and arguments, obtaining a better picture of the various debates for a well-intentioned user. Ultimately, it may lead to increased participation of Web users in democratic, dialogical interchange of arguments, more informed decisions by professionals and decision-makers, as well as to an easier identification of biased, misleading, or deceptive arguments. This paper presents the vision of the Web of Debates, a more human-centered version of the Web, which aims to unlock the potential of the abundance of argumentative information that currently exists online, offering its users a new generation of argument-based web services and tools that are tailored to their real needs

    Fusion weighted features and BiLSTM-attention model for argument mining of EFL writing

    Get PDF
    Argument mining (AM), an emerging field in natural language processing (NLP), aims to automatically extract arguments and the relationships between them in texts. In this study, we propose a new method for argument mining of argumentative essays. The method generates dynamic word vectors with BERT (Bidirectional Encoder Representations from Transformers), encodes argumentative essays, and obtains word-level and essay-level features with BiLSTM (Bi-directional Long Short-Term Memory) and attention training, respectively. By integrating these two levels of features we obtain the full-text features so that the content in the essay is annotated according to Toulmin’s argument model. The proposed method was tested on a corpus of 180 argumentative essays, and the precision of automatic annotation reached 69%. The experimental results show that our model outperforms existing models in argument mining. The model can provide technical support for the automatic scoring system, particularly on the evaluation of the content of argumentative essays

    Mining arguments in scientific abstracts: Application to argumentative quality assessment

    Get PDF
    Argument mining consists in the automatic identification of argumentative structures in natural language, a task that has been recognized as particularly challenging in the scientific domain. In this work we propose SciARG, a new annotation scheme, and apply it to the identification of argumentative units and relations in abstracts in two scientific disciplines: computational linguistics and biomedicine, which allows us to assess the applicability of our scheme to different knowledge fields. We use our annotated corpus to train and evaluate argument mining models in various experimental settings, including single and multi-task learning. We investigate the possibility of leveraging existing annotations, including discourse relations and rhetorical roles of sentences, to improve the performance of argument mining models. In particular, we explore the potential offered by a sequential transfer- learning approach in which supplementary training tasks are used to fine-tune pre-trained parameter-rich language models. Finally, we analyze the practical usability of the automatically-extracted components and relations for the prediction of argumentative quality dimensions of scientific abstracts.Agencia Nacional de Investigación e InnovaciónMinisterio de Economía, Industria y Competitividad (España

    Argumentative Writing Support by means of Natural Language Processing

    Get PDF
    Persuasive essay writing is a powerful pedagogical tool for teaching argumentation skills. So far, the provision of feedback about argumentation has been considered a manual task since automated writing evaluation systems are not yet capable of analyzing written arguments. Computational argumentation, a recent research field in natural language processing, has the potential to bridge this gap and to enable novel argumentative writing support systems that automatically provide feedback about the merits and defects of written arguments. The automatic analysis of natural language arguments is, however, subject to several challenges. First of all, creating annotated corpora is a major impediment for novel tasks in natural language processing. At the beginning of this research, it has been mostly unknown whether humans agree on the identification of argumentation structures and the assessment of arguments in persuasive essays. Second, the automatic identification of argumentation structures involves several interdependent and challenging subtasks. Therefore, considering each task independently is not sufficient for identifying consistent argumentation structures. Third, ordinary arguments are rarely based on logical inference rules and are hardly ever in a standardized form which poses additional challenges to human annotators and computational methods. To approach these challenges, we start by investigating existing argumentation theories and compare their suitability for argumentative writing support. We derive an annotation scheme that models arguments as tree structures. For the first time, we investigate whether human annotators agree on the identification of argumentation structures in persuasive essays. We show that human annotators can reliably apply our annotation scheme to persuasive essays with substantial agreement. As a result of this annotation study, we introduce a unique corpus annotated with fine-grained argumentation structures at the discourse-level. Moreover, we pre- sent a novel end-to-end approach for parsing argumentation structures. We identify the boundaries of argument components using sequence labeling at the token level and propose a novel joint model that globally optimizes argument component types and argumentative relations for identifying consistent argumentation structures. We show that our model considerably improves the performance of local base classifiers and significantly outperforms challenging heuristic baselines. In addition, we introduce two approaches for assessing the quality of natural language arguments. First, we introduce an approach for identifying myside biases which is a well-known tendency to ignore opposing arguments when formulating arguments. Our experimental results show that myside biases can be recognized with promising accuracy using a combination of lexical features, syntactic features and features based on adversative transitional phrases. Second, we investigate for the first time the characteristics of insufficiently supported arguments. We show that insufficiently supported arguments frequently exhibit specific lexical indicators. Moreover, our experimental results indicate that convolutional neural networks significantly outperform several challenging baselines
    corecore