6,114 research outputs found

    Research and Development Workstation Environment: the new class of Current Research Information Systems

    Get PDF
    Against the backdrop of the development of modern technologies in the field of scientific research the new class of Current Research Information Systems (CRIS) and related intelligent information technologies has arisen. It was called - Research and Development Workstation Environment (RDWE) - the comprehensive problem-oriented information systems for scientific research and development lifecycle support. The given paper describes design and development fundamentals of the RDWE class systems. The RDWE class system's generalized information model is represented in the article as a three-tuple composite web service that include: a set of atomic web services, each of them can be designed and developed as a microservice or a desktop application, that allows them to be used as an independent software separately; a set of functions, the functional filling-up of the Research and Development Workstation Environment; a subset of atomic web services that are required to implement function of composite web service. In accordance with the fundamental information model of the RDWE class the system for supporting research in the field of ontology engineering - the automated building of applied ontology in an arbitrary domain area, scientific and technical creativity - the automated preparation of application documents for patenting inventions in Ukraine was developed. It was called - Personal Research Information System. A distinctive feature of such systems is the possibility of their problematic orientation to various types of scientific activities by combining on a variety of functional services and adding new ones within the cloud integrated environment. The main results of our work are focused on enhancing the effectiveness of the scientist's research and development lifecycle in the arbitrary domain area.Comment: In English, 13 pages, 1 figure, 1 table, added references in Russian. Published. Prepared for special issue (UkrPROG 2018 conference) of the scientific journal "Problems of programming" (Founder: National Academy of Sciences of Ukraine, Institute of Software Systems of NAS Ukraine

    NEOREG : design and implementation of an online neonatal registration system to access, follow and analyse data of newborns with congenital cytomegalovirus infection

    Get PDF
    Today's registration of newborns with congenital cytomegalovirus (cCMV) infection is still performed on paper-based forms in Flanders, Belgium. This process has a large administrative impact. It is imortant that all screening tests are registered to have a complete idea of the impact of cCMV. Although these registrations are usable in computerised data analysis, these data are not available in a format to perform electronic processing. An online Neonatal Registry (NEOREG) System was designed and developed to access, follow and analyse the data of newborns remotely. It allows patients' diagnostic registration and treatment follow-up through a web interface and uses document forms in Portable Document Format (PDF), which incorporate all the elements from the existing forms. Forms are automatically processed to structured EHRs. Modules are included to perform statistical analysis. The design was driven by extendibility, security and usability requirements. The website load time, throughput and execution time of data analysis were evaluated in detail. The NEOREG system is able to replace the existing paper-based CMV records

    Hacker Combat: A Competitive Sport from Programmatic Dueling & Cyberwarfare

    Full text link
    The history of humanhood has included competitive activities of many different forms. Sports have offered many benefits beyond that of entertainment. At the time of this article, there exists not a competitive ecosystem for cyber security beyond that of conventional capture the flag competitions, and the like. This paper introduces a competitive framework with a foundation on computer science, and hacking. This proposed competitive landscape encompasses the ideas underlying information security, software engineering, and cyber warfare. We also demonstrate the opportunity to rank, score, & categorize actionable skill levels into tiers of capability. Physiological metrics are analyzed from participants during gameplay. These analyses provide support regarding the intricacies required for competitive play, and analysis of play. We use these intricacies to build a case for an organized competitive ecosystem. Using previous player behavior from gameplay, we also demonstrate the generation of an artificial agent purposed with gameplay at a competitive level

    Decision Support Systems

    Get PDF
    Decision support systems (DSS) have evolved over the past four decades from theoretical concepts into real world computerized applications. DSS architecture contains three key components: knowledge base, computerized model, and user interface. DSS simulate cognitive decision-making functions of humans based on artificial intelligence methodologies (including expert systems, data mining, machine learning, connectionism, logistical reasoning, etc.) in order to perform decision support functions. The applications of DSS cover many domains, ranging from aviation monitoring, transportation safety, clinical diagnosis, weather forecast, business management to internet search strategy. By combining knowledge bases with inference rules, DSS are able to provide suggestions to end users to improve decisions and outcomes. This book is written as a textbook so that it can be used in formal courses examining decision support systems. It may be used by both undergraduate and graduate students from diverse computer-related fields. It will also be of value to established professionals as a text for self-study or for reference

    Epidemic outbreak prediction using machine learning models

    Full text link
    In today's world,the risk of emerging and re-emerging epidemics have increased.The recent advancement in healthcare technology has made it possible to predict an epidemic outbreak in a region.Early prediction of an epidemic outbreak greatly helps the authorities to be prepared with the necessary medications and logistics required to keep things in control. In this article, we try to predict the epidemic outbreak (influenza, hepatitis and malaria) for the state of New York, USA using machine and deep learning algorithms, and a portal has been created for the same which can alert the authorities and health care organizations of the region in case of an outbreak. The algorithm takes historical data to predict the possible number of cases for 5 weeks into the future. Non-clinical factors like google search trends,social media data and weather data have also been used to predict the probability of an outbreak.Comment: 16 pages, 5 tables, 4 figure

    A privacy preserving online learning framework for medical diagnosis applications

    Get PDF
    Electronic Health records are an important part of a digital healthcare system. Due to their significance, electronic health records have become a major target for hackers, and hospitals/clinics prefer to keep the records at local sites protected by adequate security measures. This introduces challenges in sharing health records. Sharing health records however, is critical in building an accurate online diagnosis framework. Most local sites have small data sets, and machine learning models developed locally based on small data sets, do not have knowledge about other data sets and learning models used at other sites. The work in this thesis utilizes the framework of coordinating the blockchain technology and online training mechanism in order to address the concerns of privacy and security in a methodical manner. Specifically, it integrates online learning with a permissioned blockchain network, using transaction metadata to broadcast a part of models while keeping patient health information private. This framework can treat different types of machine learning models using the same distributed dataset. The study also outlines the advantages and drawbacks of using blockchain technology to tackle the privacy-preserving predictive modeling problem and to improve interoperability amongst institutions. This study implements the proposed solutions for skin cancer diagnosis as a representative case and shows promising results in preserving security and providing high detection accuracy. The experimentation was done on ISIC dataset, and the results were 98.57, 99.13, 99.17 and 97,18 in terms of precision, accuracy, F1-score and recall, respectively

    Design and Development of a Compound DSS for Laboratory Research

    Get PDF

    An informatics based approach to respiratory healthcare.

    Get PDF
    By 2005 one person in every five UK households suffered with asthma. Research has shown that episodes of poor air quality can have a negative effect on respiratory health and is a growing concern for the asthmatic. To better inform clinical staff and patients to the contribution of poor air quality on patient health, this thesis defines an IT architecture that can be used by systems to identify environmental predictors leading to a decline in respiratory health of an individual patient. Personal environmental predictors of asthma exacerbation are identified by validating the delay between environmental predictors and decline in respiratory health. The concept is demonstrated using prototype software, and indicates that the analytical methods provide a mechanism to produce an early warning of impending asthma exacerbation due to poor air quality. The author has introduced the term enviromedics to describe this new field of research. Pattern recognition techniques are used to analyse patient-specific environments, and extract meaningful health predictors from the large quantities of data involved (often in the region of '/o million data points). This research proposes a suitable architecture that defines processes and techniques that enable the validation of patient-specific environmental predictors of respiratory decline. The design of the architecture was validated by implementing prototype applications that demonstrate, through hospital admissions data and personal lung function monitoring, that air quality can be used as a predictor of patient-specific health. The refined techniques developed during the research (such as Feature Detection Analysis) were also validated by the application prototypes. This thesis makes several contributions to knowledge, including: the process architecture; Feature Detection Analysis (FDA) that automates the detection of trend reversals within time series data; validation of the delay characteristic using a Self-organising Map (SOM) that is used as an unsupervised method of pattern recognition; Frequency, Boundary and Cluster Analysis (FBCA), an additional technique developed by this research to refine the SOM
    corecore