5,966 research outputs found

    A baseband wireless spectrum hypervisor for multiplexing concurrent OFDM signals

    Get PDF
    The next generation of wireless and mobile networks will have to handle a significant increase in traffic load compared to the current ones. This situation calls for novel ways to increase the spectral efficiency. Therefore, in this paper, we propose a wireless spectrum hypervisor architecture that abstracts a radio frequency (RF) front-end into a configurable number of virtual RF front ends. The proposed architecture has the ability to enable flexible spectrum access in existing wireless and mobile networks, which is a challenging task due to the limited spectrum programmability, i.e., the capability a system has to change the spectral properties of a given signal to fit an arbitrary frequency allocation. The proposed architecture is a non-intrusive and highly optimized wireless hypervisor that multiplexes the signals of several different and concurrent multi-carrier-based radio access technologies with numerologies that are multiple integers of one another, which are also referred in our work as radio access technologies with correlated numerology. For example, the proposed architecture can multiplex the signals of several Wi-Fi access points, several LTE base stations, several WiMAX base stations, etc. As it able to multiplex the signals of radio access technologies with correlated numerology, it can, for instance, multiplex the signals of LTE, 5G-NR and NB-IoT base stations. It abstracts a radio frequency front-end into a configurable number of virtual RF front ends, making it possible for such different technologies to share the same RF front-end and consequently reduce the costs and increasing the spectral efficiency by employing densification, once several networks share the same infrastructure or by dynamically accessing free chunks of spectrum. Therefore, the main goal of the proposed approach is to improve spectral efficiency by efficiently using vacant gaps in congested spectrum bandwidths or adopting network densification through infrastructure sharing. We demonstrate mathematically how our proposed approach works and present several simulation results proving its functionality and efficiency. Additionally, we designed and implemented an open-source and free proof of concept prototype of the proposed architecture, which can be used by researchers and developers to run experiments or extend the concept to other applications. We present several experimental results used to validate the proposed prototype. We demonstrate that the prototype can easily handle up to 12 concurrent physical layers

    Signal and System Design for Wireless Power Transfer : Prototype, Experiment and Validation

    Get PDF
    A new line of research on communications and signals design for Wireless Power Transfer (WPT) has recently emerged in the communication literature. Promising signal strategies to maximize the power transfer efficiency of WPT rely on (energy) beamforming, waveform, modulation and transmit diversity, and a combination thereof. To a great extent, the study of those strategies has so far been limited to theoretical performance analysis. In this paper, we study the real over-the-air performance of all the aforementioned signal strategies for WPT. To that end, we have designed, prototyped and experimented an innovative radiative WPT architecture based on Software-Defined Radio (SDR) that can operate in open-loop and closed-loop (with channel acquisition at the transmitter) modes. The prototype consists of three important blocks, namely the channel estimator, the signal generator, and the energy harvester. The experiments have been conducted in a variety of deployments, including frequency flat and frequency selective channels, under static and mobility conditions. Experiments highlight that a channeladaptive WPT architecture based on joint beamforming and waveform design offers significant performance improvements in harvested DC power over conventional single-antenna/multiantenna continuous wave systems. The experimental results fully validate the observations predicted from the theoretical signal designs and confirm the crucial and beneficial role played by the energy harvester nonlinearity.Comment: Accepted to IEEE Transactions on Wireless Communication

    Design and FPGA Implementation of Channelizer & Frequency Hopping for Advanced SATCOM System

    Get PDF
    Advanced satellite communication systems should be capable of preventing unauthorized access or exploitation of communication services by adversaries. This can be achieved by use of wideband multi -channel digital transceivers which employ channelizer to extract the channel of interest from digitized RF bands for further baseband processing. Various anti-jamming techniques like Frequency hopping are used to prevent the systems from intentional jamming by the hostile systems. This paper presents an efficient channelizer architecture which supports wideband as well as narrowband channels with programmable channel bandwidth followed by frequency hopping for the proposed SATCOM system. The target design is a flexible channelization unit which divides the incoming data links of 11 MHz bandwidth into two data links in granularity of 0.5 MHz depending upon user requirements. First link is further sub-channelized into two sub-links each having a bandwidth of 25 KHz that is frequency hopped at a user programmable rate with desired random sequence. The same channelizer can be well applicablein any software defined radio receiver platforms due to flexibility of the design. Proposed design is tested on target hardware XilinxVirtex-IV FPGA xc4vsx35-10ff668. The design and implementation of the channelizer and frequency hopping technique arediscussed in detail

    Convergence of millimeter-wave and photonic interconnect systems for very-high-throughput digital communication applications

    Get PDF
    In the past, radio-frequency signals were commonly used for low-speed wireless electronic systems, and optical signals were used for multi-gigabit wired communication systems. However, as the emergence of new millimeter-wave technology introduces multi-gigabit transmission over a wireless radio-frequency channel, the borderline between radio-frequency and optical systems becomes blurred. As a result, there come ample opportunities to design and develop next-generation broadband systems to combine the advantages of these two technologies to overcome inherent limitations of various broadband end-to-end interconnect systems in signal generation, recovery, synchronization, and so on. For the transmission distances of a few centimeters to thousands of kilometers, the convergence of radio-frequency electronics and optics to build radio-over-fiber systems ushers in a new era of research for the upcoming very-high-throughput broadband services. Radio-over-fiber systems are believed to be the most promising solution to the backhaul transmission of the millimeter-wave wireless access networks, especially for the license-free, very-high-throughput 60-GHz band. Adopting radio-over-fiber systems in access or in-building networks can greatly extend the 60-GHz signal reach by using ultra-low loss optical fibers. However, such high frequency is difficult to generate in a straightforward way. In this dissertation, the novel techniques of homodyne and heterodyne optical-carrier suppressions for radio-over-fiber systems are investigated and various system architectures are designed to overcome these limitations of 60-GHz wireless access networks, bringing the popularization of multi-gigabit wireless networks to become closer to the reality. In addition to the advantages for the access networks, extremely high spectral efficiency, which is the most important parameter for long-haul networks, can be achieved by radio-over-fiber signal generation. As a result, the transmission performance of spectrally efficient radio-over-fiber signaling, including orthogonal frequency division multiplexing and orthogonal wavelength division multiplexing, is broadly and deeply investigated. On the other hand, radio-over-fiber is also used for the frequency synchronization that can resolve the performance limitation of wireless interconnect systems. A novel wireless interconnects assisted by radio-over-fiber subsystems is proposed in this dissertation. In conclusion, multiple advantageous facets of radio-over-fiber systems can be found in various levels of end-to-end interconnect systems. The rapid development of radio-over-fiber systems will quickly change the conventional appearance of modern communications.PhDCommittee Chair: Gee-Kung Chang; Committee Member: Bernard Kippelen; Committee Member: Shyh-Chiang Shen; Committee Member: Thomas K. Gaylord; Committee Member: Umakishore Ramachandra

    Design and implementation of components for renewably-powered base-stations with heterogeneous access channel

    Get PDF
    Providing high-speed broadband services in remote areas can be a challenging task, especially because of the lack of network infrastructure. As typical broadband technologies are often expensive to deploy, they require large investment from the local authorities. Previous studies have shown that a viable alternative is to use wireless base stations with high-throughput point to point (PTP) backhaul links. With base stations comes the problem of powering their systems, it is tackled in this thesis by relying on renewable energy harvesting, such as solar panels or wind turbines. This thesis, in the context of the sustainable cellular network harvesting ambient energy (SCAVENGE) project, aims to contribute to a reliable and energy efficient solution to this problem, by adjusting the design of an existing multi-radio energy harvesting base station. In Western Europe, 49 channels of 8 MHz were used for analogue TV transmissions, ranging from 470 MHz (Channel 21) to 862 MHz (Channel 69); this spectrum, now partially unused due to the digital television (DTV) switch-over, has been opened to alternative uses by the regulatory authorities. Using this newly freed ultra high frequency (UHF) range, also known as TV white space (TVWS), can offer reliable low-cost broadband access to housings and businesses in low-density areas. While UHF transmitters allow long range links, the overcrowding of the TV spectrum limits the achievable throughput; to increase the capacity of such TVWS rural broadband base station the UHF radio has previously been combined with a lower-range higher throughput GHz radio like Wireless Fidelity (WiFi). From the regulatory constraints of TVWS applications arises the need for frequency agile transceivers that observe strict spectral mask requirements, this guided previous works towards discrete Fourier transform (DFT) modulated filter-bank multicarrier (FBMC) systems. These systems are numerically efficient, as they permit the up-and-down conversion of the 40 TV channels at the cost of a single channel transceiver and the modulating transform. Typical implementations rely on power-of two fast Fourier transforms (FFTs); however the smallest transform covering the full 40 channels of the TVWS spectrum is a 64 points wide, thus involving 24 unused channels. In order to attain a more numerically-efficient implemented design, we introduce the use of mixed-radix FFTs modulating transform. Testing various sizes and architectures, this approach provides up to 6.7% of energy saving compared to previous designs. Different from orthogonal frequency-division multiplexing (OFDM), FBMC systems are generally expected to be more robust to synchronisation errors, as oversampled FBMC systems can include a guard band, and even in a doubly-dispersive channel, inter-carrier interference (ICI) can be considered negligible. Even though sub-channels can be treated independently—i.e. without the use of cross-terms—they still require equalisation. We introduce a per-band equalisation, amongst different options, a robust and fast blind approach based on a concurrent constant modulus (CM)/decision directed (DD) fractionally-space equaliser (FSE) is selected. The selected approach is capable of equalising a frequency-selective channel. Furthermore the proposed architecture is advantageous in terms of power consumption and implementation cost. After focussing on the design of the radio for TVWS transmission, we address a multi-radio user assignment problem. Using various power consumption and harvesting models for the base station, we formulate two optimisation problems, the first focuses on the base station power consumption, while the second concentrates on load balancing. We employ a dynamic programming approach to optimise the user assignment. The use of such algorithms could allow a downsizing of the power supply systems (harvesters and batteries), thus reducing the cost of the base station. Furthermore the algorithms provide a better balance between the number of users assigned to each network, resulting in a higher quality of service (QoS) and energy efficiency.Providing high-speed broadband services in remote areas can be a challenging task, especially because of the lack of network infrastructure. As typical broadband technologies are often expensive to deploy, they require large investment from the local authorities. Previous studies have shown that a viable alternative is to use wireless base stations with high-throughput point to point (PTP) backhaul links. With base stations comes the problem of powering their systems, it is tackled in this thesis by relying on renewable energy harvesting, such as solar panels or wind turbines. This thesis, in the context of the sustainable cellular network harvesting ambient energy (SCAVENGE) project, aims to contribute to a reliable and energy efficient solution to this problem, by adjusting the design of an existing multi-radio energy harvesting base station. In Western Europe, 49 channels of 8 MHz were used for analogue TV transmissions, ranging from 470 MHz (Channel 21) to 862 MHz (Channel 69); this spectrum, now partially unused due to the digital television (DTV) switch-over, has been opened to alternative uses by the regulatory authorities. Using this newly freed ultra high frequency (UHF) range, also known as TV white space (TVWS), can offer reliable low-cost broadband access to housings and businesses in low-density areas. While UHF transmitters allow long range links, the overcrowding of the TV spectrum limits the achievable throughput; to increase the capacity of such TVWS rural broadband base station the UHF radio has previously been combined with a lower-range higher throughput GHz radio like Wireless Fidelity (WiFi). From the regulatory constraints of TVWS applications arises the need for frequency agile transceivers that observe strict spectral mask requirements, this guided previous works towards discrete Fourier transform (DFT) modulated filter-bank multicarrier (FBMC) systems. These systems are numerically efficient, as they permit the up-and-down conversion of the 40 TV channels at the cost of a single channel transceiver and the modulating transform. Typical implementations rely on power-of two fast Fourier transforms (FFTs); however the smallest transform covering the full 40 channels of the TVWS spectrum is a 64 points wide, thus involving 24 unused channels. In order to attain a more numerically-efficient implemented design, we introduce the use of mixed-radix FFTs modulating transform. Testing various sizes and architectures, this approach provides up to 6.7% of energy saving compared to previous designs. Different from orthogonal frequency-division multiplexing (OFDM), FBMC systems are generally expected to be more robust to synchronisation errors, as oversampled FBMC systems can include a guard band, and even in a doubly-dispersive channel, inter-carrier interference (ICI) can be considered negligible. Even though sub-channels can be treated independently—i.e. without the use of cross-terms—they still require equalisation. We introduce a per-band equalisation, amongst different options, a robust and fast blind approach based on a concurrent constant modulus (CM)/decision directed (DD) fractionally-space equaliser (FSE) is selected. The selected approach is capable of equalising a frequency-selective channel. Furthermore the proposed architecture is advantageous in terms of power consumption and implementation cost. After focussing on the design of the radio for TVWS transmission, we address a multi-radio user assignment problem. Using various power consumption and harvesting models for the base station, we formulate two optimisation problems, the first focuses on the base station power consumption, while the second concentrates on load balancing. We employ a dynamic programming approach to optimise the user assignment. The use of such algorithms could allow a downsizing of the power supply systems (harvesters and batteries), thus reducing the cost of the base station. Furthermore the algorithms provide a better balance between the number of users assigned to each network, resulting in a higher quality of service (QoS) and energy efficiency

    Transition technologies towards 6G networks

    Full text link
    [EN] The sixth generation (6G) mobile systems will create new markets, services, and industries making possible a plethora of new opportunities and solutions. Commercially successful rollouts will involve scaling enabling technologies, such as cloud radio access networks, virtualization, and artificial intelligence. This paper addresses the principal technologies in the transition towards next generation mobile networks. The convergence of 6G key-performance indicators along with evaluation methodologies and use cases are also addressed. Free-space optics, Terahertz systems, photonic integrated circuits, softwarization, massive multiple-input multiple-output signaling, and multi-core fibers, are among the technologies identified and discussed. Finally, some of these technologies are showcased in an experimental demonstration of a mobile fronthaul system based on millimeter 5G NR OFDM signaling compliant with 3GPP Rel. 15. The signals are generated by a bespoke 5G baseband unit and transmitted through both a 10 km prototype multi-core fiber and 4 m wireless V-band link using a pair of directional 60 GHz antennas with 10 degrees beamwidth. Results shown that the 5G and beyond fronthaul system can successfully transmit signals with both wide bandwidth (up to 800 MHz) and fully centralized signal processing. As a result, this system can support large capacity and accommodate several simultaneous users as a key candidate for next generation mobile networks. Thus, these technologies will be needed for fully integrated, heterogeneous solutions to benefit from hardware commoditization and softwarization. They will ensure the ultimate user experience, while also anticipating the quality-of-service demands that future applications and services will put on 6G networks.This work was partially funded by the blueSPACE and 5G-PHOS 5G-PPP phase 2 projects, which have received funding from the European Union's Horizon 2020 programme under Grant Agreements Number 762055 and 761989. D. PerezGalacho acknowledges the funding of the Spanish Science Ministry through the Juan de la Cierva programme.Raddo, TR.; Rommel, S.; Cimoli, B.; Vagionas, C.; PĂŠrez-Galacho, D.; Pikasis, E.; Grivas, E.... (2021). Transition technologies towards 6G networks. EURASIP Journal on Wireless Communications and Networking. 2021(1):1-22. https://doi.org/10.1186/s13638-021-01973-91222021

    Algorithms and Circuits for Analog-Digital Hybrid Multibeam Arrays

    Get PDF
    Fifth generation (5G) and beyond wireless communication systems will rely heavily on larger antenna arrays combined with beamforming to mitigate the high free-space path-loss that prevails in millimeter-wave (mmW) and above frequencies. Sharp beams that can support wide bandwidths are desired both at the transmitter and the receiver to leverage the glut of bandwidth available at these frequency bands. Further, multiple simultaneous sharp beams are imperative for such systems to exploit mmW/sub-THz wireless channels using multiple reflected paths simultaneously. Therefore, multibeam antenna arrays that can support wider bandwidths are a key enabler for 5G and beyond systems. In general, N-beam systems using N-element antenna arrays will involve circuit complexities of the order of N2. This dissertation investigates new analog, digital and hybrid low complexity multibeam beamforming algorithms and circuits for reducing the associated high size, weight, and power (SWaP) complexities in larger multibeam arrays. The research efforts on the digital beamforming aspect propose the use of a new class of discrete Fourier transform (DFT) approximations for multibeam generation to eliminate the need for digital multipliers in the beamforming circuitry. For this, 8-, 16- and 32-beam multiplierless multibeam algorithms have been proposed for uniform linear array applications. A 2.4 GHz 16-element array receiver setup and a 5.8 GHz 32-element array receiver system which use field programmable gate arrays (FPGAs) as digital backend have been built for real-time experimental verification of the digital multiplierless algorithms. The multiplierless algorithms have been experimentally verified by digitally measuring beams. It has been shown that the measured beams from the multiplierless algorithms are in good agreement with the exact counterpart algorithms. Analog realizations of the proposed approximate DFT transforms have also been investigated leading to low-complex, high bandwidth circuits in CMOS. Further, a novel approach for reducing the circuit complexity of analog true-time delay (TTD) N-beam beamforming networks using N-element arrays has been proposed for wideband squint-free operation. A sparse factorization of the N-beam delay Vandermonde beamforming matrix is used to reduce the total amount of TTD elements that are needed for obtaining N number of beams in a wideband array. The method has been verified using measured responses of CMOS all-pass filters (APFs). The wideband squint-free multibeam algorithm is also used to propose a new low-complexity hybrid beamforming architecture targeting future 5G mmW systems. Apart from that, the dissertation also explores multibeam beamforming architectures for uniform circular arrays (UCAs). An algorithm having N log N circuit complexity for simultaneous generation of N-beams in an N-element UCA is explored and verified
    • …
    corecore