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Abstract 

By 2005 one person in every five UK households suffered with asthma. Research has shown that 

episodes of poor air quality can have a negative effect on respiratory health and is a growing 

concern for the asthmatic. To better inform clinical staff and patients to the contribution of poor air 

quality on patient health, this thesis defines an IT architecture that can be used by systems to 

identify environmental predictors leading to a decline in respiratory health of an individual patient. 

Personal environmental predictors of asthma exacerbation are identified by validating the delay 

between environmental predictors and decline in respiratory health. The concept is demonstrated 

using prototype software, and indicates that the analytical methods provide a mechanism to 

produce an early warning of impending asthma exacerbation due to poor air quality. The author has 

introduced the term enviromedics to describe this new field of research. 

Pattern recognition techniques are used to analyse patient-specific environments, and extract 

meaningful health predictors from the large quantities of data involved (often in the region of '/o 

million data points). 

This research proposes a suitable architecture that defines processes and techniques that enable the 

validation of patient-specific environmental predictors of respiratory decline. The design of the 

architecture was validated by implementing prototype applications that demonstrate, through 

hospital admissions data and personal lung function monitoring, that air quality can be used as a 

predictor of patient-specific health. The refined techniques developed during the research (such as 

Feature Detection Analysis) were also validated by the application prototypes. 

This thesis makes several contributions to knowledge, including: the process architecture; Feature 

Detection Analysis (FDA) that automates the detection of trend reversals within time series data; 

validation of the delay characteristic using a Self-organising Map (SOM) that is used as an 

unsupervised method of pattern recognition; Frequency, Boundary and Cluster Analysis (FBCA), 

an additional technique developed by this research to refine the SOM. 
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Chapter 1 

Introduction 

This chapter sets out the objectives, scope of thesis, and methodology used by this 

research, to identify processes capable of validating predictors of patient-specific 

asthma exacerbation. 

1.1. Purpose of the Research 
This work progresses research in the area of health informatics, in particular how clinicians 

and researchers use IT systems to investigate the affect of patient-specific environments on 

respiratory health (particularly periods of asthma exacerbation). The research embodies the 

improvements in a new process architecture that allows clinical staff and researchers to 

take the work forward. 

Prior work has many limitations (correlation is discussed in Section 1.1.2), the complexity 

of interacting parameters means that the development of large-scale systems capable of 

collecting and analysing correlations between environmental factors and asthma can be 

difficult to achieve. In this thesis a new system to identify and monitor environmental 

predictors of respiratory decline for large scale studies is proposed. 

There is evidence that environmental factors contribute to the decline in respiratory health, 

and sometimes death of a patient (Rabinovitch et al., 2004). Uncertainty still remains as to 

the causes of some respiratory diseases, but the link between changing environmental 

factors as the possible trigger to a decline in respiratory health has been shown (Chin-Shen 

et al., 2007; Stedman, 2001). Desensitisation to environmental conditions may render one 

person quite able to live a perfectly normal life without experiencing the symptoms of 

asthma, while another is hospitalised. Environmental factors, such as air quality, and their 

effect on people with respiratory disease have been a particular target for research in past 

years (Blanc et al., 2005; Kim et al., 2004; Kim JH et al., 2005). Amongst the many 

respiratory conditions, asthma effects 300 million people worldwide and in 2005, asthma 
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contributed to approximately 255,000 deaths (WHO, 2007). The World Health 

Organisation states that asthma deaths will increase by almost 20% in the next 10 years if 

urgent action is not taken. 

1.1.1 The Respiratory System 
Respiration is the process by which all living organisms obtain oxygen, which is required 

to convert fuel into energy. The millions of cells in the human body facilitate the release of 

energy by a chemical reaction involving glucose and oxygen, so a supply of these 

ingredients must be maintained to them through the bloodstream. Oxygen is absorbed into 

the blood in large volumes via an efficient gaseous exchange surface, which is provided by 

an intricate structure of air-sacs (alveoli) within the lungs. These alveoli form an interface 

between the respiratory system and the rest of the body. Other components of the 

respiratory system provide a mechanism by which air may be inhaled and expired, and all 

these essential apparatus function as one distinct unit. 

ronchsal 
usd 0 

ronchus 

ell lung 

. n:: h, nle 

Bko d 

Figure 1 Anatomy of the respiratory system. 

(Ayres J, 2005) 

There are a variety of diseases which may impair the flow of air through the respiratory 
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system. Breathlessness can be caused by blockage or inflammation of the various tubes, or 

of the alveoli. Diseases such as: Bronchitis, Emphysema and Pneumonia, involve 

increasing difficulty of breathing over time due to gradual inflammation, excessive 

production of mucus, or the collapse of the lung tissue. However, one respiratory 

condition, Asthma, manifests itself in sporadic attacks of wheezing, caused by the 

narrowing of the bronchial passages when triggered by some agent or agents. 

Lane (1996) states that the Greek word, Asthma, which literally means panting has been 

used for many years to describe clearly recognisable attacks of breathlessness. In order to 

illustrate early confusion when attempting to study the causes of asthma, he cites a twelfth 

century physician (Maimonides) who wrote that, "This disease has many aetiological 

aspects ... 
it cannot be managed without a full knowledge of the patient's constitution as a 

whole ... 
furthermore I have no magic cure to report". Lane (1996) uses the inconclusive 

outcome of an attempt by a panel of experts to define asthma, as an indication of the very 

complicated nature of this disease. 

Many factors influence the condition of an asthma patient. "The Pocket Guide for Asthma 

Management and Prevention" (GINA, 2006) states that, "Common asthma triggers include 

viral infections; allergens such as domestic dust mites (in bedding, carpets, and fabric- 

upholstered furnishings), animals with fur, cockroach, pollens, and moulds; tobacco smoke; 

air pollution; exercise; strong emotional expressions; and chemical irritants. " The effect of 

air pollution in asthmatic patients is supported by the Journal of Allergy and Clinical 

Immunology (JCAAI, 1995) which suggests that the inhalation of sulphur dioxide, nitrogen 

dioxide, or ozone is capable of inducing bronchospasm in patients with asthma. Stocks 

(1996) also indicates that there has been a significant increase in the prevalence, morbidity 

and mortality of asthma during the past 20 years, the reasons for which remain unclear 

although increasing levels of environmental pollutants and changes in housing customs 

(e. g. central heating, fitted carpets, etc. ) have been implicated. 

However according to the report, "UK Emissions of Air Pollutants 1970 to 2001" by Dore 

et al. (2003), atmospheric pollution has declined over the last 30 years. This trend indicates 

that there is more to the problem of identifying asthma triggers than simply analysing air 

quality data. 

The National Asthma Audit (NAA, 2000) shows that in the UK, approximately one in 
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seven children aged 2 to 15 (over 1.5 million people) and at least 1 in 25 adults over the 

age of 16 (1.9 million people), have asthma-like symptoms which require treatment. The 

Global Initiative for Asthma (GINA, 2006) estimates that there are 300 million asthma 

sufferers world-wide. Some researchers (Cochrane et al., 1996) estimate that 20 per cent of 

people with asthma can be described as having a "severe or very severe" condition. This 

means that they might have daily symptoms, frequent trips to the hospital, miss time from 

work or school and have a poorer quality of life. In 1997 the United Kingdom recorded 

1584 deaths, which were directly attributed to asthma (ONS, 1997). The Office for 

National Statistics (2007) found that between 1993 and 2005 there was a steady decrease 

(by 27 per cent) in the number of avoidable male deaths due to respiratory disease. 

Amongst females there is a more complex pattern, with the rate per 100,000 population 

fluctuating between 15 and 18 across the entire period, suggesting no clear trend (ONS, 

2007). 

AsthmaUK estimates that the total cost of asthma to the UK is now in excess of £2000 

million a year, calculated from estimated figures for National Health Service (NHS) 

expenditure, lost productivity and Department of Social Security (DSS) Sickness and 

Invalidity Benefits. In 2001, it was estimated that asthma cost the NHS £889 million 

(AsthmaUKa, 2007). Of this, £49 million (5.5%) was spent on hospital admissions for 

asthma. Since then, costs have risen. It is estimated that 75% of emergency admissions for 

asthma could be avoided with more appropriate and timely care. These figures are 

formulated from the cost of GP consultations, prescriptions for asthma medication, hospital 

in-patient and out-patient care and referrals to A&E departments. There were 59,859 

hospital admissions for asthma in England in 2003, rising to 67,713 in 2004 (DH, 2004). In 

2005, a hospital stay for asthma cost an average of £860.89 per patient, ranging from £781 

for each uncomplicated hospital admission to £1,218 for those people experiencing an 

asthma attack with complications (AsthmaUKa, 2007). According to the Department of 

Health (DH, 2004), based on hospital admissions for 2004, that makes an estimated £58.3 

million for hospital management of asthma in England each year. Caring for people who 

experience an asthma attack- costs 3.5 times more than caring for those whose asthma is 

well managed (Hoskins et al., 2000). This huge personal and economic cost means that any 

successful improvement in asthma management will help to increase the quality of life for 

asthma patients whilst reducing costs to healthcare providers. 

Exposure of sensitive patients to inhalant allergens has been shown to increase airway 
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inflammation, airway hyper-responsiveness (the occurrence of wheezing and dyspnoca 

after exposure to allergens, environmental irritants, viral infections, cold air, or exercise), 

asthma symptoms, need for medication, and death due to asthma. Respiratory diseases 

such as asthma have for a long time been associated with influencing factors in the 

environment. Substantially reducing environmental exposures, significantly reduces these 

outcomes (NHLBI, 1997a). Conditions such as pollution and concentrations of pollen or 

dust are among the most common irritants. The term environment is used to encompass 

many different areas, with meteorology, air quality, particulate matter and occupational and 

domestic environments being the main ones. Asthma triggers are commonly found in these 

areas but have also been known to stem from strong emotional expressions, personality and 

inherited factors (Lane, 1996). Some patients experience asthma symptoms only in 

relationship to certain pollens and moulds. If the patient has seasonal asthma on a 

predictable basis, daily long-term medication should be initiated prior to the anticipated 

onset of symptoms and continued through the season. 

Lane (1996) writes that asthmatics have irritable airways due to inflammation caused by 

allergy, infection and the effect of air pollution, "but rarely does one act alone". The 

combination of root causes such as allergens with pollutants or the smoker with an 

occupational hazard are documented by Lane to show this effect. 

A key issue in the management of (respiratory) disease is the collection and interpretation 

of data (van den Hazel, 2007). The use of portable electronic monitoring devices carried by 

the ambulatory patient to record their respiratory condition improves the detail and 

accuracy of associated data over mechanical and manual means of taking and recording 

lung function data. Data collected as a patient moves from location to location provides a 

basis on which to probe for patterns or direct correlations between the respiratory data set 

and monitored environmental influencing factors (Chin-Shen et al., 2007). A detailed 

picture of a patient's condition can be recorded and analysed. Currently, respiratory data 

(for an asthmatic) is used by clinicians to give an indication of how well a particular 

patient manages their asthma against standards set by research councils (BTS, 1995). The 

data used in the process however, does not give an indication of the influencing factors of 

respiratory episodes unless it is used in conjunction with a health diary kept by the patient 

(Reznik et al., 2005) or analysed against real-time monitoring information (Cobern et al., 

2005; Crabbe et al., 2004). It is not common practice to monitor the patient's environment 

on a continual basis, therefore short term events that continually impact the health of the 
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asthmatic are not validated, or at worst go undetected. The identification of factors 

contributing to a decline in respiratory health enable both the clinician and patient to better 

manage the condition. Knowledge is increased, quality of life improved through avoidance 

of detected influencing factors, and cost of treatment decreased by reducing the frequency 

of emergency cases. This thesis develops the processes necessary to define and construct a 

prototype software system, capable of facilitating the identification of factors that predict a 
decline in respiratory health. 

1.1.2 Issues with Correlation as a Technique 
During the research for this thesis, a number of techniques were explored. An early 

technique involved the use of correlation (Crabbe et al., 2004). The technique analysed 
daily average and daily minimum lung function readings for a patient against the daily 

maximum for an environmental pollutant. The work concluded that there was some 

correlation between data set characteristics, but that further research was required, due to 

the limited size of data sets to ascertain a precise result. 

An automated correlation model was used to explore the technique further during research 
for this thesis. The model analysed raw environmental and lung function data, and aimed to 

provide a tool which would assist in the identification of environmental time-series 

segments having a high correlation to low lung function measurements (shown in 

Figure 2). Correlation requires data at the same time interval, to enable a comparison 
between data sets. The sampling rate of the raw lung function data is irregular (reliant on 

the patient), while air quality sampling can be automated and recorded each hour for 

example. This makes the introduction of an interpolation technique necessary to estimate 
data values between actual readings. Interpolation techniques are discussed in 

Section 5.4.3. The use of an interpolation technique is necessary to synchronise the raw 
data sets, and allows the direct relationship between environmental and medical data sets 
for any given section to be analysed, (shown between the red start and finish lines in the 

top half of the Figure 2). The data period is set arbitrarily, and this example does not 
include a lag between the data sets. The second half of the figure, marked "correlation 

plot" shows the correlation of interpolated data values (every 12 minutes) between the start 

and finish markers in the top half of the figure. The advantage of this technique over 
interpreting daily averages or minimum/maximum readings is that it has an improved time 
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resolution, allowing individual exposure to environmental factors to be analysed if data is 

available. 
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Figure 2 Correlation example, showing the xy plot of the two data sets (y values between 
the red start and finish lines) with the regression line of best fit and the correlation 

coefficient (0.589 to 3dp). 

By using B-spline interpolation between raw data points, the technique is susceptible to 

noise if damping coefficients are not used. The use of damping coefficients reduces the 

volatility of the interpolated data points. An accurate fit (or estimation) of data is also 

dependant on the regularity of data readings. The air quality data in the figure is recorded 

regularly with an hourly interval, which reduces the likelihood of fluctuations in the 

estimation. However, the regularity of lung function readings is not guaranteed. For this 

reason, it may be more prudent to use straight line interpolation between raw data points 

rather than assuming that the smoothed curve represents the true characteristics of the 

underlying data. However, this requires further investigation. 

A further technique, known as time lag analysis was integrated into the analysis to identify 

whether correlations existed between the data sets, but with a shift in time. For example, if 

a critically low peak expiratory flow (PEF) reading was given at 1 pm in the afternoon and 

a very high sulphur dioxide reading was recorded at 11 am, then it may be reasonable to 

assume a2 hour time lag period connected the two pieces of data. An example is shown in 
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Figure 3 Two graphs showing the process of introducing a time lag between two data sets 
before correlation analysis 

To identify time lag periods between two sets of data it is necessary to iteratively scan 

through the data set. The scan analyses correlations between two time series data segments, 

one from each dataset. A series of correlations are produced as one of the segments 

progresses along the x-axis relative to the other. The scan in Figure 3 effectively produces 

a set of correlation coefficients made at increasing time intervals between the air quality 

and lung function data sets, producing a graph similar to that in Figure 4. 
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Figure 4 Graph showing an example of how the correlation coefficient 
can be plotted against lag time (lag between datasets) 

In this particular example the graph indicates that there is a highly correlated time series 

section at a time lag of 3 hours. A number of issues were found implementing this 

technique, these included: 

18 



" Raw data sampling is required; correlation requires data at identical intervals 

between data sets. Interpolation methods can be used for this if data is not available 

in a synchronised form. 

Length of the time series to correlate is unknown; the period of both data sets 

must be identical, but is not fixed. The optimum period is unknown before analysis. 

" Multiple comparisons are required; the process can be slow owing to the need to 

check correlation values between the two data parameters over a regularly 
increasing lag period (and varying period length). The density of lag step (the lag 

step size that each consecutive comparison takes during sampling) influences the 

speed and accuracy of the comparisons. 

" Multiple parameters can be involved; correlation is traditionally undertaken 

between two data sets, analysis between multiple parameters would create many 

possible combinations, leading to a large increase in computation time. 

In searching for periods of correlation, a more meaningful result is found if the correlation 

can be achieved over a longer period of time. In practice it is comparatively simple to find 

small periods over which data is highly correlated. However, the longer the time period of 

correlation, the more significant the overall result will be. Appendix B shows a correlation 

example using data from the Great London Smog (1952) to demonstrate this. 

The method of correlation does not provide a means of validation. To test if a correlation is 

meaningful, repetition of the correlated pattern is required. It is worth noting that 

correlation only shows that two variables are related in a systematic way, it does not prove 

nor disprove that the relationship is a cause-and-effect relationship (Bewick et al., 2003). 

The measure of correlation is based on a central measure within the general linear model of 

statistics. Linear correlation assumes that the distributions of both variables are normally 

distributed, that the relationship is linear, and that the relationship is consistent throughout 

the sample. When these assumptions are violated, correlation becomes inadequate as an 

analytical technique. 

Within the context of this thesis, the technique of correlation does not provide enough 
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information to form an alert of an impending decline in lung function. To provide a 

warning, an alert has to be generated before the occurrence of the decline in lung function. 

A new technique is required that provides analysis so an alert can be generated. In the 

development of a new technique it is useful to observe, that the only commonality between 

each parameter used in correlation analysis (in this instance) is the time component (or x- 

axis of the data). Characteristics of the environmental and medical data sets are none linear, 

for example, the analysis of a gradual build up of CO2 in the atmosphere could be 

attributable to a sudden decline in respiratory function for some patients, but as the time 

frames of analysis are different between the two data sets (gradual vs. sudden), correlation 

would not identify this trait. The correlation between the two data sets may also posses 

more complex dependencies. It should be considered that perhaps detection of a gradual 

build up of atmospheric pollution is required, in addition to a threshold being exceeded. 

1.1.3 Health Informatics 
The phrase medical informatics is used to describe the application of information 

technology within healthcare. It was first coined in 1973 (Protti D J, 1995). Since then it 

has grown considerably as a medical discipline encompassing fields as varied as medical 

imaging, clinical decision support, health records, hospital information and financial 

systems. The use of medical informatics and health informatics as phrases are used 

interchangeably. 

The use of informatics by the healthcare community over the last couple of decades has 

shown its ability to offer additional services in line with current treatment patterns in areas 

such as anaesthetics or remote surgery (Janetschek, 1998). In some situations the use of 

informatics has led to new health management techniques (Pande et al., 2003). The variety 

of uses and benefits of informatics within the medical discipline has led to its widespread 

adoption by the healthcare community (Beuchat et al., 2005). 

Systems have gradually become more complex in design, driven forward by the needs of 

clinicians or by technological advances that enable old problems to be addressed in new 

ways. Early systems were essentially about providing communication links between 

medical experts and remote locations, and largely centred around the organisation of 

hospital schedules or supporting clinicians through protocol-based medicine (the treatment 
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of a patient to a medically predefined pattern). 

Chapter 2 covers areas of informatics, and their benefits to patient care in more detail. This 

thesis uses knowledge from the area of informatics to analyse, and identify verifiable 

patterns between respiratory and environmental data sets. 

1.2. Scope of Thesis 
This thesis aims to identify a process architecture capable of identifying environmental 

predictors of patient-specific asthma exacerbation, and provide an application architecture, 

required for the automation of these processes. 

By fulfilling this research aim, the application architecture can be used to gain a greater 
depth of knowledge regarding the relationships between a patient's environment and their 

health. Patients will always experience different environmental conditions (due to people's 

individuality) and react differently to allergens, particles, gases and other environmental 

parameters. The research questions are: what is an individual patient susceptible to, and 

when will their susceptibility lead to a decline in health? This thesis attempts to devise an 

architecture for a software application that will assist in providing an answer to these 

questions. 

Clinical awareness of a patient's environment is vital for the successful management of 

respiratory health. Environmental factors related to the health of a patient must be correctly 
interpreted in order to react quickly and effectively to ensure the patient's wellbeing. 
Reacting to unforeseen changes in patient or environmental conditions requires a 

knowledge of both medical and environmental data sets. The analysis also requires that 

both environmental and medical data sets are available, so that possible relationships 
between asthma episodes and environmental triggers can be identified. 

The ability to detect potential triggers or situations leading to an asthma attack is an 

assistive step in the management and treatment of asthma. Information indicating patient- 

specific issues or trends, that arrive in a timely manner can be used to improve the quality 

of care given to a patient. 
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1.2.1 Thesis Objectives 
To meet the aim of detecting environmental predictors that are relevant to a decline in 

patient health, this thesis has several objectives: 
1. Research into an appropriate analytical technique capable of attributing the decline 

in patient lung function to environmental predictors. 

2. Identification of the necessary process architecture that enables the triggering of 

alerts when environmental predictors are encountered. 

3. Design of an application architecture that enables the analysis of large scale 

datasets. 

4. A proof of concept consisting of a set of prototyped software components 

demonstrating the derived process architecture. 

The research does not attempt to develop an application suitable for use in clinical 

diagnostics, or develop issues relating to the design of the user interface and the 

presentation of information and results to the end user in a graphical form, where the 

requirements for such features are beyond the scope of this thesis. However, in achieving 

the objectives listed above, this research provides the basis for a tool useful for researchers 

to identify predictors of change events. A number of software prototypes are used to test 

the architecture developed by this work. 

The first objective of identifying an appropriate data analysis technique is given focus by 

the aims of this thesis; where it is proposed that a decline in patient lung function can be 

predicted from a change in the environment. More specifically, this thesis suggests that the 

detection of environmental events, leading to a reduced period of lung function can be 

identified with three steps: 

1. Identification of the asthma episode: Achieved through the observation of a 

worsening trend, a sudden drop in lung function value, or a re-occurring pattern. 

2. Identification of the environmental predictor: For the purpose of this thesis it is 

hypothesised that factors in the environment must be having an effect on the patient's 

health prior to the time that the patient's lung function trend first begins to decline. 
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3. Validation of the environmental predictor: Once an asthmatic episode has been 

identified it increases the probability that a predictor of that episode can be found. The 

time period preceding the asthma episode from which to extract possible predictors is 

arbitrary at this stage in the research, but has been taken to be anything between a 

matter of hours to a few days and is supported by general research in the area 

(Lebowitz, 1996). 

These three steps are used in defining the application architecture, and are shown by this 

thesis to corroborate current research, at a patient-specific level. The steps are aimed at 

creating an alert from the identification of environmental predictors that are validated as 

contributing to a period of lung function decline. It is necessary to define a method for 

detecting adverse environmental conditions that are attributable to the decline in a patient's 

respiratory health, if an automated pattern identification application is to be created. 

The second objective, of identifying a process architecture that would enable the triggering 

of patient alerts by implementing applications, is only made possible once a process of 

validating identified environmental predictors is found. The ability of the monitoring 

application to respond to environmental changes can be simplified through the choice of an 

appropriate analytical technique. The objective of alerting patients as the end point of the 

architecture has a defining role. 

To support the automatic discovery of patterns an appropriate application architecture is 

required. A high level analysis is undertaken so that an architectural description of the 

software system, appropriate to meeting the research objectives can be developed. This 

includes appropriate pattern recognition components that remain flexible to adapt to future 

developments, and changes in use. 

Typically it is normal to analyse data from a sample drawn from the population, rather than 

to take the approach of identifying factors related to an individual patient. Identification at 

a patient-specific level, combined with the task of identifying relatively rare environmental 

events, means that a greater quantity of data is required than finding correlations within 

population data. To identify patient-specific susceptibility to environmental factors, 

automatic discovery of patterns becomes necessary to link factors to the individual patient 

for several reasons: 
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. Validation of rare events is required. 

" Collection of raw data is continuous. 

" Environmental data requires relating to the patient. 

" Particular environmental factors that are having an of ect on the patient are 

unknown. 

9 Patients react in different ways to their personal environments. 

Research into appropriate techniques for inclusion within this thesis means that software 

prototypes developed during this research have several purposes: to develop the 

application architecture using an iterative design process; to test the derived set of 

architectural processes; and to offer further detail as to how the application architecture 

could be applied in practice. The prototypes demonstrate positive results, in line with 

current respiratory research, and serve to provide supporting evidence that the hypotheses 

of the thesis can be proven. 

1.2.2 Contribution to Knowledge 
The research undertaken by this thesis has drawn out several key aspects that extend the 

work of others. The concepts specifically developed during this thesis as contributions to 

knowledge are: 
1. A set of processes that focus on the delivery of patient-specific analysis, providing 

the ability to relate environmental data to ambulatory patients. 
2. A method to recognise significant changes in data trend; this technique is applied 

to patient lung function and air quality data. 

3. The delay characteristic, which defines the concept and processes involved in 

identifying patterns from the time between environmental predictor and decline 

in lung function. 

4. A neural model that recognises significant and repeatable events, and 

5. A clustering technique, to aid the performance of the neural model. 

These contributions are discussed during Chapters 3,4 and 5. 
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1.3 Research Methodology 
The research and development of the system presented by this thesis, is divided into two 
deliverables: 

1. Research into the concepts listed above, with the derivation of a set of processes that 

outline the requirements of the system. 
2. Development of a set of prototypes known as the Environmental Monitoring System 

(EMS) in order to provide a proof of concept for the identification of predictive patterns 
(found between patient and air quality data sets), and the problem's automation. 

The applied research methodology begins with a review of a broad number of subject areas 
including: the use of lung function measurements, environmental factors that influence the 

condition of asthma, system architecture, the role of health informatics, and analytical 
techniques. Correlation techniques that extend the methods used by the Medicate (2000) 

project are explored using a software prototype. Prototyping is then used in an iterative 

process to define a system architecture capable of recognising possible environmental 

predictors of patient lung function decline, through experimentation. 

This thesis draws on research data obtained during the Medicate project (Crabbe et al., 
2004) described in Appendix A, additional hospital admissions data obtained from The 

Information Centre for health and social care, and a six month patient-specific data sample 

of lung function and air quality, collected during the course of this research. The prototypes 
that provide a proof of concept use these data sets, and additional information regarding. 
typical characteristics of the data types to validate the process architecture. 

The prototypes have three purposes: to aid the investigation of an appropriate analytical 

process, to help prove the thesis methodology, and provide a useful guide for an 

architectural implementation of the system. These three uses evolve chronologically during 

the research, and can be seen in Chapters 3 through to 5. 

The objective, to warn patients of an impending asthma exacerbation guides this 
investigative methodology. Changes in environmental conditions are validated to ascertain 
if they are significant predictors for the onset of a patient's decline in respiratory health, 

and whether the environmental change provides an indication of how long the patient has 

before their health begins to deteriorate. 
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1.4 Summary 
The objectives of this research address the creation of a new system architecture able to 

identify interrelationships between different large scale data sets, and capable of alerting 

both clinical staff and patients to factors in the environment that will adversely affect 

patient health. A research prototype is presented as a proof of concept. The prototype 

identifies patterns and relationships between patient lung function, and environmental 

factors identified as possible predictors to a decline in health. It is not the purpose of this 

thesis to provide a system that will identify the cause of asthma, but rather to provide a 

system architecture that will aid the identification of when an attack is likely to occur, by 

identifying environmental factors which can be used to predict the onset of asthma 

exacerbations. 

Both environmental and respiratory readings have a location and time clement to the 

reading (whether this is recorded or not). Environmental data tends to be collected on a 

regular basis with varying degrees of granularity from half an hour, to an interval of days. 

Lung function readings are taken wherever the patient happens to be at the time of the 

reading, and environmental data wherever an environmental monitor (or monitoring 

station) exists. The treatment of a patient's condition can be enhanced by understanding the 

relationship between environmental and medically related data. Treatment can be tailored 

on a patient-by-patient basis. This thesis seeks an approach to specifically identify air 

quality characteristics that act as predictors of patient-specific asthma episodes. 

The next chapter provides an overview of the general research areas including the role of 

lung function in respiratory healthcare, the effect of environmental pollutants on asthma, 

health informatics, and system architecture. 
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Chapter 2 

Overview: Respiratory Healthcare, the Environment, 
and Aspects of Informatics 

This chapter begins by reviewing the areas of respiratory healthcare where the 

management of asthma is described. Then reviews how asthmatics are affected by 

their environment, before explaining the role of system architecture and areas of 

informatics (including pattern recognition) that are relevant to the work. 

2.1 Lung Function 
Clinicians use a regular cycle of monitoring and treatment to measure the progress of 

asthmatic patients. Set patterns of treatment follow guidelines that outline standard 

practices used in the medical profession, using what is known as a predicted best value as a 

reference point. Predicted best values are based on standard data tables (Nunn & Gregg, 

1989) and depend on age, height, weight and the sex of a person. The predicted best value 

for a patient represents the maximum value of expiratory air flow that a patient is likely to 

achieve. The values are not always the best to use as an individual patient's benchmark as 

they are standard, and differences may occur on an individual bases. Therefore asthma 

patients can be given an individual best value by their doctor which is based around the 

predicted value but allows for a patient's individual characteristics. 

Assessment of lung function is performed over one of two time scales. One is relatively 

long, involving discrete observations, usually in the form of pulmonary function tests 

(PFT) where a patient's parameters are compared to the set standard, at intervals in the 

order of days to years. The second time scale over which lung function is assessed is very 

short, observations are made either continuously or at intervals in the order of minutes to 

hours. This activity comes under the heading of patient monitoring (Webster, 1998). 

The approach that clinicians take in the treatment of asthma is defined by the British 

Thoracic Society and published in the "British Guideline on the Management of Asthma" 

(BTS, 2004) and "The British Guidelines on Asthma Management" (BTS, 1995) in which 
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a 5-step scale (also referred to as the stepwise approach) is used as the basis for the 

management of patient care (definitions of reliever and preventer are given on the next 

page): 

" Step 1- Mild Intermittent Asthma. Recommended to use a reliever as and when 

required. 

" Step 2- Regular Preventer Therapy. Recommended to start using a steroid based 

preventer on a daily basis. 

" Step 3- Add-on Therapy. Addition of a long-acting ß2 agonist to the therapy. 

" Step 4- Persistent Poor Control. An increased steroid dose (as prescribed by a 

doctor). 

" Step 5- Continuous or Frequent Use of Oral Steroids. The additional use of a daily 

steroid tablet, and consideration of alternative treatments (as prescribed by a 

doctor). 

The US National Heart, Lung and Blood Institute (NHLBI, 1998) defines a number of 

methods that clinicians use to achieve control of asthma: 

" Select appropriate medications. 

" Manage asthma long term. 

" Treat asthma attacks. 

" Identify and avoid triggers that make asthma worse. 

" Educate patients to manage their condition. 

" Monitor and modify asthma care for effective long-term control. 

A tool used for the management and diagnosis of asthma is the spirometer, a device which 

measures the volume of air leaving a patient's lung. Using this device, diseases of airflow 

obstruction and lung stiffening can be detected (NHLBI, 1997) and patient progress 

monitored. When the results are plotted on a regular basis they show a trend that is useful 

in determining whether or not a patient is responding to treatment. The graphs which are 

plotted also help to show any difficulties a patient may be experiencing, but may not 

necessarily be aware of. Velsor-Friedrich et al. (2005) study the effect that an intervention 

program has on a group of asthmatic students. The students were given appropriate 

knowledge of, and the ability to self-monitor their condition, which led to a general 

improvement of their respiratory condition. 

The primary method of treatment involves the use of two different types of medicine called 
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relievers and preventers. Relievers are designed to relieve breathing difficulties as they 

happen by quickly relaxing the muscles which exist around the airways. This allows the 

airways to open wider making it easier to breathe, although airway swelling is not reduced. 

Preventers reduce the chance of asthma symptoms by protecting the lining of the airways, 

and have the added effect of reducing the inflammation of airways thus reducing their 

responsiveness to asthma triggers. 

2.1.1 Peak Expiratory Flow (PEF) 
There are a number of useful measurements that can be recorded to determine the severity 

of asthma and to monitor changes in condition. The most common is peak flow, which is a 

measure of how fast air can be exhaled from the lungs. Primarily this monitors how well 

asthma is being controlled and is a good indication of how well medication is working. 

Peak flow is dependant on how wide the airways within the lungs are, and is not a measure 

of fitness or how strong chest muscles are. Peak flow is also called peak expiratoryflow or 

PER 

Peak expiratory flow readings depend on the age of the patient, their height, and sex. A 

predicted PEF value can be obtained from charts using these three parameters. The 

standard method used in the United Kingdom was developed by Nunn & Gregg 

(1989). According to the UK standard, a male aged 35 with a height of 174cm should have 

a PEF value of about 637 litres per minute (Um). For a male, any reading equal or up to 

100 L/m lower than the predicted PEF value would be considered normal. In a female with 

similar characteristics, the PEF value would be expected to be in the region of 497 Urn 

with a range of up to 85 L/m lower than the PEF value being considered normal. 

The most reliable measurement that shows an assessment of an asthmatic's condition is a 

PEF reading taken in the morning. Morning measurements are usually the lowest (with the 

afternoon being the highest) due to night-time occurrence of asthmatic symptoms. 

Fluctuation between the minimum and maximum values is known as the variability and is 

presented as a percentage. 

PEF Variability, is used to determine how well a patient's asthma is being managed. A low 

variability means that a patient is controlling their asthma well, and medication is working 

satisfactorily. The formula is given below; 

29 



PEF Variabili /= 
(Max. PEF value per day - Min. PEE value per day) 

X100 ý() (Max. PEF value per day) Eq. 2.1 

The graph shown in Figure 5 (showing a patient's data during the Medicate trial described 

later) can be used to plot Peak Expiratory Flow (PEF) readings for a patient, the graph can 

be used to monitor a patient's progress. The graph is banded into three sections: green, 

yellow and red to denote the 'seriousness' of reading level. A red reading would mean that 

the patient needed urgent treatment. 

1998). 

In this example (Figure 5) of a patient recovering in hospital after a severe asthma attack 

the three colour coded bands can be seen. Any reading above 480 L/m is a good reading, 

between 300 and 480 L/m an indication that the patient is having difficulty breathing, and 

below 300 L/m the patient requires immediate hospitalisation or treatment. 

The threshold bands are derived from the predicted peak expiratory flow rate a patient is 
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expected to obtain. This is usually defined after an examination by a doctor, although 
tables exist with suggested values. The general regions for the bands are shown in the table 

below, obtained from "Guidelines for the Diagnosis and Management of Asthma" 

(NHLBI, 1997a). 

Table 1 The peak flow zone system 
Zone % Predicted Peak Expiratory 

Flow Rate 

Green 80-100 

Yellow 50 - 80 

Red <50 

The peak expiratory flow rate is generally defined using the tables (Nunn & Gregg, 1989) 

reading off the values using the patient's age and height. 

2.1.2 Forced Vital Capacity (FVC) 
Forced Vital Capacity is the maximum forced volume of air that can be expired from the 

lungs. FVC is measured using spirometry which is the name given to the measurement of 

change in lung volume for the testing of pulmonary function (regardless of the technique 

used). 

A small number of parameters are used to describe the forced expiratory record: 

9 Forced Vital Capacity (FVC) 

" Forced Expiratory Volume in one second (FEVI) 

" Mean Forced Expiratory Flow (FEF) during the middle half of FVC (FEF25-7s"ß. )" 

This can also be explained as the average flow of air leaving the lung during the 

middle portion of the expiration (measured by volume). 

FVC is recorded during a spirometry test starting with a patient's Total Lung Capacity 

(TLC) and ending with their Residual Volume (RV). There are two commonly used 

methods for displaying flow limitation during a FVC reading (Webster, 1998). Figure 6 

shows graphs of the two methods, a) showing volume of air flow against change in 
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volume, and b) showing the change of air remaining in the lung over time. 

Matimal expiratory 
flow-volume(MEFV) curves 
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Reduced FVC 
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-% 

Time vital capacity (TVC) spirorrams 

Figure 6 MEFV Curves and Timed Vital Capacity Spirograms 
(Webster, 1998) 

Method 1 

Plotting the volume flow of gas at the airway opening (QAwo) against volume change (or 

the integral of QAwo) subtracted from FVC against time. 

This method produces a maximal expiratory flow volume (MEFV) curve shown in Figure 

6a. The MEFV curve represents the relationship between variable FVC- f QAwodt and 

-QAwo its derivative. When this relationship is a straight line through the origin, it 

represents a homogeneous, linear, first-order differential equation (Webster, 1998). 

QAWO=-K(FVC- f QAwodt) 
Eq. 2.2 

Method 2 
Plotting against time (Figure 6b), gives a graph (or spirogram) of timed vital capacity 
(TVC). TVC is the difference between the total lung capacity (TLC) and the residual 

volume (RV), the smallest volume to which the lungs can be deflated due to a slow 

expiration. The reading or graph is shown over time and is the equivalent value to the FVC 
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value. 

The two curves in Figure 6 provide information about the condition of the airways of the 

patient. During a FVC manoeuvre (or test) the respiratory system can be described as 
functioning in two ways: independently from the effort exerted by the patient, and effort- 
dependent. The dependent part provides information about the larger, upper airways and 

extrapulmonary parts of the respiratory system and is shown on the graphs as the plot 

between TLC and approximately 25% of the FVC below TLC. The independent section 

reflects the condition of the smaller airways of the lungs. Using the MEFV curves and 
TVC spirograms, the condition of the respiratory system can be explored. 

2.1.3 Forced Expiratory Volume in one second (FEV, ) 
Primiano (1998) suggests that FEV1 is not a good index for small airways disease due to its 

partial dependency on effort-related data. Lane (1996) agrees but states that it is still useful 

if it is quoted as a percentage of the forced vital capacity (FVC) as the two variables are 

linked. Guidance from the US National Heart, Lung, and Blood Institute (NHLBI, 1997) 

goes further and says that the ratio of FEV1 to FVC is often used to assess patients for 

airflow obstruction. A reduced ratio of less than 65 percent (FEV1 / FVC) indicates 

obstruction to the flow of air from the lungs. 

FEV, and FVC readings given by patients' both differ according to height, sex, age and 

race, and appropriate reference values should be used for their interpretation. An increase 

of 15% in FEV, is significant. Values should be expressed as absolute figures and also as 

percentage predicted, based on patients' age, height and sex. 

2.1.4 Mean Forced Expiratory Flow (FEF25.75%) 
FEF25.75% represents an average flow produced during the middle half of the forced vital 

capacity expiration. So that comparisons of expiratory flow can be made between 

individuals of different sizes the parameter can be normalised. The technique used to 

compensate for differences in individual size (normalise) is to divide FEF25.75% by FVC. 
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FEF25 %-75 %= 
0.5FVC 

Tt25%FVC- 
t75%FVC) 

Eq. 2.3 

2.2 Environmental Factors 

The wide range of variables makes asthma a difficult condition to predict and monitor. 

Exacerbations of asthma are characterised by periods of increased symptoms and reduced 

lung function, which may result in diminished ability to perform usual activities. 

Exacerbations may be brought on by exposures to irritants or sensitisers in the home, work, 

or general environment. Education is needed to help the patient recognise both immediate 

and delayed reactions to these environmental exacerbations. Exposure of asthma patients to 

irritants or allergens to which they are sensitive has been shown to increase asthma 

symptoms and precipitate asthma exacerbations (NHLBI, 1997a). Asthma patients are 
known to react to a variety of triggers, such as allergens or a combination of allergens, 

exercise, pollutants or emotional stress. This complex nature can lead to a time consuming 

task of detailing and then analysing a patient's history. The complex nature of asthma is a 

major healthcare challenge. The management of the disease in asthmatics is particularly 
difficult without sufficient insight into the patient's environment. 

2.2.1 Air Quality 
An asthmatic's condition is affected by the specific environmental conditions that surround 
the individual. Peled et at (2005), Chauhan et al. (2003), Moshammer & Neuberger 

(2003), Kehrl et at (1999) and Lane (1996) consider the following pollutants to be of 

concern to asthmatics: 
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Table 2 Pollutants of concern to asthmatics 

Pollutant Description / Source 

Particulate Matter Particles which have an aerodynamic diameter of 10 microns or less are 
(PM) classified as PM10. Smoke and particles from diesel engines would both 

fall into this category. Other common sub-categories include particles 

which have an aerodynamic diameter of 2.5 microns or less (PM2 ) and 

PMo , which has an aerodynamic diameter of 0.1 microns or less. 

Sulphur Dioxide The most important natural sources of sulphur dioxide, (and of other 
(SO2) sulphur compounds) are volcanoes, during both active and dormant 

periods. Globally, these contribute perhaps 20% of the world's total 

sulphur emissions. However, in both developed and less-developed 

countries, particularly in urban areas, emissions that arise from the 

combustion of solid fossil fuels are of prime concern. Coal and oil both 

contain sulphur in varying amounts, and both therefore produce sulphur 
dioxide when burnt. 

Nitrogen Dioxide Vehicles produce nitric oxide, this changes to nitrogen dioxide in the 

(NO2) atmosphere. Recent research has highlighted the increasing importance 

of directly emitted NO2 primary emissions. There is evidence for 

significant amounts of NO2 emitted directly from the tailpipes of diesel 

vehicles, especially when slow moving, with levels possibly as high as 
25% of total NOx emissions in mass terms. These primary emissions 
have a significant impact on roadside NO2 concentrations in areas where 

there is a large proportion of diesel vehicles (DEFRA, 2004). 

Ozone (03) Ground level ozone (03) is a secondary pollutant; it is generated from 

the reactions of primary pollutants in the atmosphere. It is important to 

note that ozone at ground level is classified as a pollutant, in stark 
difference to stratospheric ozone and the ozone layer occurring at around 
11 to 15 km above ground level. Stratospheric ozone is naturally 
occurring and critically beneficial, as it protects us from harmful levels 

of UV radiation from the sun. Tropospheric or ground level ozone is 

formed mainly from the breakdown of NOx into NO2 in the presence of 

UV (sunlight). 

Air quality and other environmental influences affect people's respiratory system (NHLBI, 

1997). Particles of diameter 101im or less (also know as PM, o) and diameter of 2.5µm or 
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less (known as PM2.5), along with irritant gases, are all noted to have an effect on health 

(COMEAP, 2006). According to Stedman (2001), irritant gases are those such as sulphur 
dioxide (SO2) and nitrogen dioxide (NO2) enhance response to allergens and may 
increase the prevalence of respiratory infections in children, and other gases such as ozone 
(03) and carbon monoxide (CO) (Lee et al., 2002). The health effects of both long- and 

short-term exposures to 03 are shown by pulmonary function decrements (AQMD, 2003). 

nitrogen dioxide (NO2) also has the potential to aggravate chronic respiratory disease and 

respiratory symptoms in sensitive groups (AQMD, 2003). 

Sulphur dioxide arises from the sulphur present in most fuels, but its presence can also be 

attributed to volcanic activity where about 5x106 tonne sulphur yr' (Halmer et al., 2002), 

and even larger amounts are emitted by sea spray (as sulphate), which contribute in the 

region of 44x106 tonne yr' (Hester, 1986), (NEGTAP, 2001) and is known to aggravate 

asthmatic symptoms. Exposure to sulphur dioxide can lead to bronchoconstriction for 

persons with asthma (AQMD, 2003). 

It is extremely difficult to monitor the environmental conditions experienced by an 
individual as they move from location to location. Most air quality data in the United 

Kingdom originates from fixed location monitoring stations situated around the country, 

each of which monitors a set of pollutants (not always the same) including; nitrogen 
dioxide, ozone, carbon monoxide, sulphur dioxide and particulate matter PM2. s and PM, o 

which represent fine airborne particles of 2.5 and 10 microns diameter or less respectively. 
This provides a fairly detailed, although not ideal, data source for environmental data. The 

data is usually collected on an hourly basis but this can vary depending on the location and 
facilities at the monitoring station, and is not always reliable; missing or abnormal values 

pay a large part in the data sets. The data is also not ideal as it may not portray the actual 
levels of pollutant that the patient experiences due to the static location of the sites. 

In the United Kingdom the monitoring stations are run by AEA Technologies, National 

Environment Technology Centre (NETCEN) monitoring network. The network is run on 
behalf of the UK Department for Environment, Food & Rural Affairs (DEFRA) and the 

Devolved Administrations. Details of the monitoring network and results can be found in 

an annual report from AEA Technology (AEAT, 2006). The network provides a reliable 

and consistent source of data which is available via the Internet (TAQA, 2008). 
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Data obtained from the monitoring stations can be used in validated dispersion models, 

which have the capability to estimate levels of pollution between known point sources. 

Although this research is not focused on the use of dispersion modelling techniques, a 

utility for the inclusion of such models would be a useful addition to the extensibility of the 

system. 

In the United Kingdom air pollutant levels are banded into 4 categories: low, moderate, 

high, and very high. Each category describes a warning level according to health impact. 

The bands relating to each category and pollutant are shown by Table 3 below. The 

abbreviations ppb (parts per billion) and ppm (parts per million) are used. 

Table 3 Air quality bandings (COMEAP, 1998) 

Pollutant Band 
Pollutant 

LOW MODERATE HIGH VERY HIGH 

100 ppb Below 100 ppb (266µg/m3), 200 ppb (532µg/m3), 400 ppb (1064µg/m3), 
Sulphur 
Dioxide 

3 (266µg/m ), averaged averaged over 15 averaged over 15 averaged over 15 
over 15 minutes minutes minutes minutes 

Below 50 ppb 
3 50 ppb (100µg/m ). 90 ppb (180µg/m3) 180 ppb (360µg/m3), 

Ozone (100µg/m3), as an g as an 8 hour running 
average or averaged averaged over one averaged over on 

hour running average 
over one hour 

hour hour 

Below 10 ppm (11.6mg/ 10 ppm (11.6mg/m'), 15 ppm (17.4mg/m3), 20 ppm (23.2mg/m3), 
n Carbo Carbo 

m3), as an 8 hour as an 8 hour running as an 8 hour running as an 8 hour running ne Monoxi 
running average average average average 

Below 150 ppb 150 ppb (287µg/m3), 300 ppb (573µg/m3), 400 ppb (764µg/m3), 
Nitrogen 
Dioxide 

3 (287µg/m) averaged averaged over one averaged over one averaged over one 
over one hour hour hour hour 

Fine Below 50 µg/m3, as a 24 50 µg/m3, as a 24 75 µg/m', as a 24 100 µg/m3, as a 24 
Particles hour running average hour running average hour running average hour running average 

Low indicates a pollutant level below the threshold of the National Air Quality Standard. 

Moderate indicates a level at the threshold. High represents a threshold set using advice 

from the Committee on Medical Effects of Air Pollution (COMEAP, 2002) that indicate 

that some discomfort may be experienced by those susceptible to air pollutants as a result 

of the levels, and Very High, also a threshold set by COMEAP, goes one step further and 

represents levels where considerable discomfort may be experienced. 
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The US National Heart, Lung, and Blood Institutes (NHLBI, 1997a) recommend that 

patients with any level of severity should avoid, exposure to allergens to which they are 

sensitive, exposure to environmental tobacco smoke (which counts as a type of particulate 

matter), and exertion when levels of air pollution are high. For successful long term asthma 

management, it is essential to identify and reduce exposures to relevant allergens and 
irritants and to control other factors that have been shown to increase asthma symptoms 

and/or precipitate asthma exacerbations. For example, Dominici et al. (2003) found that 

daily variations of PM, o are positively associated with daily variations of mortality, using a 
24 hour PM, o average. However, the results also suggested that different regions within the 

geographical study all experienced differing pollutant levels, and that further detailed 

investigation was necessary to identify the effect of particular particle types. 

2.2.2 Pollen 
Pollen is a fine powder produced by the anthers of seed-bearing plants. It is particularly 
troublesome to asthmatics as it is carried by the atmosphere. Particular focus can be given 
to pollen when the weather is dry, sunny and moderately windy. Jacobson et al. (2007) 

found that there was a strong correlation between six separate pollen spikes and six peaks 
in emergency department and urgent care admissions during the summer months of May 

and June 2006. Grasses tend to shed their pollens during the morning, but when the 

weather is hot the process can extend into late afternoon. Symptoms due to pollen are 

considerably reduced when the weather is damp as dampness reduces the spread of pollens. 

2.2.3 Health-Related Quality of Life 
The World Health Organisation defines health-related quality of life as, "the individuals' 

perceptions of their positions of life in the context of the culture and value systems in 

which they live and in relation to their goals, expectations, and concerns" (Mohangoo et 

al., 2007). While the American Thoracic Society Quality of Life Resource (ATS, 1997) 

states that "health-related quality of life is an individual's satisfaction or happiness with 

areas of life that are directly affected by health". It is generally recognised that the burden 

of illness is far reaching and can be measured in terms of the financial burden, discomfort, 

restricting ability and apprehension caused by the illness. Measurements determining the 

quality of life in studies of clinical evaluation are commonplace and are sometimes used to 
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offset higher costs of treatment. Chen et al. (2007) find that there is an inverse relationship 
between the number of asthma control problems and quality of life, while Mohangoo et al. 

(2007) find that the presence of at least four wheezing attacks during a year reduced 

perceived quality of life. 

Over the last decade quantitative relationships between air pollution and adverse health 

effects have been studied (Taggart et al., 1996; Howel et al., 2001; Brunekreef and 
Holgate, 2002; Ho et al., 2007). The effect of particulates, particularly PM, o, were studied 

by all four of the studies. Ozone effects were studied by Taggart et al., Ho et al., and 

discussed by Brunekreef and Holgate. Brunekreef and Holgate also discussed the affect of 

nitric oxides, which were additionally studied by Ho et al. Health effects of sulphur and 

nitrogen dioxides were studied by Taggart et al. (1996). The parameters and related studies 

are summarised by the table below. 

Table 4 Study vs parameter summary 

Parameter Study 

Particulate matter Taggart et al. (1996); Howel et al. (2001); Brunekreef 
and Holgate, (2002); Ho et al., (2007). 

Ozone Taggart et al. (1996), Ho et al. (2007) and discussed by 
Brunekreef and Holgate. 

Nitric oxides Ho et al. (2007), and discussed by Brunekreef and 
Holgate (2002). 

Sulphur and nitrogen Taggart et al. (1996). 
dioxide 

Brunekreef and Holgate (2002) highlight the work of several others (including Samet et 

al., 1998 and Pope and Kalkstein, 1996) for considering cofounders, that included weather 

variables. Ho et al. (2007) factored the effect of age, rhinitis, eczema, urban birth location, 

parental education level, exercise, cigarette smoking, environmental tobacco smoking, 

alcohol beverage consumption, and weather factors into their study. They analysed 

questionnaires from a screened sample of 64,660 students who displayed signs of having 

asthma. A repeat measurement regression model was used to examine the relationship 
between monthly asthma attack rate among asthma patients, and air pollution (particulates, 

nitric oxides and ozone). The model used a stratified random sample of students, and 

demonstrated that air pollution is related to asthma attack rate. Howel et al. (2001) 

investigated the association between the acute respiratory health of children, and 
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particulate levels over a six week period. Diaries of respiratory events were collected for 

1405 children, along with concurrent monitoring of particulate levels over a six week 

period. It was found that frequently small and positive associations existed between PM, o, 

and respiratory symptoms, which were varied between communities. 

Taggart et al. (1996) studied the relationship between asthmatic bronchial hyper- 

responsiveness and pulmonary function (represented by daily lung function tests of FVC 

and FEV, ) to ambient levels of summertime air pollution during 1993. The study of 38 

subjects suggested that changes in the concentrations of traffic-related air pollution 
depicted by 03, SO2, NO2 and smoke, were capable of potentiating airway inflammation. 

The study identified a log linear relationship between all lung function measures and 

pollutant levels, grass pollen concentrations and temperature. Correlation between levels of 

24 hour meanSO2, NO2 and smoke, 48 hour mean NO2 and smoke, and 24h lag NO2, and 

bronchial hyper-responsiveness were also found. After reviewing relevant literature 

Brunekreef and Holgate (2002) concluded that the evidence of adverse health effects from 

air pollution have been estimated to be higher than effects from a long list of other 

environmental factors. 

2.2.4 Meteorological 
Meteorological effects such as humidity, temperature, wind direction, and weather 

condition have an effect on asthma sufferers. Research has linked the increase in asthma 

exacerbation to thunder storms (Anderson et al., 2001). Damp and cold are also known to 

be particularly prominent in triggering asthma attacks, although some asthmatics would 

say that for them, hot and humid weather is more troublesome. Records show (Lane, 1996) 

that there are more emergency cases of asthma when there is a sudden drop in atmospheric 

temperature combined with the formation of mist or fog. A connection also exists with 

damp autumn and winter months where there is a steady increase in emergency cases. The 

exact cause of the increase in cases is largely unknown and can not be attributed to just one 

event. Asthmatics react in different ways, and they often react to more than one trigger. 

Complications also occur when the location of the patient changes. Wetter conditions 

would tend to suggest that more time is spent indoors where dust mites and other allergens 

effect the respiratory system. Wet and damp weather also increase the occurrence of chest 

infections, an occurrence of which would have an effect on an asthmatic. Other 

occurrences of asthma can be attributed to sudden heavy rainfall. Rainfall breaks up pollen 
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grains and mould spores, allowing them to be carried in the air (Dales et al., 2003). In the 

summer months asthma attacks can be attributed to hot days, low wind speed, low relative 
humidity and a drop in temperature at night. The condition leads to a steady build up of 

allergens and pollutants trapped in an almost motionless layer of air. 

2.3 System Architecture: Definition 
During the design of the system architecture a number of key stages that underpin the 

creation of the operational components are identified. The architecture combines the 

analysis of data from two areas of research: environmental and medical. First though, it is 

useful to define the meaning of system architecture. 

Buschmann et al. (1996) define software architecture as, "a description of the subsystems 

and components of a software system and the relationships between them. " Buschmann et 

al. go on to say, "the software architecture of a system is an artefact. It is the result of the 

software design activity". In this context, the word system implies a set of entities (real or 

abstract), that together make up a whole entity. The denotation of the word system changes, 
depending on its use. When a contained system becomes used in a larger system it could be 

referred to as a subsystem or component. However, a subsystem could also be built from a 

number of smaller systems (subsystems), or components. The number of subsystems 
described in a system will usually itself depend on the level of abstraction that the 

describing architecture prescribes. Each subsystem will interact or relate to at least one 

other component and serve the common objective of the system as a whole. 

The organisation of these subsystems into a whole system is the activity of the architecture. 
The ANSI/IEEE Standard 1471-2000 specification (IEEE, 2000) states that architecture is 

"the fundamental organisation of a system, embodied in its components, their relationships 
to each other and the environment, and the principles governing its design and evolution. " 

This statement provides a clear description of the role that architecture plays, namely 
defining components, and their relationships to one another and the wider system 

environment, and considering how they may evolve in use over time. The description 

supports the definition previously given by Buschmann et al. (1996). The text of the ISO 

standard (ISO, 2007) (a republished version of IEEE 1471: 2000) will form the basis of 
future joint revisions by the ISO and IEEE bodies. The ISO standard states that "an 
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architecture exists to respond to specific stakeholder concerns about the system being 

described". It also states that "system architecture descriptions are inherently multi-view, 

as no single-view is capable of capturing all concerns". The capturing of rationale for 

inconsistencies or unresolved issues between views is promoted in the standard in order to 

explain those areas where incorrect assumptions could be made. This is an important point 

to note whilst defining the architecture for an environmental monitoring system, as 

disambiguation should be reduced to a minimum through clarification for each stakeholder. 

The stakeholders of an environmental monitoring system used in this field would most 

likely be the patients being monitored, clinical staff responsible for patient care, and 

researchers interested with the development of new treatments or studies. 

Two further proposals for the meaning of architecture are given by The Open Group 

Architecture Framework (TOGAF, 2007). The two architectural definitions given by the 

group are: 

0a "formal description of a system, or a detailed plan of the system at component 

level to guide its implementation", or 

" as "the structure of components, their interrelationships, and the principles and 

guidelines governing their design and evolution over time. " 

These proposals support the view given previously. For an environmental monitoring 

system to be implemented successfully in various settings, some probably unthought-of at 

the time of design, it is important to consider these definitions of architecture and abstract 

the key elements. 

2.3.1 Architectural Design Process 
Malveau and Mowbray (2004) talk about a process for architecture quality improvement 

called architectural iteration, where the architecture is adapted at various project stages 

from practical feedback during the project life cycle. "At every step, the architects strive to 

improve the quality of the design; they use the lessons learned to make the design better 

and better". The process Malveau and Mowbray describe, contains a core process, known 

as architecture with subprojects. Architectural planning partitions the problem into 

subsystems with stable boundaries. Malveau and Mowbray go on to describe the process of 

system development and how it is analogous to architectural planning with four steps, the 

main two (and first two) described steps are: 
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1. Identify subsystems. 
2. Define subsystem interfaces. 

These two steps enforce the view of Buschmann et al. (1996) where components are used 

as building blocks (with defined interfaces between them). The final points they make, 

cover project planning and developing subsystems in parallel. This becomes possible as 

each subsystem exists as its own entity. 

Some typical design activities that take place during architectural design are component 

design, data structure and algorithm design. Components act as building blocks for the 

structure of systems (Buschmann et al., 1996) and have interfaces, enabling them to be 

used easily by other parts of the system. Data structure design starts to develop the detailed 

specifics of how the component will handle the necessary information in order to 

accomplish the component's task. Algorithm design then ties the data structure to the task 

that is given to the component. 

When decomposing a sub-system into modules there are two processes that could be used, 

they are (Shaw & Garlan, 1996): 

1. Object-oriented, where a system is decomposed into a set of communicating 

objects. 

2. Data-flow, where functional modules are designed to accept input data and 

transform it in some way to output data. This is also known as the pipeline 

approach. 
The two processes of Shaw and Galan (1996) are used to guide the underlying structure of 

an environmental monitoring system, while the process of architectural iteration was used 

during the research phases to provide feedback into the design process. 

2.3.2 Architectural Views (or Models) 
Definitions, given by both the IEEE (2000) and TOGAF (2007) earlier in the chapter can 
be used as a tool-set for defining the architecture of an environmental monitoring system. 
The definitions suggest that an architecture should describe an information system in terms 

of a set of building blocks, and show how these blocks fit together. This definition is taken 

forward and applied to the system and subsystems required to implement the 
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Environmental Monitoring System (EMS) during Chapters 4 and 5. In defining the 

architecture for the EMS a number of aspects require consideration. The Reference Model 

for Open Distributed Processing (RM-ODP) defines five viewpoints for understanding a 

system. Although these view points are designed for environments where distributed 

processing is used, it is still useful to consider the points in the design of the EMS to 

increase the system's flexibility. The view points are given by ISO (1998) and shown by 

the table below: 

Table 5 System architecture viewpoints 
Jiewpoint Description 

Enterprise How the specified system fits into the wider organisation. 
Information Constraints on the use and interpretation of data. 

Computational The functional decomposition of the system into a set of 
interacting objects/components. 

Engineering Matters relating to infrastructure required to support the 
system. 

Technology Concerned with the choice of technology. 

The first three viewpoints: Enterprise, Information, and Computational, relate directly to 

the architecture, whilst the Engineering and Technical viewpoints support the 

implementation of the architecture, and are not prescribed by this thesis. 

Two further aspects, promoted by The Open Distributed Processing Model (also known as 

ISO 10746) are, the use of abstraction, and precision in concept definitions. Consideration 

should be given to these aspects, together they reduce the number of assumptions that can 
be made. ISO 10746 also encourages the consideration of five key features within the 

design of software systems. They are listed here only to provide a context for an 
implementation of the architecture, and not to guide this research. The five key features of 

the model are: 
1. Interoperability - the ability to link and reconfigure systems and services. 

2. Heterogeneity - the ability to link across different platforms and protocols. 
3. Transparency - the ability to hide complications from users. 
4. Trading/Broking - the presence of intermediary agents, to promote and 

distribute software artifacts and services. 
5. Federation - where focus is given to the lack of central authority over the software 

design or configuration. 
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These five aspects are useful to consider within the context of designing the 
implementation architecture for the EMS. Chapter 4 defines the architecture of the 
Environmental Monitoring System, and develops prototype implementations. Chapter 5 

details key analytical components of the EMS. 

2.4 Health Informatics 
Wooten (2001) outlines some advantages of health informatics. In a trial using home video 

phones, electronic stethoscopes and digital blood pressure monitors. Patients with chronic 

conditions were given 17% less home visits than control patients (who were not using 

video phones or measuring equipment). The trial patients had more traditional telephone 

contact, in addition to video consultation with nursing staff. The quality of care between 

the two groups was measured to be similar. Over the trial period the average cost of care in 

the trial group was 27% less than that of the control group. Another study, this time lasting 

for 20 months in Finland (also mentioned by Wooten, 2001), found that 52% of referrals 
from general practitioners to Peijas Hospital in Helsinki were dealt with electronically. 
Hospital staff used either electronic messages or a video link to treat the patients. Against 

two control groups of similar patients from general practitioners, the cost was shown to be 

seven times greater for those not in the electronic referral group. 

The delivery of healthcare in the home is continuing to grow as a proportion of total 

healthcare provision. With increasing bed costs, patients are being discharged earlier from 

hospital or having care which once took place in hospital extended to the home. This has 

advantages. Risks such as hospital-acquired infection are reduced and 'creature comforts' 

can be maintained. For some patients, care in the home can span many years whilst for 

others it will be very brief. Regardless of which category they fall into, patients have a 

need for information about their care, which might be factual information about their 

therapy, or assurance from healthcare workers that their own self management is working 

well. 

National healthcare budgets are constantly under pressure to keep up essential services and 
increase the quality of care, whilst at the same time medical research creates more clinical 
findings than can be integrated into best practices. Often general practitioners and other 
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clinical staff find it difficult to keep up with the latest treatments, and budgets arc stretched 

yet further. 

The Connecting for Health NHS programme (previously known as National Programme 

for IT, NPfIT) which had its origins in 1998 (HSC, 1998) and came into operation on April 

1st 2005 is creating a multi-billion pound infrastructure (NHS, 2003) which will attempt to 

improve patient care by enabling clinicians and other NHS staff to increase their efficiency 

and effectiveness through the use of IT. The program is outlined in the publication 

Delivering 21st Century IT Support for the NHS - National Strategic Programme (NHS, 

2002). The NHS Executive states that it is committed to spending £12.4bn (at 2004-5 

prices) over the ten year life of the main contracts, to 2013-14 to modernise the NHS with 

information technology (NAO, 2006). The focus of the contracts is to ensure that both 

quality information and information technology provide clinical services to patients and 
increases population health. This is seen as a significant shift from the previous emphasis 

on management information where information was used primarily as a tool to monitor 

cost and activity. The new strategy aims to ensure that health information is available to 

clinicians, and increasingly patients, who need it, when they need it. 

Health informatics has the potential to improve quality, effectiveness and efficiency, if it is 

applied to the complete cycle of patient care and to the transfer of information related to a 

given health problem. For example, resources can be better managed. Once a suitable 

condition has been diagnosed, hospitalisation of patients can be kept to a minimum through 

continued monitoring at home. When a problem is identified the patient can be notified and 

corrective treatment arranged remotely. Information gathered in a setting away from a 
hospital is more natural for a patient, and leads to long-term datasets that may be used in 

further detailed analysis. Through the use of automated monitoring, clinicians are made 

available to address a patient's problems as they occur, making better use of the clinician's 

and patient's time. The work flow and efficiency of medical personnel can be improved, 

and the delivery of more personalised healthcare given to patients. 

There are a number of methods already in use to transfer asthma data from the patient to 

clinician (Glykas & Chytas, 2004), one of these is the use of electronic devices that 

measure lung function, and other such clinical data, and then on a regular basis download 

these to a clinician. For example, over a standard telephone line (Medicate, 2000). 

Maglaveras et al. (2002) use technology to facilitate the transfer of data from both patient 
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and their immediate home environment. Electronic devices (used for the measurement of 
lung function in asthma) make the process of taking regular readings easier for the patient. 

Devices store the data from tests in memory until they can be transferred to the clinician. 

Using electronic devices relieves the patient from having to use more conventional 

methods of manual note taking and are known to increase the accuracy of the data being 

presented to the clinician. Connecting these devices via the Internet as a method of data 

transfer, enables the clinician to gain a greater granularity of data, closer to the time when 

the readings are taken. Clinicians are then able to use types of trend analysis to evaluate 
how well an asthmatic's condition is being controlled. 

A review of literature between 1974 and 2004, by Sanders & Aronsky (2006) focusing on 
biomedical informatics applications for asthma care, found 64 papers; of which 13 papers 

were focused on asthma (disease) monitoring or prevention, and one (Crabbe et al., 2004) 

was a retrospective study (the Medicate Project). The small number of papers and relevant 
literature found by Sanders & Aronsky gives weight to the novelty of this research. 

The Medical Diagnosis, Communication and Analysis Throughout Europe (Medicate) 

project attempted to provide a proof of concept system, capable of taking ambulatory lung 

function readings via an electronic spirometry device and sending these to a Disease 

Management System for automatic review, at the same time allowing clinicians access to 

the respiratory data for their own individual clinical evaluation. Medicate (2000) achieved 

a simple alert mechanism that monitored patient data, looking for values that fell below a 

threshold set by a clinician and alerting the clinician to any unforeseen problems. 

2.4.1 Ambulatory Monitoring 
Ambulatory monitoring takes place whilst the patient is on the move (not bed ridden, and 

capable of walking), the advantage to this type of monitoring is that it allows the 

monitoring of conditions that are exacerbated by everyday life. This is especially 

significant were environmental factors might influence the health of a patient. Ambulatory 

monitoring lends itself to this application area. Telemetry can be used to send back data 

from a patient's ambulatory monitoring device to a base station or mobile system in real- 
time for further analysis. If monitoring takes place using sensors at some distance from the 
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subject under investigation the term remote monitoring is used to describe the activity. 

There has been significant effort to allow primary care practitioners to manage patients 
who would normally be referred to specialist centres, by supporting them with remote 
specialist advice. One study (Shanit et al., 1996) gave primary care practitioners direct 

access to a hospital-based cardiac monitoring centre. They were able to transmit a 12-lead 
ECG and consult a cardiologist on a 24 hour basis. Following the transmission of the 

signal, discussion with the cardiologist would reveal the outcome of the test. The process 
gave the benefit of reducing the amount of time spent travelling to appointments with 
specialists, and gave pre-warning to hospital medical teams if a patient was suspected of 

myocardial infarction. Another system, named LffeShirt, developed by Levy et al. (2004) 

was an ambulatory respiratory and cardiac function monitoring system. The system was 
used to detect respiratory function abnormalities in sleep apnea syndrome as well as other 
disorders. However the accuracy of the measurements can not be verified due to the small 

sample of subjects studied. 

In the clinical environment where an increasing amount of care is given away from the 
hospital, this frequently refers to clinical monitoring within the home. Rialle et al. (2002) 

use monitoring equipment installed at patients' homes, measuring blood pressure and 

cardiogram data, transmitting the results back from locations remote from the clinical 

setting. Clinical monitoring however should not be limited to this fixed location. As 

patients should be able to move normally from location to location, leading as far as 

possible, comparatively normal lives. Engin et al. (2005) develop a telemedicine system 
that transfers human electrocardiogram (ECG) signals via mobile phone. The real-time 
data transmission via mobile phone allowed doctors to check the coronary care of patients 
in rural areas. More recently Cleland et al. (2007) used an electronic lung function device 

attached to a mobile phone to transmit respiratory data. The day's temperature, wind speed 

and pollen count, specific to the mobile phone were also transferred. Results from the 

clinical trial indicated an increased rate of poor asthma control identification, and better 

communication with healthcare professionals without the need for face-to-face 

consultation. 

Remote monitoring can be used in conjunction with ambulatory devices. This is especially 
the case were environmental factors are monitored. Many environmental factors are 
difficult or impractical to be monitored with portable measuring devices. Therefore, fixed 
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location devices must be used to record data. 

Personal monitoring in this thesis refers to the use of remote monitoring and electronic 

ambulatory devices capable of obtaining regular readings of a patient's lung function 

measurements and environmental variables. Personal monitoring allows better 

communication between the patient and clinician. Recognition of early warning signs of 

worsening asthma are noticed and prompt warnings can be given by a clinician to any 

serious deterioration in symptoms or peak flow. A warning could also be given to remove 

or withdraw from allergic or irritant precipitants in the environment that may be 

contributing to the exacerbation. Beginning treatment away from clinical contact avoids 

delays and reduces the severity of exacerbation, at the same time adding to the patients 

sense of control over their asthma. 

2.4.2 Need for Intelligent Monitoring 
Intelligent monitoring is the process where by the information or data provided to the user 

about the monitored subject is both timely and directly attributable to the problem being 

monitored. The monitoring process usually generates information when a certain event 

condition has been met. The use of intelligent monitoring often takes this one step further, 

where a number of event driven signals are analysed, and an appropriate response 

formulated. Dawant et al. (1993) present a distributed computer architecture for intelligent 

patient monitoring that introduces a number of relevant concepts. These include: data 

acquisition, data reduction, selective display of information, and the facilitation of these 

concepts through the use of asynchronous software modules. The central modules are 

responsible for feature extraction, modelling the patient, and displaying information. The 

semi-independent nature of these processes is particularly relevant to this work, and 

promotes scalability. 

There are many reasons why intelligent monitoring is desirable for monitoring patients. 
Clinicians face an incredible amount of information, and when time is limited or there are 

numerous patients to monitor in parallel, observations can be missed. This is also known as 

cognitive overload (Coiera, 1997). Some monitoring devices present more information 

than can be absorbed by the clinician while others distract the user with false alarms. Using 

intelligent monitoring can reduce these issues through better interpretation of signals. 
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Vazquez et al. (2006) presents a distributed module, based on intelligent agent technology. 

The module is dedicated to the process management of networked medical devices, and 

provides real-time acquisition and analysis of physiological data. Systems capable of 

reasoning with medical knowledge are classed as intelligent, and come under the category 

Artificial Intelligence in Medicine (AIM). The most common types of AIM system in 

routine clinical use are expert or knowledge-based systems. These systems contain medical 

knowledge about a specific area and are able to reason with data from individual patients 

and form a conclusion. Expert systems are also capable of generating alerts and reminders 

to warn of changes in a patient's condition. 

One of the driving factors of AIM is to create systems which are able to learn from 

experience. Techniques of machine learning have accomplished this objective to varying 

degrees of success. The way in which knowledge is represented within such systems is 

more advanced than standard statistical tests, which are applied to data through manual 

searches. Machine learning systems are capable of identifying complex relationships 

between data sets or individual parameters through the manipulation of raw data. Systems 

which use machine learning can be used to develop the knowledge bases used by expert 

systems. This is achieved via a systematic description of data features which uniquely 

characterise each pattern or condition, then through the transformation of these into simple 

rules. 

Artificial Intelligence (Al) offers medicine a way of constructing computer systems that 

have a capacity to capture and then reason with medical knowledge. Al systems have two 

distinct capabilities: 
1) To take new data and create knowledge from relationships that exist within it, and 

2) Take medical knowledge and use it to reason with data. 

These two categories of Al system can be more simply classified as model generators or 

model users. 
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2.4.3 Information Discovery 
Information discovery is the process of looking into a large datastore and discovering 

knowledge in the form of significant patterns and relationships. As an example Keles and 

Keles (2006) develop an expert system using fuzzy logic to aid the diagnosis of thyroid 

diseases. Their system is capable of diagnosis with a 95% accuracy, compared with the 

actual diagnosis of clinical staff. Discovery is usually either guided by a user (supervised) 

or automatically using intelligent software (unsupervised). In these systems it is not 

necessary for the user to have an understanding of statistics, or skill in using a query 

language because the system output indicates the key factors which shape the data. 

According to Parsaye (1993) the three stages of information discovery are: 

1. Understanding. 

2. Improvement. 

3. Prediction. 

It is extremely difficult to manage or control a process that is not understood, and often the 

extent of understanding is not known until an error is made that shows the magnitude of 

the misunderstanding. Understanding is frequently the goal of information discovery and 

interpretation. There are many forms of understanding. Three types of understanding that 

are particularly important are: 
1. Differences, 

2. Trends, and 
3. Relations. 

The steps that a human analyst might take to explore a database are as follows: 

" Form a hypothesis. 

" Make some queries. 

" Run a statistics program. 

" View the results and perhaps modify the hypothesis. 

" Continue this cycle until a pattern emerges. 

These steps would become tedious if repetitively performed by a human, hence the use of 

information discovery algorithms which automate the process of pattern discovery. 

Information or rule discovery can be guided through the use of hypotheses. 
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2.4.4 Information Processing Issues 
The advantages of technology are numerous; using computers to automate tasks allows 

analysis to be performed on batches of data on a continual basis, due to calculations being 

achieved at speed. Efficiency is greatly improved over the productivity of a human 

operator. The number of parameters analysed concurrently can be increased beyond the 

usual one or two, which facilitates analysis of groups of parameters to determine if there is 

a combined effect. This would not be easily achievable without the use of computing technology. 

However, the use of technology introduces new issues to consider. As the processes are 

required to make a transformation of the data, some work flow coordinator is required to 

schedule and monitor the analysis to ensure that the desired result format is produced. This 

coordination requires software that is easily maintained, giving the user enough flexibility 

to perform their analysis with the minimum amount of effort or specialist knowledge. 

Software should have the ability for integration into other products in the event that the 

analysis requires further investigation using a new technique or dissemination in a way not 

identified during the software design process. 

The methodology used for processing the data, and finding if any patient specific 

relationships exist requires consideration. Mather et al. (2004) discuss the advantages and 

limitations of several statistical methods for linking health, exposure and hazards. They 

split types of analysis into three groups: 

1. Tracking and trend analysis, 

2. Ecologic analysis, and 

3. Etiologic research studies. 

Each successive group generally becomes more specific to an individual patient, starting 

with trend analysis which focuses on a population, and useful for characterising the 

background or seasonal base line. Correlation methods have been used to identify general 

relationships between air quality and a patient's asthma condition (Crabbe et al., 2004), 

however these were primarily using minimum, maximum and average values for the data 

on a daily basis, and produced a general correlation between air quality and the patient's 

respiratory condition. This thesis, however, is seeking to specifically identify air quality 

characteristics that are a particular predictor of a patient's asthma episode. The use of 

statistical techniques to locate specific correlations between lung function and 
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environmental (specifically air quality) factors can be difficult to achieve. Statistical 

methods, such as correlation are not sufficient on their own to recognise and classify 

important changes in the data. Molitor et al. (2007) examine the uncertainty in spatial 

exposure models aimed at the etiological level, where spatial effects such as the proximity 

of patients to pollutants sources (such as roads) are considered. They say that assessing 

pollution distributions at the intraurban scale has proved challenging because of the lack of 

routinely collected data, they go on to say that the use of geographic information systems 

(GIS) with existing information now shows promise in assigning exposure to an 
individual's microenvironment. 

It cannot be assumed that a particular air quality period is attributed to the cause of an asthma 

attack without some validation. While it is not difficult to find a set of data which appears to 

support a given hypothesis, it is necessary to validate the results by repeated testing before 

a level of confidence can be established. 

The introduction of time lag complicates the identification of relationships even further, as 

the number of possible relations increases infinitely. A method for controlling the 

identification process is required to ease computational demands. The use of time lag in 

the analysis goes some way to developing a method for detecting a relationship between air 

quality levels and deteriorating lung function. 

The ability of the system to recognise reoccurring patterns through a means of validation is 

important. Moreover the system should be capable of achieving this recognition via a semi- 

guided or automatic means. Mueller and Lemke (2000) suggest a synthesis of models into 

a hybrid solution; collective solutions reflect reality more thoroughly than any single 

model. 

There are three affiliated areas of research that attempt to identify and validate patterns 

within data. They are (Michie et al., 1994): 

" Traditional statistics, 

" Machine learning, and 

" Neural networks. 

Statistical methods are generally used to summarise or describe a collection of data. 
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Statistics can also be used to model data, and then used to draw inference about the process 

or population being studied. Statistical techniques often use a probabilistic approach 
(Barber, 2006) to classification that leads to an indication of the likelihood that an event 
belongs to a certain class. 

Machine learning is a broad sub-field of artificial intelligence and is concerned with the 

development of algorithms that allow computers to learn (Michie et al., 1994). Machine 

learning generally encompasses automatic computing procedures that learn a task from a 

series of examples. Classifying expressions are produced that are easily understood by the 

ordinary person. The major focus for machine learning is to extract information from data 

automatically, by computational and statistical methods. Therefore, machine learning is an 

extension of the field of traditional statistics. 

Neural network techniques offer the advantage that they facilitate automatic pattern 

recognition, through response to input data on a continual basis (Haykin, 1999), and could 

allow patterns of environmental events causing asthma exacerbation to be built up. Neural 

networks are useful to give an arbitrary classification, and generally combine the 

complexity of statistical techniques with the machine learning objective of imitating 

human intelligence. 

Neural networks are tools that can be used for non-linear statistical data modelling. They 

can be used to model complex relationships between inputs and outputs, or to find patterns 
in data. As an example of a non-linear application - the weather is famously non-linear, 

where simple changes in one part of the system produce complex effects throughout. 

The basic issue based on rule discovery may be conceptually represented by the following 

equation (Parsaye, 1993): 

Rule Discovery = Generation + Filtering 

The constraints imposed on rule discovery control the generation component, while 

parameters such as the confidence level or length, control the filtering. 

Rules can be used for prediction. Rules obtained from expert experience or advice can be 
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compiled into a comprehensive list of cause and effect descriptors, and then used by a 

computer or a less experienced human operator to predict an outcome from a set of input 

variables. Prediction is usually always accompanied by an uncertainty or confidence level 

from each of the rules. 

The first, and probably the most important problem faced when trying to apply artificial 
intelligence in a practical setting, is selecting attributes for the data at hand. Witten & 

Frank (2000) suggest that if meaningful attributes are not chosen that together convey 

sufficient information to make learning possible any attempt to apply machine learning 

techniques is likely to fail. The choice of a learning scheme is usually far less important 

than the application of a suitable set of attributes. 

2.5 Summary 
This chapter gave a broad overview of a number of topics. The overview began by 

outlining the processes used in the treatment of an asthmatics condition, the parameters 

routinely involved, and their measurement using peak flow monitoring devices. 

Environmental factors shown to have an adverse effect on the asthmatic were then 

discussed, including a description of the levels of environmental factors such as air quality, 

required to be problematic to an asthmatic. A number of researchers identified links 

between the quality of air in the environment and health of a subject. For example, 

Tamburlini et al. (2002) found that environmental influences have an effect on health 

conditions, and is particularly prevalent on respiratory related illness 

The purpose of system architecture within system design, was defined to clarify the role of 

the concept, and its use by this thesis. The design processes, and architectural aspects to 

consider when defining a system were presented to give a foundation for research by 

following chapters. 

The area of health informatics was then introduced, with a description of its history, and 

the benefits to which it can be used. Areas of intelligent monitoring, information discovery, 

and general processing issues were also given a broad overview. Issues such as the 

55 



reduction of information through feature extraction were raised. 

The overview given by this chapter established that every patient experiences their own 

unique personal exposure to environmental influences, and that informatics can be used as 

a tool to identify the levels of exposure that may adversely affect the asthmatic. Recently 

Chin-Shen et al. (2007) studied the effects of particulate matter on the peak expiratory flow 

rate of asthmatic children, and concluded that personal air quality data is more suitable for 

the assessment of changes in lung function than ambient monitoring data. Other research 
by Cullen (1996) suggests that the primary goal of past epidemiology investigations had 

been the establishment of causal relationships between an environmental agent and a health 

outcome. He stated that there had been little theoretical work on models for evaluating 

environmental patterns, rather than average or cumulative dose, as predictors of risk. The 

next chapter introduces a new term; enviromedics, which describes a new field of research 

developed by the author, to better define the problem domain, and progress research in the 

field. 
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Chapter 3 

Key Requirements for Enviromedic Architecture 

This chapter proposes a set of requirements that underpin the architecture realised 
later in this thesis. All applications built using the realised architecture would fulfill 

these requirements. 

3.1 Introduction 

The term enviromedics has been introduced by this author to encapsulate the use of both 

environmental and medically related data sets in analysis. Enviromedics combines the 

analysis of geographical and temporally related data, specific to the environment of a 

patient, with the aim of providing or enhancing medical care for that patient. Key 

components of the analysis are presented in this chapter, and shown to be applicable to 

respiratory healthcare through prototype testing during Chapter 6. 

The thesis aim (presented during Chapter 1) was to identify processes capable of 

identifying predictors of patient-specific asthma exacerbation, and provide a system 

architecture, required for the automation of these processes. The advancement of such a 

detection system is in synergy with enviromedics. A new technique was required to 

overcome the issues traditionally associated with correlation and scale to analysing large 

data sets by identifying key features that could act as predictors of respiratory decline. 

For predictors to be identified, first the point at which a healthy lung function signal begins 

to decline (termed a peak by this thesis), and a change event in the environment such as a 

peak air quality reading must be recognised. To begin to meet these requirements, and in 

order to formally identify these points within the analysis, the concept of the reference 
datum was introduced. 
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3.2 The Reference Datum 

The concept of the reference datum is introduced by the author to describe points marking 
key features within the analysed data sets. The term is generally borrowed from the science 

of geodesy where datums are used to mark locations on the earths surface (Section 3.4 

describes the use of a datum in the geodetic sense). The denotation of the term reference 
datum here is; an identified point of interest (represented with a value), measurable in time 

and by location. 

The introduction of reference datums focuses further analysis between these singular 

points (environmental and respiratory), rather than analysing two sets of time series with 

correlation. The benefit to referencing (in particular time) between single points is that it 

eliminates the need for direct correlations between sets of time-series data. This reduces 

the number of analytical permutations that are available, such as length of data series to 

correlate, number of interpolated data points to calculate, length of time lag to introduce 

between the two data sets, among others. The removal of these options increases the 

scalability of analytical techniques. By focusing on the points identified by the reference 

datums the need for exhaustive time-series data searches is minimised, reducing time and 

computational power required. 

The introduction of the reference datum concept into analytical techniques fundamentally 

alters the approach required to find enviromedic patterns. This is because the analysis is 

now focused between two data points, one from an environmental data set, and the other 

respiratory. Using a correlation technique with two data points always yields a 100% 

correlation between the data, so the use of correlation obviously imparts little knowledge 

using this approach. It becomes necessary to identify an alternative form of analysis. The 

study of aetiology aims to explore cause and effect relationships between differing, but 

inter-related data sets. This research applied the principle of aetiology to the problem of 

identifying patterns between environmental predictors and the decline in a patient's lung 

function through the hypothesis that an environmental event, that often leads to a decline in 

patient lung function can be used as a future predictor of a decline. 

Combining reference datums to mark interesting features in respiratory data, with the 

desire to identify a predictor of the change event (also marked by a reference datum), an 

additional concept, the delay characteristic was developed and introduced to link the two 

disparate reference datums together during analysis. 
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3.3 The Delay Characteristic 

Without a method for consistently relating possible environmental predictors to a decline in 

lung function it is not possible to make associations between the two data sets. A number 

of key parameters are required to enable the identification of a link between a patient's 

environment and their respiratory health. These include: the value attributed to the 

environmental data, the lag time between the (environmental) predictor and reference 
datum belonging to the decline in lung function, and the time and date at which the 

environmental reading is taken. 

The information recorded within a delay characteristic is shown below in Figure 7. 

Parameter (data type/name) Date Value Lag 

Figure 7 Format and parameters recorded within the delay characteristic. 

The delay characteristic contains a name (or key) that records the data type, and then three 

parameters Date (time and date) of the environmental reference datum, Value of the data 

type, and Lag (time) between the environmental and respiratory reference datums. The 

relationships that are most important are the lag time and value. The delay characteristic 

allows an environmental predictor to be related to a decline in lung function. 

The process for defining a delay characteristic can be summarised in three steps: 

1) Identify a decline in lung function (use reference datum). 

2) Identify a possible predictor of the decline (use reference datum). 

3) Relate the two datums (in 1&2 above) together through the use of a delay 

characteristic. 

This series of steps outlines a new method, that in reality focuses further data analysis onto 

a set of data outliers. Reference datums identify periods that naturally occur at the 

extremes of data sets, and these are converted into delay characteristics, making a new data 

set where outliers become part of the core analysis. 
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The time and date of the reading is required to enable a meaningful comparison to be made 
between the various data sets. Following experimentation with prototypes later in this 

thesis, it is considered that it may benefit the system's capabilities if the change in value 
direction was also recorded. For example, if the ozone level were falling or rising at the 

time of the decline in lung function. However, the importance of this additional 
information will need to be verified through further research, and is outside the scope of 

this thesis. 

3.4 Patient Location 

In order to analyse personal air quality exposure levels (the actual air quality that a patient 

experiences), the ideal location to take environmental measurements at, is that of the 

patient. The measurement could be made using some sort of portable and personal 

monitoring device. Devices such as these are not commonly available though, and it is 

likely that their cost would negate wide-spread uptake at this time. However, use of such 

devices should not be ruled out in the future. 

The capabilities of devices (EE&S, 2006) (Air Monitors, 2006) (IS&S, 2006) (Topac, 

2003) common for monitoring do not contain a location recording component, portable air 

quality devices also do not widely monitor a range of particulate matter or a large number 

of gasses. For these reasons it is a requirement of the system that readings from fixed 

monitoring stations are used and matched with patient readings according to time and 
location; so as the patient moves, tracking occurs. Once portable devices use an 

appropriate means of tracking a patient's movements, these reading can be incorporated 

into the system. The matching of time and location data is important in the analysis of 

patient specific information, as a deeper understanding of the patient's real environment 

can be obtained. 

Environmental data is not usually available from an ambulatory source. NETCEN 

(National Environmental Technology Centre) is the common source for automated air 

quality data in the United Kingdom. NETCEN is responsible for most of the automatic air 

quality monitoring stations in the UK. Due to the current inconvenience in carrying 

portable air quality monitors, available data is restricted to these sites. With further 
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technological development air quality monitoring in the home (which is currently possible) 

or on the person would be used. Examples of portable equipment are available from RKI 

Instruments (RKI, 2004). 

In anticipation of future advances, the system must be capable of facilitating analysis of 

this detailed information. Implementation of a tracking system requires that data be 

capable of being analysed so closest match data can be extracted from the database. A 

distance formula is needed to ensure this. 

The Global Positioning system (GPS) was introduced in 1973 by the United States 

Department of Defense. The position of an object (marked by GPS) is computed from time 

signals sent from satellites carrying extremely accurate atomic clocks. Using lung function 

measurement devices that are capable of recording location (using GPS) in addition to lung 

function data would allow the matching of environmental data to a patient's activity. The 

ability to track a patient, recording location and lung function measurements in addition to 

personal air quality exposure are two requirements for an enviromedic system identifying 

air quality effects on respiratory patients. 

Personal exposure to airborne triggers is obtained in two ways: 

" Personal environmental monitoring using ambulatory devices. 

" Dispersion models that use data from static air quality monitoring stations. 

For the concept of the delay characteristic to be feasible, it is necessary to obtain 

environmental data relating to the movements of the monitored patient. The movements of 

the patient should be related to the closest actual (or modelled) and relevant air quality 
data. 
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The measurement of location within the system is based on Longitude and Latitude co- 

ordinates which are spherical co-ordinates following the earth's approximately spherical 

shape. An example of latitude and longitude readings are, 30: 16: 28.82 N 97: 44: 25.19 W. 

Location is referenced to a point defined when the measurement is taken. However there 

are a number of alternative reference systems that could be used to relate the position of 

the patient and their distance from the closest air quality data measurement point. 

Due to the earth's irregular shape, and a legacy of methods for recording location, there are 

many ways to identify and record location. The number of mapping systems in existence is 

a result of historical (and localised) mapping methods (Dana, 1999). Since the increase in 

globalisation and the introduction of Global Positioning Systems (GPS) there has been a 

greater requirement to record position in a uniform manner. To achieve this, a number of 

assumptions have been made and tested. As the earth is not uniform in shape, a best fitting 

reference model is required from which to take measurements. 

Figure 9 shows an example of two ellipsoids that are used to model the shape of the whole, 

and a segment of the Earth respectively. 
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Figure 8 The decision between air quality monitoring sites 
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Figure 9 The regional ellipsoid is only intended. 1or use in the region of 
best fit and does not fit the Earth in other areas. Note that the ellipsoids 
differ in centre position and orientation as well as in size and shape (OS, 
2001). 

The globally best-fitting ellipsoid does not fit the Earth perfectly, so there are many 

different ellipsoids in use. Some are designed to best fit the whole earth, and others 

designed to best fit one region. Although the modern trend is to use global coordinate 

systems, even for local applications, it is important to realise that in a global coordinate 

system, the ground on which we stand is constantly moving. This leads to subtleties in 

coordinate system definition and use. Therefore, to use latitudes and longitudes with any 

degree of certainty, the ellipsoid used for recording the location must be known and 

referenced to a geodetic datum. The term geodetic datum is usually taken to mean the 

ellipsoid and datum: a set of 3-D Cartesian axes plus an ellipsoid, which allows positions 

to be equivalently described in 3-D Cartesian coordinates or as latitude, longitude and 

ellipsoid height. The measurement of height is similarly complicated. The Geoid is a single 

unique surface and is the only level surface which best-fits the average surface of the 

oceans over the whole Earth. Figure 10 shows the variability in recording a location's 

height attribute. 
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Figure 10 The relationship between the Geoid, a local geoid model 
(based on a tide-gauge datum), mean sea level, and a reference 
ellipsoid. The ODN geoid model is an example of a local geoid 
model (OS, 2001). 

The figure above shows the different measurements of height with regards to the various 

model geoids, and reference ellipsoid. The true global geoid is a reference model derived 

from mathematical calculation, and is the level surface which best fits global mean sea 

level (MSL). The local geoid deviates from the MSL due to water currents and variations 

in temperature, pressure and density. These produce watery "hills and valleys" in the 

average sea surface. This phenomenon is known as sea surface topography (SST) (OS, 

2008). The local geoid model is the gravimetric surface of the earth, and defined through 

gravitational measurements. The ellipsoid model is the geometric idealised surface of the 

earth (Li & Gotze, 2001). 

Once location and height have been recorded relative to a known ellipsoid, the 

measurement can be transformed from radial measurements and projected onto flat 

surfaces (maps) or converted into other coordinate systems. A map's projection is a way of 

depicting the spherical surface of the earth on a flat piece of paper. 

The datum used for GPS positioning is called WGS84 (World Geodetic System 1984). It 

consists of a three-dimensional Cartesian coordinate system and an associated ellipsoid so 

that WGS84 positions can be described as either XYZ Cartesian coordinates or latitude, 

longitude and ellipsoid height coordinates. The origin of the datum is the Geocentre (the 

Earth's centre of mass) and it is designed for positioning anywhere on Earth (OS, 2001). 
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As a consequence of all these different systems, it has been found there could be an error in 

the location of the same point by more than 200m (OS, 2001) if no consideration is 

made of the system used for their recording. It also seems likely that this situation will 
be made worse once technology to monitor patient specific air quality becomes more 

readily available. 

The system should resolve these positional issues by recording the coordinate system used 

to provide the data. When a comparison is required, conversion of the points into the same 

coordinate system is necessary to enable an accurate comparison. Coordinate systems use 

projections to convert angular measurements in degrees to linear measurements such as 

meters in order to give a length along the curvature of the earth. The conversion is 

performed in three steps (Mentor, 1999): 

1. Convert the source coordinate to geographic form, latitudes and longitudes, using 

projection algorithms. 

2. Apply a datum shift to the resulting latitudes and longitudes to convert them from the 

datum of the source coordinate system to the datum referenced by the target 

coordinate system. 

3. Convert the resulting geographic coordinates back to Cartesian form using the 

projection algorithms. 

A review of formulae available for measuring distance is provided in Appendix 0. The 

Haversine Formula, discussed by Sinnott (1984) produces a mathematically and 

computationally exact result, the formula is widely used by graphical packages to plot 
distances. A standard way of storing location details is through the use of spherical 

coordinates (longitude and latitude), and the Haversine Formula is particularly suited to 

this. However, the Haversine Formula is not good at making calculations where the 

distance between locations is large (for example where the two points are either side of the 

earth) where there can be an error of up to 2km. This error is not considered to be a 

problem for the system, where calculations will be over small distances of up to 

approximately 5 miles. 
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3.5 Identification of Respiratory and Environmental Change 

Predictors 

The US National Heart, Lung, and Blood Institute (NHLBI, 1997a) emphasised the need 

for patient-tailored monitoring and treatment in their Second Expert Panel Report, stating 

that "Asthma self management education should be tailored to the needs of each patient". A 

long term aim of this work is to provide both patient and clinician with additional patient- 

specific information. The need for the patient-specific approach was confirmed through 

discussions at the Healthcare 2002 conference and exhibition (Barber et al., 2002). Further 

research into personal exposure of patients to air quality levels was also recommended by 

COMEAP (2006) with regard to cardiovascular effects resulting from poor air quality. 

Further discussion with respiratory researchers at the Whittington Hospital London helped 

identify that having a system that identified patient-specific allergens capable of 

exacerbating asthma would be useful. Carrer et al. (2001) suggest a number of 

measurements that would facilitate this in an indoor environment. 

With the capability to collate and relate a patient's experience of their environment to their 

respiratory health, a system would have the processes required to facilitate personal 

enviromedic pattern recognition with asthma patients. The process can be described in 

three steps: 
1. Identification of the asthma episode. 

2. Identification of the environmental predictor. 

3. Monitoring for the environmental predictor. 

Step I- Identification of Asthma episode 

The first step is to detect adverse patterns depicting signs of an asthma attack within the 

lung function data. It is important to identify these existing traits so that environmental 

factors useful for predicting the asthma episode can be found using the reference point for 

investigation, described in Step 2. 

Step 2- Identification of the Environmental Predictor 

This involves the identification of environmental influences which appear to be related to 

adverse lung function patterns. The method behind the identification of the patterns should 

keep the identification process flexible and open to new influences. There are generally 

two types of process that can be used (Witten & Frank, 2000): supervised, and 
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unsupervised. When pre-analytical knowledge of the data is known such that 

classifications of the underlying data can be made, the process can use supervised 

learning; whilst unsupervised learning should be used when data classifications are 

unknown. 

As exploration of data should be left as far as possible unguided by an operator, the process 

should be focused on unsupervised learning. Investigation should be concerned with the 

identification and validation of patterns. Recurring patterns are an indication that a 

particular environmental characteristic (pattern) is more likely to be a good predictor of 

lung function decline, and learned by the identification process. 

Step 3- Monitoring for the Environmental Predictor 

Once relations have been found among enviromedic data, the results should be made 

available within the system for the purpose of monitoring incoming data. Incoming 

patterns that follow the same characteristics as a learned pattern in the system, should 

trigger an alert to clinical staff prompting them to assist in patient care. 

3.5.1 Identification of Asthma Episodes 

The method used for identification of periods of asthma exacerbation outlined in clinical 

guidelines (NHLBI, 1997a) uses a threshold individually calculated by clinical staff for 

each patient. Lung function is then monitored, and if using ambulatory electronic devices, 

clinical staff can be alerted when the set threshold value is exceeded. 

So that an element of prediction can be integrated into patient monitoring, it is necessary to 

extend this process by monitoring the trend of the patient's respiratory condition, in 

addition to the individually calculated threshold value. The technique developed by this 

research is shown in Section 5.2. The patient's lung function trend is monitored using a 

fitted regression line to calculate the rate of change in the patient's condition. The fitted 

(regression) line can then be used to identify points where the trend changes direction, 

creating peak and trough points. 

Monitoring the trend of a patient's respiratory condition minimises the effect inaccuracies 

have, as the analysis relies on a number of readings. The technique is also applicable to 
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other data types, such as air quality, pollen, atmospheric, and other data sets where trends 

can be found. 

3.5.2 Environmental Predictor Identification 

Patterns that are hidden within large data sets, particularly patterns between environmental 

and respiratory data are difficult to verify without an automated process. There are almost 

an infinite number of relationships that could exist among the data sets. In addition there 

are many environmental factors which are monitored, but play no part in the patient's 

decline in lung function. For example, a high level of PM2.5 that has occurred (possibly 

with time lag) at the same time as a trigger point of an asthma attack, can not be assumed 

to be attributable to the patient's condition. Validation over a significant number of 

observations is required before confidence can be established. 

There are two stages in identifying environmental patterns that can be used as reliable 

predictors of patient lung function decline. First, a probable relationship between the data 

sets is required. Second, the relationship has to be validated as similar relationships appear 

in future data sets. 

3.5.3 Predictor Monitoring 

Once environmental predictors have been recognised, a mechanism to facilitate the 

monitoring of real-time data (for similar patterns causing a problem for the patient) is 

required. The outcome of the matching process should provide an indication of the 

seriousness of the impending adverse event, and either give advice to increase medication, 

or for the patient to decide if an alteration in lifestyle for the problematic period should be 

considered. 

Monitoring in a real-time environment requires the patterns being monitored to be stored 

using a method that is capable of matching against a stream of input data. Data from 

monitoring devices often contain spurious readings and general measurement noise. As a 
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result of this, and other factors, often an exact match is not possible. The system has to 

determine whether the input is sufficiently close to a stored trigger for it to raise an alert. 

A recognised method for matching patterns is to use a distance metric (deSmith et al., 

2007), a method for testing if an input pattern is physically similar to the pattern being 

monitored. For mathematical purposes the input pattern is converted to take the form of a 

vector. The vector is then compared against a model vector using a metric. The most 

common form of metric is the euclidean distance, and one model type using this is a 

neuron belonging to a neural network. 

Neural networks generally use a system of weights from which comparisons are made to 

the input data often using euclidean distances, in this case the distance between the weight 

vector and the input vector is analysed for a match. If the distance between the input and 

the weight is below a threshold then the neural network would recognise the match and 

activate a response to the pattern. 

Certain types of neural network, such as networks based on the Radial Basis Function 

(RBF) are adaptable over time to change in the underlying monitored pattern. RBF 

networks employ a radial function, commonly based on the Gaussian distribution. The 

function is used to determine if an input pattern should be recognised by the neural 

network. The decision is derived by calculating the activation level of the radial function, 

with respect to the given input. 

When an environmental predictor is identified, the characteristics of the predictor can be 

stored as a vector, and a neuron within the neural network adapted to represent it. The 

neuron determines how close a match it is, to its internal weight it is monitoring. If the 

metric is within the limits defined by the matching function, the neuron activates and 

triggers a response. Neural networks are particularly well suited to this role because they 

are capable of providing both the functions of adapting to changes in the underlying data, 

and providing alerts when the monitored pattern is encountered. 
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3.6 Overview of Architecture 

The architecture used to build applications suitable for enviromedic analysis incorporate 

the major concepts outlined from Section 3.2 through to Section 3.5, which include: the 

reference datum; patient location, and matching patient-specific environmental data to the 

patient; the delay characteristic; and validation of the delay characteristic. The architecture 

in which these key concepts are combined, is shown by the enviromedic architecture in 

Figure 11. 

Medical data 

Match data sets Extract location matched 
environmental data 

Location matched 
time series 

enviromedic) data 

Identify reference 
datums Identify medical 

reference datum 

Form delay 
characteristic 

Form delay 
characteristics 
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pattern/hypothesis 

Validate delay 
characteristics 

Monitoring 

Validate delay 
characteristics 

Environmental 
data 

Identify environmental 
reference datum 

feature described by the value of 
the delay characteristic 

Figure 11 Enviromedic architecture 

The extraction of medical and environmental data matched to the patient is the first process 

defined by the architecture. It is worth noting that matched data is not required at the same 

physical time or the exact physical location, but should be the best match possible. The 

second process identifies the reference datums in the medical and environmental data sets; 

the identification process for each data set is independent of the other. Once reference 
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datums have been identified from each data set, delay characteristics can be formed by 

extracting the time element between the two datums, and the value of the environmental 

datum. The next process outlined by the architecture combines the delay characteristics 

into sets, dependent on the hypothesis being tested. The sets can contain anything from a 

single delay characteristics, to a set of delay characteristics extracted from an 

environmental time series (discussed further in Section 5.4). The final sections of the 

architecture prescribe the use of validation, where delay characteristics are validated over 

time by experimentation. This process validates the characteristics that occur more 

frequently, and therefore those characteristics that can be used as reliable predictors of the 

medical event. The validated delay characteristics are then made available for monitoring 

purposes. 

3.7 Summary 

This chapter encompassed research into a number of issues associated with pattern 

identification between environmental and health related data. The research led to the 

construction of a number of steps which provided an outline for enviromedic analysis, as 

used by this thesis, the steps are: 
I. Identification of the asthma episode. 

2. Identification of the environmental predictor. 

3. Monitoring for the environmental predictor. 

The steps outlined a process, and relevant techniques were introduced to relate 

environmental data, specific to the health of individual patients. The work developed the 

concept of the reference datum, marking trend reversals in analysed data sets, and the use 

of delay characteristics to relate pairs of reference datums. The method provides a way to 

relate two potentially related events in time and space, whilst not limiting the relationship 

to a direct correlation (in the traditional statistical sense). 

Enviromedic analysis is used by this thesis to associate periods of patient-specific asthma 

exacerbation with validated environmental predictors, and is shown to be suitable for 

developing information for generating patient alerts, a concept which is developed over the 

next chapters. 
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Chapter 4 

Environmental Monitoring System (EMS) 

This chapter outlines the underlying architecture for a new system named the 

Environmental Monitoring System (EMS). The EMS uses environmental 
information to enhance respiratory healthcare, and is aimed at improving the quality 

of life for asthmatics through the identification of predictors which lead to asthma 

episodes. 

4.1 Introduction 
The EMS is developed primarily as a research tool to find relationships between data 

collected from electronic respiratory measuring devices, and environmental data from 

automatic air quality monitoring stations. The tool facilitates the identification of these 

relations through analysis using statistical and neural network techniques. 

Key architectural components are identified, in particular the analytical requirements of the 

system. The architecture of the EMS is designed so that large data sets inherent in this field 

of research can be handled. System components forming the architecture of the 

Environmental Monitoring System (EMS) are described. A number of prototypes are 

developed to test the architecture during Chapter 6 (Results). 

4.2 Development of a System Architecture 
Turner et al. (1999) suggest that the structuring of a software system should be defined by 

its functionality from the users perspective, in the form of use cases. Where use cases are 
descriptions of a system's behaviour, when responding to a request that originates from 

outside the system. Toledano (2004) supports this view, but suggests that from an 

architectural point of view, not every use case can have the same importance. Aspects of 
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the architecture representing the basic functionality of the system, and reducing risk are 

more important. Fielding (2000) extends this hypothesis, by stating that the overall 
description of a system architecture must be capable of describing not only the operational 
behaviour of the architecture during each phase, but also the architecture of transitions 

between phases. Fielding uses the term phase in describing the possible need for several 

architectures for the same system; to fully describe phases of system operation. He states, 
"A system may be composed. of many levels of abstraction and many phases of operation, 

each with its own software architecture". DeMarco (1995) supports this view, and states 
that "the ability to adapt to changing needs or a problem where the solution is unknown is 

paramount. The design of the system architecture needs to reflect the nature of the problem 
it is setting out to solve". 

System architecture is generally described using perspectives called styles or patterns. 
Nitto and Rosenblum (1999) suggest that a given architecture may be composed from 

multiple styles, since architectural styles may address different aspects of a software's 

architecture. However, Shaw (1995) gives the opinion that some architectural styles are 

often portrayed as silver bullet solutions for all forms of software, and that a good designer 

should select a style that matches the needs of the particular problem being solved. In 

developing the system architecture of the EMS there are a number of generic aspects to 

consider. Avgeriou and Zdun (2005) specify the aspects as modifiability, reusability, and to 

a lesser extent scalability. Fielding (2000) introduces the term modifiability, as the ease 

with which a change can be made to an application architecture. An example of 

modifiability is the dynamic creation of class objects, through the use of XML property 

schemas and reflection. Objects created like this can be defined, and deployed within 

applications, without stopping and restarting the entire system. Modifiability can be further 

broken down into: evolvability, extensibility, customisability, configurability, and 

reusability (Fielding, 2000). Expanding the meaning of these terms: 

" Evolvability, represents the degree to which a component implementation can be 

changed without negatively impacting other components. 

" Extensibility, defined as the ability to add functionality to a system (Pountain and 
Szyperski, 1994) 

" Customisability, refers to the ability to temporarily specialise the behaviour of an 

architectural element. 
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" Configurability, means for example, that components are capable of using a new 

service or data element type. 

9 Reusability, ability to be used in other parts of the system. 

The development of the EMS adopts a process specified by Cheesman and Daniels (2001) 

where the use of component based software is promoted to develop flexible systems. The 

described process starts with a requirements description and produces an architecture 

showing the components to be developed, their interfaces, and their dependencies. For 

each interface operation, a specification is developed, consisting of a precondition, a 

postcondition, and additional information as required. The process does not consider the 

mapping of the developed specification to a model implementation. As a research tool, the 

EMS requires flexibility and the option to extend and modify its analytical capability. The 

approach taken by Cheesman and Daniels, and the adoption by the EMS of the approach, 

allows additional components to join and participate in the architecture as required. 

The use of a component based approach to developing health information systems is 

promoted by Schlesinger et al. (1997) where they conclude that component architectures 

offer the potential to improve functionality, while simplifying the software development 

process. This point can be related to the EMS architecture by ensuring that distinct areas of 

functionality are segregated into components to allow their use by different parts of the 

system. 

Tables 6 and 7 provide a summary of the key concepts and their reason for adoption into 

the EMS architecture. The concepts are covered by two views: 

1. Elements that the architecture should incorporate. 

2. Issues to consider in the design of the architecture. 
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Table 6 Elements that the EMS Architecture Should Incorporate 

Architectural Function Advantages Disadvantages Supported by 
Element 

Operational To abstract behaviour Promotes a system able May use a Fielding (2000) 
behaviour and of each component, and to adopt to new tasks, component not Garlan (2003) 
transition describe evolution over with extensibility, and specifically 
between phases. time. re-usability. designed for a task DeMarco (1995) 

Modifiability, Saving of Flexibility, cost- Design can lead to a Avgeriou and 
re-usability, and implementation effort, effective. general solution. Zdun (2005) 
scalability cost and time. Fielding (2000) 

Extensibility To allow future Not limited to providing May extend a sub- Pountain and 
extension of the the current functionality. standard Szyperski 
system. component. (1994) 

Well defined Structures principle Can lead to Badly designed Souquieres and 
interfaces components and extensibility, re-use, and interfaces can lead Beisel (2004) 

interfaces for scalability. to operational 
communication. restrictions. Garlan (2003) 

Interoperability To promote common System functionality Can limit 
between methods of can be modified. communication of Souquieres and 
components communication information. Heisel (2004) 

between components. 

Table 7 Summary of Issues to Consider 

Function Description Advantages Disadvantages Supported by 

Use cases To ensure development The end product will Methods used to 
of a product meeting meet the end users provide the result Toledano (2004) 
the end user's expectations. may not always be 
requirements. the best. 

Design Constraints implied by Core architecture Could lead to an 
constraints the architectural style. remains consistent and obsolete system. Garlan (2003) Specifying what should designed for the 

not change over time. purpose. 

Implementation Development of an Can pick style attributes The architecture Nitto and 
of multiple architecture that aids that best fit the could become Rosenblum 
styles the design of a suitable requirements of the incoherent. (1999) 

system. EMS. 

Structuring of Design of the system The system's purpose is Possibility for over 
the software architecture by clearly defined, and engineering. Turner et al. 
system considering Its intended developed components (1999) 

functionality. specified succinct. 

The architecture must allow the flexible addition of new data types for analysis by the 

system's analytical components. This is because the precise parameters to monitor, and 

techniques to use in analysis are unknown, and will be subject to change as new knowledge 
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is gained of the patient's condition. 

The use of the EMS as a research tool provides useful constraints for the architecture of the 

system. Used to identify and explore relationships between a patient's environment and 
their respiratory health, the interchange of analytical components must also be allowed by 

the architecture of the EMS. 

4.2.1 Architectural Patterns 
Avgeriou and Zdun (2005) discuss two different views that are expressed in literature. 

They observe that the term architectural pattern, and architectural style both refer to 

recurring solutions that solve problems at the architectural design level. They also observe 

that they have key differences. Patterns not only document how, but why, while styles 

describe components, connectors, and issues related to control and data flow. 

Garlan and Shaw (1994) outline a number of architectural styles and show how they can be 

applied and adopted to specific software systems. Many of the styles are listed in 

Appendix C. Buschmann et al. (1996) also collate a number of architectural patterns that 

express a structural organisation for software systems. They say that architectural patterns 

provide a set of predefined subsystems that specify their responsibilities, and include rules 

and guidelines for organising relationships between them. 

Validation of the EMS is dependent on implementation of the architecture, therefore 

consideration is required as to how the architectural implementation could be achieved. For 

architectures to be built in practice at a component level, design patterns are required to 

structure application functionality. The EMS implementation uses a mix of Whole-Part, 

and Publisher-Subscriber design patterns (expanded in Appendix D) to achieve a working 

system prototype. 

Validation is shown through the architectural implementations described in Chapter 5, and 

subsequent results, in Chapter 6. 
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4.2.2 System Specification for the EMS 
System specification provides a high level overview of the EMS describing: inputs, 

outputs, and what is required by the user. Four major aspects were considered as a 

framework during the design of the EMS architecture: 

1. User interface requirements; to obtain settings to facilitate the running of the 

underlying system. The minimum sub-set of information required to run the EMS 

includes, a patient identifier, and lung function deterioration threshold. Ability to 

identify environmental conditions acting as predictors of patient asthma exacerbation. 

2. Output of the system; alerts a member of clinical staff and/or patient to the onset of 

an asthma attack, based on the previous identification of environmental triggers and 

how they affect the patient. 

A research clinician and their patient require notification as to when the patient is likely 

to experience the onset of an asthma attack. The aim is to avoid adverse environmental 

conditions, or indicate when medication should be increased. Asthmatics are 

hypersensitive to varying stimuli. Early in diagnosis, most patients and clinical staff are 

unaware of which stimuli may affect the patient. Historically, clinical staff have been 

unaware of the patients' condition when not under their direct care. Patients also 

require pertinent information about their condition to aid the management of their 

condition. Therefore a system capable of delivering timely alerts to both patient and 

clinical staff with impending adverse environmental conditions is required to support 

the decision making process. 

3. Processes between the input and output stages of the system, to enable the desired 

functionality, including the predictor identification process, and component to match 

real time data with the stored predictors. Taking into consideration performance, 

usability, recycling, economic and technological restrictions. 

4. To ensure appropriate alerts are triggered when environmental conditions are 

experienced by a patient, first the affecting environmental condition must be identified 
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and verified. Personal lung function monitoring is required to provide personal patient 
data for the system, and used to detect a decline in respiratory condition. Data is 

required from environmental monitoring equipment local to the patient so their 

personal environment can be analysed for repeated triggers of asthma exacerbation. 

The key information required in an alert created by the EMS, is the characteristic of the 

identified environmental condition, capable of acting as a verifiable predictor of 

respiratory decline. Therefore, the delay between the environmental condition and the 

expected decline in respiratory condition and the environmental parameters value 

should be given as information by the system. 

Patterns of environmental conditions verifiable as leading to a decline in lung function, 

require recording in a form they are easily accessible. The verified patterns would then 

be used to provide alerts when the conditions are recognised in real-time. 

Toledano (2004) suggests the use of the following framework (Table 8) to help detail an 

architecture that can be used to build an architectural implementation: 

Table 8 Frameworkfor Architecture Development 

Framework Characteristic Example 

What defines and differentiates the architecture. For example: "the 
Basic characteristics system is characterised by... " 

Definition of the main 
Definition of the main actors that participate in the system, as well 

actors as the basic use cases. 

Specification of the main functional components of the system, as 
Main functional components well as the relationships between them. 

Logic architecture and information flows, the exchange of their 
Logic architecture information, and so on. 

Component architecture. This consists of mapping the functional 
Component architecture components in the logic architecture of the application. 

Physical architecture. Specification of the deployment of the 
Physical architecture components. 
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Basic characteristics are described throughout this thesis, especially in earlier chapters, as 

are the definitions of the main actors, and the main functional components. The first part of 

this chapter considers aspects of the component architecture, while the later sections cover 

the areas of logic and physical architecture. 

The aim is to provide a framework to facilitate the creation of relevant patient alerts when 

an environmental condition identified as affecting patient health is recognised. For this to 

occur, several distinct elements are required. Data storage, is necessary to act as a buffer 

between the real-time raw data and the identification of reference datums and delay 

characteristics by the pattern identification component. The pattern recognition component 

then requires data storage to match known patterns and create alerts. This is shown in 

Figure 12, where the fundamental roles of Pattern Identification, and Pattern Recognition 

are central to the operation of the system. The arrows in the figure represent the transfer of 

information, from raw sensor signals (delivered in real-time) on the left, to a patient 

specific alert on the right, produced when environmental predictors are first validated by 

the system, and then recognised in real-time. 

Raw input data EMS Alert (output) 
-1 1 11 

o Pattern 
Identification 

Real-tirre data co Alert 
1 Pattern 

FZecognition 

Figure 12 Basic Architecture of the EMS 

4.2.3 Data Process Architecture 
From the users perspective, the EMS can be broken into a number of high level subsystems 

consisting of. a data interface primarily focused on the autonomous collection of data, 

data storage, data handling, where the data is manipulated in some way to provide useful 

information, and data dissemination, where the useful information is finally presented to 

the user. 

An architectural view showing the four distinct data processing areas is shown in 

79 



Figure 13. This chapter, and Chapter 5 concentrate on the work needed to fulfill the 

requirements for the Data Handling process, with consideration given to the surrounding 

processing layers. 

Environmental 
Data 

Figure 13 An architectural view of the data processing layers. 

The processes described by the architecture manipulate raw input data into a form that is 

suitable for data mining, eventually allowing the triggering of alerts. The EMS performs 

the following varying functions: 

" Data Storage and pre-processing -a generic means to store data before analysis. 

" Pattern Identification - analysing trends in the data. 

" Validation/Realisation - sorting and marking interesting and repeating 

relationships. 

" Recognition - matching an incoming pattern against a previously found predictor. 

" Reaction - of the system to the potential predictor pattern. 

Partitioning the data processes into layers provides a degree of separation from any 

evolving technology used in any implemented part of the architecture (Avgeriou and Zdun, 

2005). Separation extends the architecture's scalability, as each domain becomes self- 

contained and can operate independently. Processes can be staged across multiple servers if 

need dictates. The architecture also allows for the use of sharding data across multiple 
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databases, as each patient's analysis can be stored and accessed individually. Sharding is a 

process whereby system data is physically segregated to enable scaling of very large 

databases. 

Dividing the data processes also helps practical implementation. It is common within an 

enterprise to partition physical team structures into these areas, for example interface 

designers, database administration, and analyst programmers. Therefore separation of these 

concerns also promotes scalability of the practical implementation. 

4.2.4 Data Interface 
The EMS data interface has two functions, the first is to receive input data via a graphical 

user interface, collecting system parameters from a member of clinical staff. The second is 

to automate the process of data collection from patient lung function monitoring devices, 

and air quality monitoring stations. 

The Medicate (2000) project used a number of interface options (allowing the choice and 

control of the analysis). The options extended during research for this thesis include: 

9 The period of lag time in which to analyse, between lung function decline and 

possible environmental predictor, and 

" Trend information relevant to the patient, set by clinical staff. 

The EMS was designed with the capability of monitoring in real-time, for predictors using 

these options, satisfying an architectural requirement. With the addition of a patient 

identifier (complying with the need to keep patient details anonymous), identification of 

emerging environmental predictors of the patient's asthma exacerbations is made possible. 

The EMS also has the capability of using common standards, for example XML 

(eXtensible Markup Language) (Bray et al., 2006) to collect data. XML allows the 

structured transfer of data, and is able to ensure integrity before manipulation by other 

parts of the EMS architecture. However, although the capability was implemented, a 

comma delimited file format was adopted within the prototypes as this was the most 

common format used in both clinical and environmental data sets. 
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4.2.5 Sources of Data 

The first function of the EMS is to collect the relevant data from environmental and 

clinical sources. This requires flexible interfaces to the EMS. There is no one standard for 

the transfer of air quality or lung function data. Comma delimited files used by the London 

Air Quality Network (LAQN, 2007), and shown in Figure 14 are typical of the de-facto 

standard for data storage. The aim for an EMS is to relate the location of the patient with 

the available environmental data. 

Air quality data is disseminated across the Internet, either via direct feeds from monitoring 

stations via the Air Quality Monitoring Network (LAQN, 2007), or from standard web 

pages updated by the hour. 

The structure of the raw lung function data is defined as follows (in Figure 14). 

PatientlD, Date/Time , PEF , FEV1 , FVC , FEF25, FEF50, FEF75, FEF2575, Type 
1 , 26/11/99 11: 50: 00,9.8333,3.5160,3.5160,9.4689,6.9019,0.0509,7.4879 ,0 
1 , 26/11/99 11: 50: 00,6.5999,4.1279,4.1279,6.7319,5.7800,3.8759,5.7280 ,1 
2 , 26/11/99 08: 03: 00,6.0833,2.3099,3.1559,5.1680,2.3629,0.5780,1.6799 ,0 
2 , 26/11/99 19: 14: 00,5.3666,1.8910,2.5759,4.6750,1.6319,0.4760,1.2799 ,0 
2 , 27/11/99 09: 27: 00,6.0333,2.4470,3.1549,5.6609,2.8389,0.8330,2.2880 ,0 
2 , 27/11/99 19: 12: 00,5.1666,1.9129,2.6319,4.2160,1.5640,0.5270,1.3120 ,0 
2 , 28/11/99 09: 11: 00,5.2833,2.0109,2.6210,4.7940,1.7680,0.6290,1.5520 ,0 
2 , 28/11/99 19: 39: 00,5.2833,1.8029,2.4930,3.6210,1.4620,0.4930,1.1679 ,0 
2 , 29/11/99 07: 31: 00,5.8166,2.1259,3.4119,4.0970,1.2580,0.2549,0.7200 ,0 
2 , 29/11/99 19: 25: 00,5.3666,1.9759,2.6540,4.5050,1.7000,0.6290,1.5679 ,0 
2 , 30/11/99 08: 37: 00,5.4666,1.9259,2.6159,4.3860,1.5809,0.5950,1.3919 ,0 
2 , 30/11/99 19: 48: 00,4.6833,1.9270,2.4519,4.4200,1.8190,0.5950,1.5679 ,0 
4 , 03/02/00 15: 33: 00,3.6833,1.6590,1.8439,2.5840,1.7000,1.1900,1.8400 ,0 
4 , 03/02/00 16: 53: 00,3.0000,1.5349,1.9309,1.7510,1.3940,0.9179,1.3919 ,0 
4 , 03/02/00 16: 54: 00,2.9166,1.4210,1.8459,1.6490,1.2580,0.8159,1.2799 ,1 
4 , 03/02/00 17: 28: 00,2.3833,1.8170,2.3410,1.2070,1.5299,1.1219,1.4880 ,0 

Figure 14 Example of a raw Lung Function data file (Medicate, 2000). 

Typically lung function data is organised in a matrix format where a data set is represented 

by a row and data type or value by columns. Each row contains a value which identifies a 

particular patient, a date/time stamp which gives the exact date and the time a data set was 

recorded (to the nearest minute), and then the data values including PEF (Peak Expiratory 

Flow), FEV, (Forced Expiratory Volume in 1 second), FVC (Forced Vital Capacity), 

FEF25% (Forced Expiratory Flow at 25 percent), FEFS0,, (Forced Expiratory Flow at 50 

percent), FEF75% (Forced Expiratory Flow at 75 percent), FEF25.75% (Mean Forced 

Expiratory Flow). This particular lung function data set does not contain information about 

the location of readings or patient attributes such as weight and height; these are contained 

in other data sets. It is not common at this time for monitoring devices to incorporate a 
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GPS receiver to record location. 

Neither format of data (air quality or lung function) is particularly suitable for facilitating 

access to large sets of information at optimum speeds in the raw form. An implementation 

of the architecture would require a database to support efficient querying of information. 

4.2.6 Data Handling 
A core decision algorithm capable of identifying the time at which a patient might 

experience the onset of an asthma attack was required. During the Medicate (2000) project, 

a simple level trigger had been applied such that if a patient's lung function fell below a 

predefined level, it would trigger an alert to their clinician. While these types of alerts 

proved useful in alerting clinical staff to a potential problem it was recognised that a 

patient's lung function usually started to decline some time before a fixed threshold was 

reached. It was therefore hypothesised that the onset of an asthma attack began, once the 

patients' lung function signal had reached its highest level. The process created and used by 

the EMS for identifying the change in direction of lung function trend has been named 

Feature Detection Analysis (FDA) and is presented during Section 5.2. 

A technique was also required to select the types of environmental parameters included in 

the enviromedic analysis. As there is variability in asthma attack exacerbants from patient 

to patient, it is important for the EMS to adapt to these changes and use a mechanism for 

choosing if the monitored parameter actually has any effect or not. This is a complex task 

and is not covered explicitly within this thesis, although the clustering technique shown in 

Section 5.6 does provide a useful method for determining if a parameter is relevant to a 

particular patient's condition. 

Another characteristic of the decision algorithm is to identify relationships that exist 

between changes in the environment and the asthma patient's period of declining lung 

function. The important aspect of this characteristic from the patient's point of view is: how 

long do I have, before I experience discomfort? Clearly the setting of lung function 

threshold levels, close, but prior to the level at which an individual patient experiences 

discomfort, are critical to the functioning of the EMS, and must be decided by discussion 

between clinical staff and the patient. Setting these levels is a type of prediction (from past 
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knowledge of influences), more importantly it is influenced by the recognition of the time 

interval between the environmental predictor and the asthma attack trigger-point. 

These requirements form the basis of this research and guide the prototyping of an early 

warning system for asthmatics. For an asthma early warning system to be effective, it must 

possess the following features: 

a) It must be patient-specific. 

b) It must be capable of relating environmental data, gathered from fixed location or 

ambulatory monitoring systems, to patients who are mobile. 

c) It must be capable of identifying significant and repeatable environmental events, 

which take place at a time sufficiently in advance of an asthma attack 
(deterioration in lung function) to allow corrective action to be taken. 

4.3 Summary of Identification Architecture 
The previous five sections have outlined the fundamental processes required for the 

identification of environmental predictors indicating a future decline in respiratory health. 

The figure below summarises the processes. 

Read and store data 
Lung Function Environmental 

Data Data 

Location match data sets l 
,f GPS 

fý Location Data Location Match 

Identify reference Lung Function Environmental 

datums Reference Datum Reference Datum 
Identification Identification 

Analyse delay Delay Delay Delay 
Characteristic Characteristic Characteristic 

characteristics Formation Validation Recognition 

Alert 

Figure 15 Summary of the Identification Architecture 
T 
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The identification architecture (Figure 15) shows the process for determining an 

environmental predictor of lung function decline. The process begins with the collation of 
data from lung function devices, with a location reading. It is worth noting that there arc no 

lung function devices currently available capable of measuring location (using a GPS 

receiver), so an additional device would be necessary to facilitate this measurement. The 

tool most capable of achieving the result of location based measurement is currently based 

on a lung function device that connects to a mobile phone. 

Location is used to identify the appropriate environmental readings, represented by the 

Location match data sets process. Once both lung function and environmental data sets 

match the movements of a particular patient, analysis can begin with the identification of 

reference datums (from each data set). Following this stage, the pattern validation, and 

recognition process identify and then create an alert of impending lung function decline 

from the change in environmental condition. 

4.4 Development of the EMS Prototypes 
This section provides a brief overview of the prototypes that were used over a number of 

design iterations to refine the analytical process and test the thesis methodology using real 

world data sets in Chapter 6. The prototypes also act to illustrate possible implementation 

of the architectural concepts. Each prototype demonstrates a particular aspect of the 

system's design. The neural network and statistical clustering prototypes (4 and 5) are both 

shown to be appropriate methods for identifying data trends, their limitations and 

possibilities for further research are discussed in Chapter 7. 

The prototypes discussed in this section are as follows: 

a) Prototype 1- Data Storage 

The EMS database has been designed in a generic way to facilitate the storage of 

enviromedic data. The database schema and prototype implementation provide a 

comprehensive foundation upon which to expand the project. 
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b) Prototype 2- Feature Detection Analysis 

A proprietary component capable of identifying significant peaks and trough data 

points, defined by the user. 

c) Prototype 3- Input Data Modifier & Organiser (Hypothesis Builder) 

A prototype to arrange data into an appropriate format (vectorised) for analysis. 

d) Prototype 4- Statistical Clustering (FBCA) 

Demonstrates a proprietary technique to achieve a frequency analysis of the input 

data and the evaluation of existing clusters. 

e) Prototype 5 -Neural Network (SOM) 

A neural network technique driven by the Self Organising Map (SOM) algorithm. 

J) Prototype 6- Overall Demonstrator 

The five prototype modules were combined into one overall demonstrator to 

demonstrate the work flow from one end of the system to the other. The results 

presented during Chapter 6 use this prototype. 

The following sections give an overview of the six prototypes and presents issues 

encountered. 

4.4.1 Data Storage Implementation (Prototype 1) 
The EMS prototype implementation of the database made use of FastObjects now owned 

by the Versant Corporation (Versant, 2008). FastObjects J1 (the database implementation 

used) is a 100% pure Java implementation of the JDO (Java Data Objects) (Roos, 2003) 

specification and an evaluation copy of the professional version of the software. Java has 

some advantages over other types of programing language, specifically portability between 
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operating systems and handling of garbage. A good evaluation of JDO is given by 

Srdanovic et al. (2005). 

The use of an object oriented database allowed the object model of the system to be 

directly mapped to persistent storage. Integrating the system with the database was 

simplified as objects did not require translation into tables (like relational databases). The 

implementation database complied to the JDO specification, meaning that interfaces could 

be used to communicate with the database, providing separation so the type of database 

used for storage could be interchanged easily. Initially PSEPro Java edition (from 

ObjectStore) was used as the implementation database. The use of database indexes made 

querying more efficient, and the ability to internally filter queries was also available, 

further reducing the time taken to return a data set. 

An example of the database indexes used can be found in Appendix Q. It was thought 

initially that it would be sufficient to index on data type, for example retrieving records 

associated with particulate matter. However, it became obvious that to search the records 

efficiently, additional indexes would have to be created, such as time and location in order 

to make the tracking of patients possible. 

JDO supplies two methods for querying a database, a query interface which includes basic 

methods for extracting records from a database, and support for the Java Data Objects 

Query Language (JDOQL). It was found that computational speed and memory constraints 

were an issue with early prototypes. This problem was overcome by returning the ObjectID 

of records meeting the query criteria before extracting the associated records. 

Initially the data sets used for testing the prototypes typically covered in the region of 5000 

records extracted from a database with close to '/ý million air quality and lung function 

recordings. These initial test data sets were then increased in size and databases created 

that contained the necessary data for each test, to speed the testing process. 
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4.4.2 Feature Detection Analysis (Prototype 2) 
Feature Detection Analysis (FDA) is explained fully during Section 5.2. The core 

analytical components of the FDA prototype are the Pearson correlation, and regression 

algorithms. Analysis using FDA identifies a set of peak and trough points depending on the 

coefficient of determination. The prototype had the facility to control the algorithm, 

eliminating points that did not meet the requirement of the descent or ascent gradient of the 

regression line, or fell below a predefined threshold value. Figure 16 shows the user 

interface of the prototype. 

2: 00 4: 00 6: 00 8: 00 10: 00 12: 00 14: 00 1600 18: 00 20: 00 22: 00 251:... 

Time (days) 

`I' Vkw Regression «J>i«» 

J Visible 
r« 

>> 
I«! 

>> 

�, View Peaks it View Troughs Sensitiaily I90Qi 

f�: Descent Gradient Difn. 12,0 In H: m10 

[ �K Ascent Gradient Difn. 112.0 in H: m jl 
_]i0 

; 1J Same Gr clients 

The prototype user interface was iteratively produced during testing. There are two major 

functions: 

1) Control over the visualisation aspect of the prototype. 

2) Control of the analysis. 

The visualisation aspect of the prototype, starting at the top left of the grey area (Figure 16) 

with the View Regression check box, and ending with the New Troughs check box, allows 

the user to see the regression line through any section of the data series, how much of the 
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prototype presented to the user. 



x-axis is visible and if the identified peak/trough reference datums arc displayed on the 

chart. 

The analytical section starts with the Sensitivity setting, where the percentage 

corresponding to the coefficient of determination can be set. The gradient (descent/ascent) 

that the regression line must satisfy for a reference datum to be valid is displayed next on 

the interface. The last option given to the user is to set a threshold level, this option 

disregards all identified points if the regression trend does not fall below this value. 

4.4.3 Hypothesis Builder (Prototype 3) 
The objective of the hypothesis builder is to construct the appropriate data sequence for 

analysis by subsequent EMS components. The inclusion of many parameters within an 

analysis increases the quantity of data within calculations by a factor. The factor is derived 

from the number of data parameters multiplied by the number of associated and identified 

reference datums. An example for a single parameter is considered in Figure 17. 

Patient -Retrieve Medical 

Medical 
Parameter 

(data series) 
Retrieve Related 
Environmental 
Time Series 

Environmental 
01 Parameter Picks out n 

(data series) key reference 
datums 

Picks out m 
key reference 

datums 

mxn possible 
combinations 

Figure 17 Handling a single parameter from each enviromedic 
data set. 
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As the number of parameters are increased, the number of possible combinations also 

increases, as shown by Figure 18. 

Patient . -Retrieve 
Medical Data 

for Each Patient 

Medical Parameter Medical Paramei 
(n reference (p reference 

datums) datums) 
Retrieve Related 
Environmental 
Time Series 

Environmental Environmental 
Parameter Parameter 

(j reference (L reference 
datums) datums) 

Environmental Environmental 
Parameter Parameter 

(k reference (m reference 
datums) datums) 

(nxp)xaxkxLxm) 
possible combinations 

Figure 18 Handling multiple parameters. 

Retrieve Related 
Environmental 
Time Series 

Additional parameters such as patient selection, medical, environmental and time 

associated, adds significant complexity to the process. The need for computational memory 

increases as the number of parameters grow. 

Three types of analysis are discussed during the Hypothesis Builder section of the next 

chapter. They are Point, Series of Points, and Series analyses. Emphasis should be given to 

the need for consistency in preparation of the input pattern; each vector's dimensions must 

contain the same data type. Comparison is made between each vector by comparing the 

difference between each vector dimension. Examples of vector construction are provided 

in Appendix J. 

Additional functionality within the Hypothesis Builder allows the user to select the 

parameters that will be included by the analysis (Include Options area of Figure 19). The 
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included parameters are shown in the Vector Parameter Order area of the interface; the 

order of the selected parameters can be re-arranged by dragging and dropping the tags. For 

example, if SO2 - Lag was required before SO2 - Value, it could be dragged to the earlier 

position in the vector, which the interface facilitates. This functionality becomes more 

useful when a large number of multiple parameters are analysed. 

Point Data � SO2 - Date 
CJ Include future points? 

Point Data Series r S02 - Value 

Series Data J S02 - Lag 

altered Point II Tppe 
_ ____Date 

Value Lag 
Filtered Point 2 302 Thu Jan 06 06: 00: 00... 12.0 39600000 

Filtered Point 3 
Filtered Point 4 

Refresh Vectors J OK J 

or Parameter Order 

802 - Date S02 - Value S02 - La 

Figure 19 The hypothesis builder, including the area 'Vector 
Parameter Order' where the dimensions, for each of the vectors 

can be ordered. 

The component extracts the lag between the environmental and medical data sets, the value 

of the environmental parameter and date of reading, shown in Figure 19 as a 'Filtered 

Point'. 

4.4.4 Statistical Clustering - FBCA (Prototype 4) 
The statistical clustering prototype combines Frequency, Boundary and Cluster Analysis 

(FBCA) into one prototype (explained further in Section 5.6). The prototype provides a 

user interface where parameters controlling the size of the buckets used during Frequency 

Analysis are set. This could be automated through analysis of the signals content type; a 

topic for further research. Bucket sizes for Lag and Date are denoted in milliseconds. 
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Analysis Options 

Parameter sensWily Bucket Size 
.. _. _.... _. _ -J 

Analyse 
PM25 - Value 70 2 I� 
PM2.5- Lag 70 3600000 (1 Hour ) 
PM2 5- Date 70 86400000 (1 Day) 

ID---- Analysis Raw Data 

15 

10 

PM2.5 - Value 
oV 

{7.0=0,10.0=8,13.0=7,16.0=9,19.0=2,28.0=0,31.0=2,37.0=0} 
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tº 

PM2.5-Lag {627840000=0,631440000=1,678240000=0,681840000=1 

0 

09 10 11 12 13 14 

Figure 20 The control section of the user interface where parameters affecting the bucket 
size used in analysis for each parameter, the FDA sensitivity and the option to omit a 

parameter from analysis can he chosen via a checkbox. 

Once the Frequency Analysis has been achieved by recording a tally of data falling into 

each bucket, Boundary Analysis utilises the FDA component in locating the distribution 

boundaries. Distributions normally cover more than one bucket and are not often unimodal. 

FDA provides a method through trough detection to define a point at which one 

distribution ends and another begins. Shown in Section 5.6.2. 

Once the clusters are ready to receive input data the process of identifying which clusters 

are active can begin. The structure to record the cluster boundaries within the FBCA 

component, and monitor for matching patterns is shown in Appendix I. 

As the cluster ranges are known, along with the likelihood (compared with the other 

identified clusters) of an input pattern matching a particular cluster, a probability indication 

can be given. This is achieved through the division of the number of hits a particular 

cluster has received by the total number of hits received by all clusters. 
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4.4.5 Neural Network - SOM (Prototype 5) 

The neural network prototype incorporates two core components; the Network Controller, 

and the Neuron. Each neuron waits for data to present itself to the neural network. When 

new data arrives the neurons send a signal to the network controller to indicate how far 

their weight (using the euclidean distance measure) is away from the input data. The 

network controller then decides which neuron is the winner and notifies all the neurons in 

the network. The neurons then adapt their own weight according to their distance from the 

winner, and also their internal learning and neighbourhood ratios. The process is explained 

further in Section 5.5.2. 

Neurons V, 2,... x) 

ObservableSOMNeuron 

n1 

Obs ervableSOM Neuron 

ni 

ObservableSOMNeuron 

.... nx 

Figure 21 High level structure of the neural network. Showing x number of neurons 
(indicated by ObservableSOMNeuron), and Network that keeps a record of, and controls 

the number of neurons in the network 

Additional classes were written -to control the behaviour of the network such as neuron 

splitting and visualisation functions. Communication between the Network Controller and 

Neurons, and components from outside the neural network use an Observer design pattern. 

This gives good separation of control between the components, making the network 

flexible. The use of the observer design pattern exchanges events between components for 

control and gives each neuron an amount of autonomy that could be used to advantage in 

scaling the network to a larger number of neurons. 
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4.4.6 EMS Architecture - Overall Demonstrator (Prototype 6) 

Workflow coordinator 

The analytical process begins within the workflow coordinator where general parameters 

outlining the analysis are first set. The graphical interface used for prototyping the EMS is 

shown in Figure 22 below. The figure shows the 'setup' panel on which the options for 

selecting the monitored patient (owner of the data) and environmental parameters 

associated with them can be chosen for analysis. It should be noted that as the data schema 

was designed to be flexible it is the user who defines which data is medical and which is 

environmental. Also available on the primary set up panel are the parameters for: 

a) defining the analytical period of time (Previous Time Period Interested In), 

b) the reading density for time series analysis. A reading every x hours/minutes is 

derived, and 

c) the Lag used - if a lag is to be introduced into the time series analysis, between 

the data sets. 

It is worth emphasising that the user interface shown in Figure 22 evolved through the 

iterative EMS design process and as such is a testing prototype. Figure 23 relates the 

interface to the prototype modules developed as a proof of concept; the tab titles in 

Figure 22 relate to the sub titles in the diagram of Figure 23. 

94 

Figure 22 The workflow coordinator: prototype interface, showing the general setup 
panel. 



EMS Prototype Modules 

Lung Function 

Trigger Point Analysis 

Identification of the starting 
points of lung function 
decline, from time series data. 

Hypothesis Builder 

Vector Options 

Extracts the delay characteristics Collates the delay 
between the airquality and lung characteristics 
function data sets. Orders the between dab sits 
delay charactenetics ready for for viewing. 
analysis. 

Frequency, Boundary and Cluster Analysis (FBCA) 

Dimension Boundary Analysis 

C, 
defining the cluster 
bounaanes. 

Air Quality 

Air Quality Locator 

Extraction of patient specific 
times series data, or 
identification of peak air 
quality episodes leading up to 
a decline in lung function. 

Cluster Matrix 

WHIM 

Extracts all possible cluster 
permutations. and keeps a 
count of matching input 
Patterns 

Correlation 

Time sales correlation 
analysis 

Figure 23 Prototype modules and their relation to the user interface. The main title of 
each module relates to the system architecture, the sub title, the user interface and the 

black titled boxes the programed components of'the prototypes. 

Lung Function: Reference datum identification 

Using the information provided during the set up of the system, a module named Data 

Analyser is given control and extracts the patient's lung function records from the database 

over the relevant time period. Once obtained, the FDA module is used to identify the lung 

function reference datums. These datums are returned to the workflow coordinator. 
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Air Quality: Air Quality Locator (reference datum identification, or time series 

extraction) 

A module named Data Locator was created to obtain the air quality information at the 

appropriate time and location from the database. The functionality to extract data linked to 

a patient's movements was omitted from the prototype as this functionality was not 

required for testing purposes. Air quality datasets were either pre-compiled, or the air 

quality data was measured from a single location. The Data Locator module was written so 

that the functionality could be extended in the future. The module analysed the extracted 

air quality data set with FDA, identifying appropriate reference datums. The module was 

also capable of extracting appropriate time series segments. 

Hypothesis Builder: Vector Options (delay characteristic extraction between the lung 

function and air quality data sets) 
Two modules were created to meet the requirements of the system. One named Vector 

Organiser that extracted the delay characteristics between the lung function and air quality 

data sets ordering them for analysis, and the other, Input Vector Array that facilitated the 

visualisation of the delay characteristics. 

FBCA: Dimension Boundary Analysis 

The primary module controlling the analysis for the frequency and boundary analysis of 

the delay characteristics was named Vector Analysis Control. The module enabled the user 

to provide an indication of the detail required during the analysis by setting the bucket 

widths for each parameter, and sensitivity level used in identifying cluster boundaries. 

FBCA: Cluster Matrix 

The second module (Cluster Combination Viewer) used within the FBCA component 

extracted all cluster permutations derived by the Dimension Boundary Analysis module. 

Incoming data was then monitored by each cluster permutation for a matching record, and 

when recognised, was stored. 

Neural Network: Pattern Identifier 

The neural network, based on a self-organising algorithm, was developed with a single 

point of access to its functionality. A module name SOMControl was used to control the 

network of neurons, and provided access points to visualise the process. 
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4.5 Summary 
This chapter presented the way in which system architecture was used to develop the 

structure of the Environmental Monitoring System (EMS). A system specification giving a 

high level overview of key features, and elements that the system incorporates was 

presented. Research into the data process architecture developed a four layer model, where 

the third layer (data handling) is central to further research into analytical components in 

Chapter 5. Processes required for the identification of environmental predictors leading to 

asthma exacerbation were outlined, providing a summary of the identification architecture. 

This chapter also presented a number of prototype components, and described aspects of an 

architectural implementation used for validation by this thesis. The implementation of the 

architecture through prototypes was not designed to undergo scrutiny in a clinical setting. 

However, the iterative design and verification process did reveal a number of real design 

issues which were used to guide the development of this research. 

The identification of key communication aspects and data interchange between 

components led to the refinement of some of the fundamental concepts of this thesis, 

including refinement of the reference datum and delay characteristic. 
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Chapter 5 

Analytical Process 

This chapter presents research into specific analytical components, that when 

combined are capable of validating environmental predictors of asthma 

exacerbation. Techniques are developed to: identify reference datums within 

environmental and medically related data, find associations using delay 

characteristics, and validate the characteristics. The validated delay characteristics 

provide key information that enable the triggering of patient-specific alerts. 

5.1 Introduction 
Results obtained from the use of correlation techniques are unable to relate specific events 

in the environment to the decline of patient lung function, or provide a suitable mechanism 

to automatically detect adverse patterns or rules without further analysis. Correlation also 

does not help build a picture of particular attributes or characteristics that play the most 

significant roles in affecting a patient when the time frames of the data sets are acting 

differently. This is supported by research during the Medicate (2000) project and research 

in Section 1.1.2. 

With the change in focus from identifying a correlation between two data series (lung 

function and environmental) to constructing verifiable delay characteristics, this research 

defined a method that indicated the time delay between the environmental predictor, and 

the asthma exacerbation. 

The method starts by using a technique capable of detecting the point at which a healthy 

lung function signal begins to decline. The author has named the developed technique 

Feature Detection Analysis (FDA). This is of course a very loose description of what the 

analysis achieves, but is one that works for the purposes of this thesis. An explanation of 

the technique follows. 
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5.2 Feature Detection Analysis: Asthma Episode Detection 
During the Medicate (2000) project clinical staff were alerted if a lung function 

measurement fell below a predefined threshold. The new technique of Feature Detection 

Analysis (FDA) automates the analysis of patient specific trends and includes the ability 

to: identify a rate of change in lung function trend over time, calculate if the trend falls 

below a threshold, and when the trend reverses. 

The first purpose of FDA is to determine the point at which a trend reverses, and more 

importantly, does the trend meet the condition set by the clinician. For example; 

PEF - Sample 
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Figure 24 A sample of PEF data. The trend for the declining 
section of lung function is shown by the red linear regression line. 
The trend for the stable period of lung function is shown in green 
While a1 day moving average is presented in black. 

Figure 24 shows a sample of PEF data from a patient during the Medicate (2000) project. A 

regression line (shown in red) has been fitted to the declining period of lung function trend, 

beginning on the 20`h March, after a period of stability. The objective for FDA is to 

determine if the declining trend passes through a threshold level set by a member of 

clinical staff. If the trend falls below this predefined threshold a reference datum is created 

to mark the change in trend, in this example, on the 201h March, where the two trend lines 

meet. FDA achieves these purposes with a combined correlation and linear regression 

technique to analyse the trend of the lung function data segment. 
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A regression model is constructed for a segment of data where the trend is being analysed. 

The length of segment is not critical to the analysis, but must contain a minimum of two 

data points to operate. The technique has been trialled on datasets containing up to 1 year 

of data (8,700 data points). The correlation model for the analysed segment is then used to 

obtain the goodness of fit of the model to the underlying data. The goodness of fit of the 

model is measured using the R-squared function (also known as the coefficient of 
determination) of the correlated of data points, within the analysed segment. 

The technique is implemented by extracting the correlation ratio from an ever-decreasing 

subset of data. The number of points covered by the data set is reduced by one until the 

correlation ratio of the remaining points meets a pre-specified percentage value (the 

coefficient of determination, typically 70%). When this value is met, a trend line is drawn 

using linear regression and consideration made as to whether or not the trend leads to a 
peak or a trough (positive or negative correlation). An asthma exacerbation is represented 
by the trend in lung function where a peak is followed by a decline in lung function, and 

where lung function continues to fall to reach a patient-specific lung function threshold. 
Consideration of the trend's gradient is also made, as an asthmatic's recovery becomes 

more difficult with a suddenly worsening trend, so is more serious. 

The analysis is also capable of identifying the troughs contained within the data set. This is 

useful when lung function reference datums are being analysed, as it is likely that if 

environmental (predictor) analysis is focused purely on peak reference datums, good 
predictors of the declining respiratory trend could be missed. 

However, peak points are of particular interest due to their position in the data trend. Data 
following a peak represents a patient whose ability to breath normally is reducing, and the 

peak is the earliest indicating point of the start of this trend, and therefore the earliest point 
at which a patient can be warned of their condition. The method used to measure the ability 
to breath depends on the monitoring device used. The devices used during the Medicate 
(2000) project measured the average of three lung function tests, while a more recent 
device (Ferraris, 2008), used for the capture of patient lung function, records the highest 

peak value from readings taken over a three minute period. If the level of lung function 
falls below a pre-defined threshold (set by clinical staff), the time and location of the peak 
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reading is of specific interest. A reference datum is assigned to the point and used to extract 

possible (environmental) predictors from the database. The figure below shows the raw 
data points of a lung function time series. 
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Figure 25 Lung function time series - data points 

The objective is to locate peaks (trend reversals) automatically, rather than through visual 

inspection of the graphs, whilst fulfilling the requirements previously specified. The peak 

values of the data identified through visual inspection (but found automatically) are 

highlighted by the grey arrows in Figure 26. 
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Figure 26 Lung function (Peak Expiratory Flow) data for 24 hours, with 

visually inspected peak values highlighted by arrows. 

The analysis is initiated with all data points in the dataset (Figure 27). The analysis 

measures the square of the correlation coefficient (R), which is also equal to the 

coefficient of determination of the regression line. The length of data set is gradually 

reduced by one, until the coefficient value satisfies a pre-specified value (defined as a 

percentage). The specified value has been found to be adjustable depending on the length 

of time series being analysed, and the outcome that clinical staff are looking to obtain. 

101 



20 

I5a 

10. 
w 
N5 0 

13 
0 0 

10: 00 18: 00 20: 00 22: 00 07 1: 00 3: 00 5: 00 7: 00 0: 00 11: 00 13: 00 15: 00 
Hours (Days) 

Figure 27 Reducing regression line on a complete dataset. 

a 

Figure 27 shows the first progression of the regression line (in red) through the data points. 

The regression coefficient in the figure equals 36% as this figure is not greater or equal to 

the pre-defined level the analysis continues to reduce the number of data points covered by 

the analysis. 
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Equation 5.1 is the formula for the Pearson product moment correlation coefficient. The 

technique uses this coefficient, predetermined by the system (or user) as a benchmark to set 

which points the regression line passes through. The value used is R' the coefficient of 

determination, which represents the percentage variance of y which is explained by the 

variable x, an indication of the importance of the correlation. 

The equation of the regression line is given by (Pearson & Turton, 1993); 

y=a+b "x Eq. 5.2 

where a is given by Equation 5.3, and b by Equation 5.4. 
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Where n represents the number of data (x/y) pairs, and b represents the gradient of the line. 

Figure 28 shows the regression line regressing through a decreasing number of points until 

the coefficient of determination of the points the regression line passes through equals or is 

greater than the coefficient. 
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Figure 28 Regression analysis decreasing data set 

The stage (shown above) has satisfied the trend fitting parameters (in this example set to 

70%) with a coefficient of determination of 83%. The gradient of the line (given by b in 

Equation 5.2) is 0.8 which equates to a positive gradient of 0.8L/s per hour. These settings 

can be set by experienced clinical staff for each individual patient. 

The method picks out peaks and troughs within the data series. It is also able to consider 

the gradients of +'ve or -'ve regression lines and whether or not the line crosses a trigger 

value before encountering the next identified data peak or trough. Regression line details 

that satisfy the set parameters are recorded for use in the next analytical process. Figure 29 

shows the second pass through the data set to identify a trough reference datum. 
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Figure 29 The analysed section leads to the identification of a trough. 

Figure 30 shows the start of the third iteration through the data set. The yellow line 

represents the peak identified by the first pass through the data set. The data set starts from 

the last peak or trough that was found. 
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Figure 30 Regression analysis after the second reference datum, (in this 
case, a trough shown by the black vertical line) has been identified. 

The third iteration through the data set locates a trend that satisfies the coefficient 

percentage between two data points (Figure 31). 
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Figure 31 Reducing regression trend line (last iteration). 

The user interface used in the prototype allows the user to set parameter values affecting 

the analysis. The capability to identify trends that descend or ascend over a certain time 

(monitoring the gradient of the trend) increase the usefulness of the technique. This is 
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particularly important as abnormal readings such as a rapid increase in respiratory 

deterioration are more likely to indicate a problem due to an external influence. The ability 

to monitor if a trend line falls below a threshold value has also been included as an option. 

The ability to do this refines the analysis to ensure that only peaks leading to a problematic 

period, or a trough that is in a problematic period are identified. This also reduces the 

effect of spurious data readings. 

Figure 32 shows a real sample of raw patient lung function data covering a two month 

period. The analysis has identified four (peak) trend reversal points that lead to a decline in 

lung function (falling below the specified threshold). Each trend marked with a reference 

datum (represented by the vertical red lines), declines below a threshold of 480 L/m. 

It is worth noting that the application of FDA requires the analysis to be used 

retrospectively, one step behind the current or latest data in real time analysis. The analysis 

requires that the next point is known before the analysis can decide if the trend line leads to 

a peak/trough point or not. 

The FDA component is capable of handling continuous time series, and standard numerical 

data, therefore the input and calculation process must be able to process both types of data 

stream. Analysis of time series data is achieved by conversion of the date/time element of 

the data into a value. The value used by the EMS is called the epoch, and is the number of 

milliseconds since 1S' January 1970. An example of FDA using a numerical x-axis can be 

seen in Section 4.4.4 (Frequency, Boundary and Cluster Analysis). 
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5.3 Feature Detection Analysis: Environmental Predictor 
Detection 
Feature Detection Analysis is designed as a generic tool and can be applied to data sets 

other than lung function. The figure below shows a sample of nitric oxide data that is 

specific to a patient, with FDA analysis shown by the red vertical lines. 
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Figure 33 The result of FDA on a sample of patient specific air quality. 

Figure 33 demonstrates the use of FDA on a sample of air quality data. The technique 

remains identical to the use of FDA with respiratory data. Although air quality is a highly 

variable data type (often in the region of ±40% at 1 standard deviation), the analysis is still 

capable of identifying features that after validation, could be predictors of asthma 

exacerbation. 

Air pollutant levels are categorised into quality bands of high, medium, and low, as 

discussed in Section 2.2.1. These parameters are used internally within the EMS to identify 

air quality reference datums. As lung function FDA is guided by clinical staff, so analysis 

of air quality data is guided by the air quality banding thresholds. Figure 33 shows FDA 

without this option selected, therefore matching data by trend significance alone. 

Feature Detection Analysis is also capable of analysing other sources of data. Section 6.7 

demonstrates this through analysis of hospital admissions data; linking hospital admissions 

due to asthma exacerbations, and poor air quality. 

Figure 34 shows a summary of the architecture presented during the previous sections of 

this thesis. Following the identification of reference datums from each of the data sets, a 

method is required that prepares them for further analysis. The next section explains the 
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processes involved. 
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Figure 34 Architecture for the data storage and Feature Detection Analysis components. 

Implementation of FDA as a distinct component creates scalability by enabling the 

instantiation of new FDA modules each time an additional parameter, or patient is created 

during analysis. The FDA component, and EMS architecture were designed with this 

consideration, and will spawn a new FDA component to analyse each additional data 

parameter. 

The underlying requirement is for reference datums to be created from the analysis. The 

reference datum takes the following form; 

PatientlD 1 DataType Date/Time Value 

Figure 35 Example of a reference datum required by the Hypothesis 
Builder to define the analysed data. 

The patientlD belongs to the patient regardless of whether the reference datum belongs to a 

respiratory, or environmental data set. When multiple FDA components are in use, the 

PatientID associates the datum to the appropriate Hypothesis Builder (described in the next 

section). Respiratory and environmental data sets both use the same type of reference datum 

and PatientlD. If the analysis is being applied to a new domain then the patient ID would be 

replaced with an alternative identifier, relevant to its domain. 
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5.4 Building a Hypothesis with the Hypothesis Builder 
The first step in the identification process, to identify the asthma episode, is satisfied with 

the use of FDA. The second step is to identify patterns that influence (or can be used as 

predictors of) the asthma episode. There are three categories of influential pattern that may 

exist: 

9 Point, where a particular reference datum within the environmental data is 

associated with the onset of an asthma attack. 

" Series of points, where a progression of reference datums are associated with 

the onset of an asthma attack. 

" Series, where a particular series of environmental readings, taken at regular 
intervals, is associated with the onset of an asthma attack. With this technique it 

is necessary to estimate missing data values. This aspect is discussed later in 

Section 5.4.3. 

The process of organising the (pre-)processed data is controlled through a user interface 

(the Hypothesis Builder) which is described below in relation to the software 

implementation of the prototype. The Hypothesis Builder is a module designed to provide 

an interface between the system and clinical staff. However the choice of analysis used by 

the Hypothesis Builder could be set before the analytical process begins, when patient 

details are selected by the user. The Hypothesis Builder was developed to test the 

functionality of system components, but helped identify and refine the methods of collating 

delay characteristics shown in this section. Environmental data is analysed according to the 

type of analysis chosen (listed above). Data sets derived from the pre-processing options 

are analysed further by the pattern identification components of the system. 

The module collects the data produced by the initial FDAs and extrapolates all the 

potential permutations between them, forming a list of possible predictors and their 

relationships to each outcome reference datum. The prototype interface for this module 

(Figure 36), contains two sections that influence how the analysis can be taken forward. 
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Figure 36 Prototype interface to facilitate the selection of 
analysis type and associated output options. 

The first section, shown on the left hand side of the prototype interface (Figure 36 'Vector 

Options') contains the type of analysis (described over the following sections), with the 

addition of an option that allows analysis of future environmental predictors (for point 

data). This works by allowing the inclusion of air quality reference datums occurring after 

the date/time of the lung function reference datum, which is possible when all permutations 

are being extracted between the two data sets. 

The second section, appearing on the right side of the prototype interface Include Options 

provides a choice to the user to select the data parameters taken forward for further 

analysis (SO2 - Date, Value, and Lag in Figure 36). 
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5.4.1 Point Analysis 
Point Analysis is used to explore the relationship between single air quality predictors, 

identified by the FDA and respiratory reference datums. The objective of the analysis is to 

generate one delay characteristic between each identified air quality predictor and the 

identified point of exacerbation. Figure 37 shows an example of this technique. In the 

example, two reference datums have been identified within the lung function data set 

(using FDA), subsequent analysis of the air quality data has identified four possible 

predictors from the first lung function reference datum. The point analysis technique is 

used for testing the EMS in Chapter 6. 
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Figure 37 Showing four individual air quality reference datums that could each be a 
predictor of the decline in lung function. 

In this example there are a total of ten possible combinations if the second identified lung 

function (PEF) datum is included within the analysis, and the time period for analysis is 

seven days prior to each PEF reference datum. 
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5.4.2 Series of Points Analysis 
This type of analysis is useful when a sequence of events is suspected of triggering an 

asthma attack. An event sequence could be anything from a number of consecutive days 

with very high levels of particulate matter to the steady build up (with air quality peaks 

increasing) of sulphur dioxide over a few days. Figure 38 shows an example of 

constructing a set of delay characteristics for series of points analysis. 
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Figure 38 Shows the two combinations that are used during a series of points analysis. The 
three air quality reference datums would be used in series, against both lung. /unction 
triggers. 

The number of reference datums within each combination must be consistent for further 

analytical components in the EMS to analyse the data. This is due to the number of 

parameters (or dimensions) being presented to the components having to be of equal 

length. Components like the neural network must have the same dimensional vectors 

presented to them for each set of analyses. If additional forms of analysis are required 

using different length vectors, then an additional number of neural network components 

would be required. The number of reference datums identified within the first period sets 

the required number of reference datums in subsequent periods. 
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5.4.3 Series Analysis 
Readings taken at environmental monitoring stations are taken at regular time intervals that 

are not controlled by the EMS, and bear no relationship to the timing of lung function 

readings. This creates a significant measurement difficulty. Analysis of enviromedic data 

requires that both sets of data (lung function and environmental data) are available as near 

as possible to the same time and location. For readings from both data sets to be recorded 

at the same time, a technique for estimating a reasonable value is required. The figure 

below shows a selection of interpolation methods used for graphing irregular data readings. 
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Figure 39 Interpolation methods 

Irregular data intervals produce difficulties for many pattern recognition systems as trends 

become more difficult to identify. The method used by the EMS overcomes some of the 

problems associated with irregularity through the use of estimation. Estimation techniques 

such as the B-spline (Unser & Aldroubi, 1992) can be used within the EMS to estimate 

values between known data points. However it is not always suitable for time series data 

sets where data is irregularly spaced. A linear method of interpolation may be preferable in 
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this case. Interpolation techniques enable a set of environmental data to be estimated from 

Lý 

data extracted from the database, as a series of readings taken at fixed time intervals. 

Figure 40 shows two periods (1) & (2) highlighted in green, that are to be analysed further 

as a result of their identification by the FDA. 
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Figure 40 Data Series Analysis. The air quality period before each lung 
function peak is split into smaller time segments to analyse the 
characteristic of the air quality before the lung function reference datums 
(marked by the two shaded areas). 

Following FDA the hypothesis builder extracts delay characteristics from relationships 

between each value of the series and the start point of lung function decline. The result of 

which is shown in Figure 41, where two time series can be seen, in this case two lung 

function peak points were identified after the 12`' January (Figure 40) and one series has 

been extracted for each. Series 2 corresponds to the second shaded region (marked 2) in 

Figure 40 and would be identical in length to that of Series I. 
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Figure 41 Showing the delay characteristics contained inside 
Series 2, corresponding to shaded region 2 in Figure 40. 

The data shown in Figure 41 shows an example of the data that would be extracted from 

the EMS database, providing environmental readings from the closest environmental 

monitoring source, and as a series of fixed interval readings, running from a period prior to 

the reference lung function, and continuing up to the time of the asthma reference datum. 

These signals provide the basis for further analysis by the pattern recognition components 

of the system. 

5.4.4 Operational Overview 
Figure 42 shows the system architecture of the EMS, including the hypothesis builder. The 

hypothesis builder transforms reference datums identified by Feature Detection Analysis, 

into delay characteristics in preparation for further analysis. 
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Figure 42 Architecture showing data storage, FDA, and the hypothesis builder 
components. 

The Hypothesis Builder has been designed so that one builder is required per monitored 

patient. The input data presented to the component originates from air quality monitoring 

stations and lung function monitors, and is received by the builder via the FDA 

components as reference datums. 

The Hypothesis Builder combines the reference datums, to form delay characteristics that 

are passed on to the subsequent pattern identification components. This is the Hypothesis 

Builder's primary purpose. 

The Hypothesis Builder works by recording all the environmental reference datums that 

have been presented to the component over a set period of time. Using the work of 

Lebowitz (1996) this can be arbitrarily set to 10 days. Respiratory reference datums 

identified by the FDA component are also recorded and used as reference markers in the 

creation of subsequent delay characteristics. It should be noted that the FDA component 

could be interchanged for an alternative mechanism of identifying interesting features 

within the datasets. The underlying requirement is that delay characteristics must be 

created for further analysis. 
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The Hypothesis Builder, on recognition that a new reference datum has been received, 

calculates a set of new delay characteristics from the available reference datums stored 

internally by the component. The delay characteristics are offered up to the workflow 

coordinator for subsequent analysis. 

The builder is controlled in so far as the type of analysis can be set, (point, point series, 

and series). New forms of analysis could be introduced to the component, dependent on the 

type of implementation required. 

The resulting delay characteristics created by the hypothesis builder are made available via 

the workflow coordinator to the Pattern Identification components of the EMS. The 

subsequent components (SOM network and FBCA) expect input in a vectorised form, 

shown by Figure 43. 
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Figure 43 Process overview outlining the creation of vectors representing sets of delay 
characteristics, for further analysis by analytical components. 

5.5 Pattern Recognition 
Pattern recognition falls into the second step of the identification process (Section 3.5). 

However, it is useful to consider the output required from the EMS before the process of 

pattern recognition is discussed. 

Monitoring for troublesome air quality patterns in real time is fundamental to the success 

of the system, and a technique capable of this is required for the research and development 

work of step two to be satisfied. Characteristics of the required technique are as follows: 

" Real-time pattern matching capability 
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" Adaptable to new data types 

" Capable of handling many parameters 

" Capable of being applied to varying problems 

" Ability to give a strength indication (or probability) of pattern match. 

" Ability to pick out re-occurring data characteristics. 

These characteristics enable a picture of real-time patient exacerbants to be developed, and 

stored for instant recognition as they occur in the environment. Appendix M outlines some 

algorithms that could be used within the EMS to assist with the task of recognising 

commonly occurring patterns. Systems that learn how to recognise patterns without being 

taught under supervision (usually by training data) are generally classified into the 

category of being unsupervised systems. 

Neural networks have the ability to a) adapt to recognise patterns in real-time, and b) 

recognise similar traits when they happen in the future. These characteristics are 

complementary to the aims of the EMS. 

5.5.1 Neural Networks 
A neural network is a network of interconnected elements which learn by modifying the 

connection strengths between elements to match the inputs and outputs of the system being 

modelled. The basic element of a neural network is a neuron (or processing element). The 

basic functions of each element are (Parsaye, 1993): 

1. Evaluate input signals and determine strength 

2. Calculate a total for the combined input signals 

3. Compare the total with a threshold value 

4. Determine what its own output will be 

Mathematically, the calculation of input strength is the dot (inner) product of two vectors, 

one vector being the input signals and the other being the weights that are assigned to each 

signal, presented in the figure below. 
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Figure 44 Processing element: The 
basic element of a neural network. 

Figure 44 shows a schema for a linear associator (Rojas, 1996), the processing element 

computes the weighted input, and outputs the result. The linear associator is used as the 
founding component in self-organising maps (SOMs) an unsupervised learning technique. 

An example of prediction using neural networks is the hybrid system used by Kolehmainen 

et al. (2000) to forecast urban air quality for the following day using airborne pollutant, 

meteorological and timing variables. This approach uses the self-organising map (SOM) 

algorithm (Kohonen, 1998), Sammon's mapping (Sammon, 1969) and fuzzy distance 

metrics to cluster the data and then the use of Multi-Layer Perceptron (MLP) models to 

calculate the levels of individual pollutants from the clustered data. Predicted levels for 

each of the pollutants is derived by summing a combination of weighted MLP models 

appropriate to the situation. The methodology behind the work is particularly worth noting, 

the SOM is an unsupervised neural learning algorithm that finds prototype vectors which 

are able to represent the input data set. Further mapping then takes place using Sammon's 

Mapping that is used to map n-dimensional data into two dimensions for a graphical 

representation of the system. 

Unsupervised learning makes initial data categorisations without intervention or guidance 
from an external influence, the technique is also known as self-organised learning and 

often uses a competitive learning rule. Supervised learning is usually guided by a user. 
Supervised techniques use a method of supervision to train a network - mapping inputs to 

the correct outputs of a neural network. 
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In neural networks competitive learning requires neurons (processing nodes of a neural 

network) to compete amongst each other to best identify the range of input features. 

Categories of data are found, which leads to a network that eventually fires a different 

output neuron for each recognised category of input pattern. 

Unsupervised systems gradually detect characteristics, learnt by matching familiarity 

criteria. Euclidean distance (Manly, 2000; Haykin, 1999) is often used to evaluate vectors 

describing an input pattern against patterns seen by the system in the past. Naturally, rare 

inputs have less effect on network learning than those that occur frequently. This aspect 

influences the recognition process by suggesting that if all data is presented to the neural 

network, the network will find an optimised representation of the input data. The EMS uses 

the neural network to identify outliers from the original environmental data set. The use of 

delay characteristics focuses the analysis away from the raw data sets, where outliers are 

few, to one where outliers are the focus. 

The euclidean distance between a pair of m-by-1 vectors x, and xj where each vector 

equals [x1, xt2,..., Xim] is defined by: 

d (xis x j) _ IIx, -x jll Eq. 5.5 

mI 
1/2 

= (xik--x 
jk)2 

L k=1 

A technique called winner takes all learning exists where the node identifying the input 

pattern the best is adapted to more closely resemble the input data (vector). The winning 

(node) is usually chosen using a method like the euclidean distance metric, between the 

input and the winner. 

The winner moves a fraction of the distance between it and the input vector, usually 

defined by a learning constant a. The winner moves towards the input vector, whilst the 

remaining neurons in the network are left unaffected. To prevent endless learning within 

the network, learning is slowed by reducing a monotonically. This brings the network to a 

gradual rest, with the neurons representing the input data presented to the network. 
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A modification to this learning rule is one where the weights of both winning and losing 

neurons are adjusted in proportion to their level of response to input data. This technique is 

useful when more subtle learning is required in the case when clusters are hard to 

distinguish (Zurada, 1992). 

A problem can occur when using a winner-take-all learning network. Neural nodes can get 

attracted to isolated regions within the data set, also known as local minima (Ripley, 1996). 

Local minima are located when the error function (often the euclidean distance between 

the model neuron and the input is used), identifies what appears to be an optimisation after 

a few iterations. Further improvements can be made to the winner-take-all learning method 

by allowing a number of nodes to be defined as winners and moving these in proportion to 

closer resemble the input, also called multiple-winner unsupervised learning. This reduces 

the likelihood that false optimisations of the underlying data are found. The self-organising 

map (SOM) possesses these characteristics. 

5.5.2 The Self Organising Map (SOM) 
Self-organising maps (SOMs) were introduced by Kohonen in 1982 (Kohonen, 1982). The 

SOM technique requires no prior knowledge of data groupings or clustering. The technique 

has been investigated and discussed by Simula et al. (1999), Kangas (1996) and Vesanto 

(2000) among others. Kohonen et al. (1996) describe the use of SOMs in various 

engineering applications. The basic SOM developed by Kohonen (1982,1987) has been 

continually adapted (Kohonen, 1998; Kohonen, 2006). Tamminen et al. (2000) consider a 

method for health monitoring where a SOM is utilised to combine dynamically classified 
health levels. The monitoring period covered eight weeks of physical measurements and 

diaries recorded in a home environment, by four test subjects. Use of a SOM found that 

there were some structures as well as differences between the weekdays and weekend, and 

that physical activities had a much stronger effect on health levels, than mental stress states 

which showed no clear clustering. 

Oyanya et al. (2005) conclude after their study using Graphical Information Systems (GIS) 

and SOMs in a hybrid approach, that analysing spatially-oriented biomedical data and 
SOM as an analytical technique provides a useful exploration tool to support the 

formulation of new study hypotheses regarding the spatial distribution of a particular 
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disease. The study focused specifically on the use of adult asthma data, and gives an 

example of how SOMs can be applied in the problem domain. 

Step two (Predictor Identification) focuses on the processes of extracting appropriate data 

for analysis, and the automatic identification of validated predictors of asthma attacks. It 

has been established through research (Ripley, 1996; Ritter, 1992) that the use of Self 

-organising Maps (SOMs) is a recognised technique in the field of pattern recognition. 

The SOM technique satisfies the requirements of the EMS in several ways. It has the 

inherent ability to adapt to and recognise reoccurring patterns. Further, it can be used to 

fulfil the requirements of Step 3 (Section 3.5.3) Monitoring for the Environmental 

Predictor, by monitoring closely related identified predictors. 

Literature review has found papers related to pattern recognition in medical diagnostics 

(Dokur et al., 1997; Schizas et al., 1992), more specifically Taibi et al. (1992) use SOMs. 

Spencer et al. (1997) show the use of self-organising discovery in intensive care, while 

Pradhan et al. (1996) discuss the use of neural networks to detect seizure activity from 

EEG data, and Kolehmainen et al. (2000) use SOMs to predict air quality. 

Data is often non-linear, noisy, and contains contradictory values making it harder to model 

and predict. The Self-organising Map (SOM) is a neural network approach where the 

network adapts to recognise common input signals. The adaptation occurs as a result of the 

neural network gradually increasing the selectivity of each individual neuron during the 

course of the learning process (Ritter, 1992). The size of the neural neighbourhoods reduce 

automatically as the process continues. This ultimately ensures that the neighbourhoods do 

not overlap. However, as Rojas (1996) points out, "Such an overlap could only be 

suppressed by acquiring more information". The effect of this is to validate features within 

the input space that are most prominent without identifying features that are described as 
local minima. 

The incoming input signal can be transformed into a mapping that generalises the input 

signal into a number of previously unknown classifications. However, Ritter et al. (1992) 

state that the frequency with which a signal occurs is not always an indication of its 

importance, and that the SOM can increase its attentiveness to certain signals (using a 

priori knowledge) by adjusting the size of the learning step according to a previously 
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defined rule. The EMS increases the attentiveness of the neural network by pre-processing 

environmental data into delay characteristics that focus analysis by the SOM algorithm 

onto outliers within the environmental data set; the delay characteristics having been 

identified using FDA reference datums. 

Table 9 Advantages of neural networks 
Advantages Disadvantages 

Handle noisy or missing data. No statistical definition of the system. 

Work with a large number of variables. Often slower than a straight forward 
statistical approach on batch data. 

Can be used to investigate non-linearities. The SOM reacts to the last piece of 
information. 

Provides general solutions with good Does not record a history of adaptation, 
accuracy. so is unable to give a statistical indication 

of reliability. 

Able to adapt over time (in real-time) to new 
patterns. 
Will respond to exceptional input values by 
setting up a separate neuron. 

The SOM works by ordering the input data into an n-dimensional mapping that takes the 

form of the input data. For example, taking a time series sample for one of the air pollution 

measurements can be defined as a vector in the form, 

Ul 41 

Using values of nitrogen dioxide at 6 hour intervals for 2 days would look like, 

Vx[49,28,35,24,37,29,35,39 1 

where each element of data is linked with a date, and taken at a regular interval. Other 

attributes such as location, data type, and time information are used to choose and filter the 

data sets. 

Each constituent neuron belonging to the neural network models the input data, making a 

generalisation of it through an internal vector known as a weight. The neural weights inside 

the SOM are chosen so they have the same dimensions as the input vectors (giving each 

neuron an n-dimensional weight). Initialisation of the neural weights can be achieved 
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through evaluation of the input data distribution, but can also be completely random. 
Particular accuracy is not required; the primary restriction on weight choice, is that no two 

(n-dimensional) weights can contain the same ordered values. The input vectors (also 

known as the input space) are then presented to the neurons of the SOM network. The 

SOM process iteratively moves the neural weights to generalise the vectors of the input 

space. 

The SOM uses weights that are adjusted to become more like the incoming patterns 

(Picton, 2000; Kohonen, 1987). The neural weights are adjusted in accordance with the 

rules outlined in the steps below, and after training, the full neural network becomes 

representative of the total distribution of input data. 

The learning algorithm for the SOM network is described by Rojas (1996) as: 
Start: The n-dimensional weight vectors w,, w2, ... , wm of the m computing units are selected at 

random. An initial neighbourhood radius r, an initial learning constant t7 and a 

neighbourhood function 0 (the EMS uses a gaussian function) are selected. 

Step 1: Select an input vector 4. 

Step 2: The neuron k with the maximum excitation is selected (that is, for which the distance 
between ww and 4 is minimal). 

Step 3: The weight vectors are updated according to the neighbourhood function, and update 

rule; wr E- w, + r70(i, k)(, - w, ), for i=1, ... , m. 
Step 4: Stop if the maximum number of iterations has been reached; otherwise modify 17 and 0 

as necessary and continue with Step 1. 

The modifications of the weight vectors (in Step 3) attract them in the direction of the input 

4. The advantage gained through the use of self-organising maps is one of classification. 

SOMs arrange the neural network into an ordered representation of the data. Neurons 

representing similar patterns will be positioned closer together within the map. This 

technique allows the generalisation of areas of the map, for example if it were identified 

that a particular neuron represented a pattern that led to an asthma attack, the surrounding 

neurons would also likely represent similar patterns leading to an attack (to varying 
degrees). The visualisation of this is an additional process to the core SOM algorithm and 
is not considered by this thesis. However inference can be obtained through the use of 

euclidean metrics. 
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An important property of the SOM is that it tends to represent patterns that are more 

commonly presented to it. This means that more neurons can be automatically assigned 
(and thus be more sensitive) to the types of patterns that are likely to be clustered closely 

together, and actively represent patterns leading to asthma exacerbations. 

A 

Figure 45 Neighbourhoods of the underlying neurons, where dj., is the distance 
between the input and the neuron, and k, is the activation of the neuron. See 

Appendix Nfor further details. 

Figure 45 represents three neuron neighbourhoods, of three separately identified patterns 

(A, B, and Q. If the neural network uses a learning method that grows the number of 

neurons in the network, then the widest (gaussian A) neighbourhood will be the original, 

and in theory represents all possible values that the neural network could recognise. The 

three smaller curves, two of which would have been added later in the identification 

process, represent neurons that have been trained to recognise certain inputs over time. The 

neighbourhood function of the neuron should not be confused with the distribution of the 

input data that each neuron has reacted and identified. The neighbourhood function is used 

simply by the SOM algorithm as a means of deciding the activation level of each neuron in 

the network. As the neuron becomes trained (over time) on a particular input pattern, the 

neuron becomes less responsive to data outside the range of the neuron's neighbourhood 

by shrinking its width (a). 
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5.5.3 Deficiencies of the Self Organising Map 
During the research it was recognised that there were some deficiencies in the standard 
SOM algorithm. Oyanya et al. (2005) also noted that the SOM algorithm has a number of 

efficiency and convergence issues that need to be addressed. These issues are related to: 

1. Speed and quality of clustering, 
2. Control over the number of output neurons, 
3. Updating procedure for the output neurons, and 

4. Learning rate in the SOM model. 

Oyanya et al. (2005) proposed to make some mathematical improvements to the SOM 

algorithm, using the above list as a basis, but do not define how the improvements would 
be made. A general criticism from Sarle (1994) is that neural networks are a learning 

technique of statistical estimation often using algorithms that are slower and less effective 

than algorithms used in statistical software. Haykin (1999) also makes reference to 

deficiencies in the SOM algorithm, specifically relating to neural network over-fitting (or 

over representing) data, and the lack of a neural memory; making statistical analysis of the 

data presented to the system difficult. Haykin (1999) suggests that the SOM algorithm fails 

to provide a faithful representation of the probability distribution that underlies the input 

data. This failure is due to the algorithm's inability to record the changes that are made to 

each neuron. The lack of neural memory means that the EMS would be unable to provide 

an indication of the probability that the pattern may exist. A further criticism of the SOM 

algorithm is that although the neighbourhood of a particular neuron is defined by a 

gaussian distribution, that distribution is controlled essentially by the number of iterations 

that have been performed, missing out on the potential for modelling the underlying data 

with a probability distribution. The neighbourhood defined by the neuron does not reflect 

the distribution contained in the underlying data. The fact that the distribution of the 

underlying data is not considered means that it is more difficult to establish a statistical 

basis for the results produced by the SOM algorithm. Robb (2001) found that for most 

datasets, neurons tend to oscillate around the input space and do not converge to a single 

equilibrium position. However, it was found that by using an error term the learning 

algorithm could be terminated when minimisation had occurred. 

125 



5.5.4 Use of the Self Organising Map by the EMS 
Two important characteristics belonging to the Self-organising map algorithm, and used by 

the EMS are: 
1. the technique's ability to converge onto an optimum solution, for a given set of input 

data - recognising environmental predictors of asthma exacerbation, and 
2. its real-time ability to recognise when an environmental predictor has re-occurred, so 

that an alert can be triggered. 

The technique also has several characteristics, that are not explored within this thesis. 

These are the use of information held by the network regarding environmental 

characteristics closely related to identified optimum patterns identified by the SOM 

algorithm. These closely related patterns are often partially activated when neighbouring 

neurons are activated as the best match to input data. These closely related patterns may 

hold further information concerning the patient's asthma exacerbants. 

Visual representation of the self-organising map is not used by this thesis, owing to the 

techniques involved falling into the category of data dissemination. Visual representation 

of the SOM requires human intervention and interpretation, which does not lend itself to 

automation. However, it is recognised that as research tool, visualisation of the SOM 

would be beneficial to the EMS. Methods of vector projection and SOM visualisation are 

discussed by Himberg (1998) and Vesanto (1999). They both provide useful discussion 

over a number of techniques, namely Sammon's projection (Sammon, 1969), the U-Matrix 

(Ultsch and Siemon, 1990), and to a lesser extent, Curvilinear component analysis 

(Demartines and Herault, 1997). Ontrup and Ritter (2001) suggest visualisation of the 

SOM using a hyperbolic space, and adapt the standard SOM algorithm to produce a 

projection of the input space using hyperbolic distance metrics, reflecting hierarchical 

structures within the data. All these methods improve the algorithms usefulness, however, 

only provide a visual representation of the identified patterns. The patterns still require 

interpretation, however powerful the visualisation techniques may be. 

There has been some debate as to whether or not it is necessary to normalise input data to 

the SOM. This question is investigated in Chapter 6 (Section 6.9), and finds that 

normalisation of the input vectors assists in the identification of extreme values that are 
found within the data set. 
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5.6 Frequency, Boundary and Cluster Analysis (FBCA) 
Whilst a neural network approach provides a technique for locating the centre of clusters 

and generalising the underlying data distribution, the method is difficult to control. The 

nature of the neural network creates two issues: 

1. Setting the initial number of neurons if the network is activated with a fixed number. 
2. Setting a stop condition if network growth is automated, starting with one or more 

neurons. 

In order to address these deficiencies a second method of analysis was devised from 

original thought and building blocks, notably FDA formed during earlier research. This 

section outlines a set of techniques that have been designed to function as an EMS module. 

The module combines three processes that have been developed as an extension to the 

SOM methodology. The three techniques presented here are: 
1. Frequency Analysis 

2. Boundary Analysis, and 
3. Cluster Analysis 

These techniques are combined into a component providing a means to extract natural data 

clusters with a popularity indication. For the remainder of this thesis the technique has 

been termed Frequency, Boundary and Cluster Analysis (FBCA) by the author. 

Figure 46 shown below, illustrates the subsections of the pattern identification module 
including FBCA, and other components such as FDA (Feature Detection Analysis), 

described in Section 5.2. and the Hypothesis Builder, described in Section 5.4. 

The data storage, and dissemination modules, which are not developed further by this 

thesis, are shown to provide context. The implementation of the search mechanism to 

identify patient matched, environmental data is complex and computationally demanding. 

Therefore research has focused on the ability to incorporate this component into the 

system's architecture rather than implementing it. The Air Quality Locator component 
(shown in Figure 46) represents this functionality. 
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Figure 46 Pattern Identification Module Architecture (also showing data storage and 

dissemination). 

Frequency, Boundary, and Cluster Analysis (FBCA) is designed to use the distribution of 

the underlying data to identify significant data classifications. Common value traits can be 

grouped together in order to identify both abnormal and likely event triggers. The analysis 

leads to an indication of the number of clusters required within the neural network. The 

difference between the two methods is the process by which commonly occurring patterns 

are identified. SOMs 'home in' on troublesome patterns over a period of learning, whilst 

FBCA sets the potential cluster boundaries (and the number of clusters) by examining the 

statistical distribution of batch data and then proceeds to identify which clusters are 

particularly active. The usefulness of operating two supporting methods together in the 

same system was highlighted during evaluation where test results were corroborated by 

both processes. The implementation of both methods into a hybrid system increases 

reliability. Pattern recognition by its very nature is about removing as much uncertainty 

from the result as possible. 
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Traditional statistical techniques attempt to model the underlying data using probability 
density distributions (Salgado-Ugarte et al., 2000), or Kernel estimates (Molina, 1994). 

However, the technique used by FBCA samples the raw data, and locates range boundaries, 

rather than fitting the underlying data with a distribution (Section 5,6.2). 

The technique achieves frequency analysis deploying the FDA component, described in 

Section 5.6.1. Frequency analysis involves the dissection of the data signal into bins, in 

order to identify the normal range, outliers and general characteristics of the data. The 

frequency distribution of the input variables are plotted graphically in order to split the 

analysed parameters into logical ranges (referred to as buckets or bins). In relation to the 

EMS, these input variables could be either: 

a) A series of fixed frequency environmental readings collected over a significant period 

of time. The results of Frequency Analysis on this data would provide clinical staff 

with an understanding of the full distribution of a particular input variable and enable 

discrimination between those environmental readings considered normal, as opposed 

to those readings which only occurred in exceptional circumstances. However this is 

not used within the EMS as analysis is focused on delay characteristics. 

b) A batch of delay characteristics, where a delay characteristic is defined as a 

combination of two readings: i) an environmental reading (more specifically, a 

reference datum), combined with ii) a time Lag, defining the time delay between the 

time the asthma exacerbation took place, and the time at which the prior environmental 

predictor occurred. 

The important point to note here is that analysis undertaken by the EMS at this stage of the 

process, is focused purely on the parameters of the delay characteristic. The original 

environmental and respiratory data sets are irrelevant to the analysis. 
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5.6.1 Frequency Analysis 
Once the delay characteristics have been identified the next step is to plot the frequency 

distribution of each parameter (PM2.5 Date, Value, and Lag). In order to plot a frequency 

distribution the range of values for each parameter must be split into buckets. 

The process for obtaining a satisfactory distribution during the frequency analysis is reliant 

on determining an appropriate width of bucket according to the nature of the underlying 
data. For example, a value (of SO2) that fluctuates between 10 and 60ppb could be divided 

into 5 bands, each with a width of IOppb, in order to capture an approximate distribution of 

the data. The width of buckets is often dependent on the number of data readings. 

Once the frequency analysis is completed the frequency of values contained in each 

consecutive bucket are plotted (Figure 47) giving a frequency analysis of the underlying 

parameter's data, for analysis using FDA. 

5.6.2 Boundary Analysis 
The process of Boundary Analysis breaks the distribution of each parameter into 

identifiable sections. For example, a parameter with a bi-modal distribution will be split 

into its two constituent parts (or a tri-modal distribution into three parts). This process is 

achieved by applying the Feature Detection Analysis technique to the frequency 

distribution of the variable, identifying peaks and troughs and fixing cluster boundaries (the 

troughs between each peak) as shown in Figure 47 by the black vertical lines. 
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Figure 47 Frequency and Boundary Analysis are shown with the bucket widths given at 
the top of the figure. Parameters "PM2.5 - Value " and "PM2.5 - Lag" are analysed. Raw 
data f it the "PM2.5 - Lag " data set are shown in milliseconds. 

It can be seen that the distribution of the selected PM2 5 Values (in Figure 47) have a tri- 

modal distribution. The result of Boundary Analysis (using FDA) has been to split the 

distribution up into the three separate ranges, by identifying limits, from 9.0 to 13 pghn3,13 

to 2 9pgi n3 and from 29 to 37pg%n3. 

It should be noted that for visualisation reasons the scale for Lag has been shifted forward 

by one day. The graph uses a date axis, and therefore starts at 01. Hence the trough shown 

at 08 days 20 hrs on the graph actual occurs at 07 days 20 hrs. The distribution of the PM'. 
.5 

Lag shows ranges, described in Table 10. 

{7.0=0,10.0=8,13.0=7,16.0=9,19.0=2,28.0=0,31.0=2,37.0=0} 
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Table 10 PM2.5 Lagrange limits 

Range From To 

1 7days6hrs 7days 20hrs 

2 7days 20hrs 8days9hrs 

3 8 days 9 hrs 8 days 20 hrs 

4 8 days 20 hrs 10 days 2 hrs 

5 10 days 2 hrs 12 days 10 hrs 

6 12 days 10 hrs 13 days 13 hrs 

5.6.3 Cluster Analysis 
The action of Frequency and Boundary Analysis has been to identify three PM2. s Value 

ranges and six PM2.. 5 Lag ranges. This identifies eighteen (3 value x6 lag) cluster 

combinations. 

The clusters are defined in terms of n-dimensions, where n depends on the number of 

parameters analysed (in this case two). The clusters are formed after defining all possible 

permutations of identified boundaries (Figure 47 above), Table 11 sets out all eighteen 

possible combinations. 
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Table 11 Cluster matrix table, showing the range for each cluster. 
PM2. S - Value 

PM2. S - Lag (Days: IIrs) 

Cluster 1 (9.0 -13.0) (7 Days 6 firs -7 Days 20 lirs ) 

Cluster 2 (13.0 - 29.0) (7 Days 6 Firs -7 Days 20 firs ) 

Cluster 3 (29.0 - 37.0) (7 Days 6 firs -7 Days 20 Hrs ) 

Cluster 4 (9.0-13.0) (7 Days 20 firs -8 Days 91lrs ) 

Cluster 5 ( 13.0- 29.0) (7 Days 20 Hrs -8 Days 9 Hrs ) 

Cluster 6 ( 29.0 - 37.0) (7 Days 20 firs -8 Days 9 firs ) 

Cluster 7 (9.0-13.0) (8 Days 9 Hrs -8 Days 20 lIrs ) 

Cluster 8 ( 13.0- 29.0) (8 Days 9 Hrs -8 Days 20 firs ) 

Cluster 9 (29.0 - 37.0) (8 Days 9 firs -8 Days 20 Hrs ) 

Cluster 10 (9.0-13.0) (8 Days 201irs - 10 Days 21irs ) 

Cluster 11 ( 13.0 - 29.0) (8 Days 20 Hrs - 10 Days 2 Ilrs ) 

Cluster 12 ( 29.0 - 37.0) (8 Days 20 Hrs - 10 Days 2 firs ) 

Cluster 13 (9.0-13.0) (10 Days 2 firs - 12 Days 10 Hrs ) 

Cluster 14 ( 13.0 - 29.0) (10 Days 2 firs - 12 Days 10 firs ) 

Cluster 15 (29.0 - 37.0) (10 Days 2 Hrs - 12 Days 10 Hrs ) 

Cluster 16 (9.0-13.0) (12 Days 10 Hrs - 13 Days 13 Hrs ) 

Cluster 17 ( 13.0 - 29.0) (12 Days 10 Hrs - 13 Days 13 Hrs ) 

Cluster 18 ( 29.0 - 37.0) (12 Days 10 Hrs - 13 Days 13 firs ) 

Each cluster combination is then activated and ready to identify any input that satisfies the 

range represented by it. When a cluster identifies input, it is recorded as a hit. This is 

shown in Figure 48. 

The analysis borrows a technique from the domain of neural networks, where each cluster 
listens to the input data stream and records any input that is relevant to the cluster. If the 

input vector matches the internal representation of the cluster (is within each dimension's 

bounds) a hit is recorded. 
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Figure 48 shows an example of the clustering technique. In practice the technique would 

be expected to receive many more input vectors, which would also be required for 

validation of the cluster. The number of hits shown in Figure 48 would not be sufficient to 

validate any of the clusters. The number of hits indicating that a particular cluster is valid, 

would need to be significant (a minimum of at least 20 hits). Calculations based on the 

Chi-Square Distribution (See Appendix S) indicate that a minimum sample size of 20 data 

elements would be required to be 99% confident that an observed bi-modal distribution 

was statistically significant. Although not included in the prototype, a future development 

could be the use of distribution testing techniques within the FBCA module, to ensure that 

clusters were defined on a fully statistical basis. 

Y xt Vectors 

r Monitor Hits J 
'Present 

Vectors to Clusters J 

Figure 49 shows the contents of Cluster 10 with two hits. Cluster 10 is the most popular 

trait identified from this very small data set. 
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5.6.4 Advantages of the analysis 
Breaking the original data set into a number of bands, allows the distribution of values to 

be analysed. The width of the bands must be suitable for the type of data being studied, for 

example the value of particulate matter could fluctuate between 15 and 35, ug/rn3 therefore 

by choosing an arbitrary value of 10 buckets, the bucket size (for the bands) would be a 

value of 2pghn3. A bucket of this size would break the fluctuating range down into 10 

bands providing data for a detailed graph showing the spread of data contained in the data 

set. 

An advantage resulting from this analysis is that the cluster boundaries are known as soon 

as the FDA has been completed. Another advantage is that the width of the buckets used 
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for separating the data set into bands can be altered to reflect the data being analysed, 
likewise the sensitivity level of the FDA that is used to detect the boundaries can be 

altered. 

Parameters can be discounted from further analysis if they demonstrate a uni-modal 

distribution. The presence of a single cluster is an indication that the parameter is unlikely 

to be of use in identifying a causal pattern, as there is no added benefit in analysing the 

parameter alongside others. A parameter type with a single cluster would appear (as a 

single cluster dimension) in every final cluster permutation and for this reason means that 

there would be no distinction between the value of that environmental parameter and cause 

of lung function decline. For example, a single frequency cluster for particulate matter 

ranging from a value of 7 to 77pg4n3, would be particularly unhelpful as the range covers 

three air quality classification bands (low, moderate and high), and therefore needs to be 

split into further bands to draw a distinction between the affects of each air quality level. 

However, the existence of a uni-modally distributed parameter can not be totally ruled out 

as being unhelpful as the patient's lung function may not decline without some presence of 

the parameter. 

5.7 Summary 
This chapter presented sections of the system architecture's data handling layer, and 

described how a flexible system can be built to facilitate the automatic recognition of 

patient-specific environmental exacerbants of asthma. The architectural design, included 

subsystems, their relationships, and a set of processes that are fundamental in identifying 

key predictive variables. 

The Environmental Monitoring System (EMS) was shown to be adaptive to incorporating 

new analytical methods as they become available, particularly by the hypothesis builder. 

Kern et al. (1998) state that architecture must be flexible to allow for the use of changing 
technology in an architectural implementation. The concept behind the architecture 

purposefully allows the system to be implemented in this way, using appropriate available 

technologies at the time of implementation. 
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The architecture has been designed using a component framework, where functions are 

able to work together to identify when an asthma patient is likely to experience an asthma 

exacerbation. Due to the flexible architecture the EMS can be extended to analyse many 
different parameters. Figure 50 shows the workflow architecture of the EMS, giving an 

overview of the complete system. 

Feature Detection Analysis recognises features that are naturally at the extremes of the data 

set (peaks and troughs). The introduction of delay characteristics (Section 3.3) focuses 

analyses by further analytical components to these outliers. Delay characteristics preserve 

the relationship between the respiratory and environmental data sets, reducing the quantity 

of data to a single delay and value (for each parameter). This improves scalability of the 

system, and simplifies analysis to the delay between the environmental predictor and time 

of respiratory decline, which is the information required to form an alert. 

The Hypothesis Builder combines reference datums from both environmental and 

respiratory data sets. One Hypothesis Builder is required per monitored patient, meaning 

that in a large system implementation, an entire server could be dedicated to a patient if 

absolutely necessary. 

The use of a self-organising map algorithm, is shown to be useful in identifying 

reoccurring patterns (Chapter 6), it is shown to be capable of: monitoring varied data types, 

coping with system and measurement noise, adaptation to new data trends, and 

classification and identification of new patterns within the data. 

However additional testing and refinements are required within a fully developed clinical 

system to ascertain if the technique will adapt to newly identified trends on a continual 

basis. Integration of FBCA as an analytical component shows that additional methods of 

analysis can be used by the EMS, and analytical results shared with other components 

within the system via the workflow manager (Chapter 4). Analytical techniques developed 

during the thesis are interchangeable with new or additional techniques as they become 

available. 
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Figure 50 Workflow architecture of the system modules. 
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Chapter 6 

Results and Discussion 

Seven tests are undertaken to establish whether the methodology used by this thesis 

is suitable for the automatic recognition of environmental predictors of patient- 

specific respiratory health. The tests using the EMS prototypes, and corresponding 

results are discussed by this chapter. 

6.1 Introduction 
This chapter presents a number of tests, and their results for the EMS. The validation 

process began using several datasets from the Medicate (2000) project. However this 

provided a limited source of nine usable data sets, consisting of two week sequences. The 

sequences covered periods where the patient had already experienced an acute asthma 

exacerbation, were recovering, and were limited in length. Only one data set existed that 

featured a decline in lung function towards the end of a two week trial period. 

One of the objectives of the EMS was to create a tool that was capable of handling large 

sets of patient and environmental data. With limited data sets obtained from Medicate 

(2000), it was not possible to demonstrate the scalable nature of the system. To compensate 

for this limitation, additional data sets where obtained; shown in Sections 6.7 and 6.8. 

It was hypothesised during Chapter 1 that the onset of an asthma attack can be predicted 

through the analysis of environmental conditions experienced by a patient, and that adverse 

environmental conditions occurring on a regular basis can be identified as a predictor of 
lung function decline. The hypothesis is validated when the time interval between the 

environmental predictor and the asthma exacerbation (marked by a reference datum), and 

also known as the Lag, is consistently detected. 

Figure 51 shows an example of the data collected during the Medicate trial, alongside a 
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particulate matter data set from a monitoring station in Haringey, North London. The 

particulate matter data set has been analysed using the FDA component, which is also 

marked on the chart. The red vertical lines represent the reference datums identified by the 

Feature Detection Analysis on the PM, o data. 
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Figure 51 Lung function data sets obtained during the Medicate (2000) project and 
associated PM, o data analysed with FDA. The PM10 reference datums are shown by the red 

vertical lines. 

To further validate the system's architecture, a second source of data was required that 

provided a data series of significant length (1 year). Twelve months of London hospital 

admissions data (due to asthma) were obtained from The Information Centre (2007), and 

corresponding air quality data, from four monitoring stations (Hillingdon, Brent, 

Marylebone, and North Kensington). The test demonstrated the use of the EMS with other 

types of data, and against a significant size of data set. The hospital admissions data was 

restricted to the regional level for location detail. 

A final six month data set was obtained from an asthmatic; who took daily lung function 

readings, using a portable electronic lung function monitoring device. During the six 

month collection period the asthmatic also recorded their movements so air quality could 

be mapped to their specific location. This data set is shown in Figures 74 & 75. These three 

data sources and corresponding data sets form the main validation tools for this research. A 

summary of the validation process is detailed below in Table 12. 
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Table 12 A summary of each test presented during this chapter. 
Test Section Title Purpose Method 

Feature To determine the accuracy of Apply FDA to a data signal with 
1 6.2 Detection feature detection analysis when 

i l f increasing levels of noise applied, 
Analysis (FDA) data conta ning an e ement o 

noise is used used. 
to compare response. 

Air Quality To show the naturally occurring 
2 6 4 Monitoring probability of each pollutant at a Analysis of the cumulative 

. Station sample of London air quality distribution of each pollutant. 
Characteristics monitoring stations. 

Real Lung To test the EMS with data that is To use a real data set typical of air 
3 6.5 Function and characteristic of expected air quality and a corresponding set of 

lung function data. Analysis with Air Quality quality. FDA, FBCA and neural analyses. 

To identify whether the system is Apply the lung function data set 
capable of identifying known as the second air quality 

4 6.6 Multi parameter characteristics when a parameter. Effectively making the 
combination of parameters are second air quality data set highly 
present. correlated. 

The EMS is designed to handle a 
large variety of data types, within 

Hospital To use a significant (1 year) data the problem domain. Using 
5 6.7 Admissions 

set to validate the system. 
Hospital admissions due to asthma 

Data exacerbation demonstrates the 
adaptability of the system to new 
data types. 

A patient specific data set of lung 
Six Month Set To validate the system using a 

function and air quality was 
6 6.8 of Patient Lung 

significant data set taken directly recorded over a six month period. 
Function and om the problem domain. from 

data sets were then analysed 
Air Quality using the EMS and conclusions 

drawn. 

Norma- 
l i 

Normalised, 
Real Lung To test the response of the system 

l i h d i Normalised delay characteristics isat on 6.9 Function & Air ng de ay c aracteristics er ved us analysed. are Test Quality during test 3, once normalised 

Validation of the EMS began with a test to illustrate how Feature Detection Analysis 

(FDA) is capable of identifying key features in lung function and air quality under normal 

conditions, and with data signals where there was noise corruption. 
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6.2 Validating FDA With a Signal Containing Noise 

6.2.1 Creation of a Control Data Set 
The control data set, which originated from a real lung function (Peak Expiratory Flow) 

data signal (Crabbe et al., 2001) is indicated by yellow boxes in Figure 52 below. The FDA 

component analyses the actual data points within the time series (discussed in Chapter 5). 
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Figure 52 Visualisation by the EMS of the data set used as a 
control during the tests. 

Four data sets containing noise and based on the real lung function time series shown in 

Figure 52 were created (these are shown in Figure 53). The noisy sets were created using a 

Gaussian random function, amplified depending on the level of noise required. A final 

value was then produced by adding (or subtracting, if negative) the result from the control 

signal. This process was applied to each data point in the control series to produce the 

noisy time-series signals. 

6.2.2 Modelling Data Variation 
Air quality data values can vary due to the type of sensors used by the London Air Quality 

Network (LAQN, 2008). There is an estimated uncertainty of 5 to 7 percent for NOx at 

high concentrations. The LAQN, however, use a working uncertainty of ±10% for the 

measurements of NOx, NO2 and 03 due to operational factors that can influence the value 

of data readings. Patient data is also subject to variation as spirometry devices designed to 

measure lung function can vary in accuracy depending on the design of the device. Device 

accuracy is generally between ±2% to ± 10% (Cooper & Masden, 2000). 

The first validation procedure uses one control (a sample of lung function data from the 
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Medicate project) and four data sets modelled from the control set, to which noise has been 

added to simulate variation in the data set. The signal to noise ratios (SNRs) defining each 

of these data sets were chosen to reflect the nature of the underlying data. Using the 

maximum likely inaccuracy of ±10% leads to a variance that equates to a SNR of 

approximately 20dB using Equation 6.1 below; 

SNR(dB) = 20log, o 
Asi 

na/ 
Ano; 

se 

Eq. 6.1 

where Asignal and Anoi. 
se are the root mean square (RMS) amplitudes of each respective 

time series and Asignal represents the control data set. The RMS of a time series containing 

a collection of N values {xl, x2, ..., xN} is calculated using; 

N2 
xý2+x22+... +XN2 

Xrms Ný, xý N 
Eq. 6.2 

Where N is the number of values in the time series, and x, to XN are data values. 
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Figure 53 Control, and data sets with artificial noise. 
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A range of Gaussian random noise between 24dB and 1.5dß, (doubling each step) was 

added to the control signal (making four noisy data signals). The level of noise was chosen 

at 24dB in the first instance, to reflect minor inaccuracies in sensor response. Analysis of 
data obtained using automatic air quality monitoring sensors generally allows for ±10% 

error tolerance, which equates to approximately 20dB. The total noise applied to the 

control signal to create each of the four noisy time series signals was calculated using the 

signal to noise ratio (Equation 6.1). 

The figures below show the results of the FDA on the control and noisy sets of lung 

function data created using additive noise levels of between 24dB and 1.5dB, where the 

noise interference on a signal is greater at a lower ratio value (e. g. 1.5dB). The 

identification sensitivity value used was the arbitrary value of 70%. The analysis includes 

all reference datums (marked in red) found in the analysis, the option to disregard values 

that are below a certain threshold value has not been used. The lines in green show the 

linear regression trend through each graph section (data peak to trough points; between red 

reference datum markers). The control data set has been presented twice (Figures 54 & 55) 

so a comparison with the sets containing noise can be made by examining the data in each 

column, from top to bottom. 
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Figure 59 Control data set with additional 
noise at a Signal to Noise Ratio of 1.5dß - 

Set 4 

Figures 54 to 59 show data sets with Gaussian random noise, where the standard deviation 

(in L/m) of each test set is n, =0.9, n2=1.8, n1=3.1, and n4=5.4, the control data set has a 

standard deviation of 0.8. There is 69% correlation between the control and data Set 1. The 

remaining three sets have 25%, 17% and 11 % correlation to the control data set. Sets I and 

2 both show datums around the 12`h and 13'h of the month, while set 3 correctly locates the 

identified reference datum from the control set on the 15". Sets 1,2 and 3 all locate the 

datum on the 13 ̀h (12`x' 22: 00) of the month. 

Since the level of noise a'working system' would be expected to analyse (based on a ±10% 

reading error) is NO, the reduced accuracy resulting from the noisy data would not be a 

significant problem within the system. A reduction in accuracy is minimised by validating 

the delay characteristics produced from the identified reference datums over iterations of 
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the neural network. Once the lung function reference datums have been identified, the next 

stage in the process is to extract air quality data relating to the patient's location and time as 

they move from location to location. The identification components then act as validation 

methods to verify the extracted delay characteristics over time. The results of these 

components are demonstrated by the tests during the next sections. 

6.3 Trends Monitored Across National Air Quality Stations 
Pollution data recorded across the UK is used to identify pollution episodes that affect 

several regions of the country. Figure 60 shows an example of an increase in particulate 

matter first identified in Liverpool, then Birmingham, and then approximately 10 hours 

later recorded by the London (Bloomsbury) air quality monitoring station. 

Trends at Liverpool, Birmingham & London 
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Figure 60 Multi-region pollutant episodes. A time delay of approximately 10 hours is 
shown between Birmingham and Bloomsbury particulate matter (PM,,, ) levels. 

Identification of the occurrence of air quality episodes in this way shows that it is possible 

to track an episode from one air quality monitoring station to another. It should also be 

noted that it shows that pollution trends can be tracked over significant distances. These 

factors demonstrate the robustness of monitoring air quality, and support the requirements 

of the EMS, to be able to track patient specific air quality. In the example shown in Figure 

60 it can be seen that a patient based in central London experiences a greater amount of 

background particulate matter compared to the readings taken in Birmingham, but 
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experiences comparative peak readings, although after a delay of approximately 10 hours. 

This is fundamental, as the time of day that a patient experiences the high levels of air 

pollution are varying, and therefore could stimulate different health outcomes. 

6.4 Characteristics of London Air Quality Monitoring Stations 

Several air quality monitoring stations from the London Air Quality Monitoring Network 

were analysed to find the types of pollutants recorded with greatest frequency. The analysis 

was undertaken to ascertain the probability of each pollutant occurring at the selected 

monitoring station, and demonstrate the differences between them. The analysis was 

achieved through the use of cumulative frequency distributions. The resulting graphs show 

the probability of a pollutant occurring, given a monitoring station and value of queried 

pollutant. 

Figure 61 below shows the cumulative frequency distribution of carbon monoxide for four 

air quality monitoring stations. The graph for the Marylebone air quality monitoring station 

(in Figure 61) shows that it is more probable for a level of carbon monoxide over l, ug/m; to 

occur at Marylebone than at Hillingdon, Brent or North Kensington. This is due, in part, to 

the roadside location of the monitor. It is important to note that monitoring sites in towns 

are classified as roadside, urban and urban background, and that urban is the most 

representative of personal exposure. 

Figures 62 - 66 show distributions for NO, NO2,03, SO2, and PM10 respectively. 
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Figure 61 A sample of London air quality Figure 62 A sample of London air quality 
monitoring stations and the probability ofmonitoring stations and the probability of 
carbon monoxide occurring at each one, nitric oxide occurring at each one, against the 
against the value of pollutant. value of pollutant. 
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Figure 63 A sample of London air qualityFigure 64 A sample of London air quality 
monitoring stations and the probability of monitoring stations and the probability of 
nitrogen dioxide occurring at each one, ozone occurring at each one, against the 
against the value of pollutant. value of pollutant. 
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Figure 65 A sample of London air quality Figure 66 A sample of London air quality 
monitoring stations and the probability of monitoring stations and the probability of 
sulphur dioxide occurring at each one, particulate matter (PM,,, ) occurring at each 
against the value of pollutant. one, against the value of pollutant. 

6.5 Test 3- Real Lung Function and Air Quality 
Test 3 uses a small sample of real lung function data obtained during the Medicate (2000) 

trial and air quality from an automated monitoring station to demonstrate the system's 

capability to recognise verifiable delay characteristics with real life data. The air quality 

data was chosen for a period of time around the trial from a local monitoring station, but is 

not related to the patient's movements. The time axis of the air quality data series has been 

re-dated in order to fix a result and test the affect of a real dip in lung function against a 

real air quality peak and demonstrates how the EMS recognises this. 

The graphs showing the air quality (PM, o) and the lung function (PEF) data used for the 
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test are shown below in Figure 67. Note that the real lung function data (represented by the 

scattered pink boxes) is taken at irregular intervals, and as such are unable to be drawn as a 

joined series. 

PEF and PMIO Real Data Series 
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Figure 67 Showing real air quality and lung, function data, matched so that a peak in air 
quality coincides with a decline in lung function. 

The two data sets shown in Figure 67 were presented to the FDA module. The FDA results 

are shown for both the PEF and PM, o data sets in Figure 68. The analysis identified four 

reference datums from the peak expiratory flow data set (represented by the red lines) 

leading to a decline in lung function. The figure shows PM, o data extracted from the 

database matching the time and location of the PEF data. The PM10 time series used during 

the extraction of delay characteristics ends at the point of the last identified PEF datum; as 

the analysis is looking at the affect of historical delay characteristics rather than including 

an element of prediction (taking into account any reference datums that are identified after 

the onset of the asthma episode). 
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Figure 68 Lung function (PEF) and air quality (PM, (, ) data set analysis, 
using FDA at a sensitivity of 70%. 

All possible permutations of delay characteristic drawn from the two data sets shown in 

Figure 68 are displayed in the table below as vectors, including date, value and lag time. 

All the vectors were presented to both the cluster analysis and neural network components 

for further analysis. 
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Table 13 Delay characteristic permutations, shown as vectors (one per 
row). Parameters for the data type, date of potential air quality predictor, 

the physical value of data, and the lag time before the decline in lung 
function occurs 

Vector# Data Type Date Value Lag 

1 PM 10 Sun Jan 09 01: 00: 00 GMT 2000 47 2days 23 hrs 
2 PM 10 Sun Jan 09 0 1: 00: 00 GMT 2000 47 4 days 
3 PM 10 Sun Jan 09 01: 00: 00 GMT 2000 47 5 days 2 hrs 
4 PM 10 Sun Jan 09 01: 00: 00 GMT 2000 47 6 days 
5 PM10 Mon Jan 10 11: 00: 00 GMT 2000 32 1 day 13 hrs 
6 PM 10 Mon Jan 10 11: 00: 00 GMT 2000 32 2 days 14hrs 
7 PM 10 Mon Jan 10 11: 00: 00 GMT 2000 32 3 days 16 hrs 
8 PM10 Mon Jan 10 11: 00: 00 GMT 2000 32 4 days 14 hrs 
9 PM 10 Mon Jan 10 19: 00: 00 GMT 2000 27 1 day Shrs 
10 PM 10 Mon Jan 10 19: 00: 00 GMT 2000 27 2 days 6 hrs 
11 PM 10 Mon Jan 10 19: 00: 00 GMT 2000 27 3 days 8 hrs 
12 PM10 Mon Jan 10 19: 00: 00 GMT 2000 27 4 days 6hrs 
13 PM10 Tue Jan 11 16: 00: 00 GMT 2000 32 8 hrs 
14 PM 10 Tue Jan 11 16: 00: 00 GMT 2000 32 1 day 9 hrs 
15 PM10 Tue Jan 11 16: 00: 00 GMT 2000 32 2 days 11 hrs 
16 PM10 Tue Jan 11 16: 00: 00 GMT 2000 32 3 days 9 hrs 

17 PM 10 Wed Jan 12 19: 00: 00 GMT 2000 45 6 hrs 
18 PM10 Wed Jan 12 19: 00: 00 GMT 2000 45 1 day 8 hrs 
19 PM10 Wed Jan 12 19: 00: 00 GMT 2000 45 2 days 6 hrs 
20 PM 10 Thu Jan 13 14: 00: 00 GMT 2000 84 13 hrs 
21 PM 10 Thu Jan 13 14: 00: 00 GMT 2000 84 1 day 11 hrs 

The test does not include the Date parameter as part of the FBCA and neural network 

analysis to show the effect of analysing the lag and value attributes only. The parameters 

used for the FBCA are shown in Figure 69 below. The bucket sizes used for the cluster 

analysis are shown as 12pg/m3 for PM, o parameter values, and 5hrs (18000000 

milliseconds) for lag. The size of bucket is also known as the sampling period. 
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Figure 69 Using value and lag parameters (and excluding dote). The figure above shows 
Boundary Analysis (using the FDA technique) locating the clusters by identifying the peaks 
and troughs of the Frequency Analysis. Troughs are marked with black lines, and the peaks 
with reel 

Figure 69 shows the results of the frequency analysis on the test data set. Three value 

clusters and eight lag clusters have been identified (the boundaries of each denoted by the 

black lines). The graphs represent the frequency of the parameter given in the ID column 

of the table, the bucket width for the PM10 Value parameter (set at 12µg/m3) can be seen in 

the Raw Data column of the figure where the PM 10 value, raw data tally pairs are spaced 

by 12, ug/m3 from each other (pairs are separated by a comma). The PMIO Lag is 

represented in a similar way. The y-axis represents the frequency of the delay characteristic 

parameter (PMIO Value or PMIO Lag) that correspond, and are recognised by each bucket. 

The sensitivity value governs how the FDA identifies the peak and troughs of the resulting 

data and is arbitrarily set at 70% (discussed during Chapter 5). 

The choice was made to analyse the effect of the value and Lag characteristics and ignore 

the Date of the identified air quality points, this means that the found cluster permutations 

will not be date specific and can be applied to any future event, for example (as Cluster 4 

suggests in the tables below) when the level of PM, o is in the range 27 to 32, ug/m3, there is 

an increased likelihood that an asthmatic will experience a decline in lung function 

between 1 days 5 hrs to 1 days 13 hrs, and 2 days 6 hrs to 2 days 14 hrs time for example. 
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These ranges will be verified through continued validation (represented as hits) of the 

delay characteristics by the component. The hits recognised by each cluster are recorded 

and can be analysed further to determine a more precise measurement and statistical result. 

The clusters identified, and the number of hits for each cluster are set out in Table 14 

below. 
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Table 1 

number 

Cluster# 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

4 1Uhic' range s cuº'Cr"c'r! 11V each c"ltr, sier, an d 1/ur 
of delay chara cteristics (hits) recognised b y each 

PMIO Value PMIO Lag "its 
NS /m' 

0- 33 -1 hr - I day 0 hrs 1 

33 -69 -1 hr I day0hrs 1 

69 - 93 -1 hr - I day 0 hrs 1 

0- 33 1 days 0 hrs -2 days 1 hr 3 

33 - 69 1 days 0 hrs -2 days 1 hr 1 

69 - 93 1 days 0 hrs 2 days 1 hr 

0- 33 2 days 1 hr - 2 days 16 hrs 3 

33 - 69 2 days 1 hr - -2 days 16 hrs 1 

69 - 93 2 days 1 hr - 2 days 16 hrs 

0- 33 2 days 16 hrs -3 days 2 hrs 

33 - 69 2 days 16 hrs -3 days 2 hrs 1 

69 - 93 2 days 16 hrs 3 days 2 hrs 

0- 33 3 days 2 hrs -3 days 17 hrs 3 

33 - 69 3 days 2 hrs -3 days 17 hrs 

69 - 93 3 days 2 hrs -3 days 17 hrs 

0- 33 3 days 17 hrs -4 days 8 hrs 1 

33 - 69 3 days 17 hrs -- 4 days 8 hrs 1 

69 - 93 3 days 17 hrs -- 4 days 8 hrs 

0- 33 4 days 8 hrs -4 days 18 hrs 1 

33 - 69 4 days 8 hrs -4 days 18 hrs 

69 - 93 4 days 8 hrs -4 days 18 hrs 

0- 33 4days 18hrs -- 6days 0hrs 

33 - 69 4 days 18 hrs -6 days 0 hrs 2 

69 - 93 4 days 18 hrs 6 days 0 hrs 

The contents of the most verified clusters, Clusters 4,7,13 and 23 are detailed below. Each 

cluster shows the delay characteristics that have been recognised by the highlighted cluster. 
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Table 15 Most verified clusters 

Cluster 4 

PMIO Value 
(/W/m ) pM10 Lag 

Hit 1 27 1 days 5 hrs 

Hit 2 32 1 days 9 hrs 

Hit 3 32 1 days 13 hrs 

Cluster 13 

PM10 Value 
, MIMI 

PM10 Lag 

Ilit 1 27 3 days 8 hrs 

Hit 2 32 3 days 9 hrs 

Ilit 3 32 3 days 16 hrs 

Cluster 7 

PM10 Value 
(Wm) PMIO Lag 

Hit 1 27 2 days 6 hrs 

Hit 2 32 2 days 11 hrs 

Hit 3 32 2 days 14 hrs 

Cluster 23 

PM10 Value PMIO Lag 
(ýºa 

Hit 1 47 5 days 2 hrs 

,, it 2 47 6 days 

The result of the neural network analysis after 200 iterations of the input data set are 

summarised in the table below. The weight values show the recognised PM, o value and lag 

time. 

Table 16 Summary of each neuron's weight vector. 
The PM1o value and lag time before lung function 

(PEF) decline is shown 
Neuron ID PMIO (ß/m) Lag rime (to trigger) 

Ni 39.5 4 days 3 hours 

N2 41.5 1 day 11 hours 
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The two neurons featured in Table 16 can be compared with the original input vectors 

presented to the neural network (Table 13), and the original data sets in Figure 67 where 

the results of the FDA are shown. Inspection of the graphs in Figure 67 and identification 

of reference datums crossing the data series at 40pg/m' (Figure 68) or above confirm the 

viability of the lag time, to possible trigger identified by the neural network. A recent 

directive from the European Union (EU, 2008) prescribes an average reading of 50pg/m' 

for particulate matter (PM, o) over a period of 24 hours (which is permitted 35 times per 

year), and an average of 40pg/m3 over a year as a guide for avoiding adverse health effects. 

This is in line with the identified values. The result where four neurons have been used 

during the analysis is given below. 

Table 17 Summary of each neurons weight 
vector when four neurons are used in the 

neural network 

Neuron ID PMIO ((/m') Lag rime (to trigger) 

NI 37.9 2 days 18 hours 

N2 38.6 4 day 3 hours 

N3 44.0 1 day 0 hours 

N4 41.7 5 days 14 hours 

The results of the neural analysis in Table 16 above, show a network employing two 

neurons. The neurons have identified the euclidean best fit for the data set, providing a 

representation of the data; comparing with the cluster permutations (shown in Table 14) it 

can be seen that the two neurons have located two areas, centred around clusters 5 and 17. 

Representation of the data is significantly improved with the use of four neurons 

(Table 17). A comparison with the results of FBCA (Table 14) shows that similar data 

clusters have been identified. Neuron 1 identifies similar data sets to those which have 

been classified by cluster 11; 2 is similar to cluster 17; 3 similar to cluster 2; and 4 is 

similar to cluster 23. It should be noted however that the clusters identified by the neural 

network are not necessarily those clusters which identify the most hits. 

FBCA has identified the clusters which received the most hits as being clusters 4,7,13, 

and 23. While the neural network identified cluster 4, the other nodes identified were not 

those which were the most significant. This result is affected by the number of neurons 
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available, and the order in which data is submitted to the network. 

6.6 Test 4- Multi Parameter 
The EMS has been designed to handle analysis requiring multiple parameters. For 

example, to identify whether or not a particular combination of particulate matter and 

ozone contributes to a patient's asthma episode. To simulate this requirement this multi- 

parameter test introduces a second parameter, to test the system's capability to recognise a 

pattern containing more than just a single time series or connection between single 

parameter types. 

The data sets for lung function and the two air quality parameters are shown in Figure 70 

below. It should be noted that the data used for a substitute second air quality parameter is 

actually an identical data set to the lung function time series. This has two purposes: to 

prove that the EMS is capable of using different data types as input to the system, and to 

test the ability of the system to recognise instantaneous effects on health from air quality. 
The test should identify a direct correlation between the air quality and the lung function 

data for the second parameter. The result will be shown by a lag time of 0 for the delay 

characteristic. 
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Figure 70 Lung function data and two data sets used for air quality data. The 
identified reference datums are shown in red. 

Following the analysis shown in Figure 70 above, 131 delay characteristics were extracted 

between the three data sets; from the reference datums belonging to the lung function and 

two air quality parameters. Frequency and Boundary analysis identified 21 possible cluster 

permutations from analysis of the delay characteristics. 

The following FBCA settings were used during the analysis: 
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Table 18 A summary of the Boundary Analysis parameters 
used for Test 4. All parameters were analysed using a 
frequency sensitivity of 70%. 

Air quality 
Parameter 

CO - Value 

CO - Lag 

CO - Date 

Frequency 
sensitivity% 

70 

70 

70 

Bucket Size 

2 ppm 
33mins 

8hrs 30min 

The bucket sizes used for each parameter influence the level of detail with which FBCA 

analyses the data. The smaller the bucket, the smaller the cluster widths will be (also 

dependent on the spread of the data). Once the Boundary Analysis has been completed, all 

air quality delay characteristics are presented and recorded by the clusters as hits, thus 

verifying the clusters. Both the results of FBCA and the analysis with the neural network 

are shown below. 
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Table 19 Validated clusters after frequency analysis. The clusters shown here have 
recognised the largest number of delay characteristics, identified during the FDA as 
reference datums (identified in Figure 70). 

Clusters 

Cluster 
# 

Air Quality I 
Value (ppm) 

Air Quality 2 
Value (ppm) 

Air Quality I 
Lag (hrs) 

Air Quality 2 
Lag (hrs) Iltis 

1 (1.0 -15.0) (1.0 -13.0) (4hrs -5.25hrs) (-Ihr -3 hrs) 4 

2 (1.0 -15.0) (1.0 -13.0) (5.25hrs - Ihrs) (-l hr- 3 hrs) 4 

3 (1.0 -15.0) (1.0 -13.0) (Ihrs - 12 hrs) (. I hr -3 hrs) 4 

4 (1.0 - 15.0) (1.0 - 13.0) (12 hrs - 14.5 hrs) (-Ihr -3 hrs) 4 

5 (1.0 - 15.0) (1.0 -13.0) (14.5 hrs - 16hrs) (-Ihr -3 hrs) 4 

-1ý 

-qý 

-p 

-r. 

-4ý 

-ý 

Cluster Contents (flits) 

Value I Value 2 Lag 2 
Lg 1 (hrs) (hrs) (PPM) (PPM) 

53S hrs 0 

S3 Shrs 2hrs 

5 4.8 S hrs 0 

55 5hrs 0 

8 5 6hrs 0 

8 3 6hrs 0 

8 3 6 hrs 2 hrs 

8 4.8 6 hrs 0 

8 5 8hrs 0 

8 3 8hrs 0 

8 3 8hrs 2hrs 

8 4.8 8 hrs 0 

4 5 13hrs 0 

4 5 13hrs 0 

4 3 13 hrs 0 

4 3 13 hm 2hrs 

5 5 15hrs 0 

5 3 15 hrs 0 

5 3 15 his 2 hrs 

5 4.8 15 his 0 

5 5 19 hrs 0 

5 5 19 hrs 0 

5 3 19 hrs 0 

5 3 19 hm 2 hrs 

4 3 19 his 0 

4 3 19 hrs 2 hrs 

4 4.8 19hrs 0 

4 5 19 hrs 0 

Clusters containing the largest number of hits (verified as active clusters) are expanded 

above (on the right hand side of the table), to show the recognised delay characteristics. It 

can be observed that some of the Lag 2 times are zero. This is a result of using the lung 

function (PEF) data as the second air quality data set (Air Quality Parameter 2). The zero 

reading identifies when a reference datum in both (lung function and air quality) data sets 

coincide. 

The value ranges for both parameters are the same in all six (shown) verified clusters. This 
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depicts a uni-modal distribution as the range spreads from the minimum to maximum 

values presented within the data set. Six ranges were identified (and verified) for 

Parameter 1 Lag, each range covering lag values progressively increasing in length. 

Parameter 2 Lag values however, all fell between -1 hrs and 3 hrs; which confirms correct 

identification of the identical data set used for the air quality (Parameter 2). The method 

also indicates success in recognising instantaneous effects. 

The neural network component was activated with the same data set, using 4 neurons. The 

result is shown by the table below. 

Table 20 Result of the neural network using 4 neurons. The results for the 
Value and Lag parameters are shown for both air quality types (param 1 

& param 2) 

Neuron ID I Value 1 (ppm) I Value 2 (ppm) I Lag 1 (hrs) I Lag 2 (hrs) 

7.2 4.2 7.2 0.4 
NI 

5.9 4.0 13.0 0.5 
N2 

5.9 3.9 11.1 0.5 
N3 

5.9 3.9 11.1 0.5 
N4 

The Lag 2 delay has been recognised by the neural network to be half an hour, which is 

close to an instantaneous effect. This close match is due to the neural algorithm oscillating 

between 0 and 2 hours. The neural network behaves in this way due to each neurons 

neighbourhood not being tuned to a particular range before learning, and therefore 

adjusting to the occurrence of new data as it is presented to the network. 

6.7 Hospital Admissions due to Respiratory Episodes 
Data collected during the Medicate project was typically recorded over a period of two 

weeks, and once a patient had been admitted to hospital. This method meant that analysis 

was performed on data covering periods where patients were recovering from acute asthma 

exacerbations, rather than before and during a decline in their respiratory health. 
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The EMS focuses analysis of data to outliers which means that the quantity of data 

available for analysis from a normal time series data set is reduced, which improves 

scalability, but also means that data set lengths are required to be considerably larger than 
if traditional statistics were used. As yet the length of time series data required to 

successfully identify predictors of asthma exacerbation is unknown. However it was found 

from the Medicate (2000) project that a data set relating patient respiratory health to the 

environment was required that covered a period significantly greater than two weeks. 

6.7.1 Testing the Hospital Admissions Data with Correlation 
Data sets relating to UK respiratory episodes are held by The Information Centre for health 

and social care "The IC", but are restricted to hospital admissions data. Historical records 

for hospital respiratory episode admissions were obtained from The Information Centre 

(2007) in the form of their Hospital Episode Statistics. The data obtained covered a period 

of one year, from 1 gt April 2005 to 31$` March 2006, and was used as a substitute to 

personal lung function data. This approach had two advantages in testing the EMS: 

1) The data was readily available across a wide sample of the population. 
2) The use of a data set outside the problem scope, demonstrated the application of the 

EMS architecture to a wider range of problems. 

The hospital admissions and associated air pollutant data was first analysed using the 

traditional technique of correlation, in order to identify relationships that would formerly 

have been identified between poor air quality and the hospital admissions data. The 

technique included time lag analysis of the correlation coefficient (discussed during 

Section 1.1.2). The investigation used the values of daily maximum air pollutants 
determined across all the local air quality monitoring stations relevant to the study; a 

similar technique was used during the Medicate project (Crabbe et al., 2004). 

Figures 71 and 72 show the results of the correlation study in which patient hospital 

admissions due to asthma were correlated against the maximum daily pollution levels, 

which had occurred within the fifteen days prior to the date of admission. The analytical 

period of fifteen days was chosen as an arbitrary value, 50% longer than the period defined 

by previous research (Lebowitz, 1996) to include possible outliers. 
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Figure 71 Correlation coefcients, depicting the correlation between maximum air 
pollutant readings and hospital admission episodes, for a period of 15 days before 
hospital admission. 
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Figure 72 Correlation coefficients, depicting the correlation between maximum air 
pollutant readings and hospital admission episodes, for a period of 15 days before 
hospital admission. 

The graphs shown above in Figures 71 and 72 indicate the relationships between the 

various pollutants and delay before admissions due to respiratory episodes. The first peak 

(with the lowest lag time) for each pollutant are shown in Table 21. 
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Table 21 Lag time before first hospital admissions 
Pollutant Lag (days) 

Carbon Monoxide 7 

Nitric Oxide 4 

Nitrogen Dioxide 6 

Ozone 4 

PM2. s 2 

Sulphur Dioxide 3 

NOx 4 

PM10 5 

These results however were not significant enough to establish a relationship between air 

quality and hospital admissions due to asthma. The highest level of confidence (R) 

equalled 8.9%. However, the results did confirm previous research values for the lag effect 

of air quality on the asthmatic (Lebowitz, 1996). 

6.7.2 Testing the Hospital Admissions Data with the EMS 

Following the correlation analysis in Section 6.7.1, the objective for this test was to 

examine the timing of peak air quality values. A ten day period prior to peaks in the 

number of hospital admissions was chosen for analysis according to the previously 

confirmed period of lag (Table 21, and Lebowitz, 1996). The EMS was then used to 

analyse this period, which was confirmed using standard statistics to indicate the 

probability of the result. A total of 108 peak admission points were identified during the 

twelve month period (1 B` April 2005 to 31 B` March 2006). 

Using FDA to analyse air quality data over a period of 10 days prior to the 108 admission 

points, (an example of which is shown in Figure 73) a number of peaks (and troughs) were 

identified. The identified peaks were then used by the Hypothesis Builder (described in 

Section 5.4) to derive a set of delay characteristics for further analysis by the EMS 

analytical components. 
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Figure 73 An example of FDA on an air quality data sample relating to a 10 
day period prior to a peak in admissions. The graph shows an hourly, 24 

hour segment, , 
from the 10 day sample. 

Before the delay characteristics were presented to the FBCA and neural network 

components a Chi-square test was undertaken using the identified peaks, and subsequent 
delay characteristics, to determine if their occurrence would happen by chance. During this 

test, it was assumed that if the distribution of the identified peaks was completely random 

and not associated with the number and dates of admission, there would be an equal chance 

of a peak occurring on any day during the ten day periods examined. That is, the expected 

number for each variable for each day would be 10.8 peaks (from 108 peak admission 

points over ten days). A data sample and associated maximum readings are illustrated 

below. For example, there were 15 peaks in carbon monoxide, 9 days prior to a hospital 

admission. 

Table 22 Frequency of air quality peaks prior to a hospital admission. The maximum 
frequency of readings for each parameter is highlighted in yellow 

Days Prior to Carbon Nitric Nitrogen Ozone PM2.5 Sulphur NOx PM10 
Admission Monoxide Oxide Dioxide Dioxide 

10 6 11 11 12 12 13 10 12 

9 15 11 13 10 5 11 13 8 

8 10 7 7 13 11 12 5 10 

7 10 12 7 8 9 13 10 11 

6 13 18 16 12 15 11 18 13 

5 15 12 13 12 11 10 13 7 

4 8 9 15 5 8 13 10 14 

3 10 10 7 14 15 12 11 13 

2 12 7 10 12 12 6 7 15 

1 9 11 9 10 10 7 11 5 

Total combinations 108 108 108 108 108 108 108 108 
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To provide a comparison for the EMS (neural network component), average values for 

each monitored air quality parameter, for each lag day prior to a hospital admission peak 

where derived from the time series data. The values found from this analysis were average 

maximum values, as the original analysis was undertaken using a data set containing peak 

pollutant values for each day. Table 23 shows the average maximum air quality values for 

each lag day prior to a hospital admission. 

Table 23 Average maximum values, for each parameter's air quality peak prior to a 
hospital admission. Those values that coincide with the maximum frequency of readings in 

Table 22 are highlighted in yellow 

Days Prior to Carbon Nitric Nitrogen Sulphur 
Ozone PM2.5 NOx PM 10 

Admission Monoxide Oxide Dioxide Dioxide 

10 3.0 491 273 93 54 41 974 155 

9 2.9 488 285 100 47 43 999 149 

8 3.0 417 294 101 65 48 786 153 

7 2.9 510 315 103 47 45 984 146 

6 2.9 434 274 95 58 30 917 173 

5 3.2 436 297 99 51 37 965 127 

4 3.2 573 302 109 57 47 1,164 167 

3 2.7 415 261 91 49 47 865 132 

2 3.5 479 322 112 63 45 1,092 167 

2.8 551 274 112 49 41 1,067 156 

108 multi-parameter vectors were presented to the neural network until the network had 

completed its learning period. The result of the network, which completed containing four 

neurons is shown in the two tables below. The first table shows the results for the lag 

component, and the second, the value of the parameter. 
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Table 24 Results from the lag analysis of air pollutant data sets related to peaks in 
hospital admissions (in days) 

Neuron CO NO NO2 03 PM2. s SO: NOx 

Ni 4.26 5.52 5.50 5.66 6.12 7.42 4.65 

N2 5.04 5.66 5.51 4.95 4.24 7.23 6.27 

N3 5.77 4.22 5.49 4.92 4.97 6.60 5.12 

N4 5.04 5.54 5.62 5.19 3.98 4.34 4.21 

5.82 

5.69 

3.571 

3.01 

Table 25 Results from the value analysis of air pollutant data sets related to peaks in 
hospital admissions (in pg/m3 except CO mg/m') 

Neuron CO NO NO2 03 PMLS SO2 NOx Mo 

Ni 3.1 527 300 105 57 44 1,045 109 

N2 
3.0 416 281 99 54 44 831 144 

N3 3.0 496 288 99 54 42 983 150 

N4 3.1 435 288 100 55 41 944 147 

A comparison of neural network results in Table 24 and 25 against peak air quality 

episodes prior to a peak in hospital admissions (Table 23) is shown by Table 26 below. The 

results of the neural network's four neurons are overlaid onto the grid (of Table 23), with 

cells with green borders being representative of the specific lag days prior to a peak in 

hospital admissions where the highest frequency of poor air quality was identified. Cells 

with a green border and grey background, are representative of a peak in hospital 

admission frequency, where the neural network has failed to identify the lag characteristic. 

Numbers within square brackets represent the number of neurons that identified the lag 

day, while the unbracketed figure is the average value of the air quality parameter 

identified by the neural network at that point in time. 
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Table 26 Showing the results of the neural network against 
the maximum occurrences of input data (Table 23) 

Days Prior Carbon Nitric Nitrogen Ozone PM2.5 Sulphur 
NOx PM 10 

to Admission Monoxide Oxide Dioxide Dioxide 

10 

9 

8 

7 43 [3] 

6 3.0111 459 [3] 290 [31 1 105 [11 57 [I] x31 [I] 127 [2] 

5 3.1 [3] 28811J 54 [I] 1014 [2] 

4 496 [I] 55 [2] 41 [I] 944 [I] 150 [I] 

3 147 [1] 

2 

1 

i 

From the table above it can be observed that the neural network has failed to identify a 

number of periods attributable to a peak in hospital admissions, (depicted by grey cells 

with green borders). This is due to the self-organising algorithm used by the network 

converging on to a solution fitting the multi-parameter vector, rather than each parameter 

individually. The network has identified several features found by earlier analysis of the 

data, in particular carbon monoxide at a value of 3.1 mg/m' at 5 lag days, nitric oxide 

459pg/m3 and nitrogen dioxide 290, ug/m3, both at 6 lag days, and 43pg/m' sulphur dioxide 

at 7 lag days. This result would allow an alert to be generated 5 lag days before a peak in 

hospital admissions, if the values of each air quality parameter were higher than those 

being monitored by the network. Using the Chi Square test and frequency data from 

Table 22 this would have a 2.46% probability of happening by chance, purely taking into 

account the recognition of the lag component. 
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6.8 Analysis of a Six Month Set of Lung Function and Air Quality 

To validate the EMS using a real respiratory data set, a further data set was collected. A 

lung function and patient specific air quality data set was collected over a continuous six 

month period between July 2007 and February 2008. An asthmatic patient was enrolled, 

and issued with an electronic lung function measuring device, a PiKo-1 (Ferraris 

Respiratory Europe; Hertford, UK) for them to monitor their respiratory condition. The 

PiKo-1 recorded the patient's maximum lung function reading given within a3 minute 

period. The patient was asked to undertake a minimum of three respiratory manoeuvres 

during this time to ensure a reliable peak reading was obtained. Within the trial period, the 

patient experienced a decline in respiratory condition serious enough to seek medical 

attention. As a result of their decline in respiratory health (between the 15'h September and 

5`h October 2007), the patient changed their medication (according to clinical advice) 

which is shown within the results. 

The charts below (Figures 74 and 75) show the full six month data set belonging to Patient 

A, for Peak Expiratory Flow (PEF) and Forced Expiratory Volume in one second (FEVI). 
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Figure 74 Six month peak expiratory flow - data sample (from Patient A9), . baiting a 1-, 
day moving average in black. 
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figure 75 Six month Forced Expiratory Volume in I second - data sample Iroin Patient 
A), showing a 12 day moving average in red. 

Figure 75 clearly shows the period of respiratory decline where clinical advice was sought, 

centered around 20th September. The period is marked by a drop in Forced Expiratory 

Volume (in one second) from 3.8 to 3.4 litres. A 12 day moving average of FEV, diurnal 

variability remained constant during the six month period, fluctuating between I and 6%. 

Diurnal variability of PEF (also using a 12 day moving average), declined gradually over 

the six month measurement period, where peak daily variability reduced from 15 to 8%. 

The graph below shows the PEF Lung Function data for Patient A. During the period 

15/09/2007 to 05/10/2007 where Patient A suffered a significant deterioration in lung 

function. Patient A's lung function is shown below using a 12 day moving average. 
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Figure 76 Sample showing a decline in respiratory condition for Patient A, between 
August 16th and October 25th 2007. 

The raw Peak Expiratory Flow data was analysed with Feature Detection Analysis to 

obtain reference datums. The analysis is shown in Figure 77. 

A sample of raw PEF data from Patient A is shown alongside locations of monitored 

environmental pollutants in Table 27. Peak expiratory flow readings were recorded by the 

patient using a portable electronic monitoring device, which recorded the reading 
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Figure 77 Identified reference datums from the raw data sample of 126 patient PEP 

readings. The four reference datums are marked with red vertical lines, while the trend of 
the data is shown in green. 



(peak/best of three) as well as the date, time, and associated forced expiratory volume in 

the first second of breath. Readings of pollutant levels found at the closest air quality 

monitoring station were then obtained, and combined with the respiratory data set, from 

diary information supplied by the patient. 

Table 27 PEF data sample for Patient A, and the 
closest air quality monitoring station at the time of 

reading 

Closest PEF Lung 
Date Time Monitoring Station Function (L/m) 

14/08/07 1: 00 Brent 520 

14/08/07 13: 00 Brent 513 

14/08/07 19: 00 Brent 462 

15/08/07 1: 00 Hillingdon 520 

15/08/07 12: 00 Hillingdon 505 

16/08/07 1: 00 Brent 549 

16/08/07 12: 00 Brent 470 

16/08/07 16: 00 Brent 513 

16/08/07 20: 00 Brent 520 

17/08/07 14: 00 Hillingdon 513 

17/08/07 19: 00 Hillingdon 571 

17/08/07 23: 00 Hillingdon 520 

18/08/07 11: 00 Hillingdon 520 

18/08/07 15: 00 Hillingdon 520 

19/08/07 1: 00 Hillingdon 505 

19/08/07 8: 00 Hillingdon 549 

19/08/07 17: 00 Hillingdon 513 

20/08/07 11: 00 Brent 477 

20/08/07 14: 00 Brent 520 

20/08/07 20: 00 Brent 499 

21/08/07 1: 00 Brent 499 

21/08/07 11: 00 Brent 513 

21/08/07 17: 00 Brent 513 

22/08/07 1: 00 Hillingdon 527 
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Air quality reference datums were identified from air quality monitoring stations which lay 

closest to the location of the patient at the time of a respiratory reading. This data was used 

as the basis for calculating appropriate delay characteristics from the environmental data. 

Figure 78 shows air quality readings that were representative of Patient A's location. 
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Figure 78 Personal air quality und peak expiratory flow readings for Patient A. over a 
period of asthma exacerbation. 

Figures 79 to 81 illustrate a set of delay characteristics obtained from the ten day period 

prior to the PEF reference datum identified on the 27`h August (Figure 77). A graph is 

shown for three measures of air quality. The scale on the x-axis of the graphs have been 

reversed, so the scale reads from left to right The plot begins at -240 hours (ten days before 

the time of the lung function reference datum) and runs to the time of the datum (time 

zero). The graphs show all possible delay characteristics. The EMS is selective over which 

of these delay characteristics are identified, and taken forward for further analysis. The 

EMS selects reference datums from the air quality data sets and uses these to identify the 

relevant delay characteristics to analyse. 
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Delay Characteristics - IJtric Oxide 
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Figure 79 Graph showing the nitric oxide at varying lag times before the second PEF 
reference datum shown in Figure 77, on the 27' September. 

Figure 79 shows a concentration of possible delay characteristics between 50 and 150 

hours before the respiratory reference datum at 0 hours. Figures 80 & 81 are also given as 

examples of ranges that probable delay characteristics for carbon monoxide and NOX 

would fall within for the respective pollutant and associated patient. 
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Figure 80 Graph showing the carbon monoxide at varying lag times before the second 
PEF reference datum shown in Figure 77, on the 27th September. 
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Delay Characteristics - NOX 
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Figure 81 Graph showing NOx at varying lag times before the second PEF reference 
datum shown in Figure 77, on the 27th September. 

Figure 82 shows PEF lung function readings for Patient A, starting at 01: 00 hours on 13th 

August 2007. A pattern of normal respiratory health follows up until the 9th September. 

This sequence is shown to the left of the graph, in dark blue. 

The patient reported experiencing breathing difficulties on 10th September 2007, on 12th 

September and again on 19th September. Medical advice was sought on the 20 September 

2007 after which the patient's medication was increased. This sequence is shown in red. 

Then a period, between 21St September 2007 and 2nd October 2007 followed, in which the 

asthma condition was stabilised and medication dosage adjusted. This section of the 

sequence is shown in brown. The final part of the sequence, from 4' October to 22nd 
October 2007 shows a period returning to more normal health. 
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Patient A- Episode Sequence 
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Figure 82 Sequence of data showing an asthmatic episode ,f or Patient A. 

The tabulated data shown below relates to particular data points from each part of the 

sequence illustrated in the figure above. The columns show the level of air quality at the 

time and location of each patient lung function (PEF) reading. Each pollutant is set out in a 

section of the table. 

Rows within each section of the table refer to the number of days prior to a maximum air 

quality value. For example, the air quality readings in the first column occurred leading up 

until 02: 00 hours on 23 August 2007. The maximum level of carbon monoxide occurring 

during the ten day period prior to 02: 00 hours on 23rd August 2007, occurred six days 

earlier and registered 0.6mg/m'. The peak value for NOx was 183µg/m' and this occurred 

on the fifth day prior to 23' August 2007. Nitrogen dioxide peaked at 76pg/m' on the sixth 

day before 23`d August 2007. Nitric oxide at 83µg/m; on the sixth day before, ozone at 

82, ug/m3 one day before, PM, o at 38µg/m3 eight days before, and sulphur dioxide at 5pg/m' 

three days before. All these values are well within critical thresholds prescribed by the EU 

(2008). Values for PM, o and ozone are closest to reaching their respective threshold limits 

at 76% and 68%. It is important to note two factors when comparing these values. This 

research aims to: 

1) Identify predictors, and not causes of respiratory decline, and 

2) Develop an analytical process that is patient specific. 

Both these factors reduce the importance of threshold values designed for monitoring 

general populations. The important factor to consider is, if pollutant levels are capable of 

acting as predictors of respiratory decline or not, and triggering an alert. 
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Table 28 Sequence of delay characteristics using maximum air quality values 
- Stable Pariod (A) Ir crasaod PoUution -- - Adjoot hkdicotio. -y - Stabh P. tiod (D) 

oat* Point 
(dd1MM hh: mm) 23108 24108 24108 25108 03103 10103 12109 24103 21I03 30103 02110 04110 04110 06110 

02: 00 01: 00 15: 00 01: 00 17: 00 23: 00 07.00 17: 00 07: 00 22: 00 07: 00 06: 00 2300 01: 00 

PEFLag 535 571 491 543 556 433 433 405 426 426 448 556 470 532 
Fraction (Llminl 

Po4ietast Daya 

CO 1 0.5 0.2 0.2 1.6 0.3 0.9 0.3 0.2 0.5 0.6 1 0.8 0.1 

CO 2 0.2 0.5 0.2 0.2 0.1 0.6 0.3 0.7 0.2 0.2 0.5 0.6 1 0. a 

CO 3 0.2 0.5 0.5 0.9 0.1 0.6 1.3 0.2 0.5 0.6 0.5 1 

CO 4 0.5 0.2 0.2 0.6 0.3 0.3 1.6 0.5 0.2 0.2 0.6 0.6 0.5 

CO 5 0.5 0.5 0.3 2 0.8 0.7 L9 0.3 0.2 0.5 0.5 0.6 

CO 6 0.6 0.5 0.5 0.5 0.6 2 0.3 1.3 1.3 02 0.2 0.2 0.2 0.5 

CO 1 0.2 0.6 0.6 0.5 1. T 1.6 2 0.3 1.3 0.2 0.5 

CO 8 0.6 0.2 0.3 0.6 1.3 0.6 1.6 0.8 1.3 0.7 0.2 0.2 0.2 

CO 3 0.5 0.6 0.6 0.2 0.8 1.7 0.6 0.5 1 1 0.5 0.2 0.2 0.2 

CO 10 0.5 0.5 0.6 0.8 U 0.5 0.8 1.9 0.8 0.2 0.2 0.2 

NO,, 1 17 40 38 238 42 413 473 117 25 136 97 110 IST 165 

NO,, 2 2T it 40 40 131 155 131 210 48 53 138 118 ITS IS? 

NO,, 3 44 27 27 1T 432 131 413 538 38 25 103 71 to 11a 

NO,, 4 3T 44 27 27 223 432 42 766 117 2S 25 138 31 78 

NO,, 5 183 97 44 44 850 325 223 712 210 25 25 103 138 31 

NO,, 6 181 183 143 97 166 650 432 823 601 48 25 25 53 138 

NO,, 7 46 181 183 183 316 703 424 181 TT2 38 48 25 25 103 

NO,, 8 157 46 181 181 331 151 850 306 823 210 38 25 25 25 

NO,, 3 31 157 141 46 232 331 166 191 512 384 117 48 25 25 

NO,, 10 50 31 IST 157 40 232 337 348 308 166 210 32 48 25 

NO, 1 13 31 31 To 25 124 136 61 13 71 59 73 16 04 

NO, 2 23 13 31 31 84 80 80 63 36 2T T1 55 T3 T6 

NO, 3 36 23 23 13 101 78 124 122 32 21 40 S3 55 73 

NO, 4 32 36 13 23 73 107 25 201 61 21 21 TI S3 55 

NOt 5 63 32 36 36 ITS 96 84 233 T3 13 21 40 Ti 59 

NO, 6 76 63 67 32 6T ITS 10? 225 201 36 13 21 27 TI 

NO, 7 40 76 T6 63 97 114 122 18 233 32 36 21 21 40 

NO, 8 67 40 55 16 149 61 ITS 103 225 63 32 19 21 21 

NO: 3 27 67 67 40 103 149 6T 97 143 122 61 36 19 21 

NOt 10 31 27 61 6T 27 103 143 60 50 201 T3 21 36 13 

NO 1 5 6 8 149 13 188 224 36 4 44 25 69 63 T6 

NO 2 a 5 6 6 74 43 73 33 3 5 44 44 68 63 

NO 3 3 8 5 5 211 T4 189 268 4 4 41 13 15 63 

NO 4 43 a 8 a 93 211 11 380 36 5 5 44 25 15 

NO 5 TS 43 3 3 433 143 14 363 93 4 3 41 44 25 

NO 6 83 75 50 43 66 433 211 330 276 3 5 5 10 44 

NO 7 14 83 TS 75 165 354 136 78 380 4 9 4 4 41 

NO 8 66 14 83 83 168 53 439 139 390 33 4 5 S 4 

NO 3 3 66 53 14 123 168 66 85 235 176 36 a 4 5 

NO 10 14 3 66 66 11 123 168 186 133 380 33 3 3 4 

0, 1 82 66 56 60 82 S2 48 64 52 32 34 22 so 40 

0t 2 80 82 66 66 58 82 52 42 46 60 32 24 24 58 

0, 3 58 80 82 82 38 58 82 30 64 46 60 34 34 24 

0, 4 36 58 58 80 30 38 58 tE 50 48 42 32 30 32 

01 5 30 36 56 58 20 30 38 22 38 52 48 60 32 34 

Ot 6 60 30 36 36 42 20 30 24 14 46 52 42 60 32 

0, 7 52 60 30 30 48 42 20 36 18 64 46 48 46 60 

01 8 44 52 60 60 16 48 42 42 22 42 64 52 46 46 

0, 3 50 44 52 52 38 is 42 60 36 38 50 46 52 48 

0, 10 62 50 50 44 42 38 48 48 34 M 38 64 46 52 

WIN 1 30 34 25 40 2? 40 73 27 23 31 42 46 35 S2 

PM,, 2 26 30 34 34 43 43 40 36 25 25 31 60 60 35 

PM� 3 22 26 30 30 ST 43 43 68 25 26 25 42 41 60 

PM,, 4 22 22 18 26 34 sT 21 T3 27 42 26 31 42 41 

PM, 5 30 22 22 22 38 53 43 35 36 23 42 25 31 42 

PM,, 6 30 30 26 22 38 8T ST 81 73 25 23 26 25 31 

PM� 7 21 30 30 30 56 33 60 33 35 25 25 42 26 25 

PM� 8 38 21 22 30 43 38 33 43 at 36 25 23 42 26 

PM� 9 13 38 38 21 35 56 38 4T 69 68 27 18 23 42 

PM18 10 26 13 38 38 22 38 56 40 43 79 36 25 25 23 

50, 1 3 a 3 11 11 5 29 3 a 8 13 

SO, 2 3 3 3 8 3 5 23 3 8 8 

$01 3 5 3 3 13 3 11 8 3 3 3 3 a 
$02 4 5 3 11 16 16 3 3 23 3 3 

SOt 5 3 5 5 21 13 3 16 3 S 3 29 3 

$01 6 3 3 a 21 13 16 13 3 5 3 23 
SOt 1 8 3 3 3 8 16 13 3 16 5 3 3 

Sot 8 5 8 a 3 8 5 21 a 16 3 3 5 3 3 
70, 3 5 S 5 8 5 6 8 5 11 8 5 5 3 

Sot 10 5 5 5 5 3 5 a 11 3 16 3 3 3 5 

Table 28 shows an eight week sample sequence of data (taken from the six month data set). 

During Stable Period (A) it can be seen that the levels of pollution are significantly lower 

than in the period of Increased Pollution. For example, the Stable Period peak value for 
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carbon monoxide is 0.6mg/m' while in the period of Increased Pollution the peak value has 

increased to 1.7mg/m', and later, during the period of Adjustment has risen to 1.9mg/m', 

before returning to a maximum peak of 0.8mg/m' during Stable Period (B). Similar 

patterns are found for nitrogen oxide as nitrogen dioxide (NOx), where in Stable Period 

(A) the maximum level is 183pg/m?, rising to 850pg/m; during the Increased Pollution 

period, dropping to 823 pg/m3 in the Adjustment period, before reducing to 1 78 pg/m i in 

Stable Period (B). The results are summarised below by Table 29. 

A number of elements in Table 29 state two figures. The un-bracketed numbers refer to 

peak values within the sample shown in Table 28, while numbers shown in brackets refer 

to peak values recorded in the remainder of the data set. 

Table 29 PEF values within Patient A's six month personal air quality data set. 

Stable Increased Adjustment Stable 
Lung Function (PEF) Period (A) Pollution of Medication Period (B) 

Umin 

Maximum 636 585 578 621 

Minimum 462 433 405 448 

Average 527 523 486 532 

Standard Deviation 47 57 50 50 

Air Pollutant Maximum Values 

Carbon Monoxide (mg/m') 0.6 1.7 1.9 0.8 

Nitrogen Oxide as Nitrogen 
Dioxide (, ug/m3) 183 (298) 850 823 178 (185) 

Nitrogen Dioxide (pg/m) 76(78) 178 233 76(84) 

Nitric Oxide (µg/m') 83 (149) 439 390 69 (76) 

Ozone (1ug/m') 82 (140) 82 64 60 (66) 

PM 10 (, ug/m3) 38 99 95 60 

Sulphur Dioxide (, ug/m') 5 21 16 (29) 29 
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Table 29 shows (with the exception of ozone levels) that levels of pollution are 

significantly higher during the period of Increased Pollution and the period of Adjustment 

of Medication than in Stable Period (A) and Stable Period (B). 

The complete six month PEF data set belonging to Patient A (sample shown in Figure 77), 

and associated personal air quality were analysed using the FDA component of the EMS. 

Reference datums were obtained and analysed with the pattern identification components. 
The air quality reference datums were filtered using a threshold value during FDA, the 

thresholds used are shown in Table 30. 

Table 30 Threshold values used for filtering air 
quality trend lines that did not appear above the 

threshold value. 

CO NOx NO2 NO O1 PM,. SO2 

Threshold 1.5mgni' 400Ngm' 150pgm' 250pgm' 70pgm' 61mm"3 16jgm'' 

The EU directive on ambient air quality (EU, 2008) indicates a number of air quality levels 

that have been identified to have an adverse effect on health. Although these threshold 

values were not set in accordance with the directive, NO2 and PM, o levels given in Table 

30 are indicative of the directive, where NO2 has been given a 200pg/m3, and PM, o, 50, ug/ 

m3 for limit values. Threshold values were set after Feature Detection Analysis of the six 

month data sample, in order to filter datums with insignificant air quality values, and to 

keep values that might act as predictors of a decline in lung function. 

The results of the neural network, with four neurons are presented below. Each parameter 

shows the lag hours to the start of a potential asthma exacerbation, and the value of the air 

quality parameter at the time of the lag reading. The delay characteristics are ordered by 

the number of days prior to the asthma exacerbation from 10 days, down to I day. 
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Table 31 Delay characteristic attributes, identified by the neural network component 

CO NOx NO2 NO O., PM, o SO2 
Lag 

(days) I, ag. Value 1. u, Value Value 1,1" Value I ,, g Value I;,,. Value I ,.,,. Value 

(III- o (mgm-) (III, ) (NSm-3) (his, Win-) (Iw') (NSm-, ) 111�) (ugm., ) i111"i (Ngrn-) 

10 ? 2) 22 

9 

8 197 1.7 I515 

7 

6 

5 

4 

3 80 1.8 

2 42 1.8 

1 16 1.8 

Iý&> 

17t) 

181 222 256 221 

I8.5 310 

200 175 257 166 

138 607 

14tß 406 

127 193 

r, ýý 
I 

406 06 
1 194 

115 12151 82 

86 160 82 

1 
123 91 114 82 

67 87 

58 283 56 81 

161 

70 

23 

23 

23 

The delay characteristics found by the neural network in Table 31 can be compared to the 

maximum values of air quality given in Table 28 & 29 and the probability of air quality 

values in Figures 61 to 66. The important factor to note is whether or not the neural 

network is capable of creating an alert to warn of impending lung function decline. Figure 

78 shows an increase in air pollution before a decline in lung function, however the largest 

increase occurs after the identified reference datums on the 24`h and 27'h August. This 

would suggest that FDA should identify the trough points of trend reversal (which it has 

the capability to do), so that the increase in air quality is analysed. Figure 78 also shows a 

period of increased air quality that occurs outside the 1- 10 days delay range, between the 

1 S' and 25'h September. When the results above are compared with the values in Table 29 

(period of increased pollution), and Table 28 (Increased Pollution, column 12/09), it can be 

seen that there is a very good match for all variables at a lag of 8 days (where neurons have 

identified a lag of 7 and 9 days, the network will identify this as a match, although at a 

lower activation level), except ozone which matches at 3 lag days. If further research found 

that the level of ozone was not important to the triggering of an alert, ozone could be 

removed from the analysis, and the remaining parameters would raise an alert 8 days 

before a decline in lung function. This alert would successfully predict the onset of Patient 

A's decline in lung function, which occurred between 15`x' September and 5iu October 2007. 
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6.9 Normalisation Test 
The purpose of this test is to demonstrate how the neural network performs under the two 

conditions of using normalised and un-normalised input data. It is expected that the neural 

network, which adapts to form a fit of the underlying data will perform well with un- 

normalised data as has been demonstrated during the previous tests, but will have a number 

of restrictions. This test will identify these limitations. Using the delay characteristic 

permutations (shown in Table 32 below), the neural network was activated, and received 

the set of permutations 100 times. 

Table 32 Delay characteristic permutations, shown as vectors (one per row). Parameters 
for the data type, date of potential air quality cause, the physical value of data, and the lag 

time before the event (decline in lung function) occurs. 

Vector# Data Type Date Value Lag 

1 PM 10 is Fri Jan 07 17: 00: 00 GMT 2000 34 4 days 3 hrs 

2 PM 10 is Fri Jan 07 17: 00: 00 GMT 2000 34 5 days 4 hrs 

3 PM 10 is Fri Jan 07 17: 00: 00 GMT 2000 34 6 days 6 hrs 

4 PM 10_ts Fri Jan 07 17: 00: 00 GMT 2000 34 7 days 4 hrs 

5 PM1O_ts Sat Jan 08 11: 00: 00 GMT 2000 32 3 days 9 hrs 

6 PM10 is Sat Jan 08 11: 00: 00 GMT 2000 32 4 days 10 hrs 

7 PM10 is Sat Jan 08 11: 00: 00 GMT 2000 32 5 days 12 hrs 

8 PMIO-ts Sat Jan 08 11: 00: 00 GMT 2000 32 6 days 10 hrs 

9 PM 10 is Sat Jan 08 19: 00: 00 GMT 2000 27 3 days 1 hr 

10 PM 1 O_ts Sat Jan 08 19: 00: 00 GMT 2000 27 4 days 2 hrs 

11 PM10 is Sat Jan 08 19: 00: 00 GMT 2000 27 5 days 4 hrs 

12 PM 1 O_ts Sat Jan 08 19: 00: 00 GMT 2000 27 6 days 2 hrs 

13 PMIO-ts Sun Jan 09 16: 00: 00 GMT 2000 32 2 days 4 hrs 

14 PMIO-ts Sun Jan 09 16: 00: 00 GMT 2000 32 3 days 5 hrs 

15 PM10 is Sun Jan 09 16: 00: 00 GMT 2000 32 4 days 7 hrs 

16 PM 10 is Sun Jan 09 16: 00: 00 GMT 2000 32 5 days 5 hrs 

17 PM 1 O_ts Mon Jan 10 19: 00: 00 GMT 2000 45 1 day 1 hr 

18 PM10 is Mon Jan 10 19: 00: 00 GMT 2000 45 2 days 2 hrs 

19 PM 10_ts Mon Jan 10 19: 00: 00 GMT 2000 45 3 days 4 hrs 

20 PM10 is Mon Jan 10 19: 00: 00 GMT 2000 45 4 days 2 hrs 

21 PM 10 is Tue Jan 11 14: 00: 00 GMT 2000 84 6 hrs 

22 PM 1 O_ts Tue Jan 11 14: 00: 00 GMT 2000 84 1 day 7 hrs 

23 PM 1 O_ts Tue Jan 11 14: 00: 00 GMT 2000 84 2 days 9 hrs 

24 PM 10_ts Tue Jan 11 14: 00: 00 GMT 2000 84 3 days 7 hrs 
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The result using un-normalised data is displayed in Table 33 below. 

Table 33 Neural network weights after training with un-normalised values, (converted to 
standard values). 

Neuron 
(ID) Date 

Value 
(PMIO) Lag 

A Tue Jan 11 06: 45: 16 GMT 2000 60 1 day 10 hrs 

B Mon Jan 10 12: 12: 36 GMT 2000 42 3 days 5 hrs 

C Sat Jan 08 19: 41: 57 GMT 2000 33 4 days 6 hrs 

D Sun Jan 08 03: 56: 12 GMT 2000 34 6 days 3 hrs 

The set of permutations (Table 32) were normalised and presented to the EMS in the same 

way as the un-normalised data, and the results of the analysis recorded. The results were 

then converted back to their un-normalised equivalents using the conversion ratios 

recorded during the normalisation process. 

For historical interest the conversion ratios used to translate the normalised results were; 

Table 34 Conversion ratios used to translate the normalised test results to un-normalised 
values. 

Parameter 1 (Date) Parameter 2 (Value) Parameter 3 (Lag) 

Ratio Values 2.99E-006 17.54 1.67E-006 

Bias Values -9.47E+011 -27 -2.16E+007 

The conversion ratios were applied to the respective parameter by first dividing by the ratio 

and the taking away the bias. This is summarised by the following formula, where the 

formula is used to convert each parameter into its un-normalised equivalent; 

( Parameter value n+ Bias n)x Ratio n= un-normalised value. Eq. 6.3 

For example, using the normalised results (from this test) for neuron A; 
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Table 35 Normalised result for neuron A 

Date 
(Parameter 1) 

Value 
(Parameter 2) 

Lag 
(Parameter 3) 

Neuron A 1791.61 234.47 999.78 

The converted result for each parameter value of neuron A is shown below. The Date value 
is shown in milliseconds since the epoch (Jan 01 1970). 

Table 36 Normalised and converted result for neuron A. 

Neuron Date Value Lag (millis) (ID) (PM10) 

A 947599199000 84 162000000 

This methodology was applied to each neuron parameter in the network. The values were 

then translated to a common form to make them readable, as in Table 37. 

Table 37 Neural network weights after training with normalised values. 

Neuron Date 
Value 

(PM10) Lag 
(ID) wm 

A Tue Jan 11 13: 59: 59 GMT 2000 84 1 day 21 hrs 

B Mon Jan 10 19: 00: 00 GMT 2000 45 2 days 16 hrs 

C Sun Jan 09 03: 20: 26 GMT 2000 30 3 days 22 hrs 

D Sat Jan 08 02: 25: 47 GMT 2000 32 5 days 21 hrs 

From a visual comparison between Tables 32 and 37 it can be seen that the normalised 

result (in Table 37) has adapted to the input data (displayed in Table 32). The 

generalisation of the value component of the delay characteristic is particularly accurate. 
However the un-normalised result (Tables 33) is weighted down towards lower values (33 

to 60pg/m3), the largest value of 84 recognised by the normalised result is reduced to 

60µg/m3. 
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The difference in results between the two methods is due to the distance measure 
(euclidean distance) used when identifying the closest neuron to a particular incoming 

pattern. This leads to greater sensitivity to large numbers in the equation (as opposed to 

smaller ones) such as the date and lag parameters that are usually in at least six digits as 

apposed to value parameters that are usually in no more than two digits. 

It is worth emphasising here that the parameter values do not have to be in the same range, 
just roughly on the same scale. For example, the Lag component could be measured in 

hours which would be in a similar scale to the Value component. 

The result of this test indicates that improved accuracy can be achieved by employing 

normalised data. However, the need for greater accuracy needs to be balanced against the 

additional processing resources that would be required. 

6.10 Summary 
The tests that are presented during this chapter demonstrated various features of the system 

architecture. Feature Detection Analysis (Test 1) demonstrated that the technique was 

sufficiently capable of identifying consistent reference datums (on which to base the 

further analytical components); with the capability to cope with noise levels up to 6dB. 

With this ability the system would be able to handle inaccuracies due to measurement and 

sensor irregularities. 

Test 2 analysed the cumulative frequency distribution of monitored air quality parameters 

at four air quality monitoring stations across London. The analysis provided a basis for 

understanding how air quality varies between each region, and the likelihood of individual 

patient's exposure to levels of pollution. As the distributions indicate the probability of a 

pollutant being at a certain level, the graphs are useful in determining if the results given 
by the analytical components of the EMS are valid. 

The sample of lung function and air quality data used in Test 3 was successfully analysed 
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with Feature Detection Analysis. Visual inspection of the peak expiratory flow and 

particulate matter time series data (Figures 67 and 68) confirm the identified reference 
datums. The results from the subsequent FBCA and neural analysis supported each other, 

with the neural network identifying the data most verified by FBCA. The validation 
between the two analytical methods shows the advantage of a hybrid system, combining 

more than one method for pattern identification. 

An increase in test complexity from Test 3, through to Test 6 showed that the EMS is 

capable of handling real data sets. It should be acknowledged however, that although data 

sets were of significant length, use of the EMS in a clinical research environment would 

encounter significantly more data parameters. During Test 4 (Multi parameter), the test 

successfully identified the instantaneous lag effect that a perfectly correlated air quality to 

lung function time series would create, and demonstrated the systems capability to analyse 

the effect of multiple parameters. Both the neural network and FBCA techniques 

performed appropriately, FBCA used a bucket width of approximately 30 minutes, 

identifying a uni-modal distribution for Lag 2 (Table 19) of between -1 and 3 hours, which 

correctly represented the underlying data's boundaries. The neural network recognised that 

the second lag parameter (Lag 2) should be allocated a neural weight (dimension) 

representing approximately half an hour, which correctly approximated the underlying 

data. 

The ability to analyse a wider range of data types was corroborated through the use of 
hospital admissions data in Test S. The test showed that the EMS can be applied to data sets 

outside the immediate problem domain. The analysis also showed that the neural network 
is capable of identifying key features within the data set; identifying similar levels of 

carbon monoxide, nitric oxide, nitrogen dioxide, and sulphur dioxide with three separate 

neurons (Table 26). The only air pollutants that were not identified by the analysis were 

ozone, and PM, o, in these cases (and in one case each for carbon monoxide, PM2.5, and 

sulphur dioxide) the neural network failed to model the extremes of the parameter's data 

distribution due to the self-organising algorithm's use of un-normalised data. 

Analysis of a six month lung function and air quality data set in Test 6 with the analytical 

components provided a set of results (from the EMS neural network component) that could 

185 



be compared with a significant period of patient asthma exacerbation (Figure 78). The 

comparison used two sources to confirm the results: 

a) Table 28, containing maximum air quality values and associated delay, to peak 

expiratory flow reference datums. 

b) The cumulative frequency distributions of four London air quality monitoring 

stations (Figures 61 to 66). 

The result produced by the neural network (Table 31) after analysis of the full six month 

delay characteristic data set found that all seven air pollutants were identified as being 

present in significant amounts, seven to nine days before a period of asthma exacerbation. 

Table 31 shows the results from the analysis, where all identified air quality values are 

within boundaries given by the cumulative frequency curves (Figures 61 to 66). However, 

the results are reflecting maximum values at the London, Marylebone roadside monitor 

which would suggest that personal exposure to a high level of the air pollutants has been 

considerable. The lag components are also representative of Figures 79 to 81 (delay 

characteristics). The neural network should identify patterns that are representative of the 

top few percent of the cumulative frequency curves, so patients are not falsely alerted to 

good air quality episodes. For example, a patient is notified once a month of an impending 

episode of poor air quality, therefore for 12 days out of 364, (or 3% of the readings) a 

warning should be created. However, daily peak readings would usually be grouped 

together within the day, further reducing the percentage of readings likely to contain peak 

readings by a factor of 4. It is therefore predicted that approximately 1% of air quality 

readings would be problematic. This indicator is useful in highlighting the (99 to 100%) 

region of the cumulative frequency distribution that results of the neural network would be 

expected to fall within. 

Results from the neural network in Test 6 (Table 31) showed that carbon monoxide (CO) 

remained at approximately 1.8pg/m3 throughout the ten days prior to an asthma 

exacerbation, but identified periods of lag were clustered between three and one day before 

the exacerbation period. Nitrogen oxide (NO) was found to have the opposite 

characteristic; lag periods of between seven and nine days before a period of asthma 

exacerbation were found, although a peak was also found at 2 days. The neural network 
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also identified a reduction in ozone (03) before exacerbation. Ozone levels were l15fpg/m' 

nine days before an exacerbation, then reduced to approximately 87pg/m3 from seven lag 

days onwards. This characteristic of ozone is found in the general literature (Anderson et 

al., 2001). Both PM1o and sulphur dioxide (SO2) readings were constant at 82pg/m3 and 

23pg/m3 respectively throughout the ten day lag period. 

The results from the normalisation test indicated that it is desirable, although not essential, 

to normalise the neural weights. In particular it was found that the use of normalisation 

improved the identification of the winning neuron. This provided a more precise 

representation of the underlying data. It was also found that the date component of the 

delay characteristic in analyses leads to a very specific analysis of the data set. Following 

this research it is suggested that the reference datum's date is only required when analysing 

particular causes or events within a population. Inclusion of the component at other times 

does not allow a predictive pattern to emerge. 
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Chapter 7 

Conclusions and Further Research 

This chapter highlights the contributions to knowledge made by this thesis, and 

draws conclusions about the work. Points for further research are then discussed. 

7.1 Contributions to Knowledge 
This thesis provided several contributions to knowledge. The following are offered as the 

main contributions: 

"A Process Architecture that supports applications facilitating the identification of 

significant, and repeatable, environmental predictors of patient-specific periods of 

asthma exacerbation. 

" Feature Detection Analysis, a method that identifies trend reversals within air 

quality and respiratory time-series data. 

" The Delay Characteristic technique, that associates two features together, using 

the factor of time, and allowing the features within these associations to be 

validated. The delay characteristic holds sufficient information to form an alert. 

. The application of a Self-organising Map (SOM), an unsupervised machine 

learning method, to validate the delay characteristics. 

" Frequency, Boundary and Cluster Analysis (FBCA), a method that analyses the 

underlying frequency distributions of the delay characteristics, to overcome 

problems of over-fitting data within the SOM. 

Associating a decline in lung function leading to a period of asthma exacerbation, to a 

change in environmental condition was a major research objective outlined during 

Chapter 1 (Section 1.2). A three-step process (Section 1.2.1) was proposed, and then 

shown in Chapter 5 (Sections 5.5,5.7 and 5.8) to extract information relevant to producing 

patient-specific alerts. 
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Process Architecture 

The architecture developed as part of this research has several features: 

" designed to facilitate methods capable of identifying patient-specific predictors 
(Sections 3.5,4.2.2 and 4.2.6, and Chapter 5); 

" defines a scalable process (Chapter 3, and Section 4.2.3); 

. component-oriented, this gave applications (such as the EMS) flexibility in the 

choice of implementation and enabled interchange of analytical components 

(Chapter 4); 

9 extensible, due to the ability to add analytical modules (Section 4.4); 

" capable of handling multiple parameters (demonstrated in Section 6.6 and 6.7.2); 

" assists research into the cause and effect relationship between environmental and 

respiratory data sets (Chapter 6). 

EMS Validation of Architecture 

The Environmental Monitoring System (EMS) was pivotal in forming the process 

architecture developed by this thesis. The EMS was developed as a prototype and 

implemented the process architecture defined by this thesis. 

While clinical procedures are often focused on the trend of a group of patients, the analysis 

of data by the thesis prototypes was patient-specific. This enabled the response of the 

system to be tailored to particular individual's sensitivities. Results in Chapter 6 showed 

that an automated pattern identification system focused on the detection of events in the 

environment can successfully create information to alert patients, to aid them in the 

avoidance of environmentally induced asthma episodes. 

The analysis of generic data types with a time and location component was achieved, and 
demonstrated through tests with air quality data from a number of sources along with 

admissions data and patient lung function. The supplementary test using hospital 
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admissions data (Section 6.7) showed the system's capability to handle data sets containing 

additional data types not related to lung function. The architecture implemented by the 

EMS application, allowed the introduction of additional methods of analysis. The 

analytical methods are shown in Chapter 5, in particular the Point, Point Series and Series 

methods. 

The control relationships between a number of subsystems and a set of analytical 

techniques were identified (Chapters 4 and 5). 

Feature Detection Analysis 

Feature Detection Analysis (FDA), originated during this thesis and is offered as a 

technique to identify the onset of an asthma exacerbation (Section 5.2). The capabilities of 

the analysis lead to its further use for monitoring air quality, and within the boundary 

identification module of the Frequency, Boundary and Cluster Analysis (FBCA) prototype 

that identifies cluster boundaries. 

It is the ability of the FDA component to identify key features from a data set that makes 

the analysis viable; ignoring sections of a trend that do not have significance, but recording 

those that do. The ability of the process to cope with highly variable data is particularly 

important. Inaccuracies in data measurement are emphasised as the patient moves from 

location to location. Various devices could be used and all may have slightly different 

calibrations. The London Air Quality Monitoring Network use a working error tolerance of 

±10% (LAQN, 2008), which the EMS application's design has taken into account. FDA 

reduces the effect of inaccurate data readings by analysing the data trend, rather than using 

a maximum or daily average for the monitored parameter. The pattern identification 

components also validate any delay characteristics presented to them over a period of time. 

This additional benefit further reduces the probability of inaccuracies within the system. 

Feature Detection Analysis (FDA) also automates (with the option of guidance by the user) 

the identification of reference datums, options include the ability to recognise if a trend 

falls below a certain threshold, if the trend is greater than a given gradient, in addition to 

identifying periods where the trend reverses. 

190 



Delay Characteristic 

This research proposed the analysis of time lag (Section 3.3) between a reference datum 

attributable to a possible environmental predictor, up until a reference datum attributable to 

the start of a patients asthma exacerbation; using the delay characteristic. The use of the 

delay characteristic Date parameter is useful in analysing a location-based environmental 

problem (due to the ability to make a connection between the date and the location of the 

patient). However, the inclusion of the Date component under normal analyses leads to too 

many clusters, and not enough validation of the time Lag which is the more important 

characteristic. 

SOM Validation of Delay Characteristics 

The Self-organising map (SOM) method is capable of handling many parallel variables. 
The SOM algorithm reduces the effect noise has on the system due to the algorithms 

convergence to a suitable answer over time. Overfitting of the underlying data can be 

problematic; it is a consequence of too many neurons being issued during the analysis, and 

the arbitrary way in which node boundaries are established. The SOM algorithm does not 

have a stop condition for the convergence of the neural network, other than a set number of 
iterations. The use of FBCA within the EMS to identify a probable number of clusters 

overcomes this deficiency. 

Frequency, Boundary and Cluster Analysis (FBCA) 

Frequency, Boundary and Cluster Analysis (FBCA) was developed as part of an 

application of the architecture during Section 5.6 as a means of overcoming the problems 

of overfitting data, associated with SOM networks (Section 5.5.3). FBCA analyses the 

actual distribution of parameter values to establish node boundaries, while the SOM 

algorithm establishes boundaries based on a function that reduces over time according to 

the number of data elements processed. 

FBCA provides a particularly useful indicator, making the informed disregarding of 

parameters possible. As FBCA produces a frequency distribution for each analysed 
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parameter, a uni-modal distribution implies that only one range will be produced for that 

parameter during creation of the cluster permutations. This leads to the same range 

appearing in all clusters, a condition which provides no differentiation between clusters in 

respect of that particular parameter. This condition suggests that the parameter is less likely 

to be a factor in the initiation of an asthma attack. Further analysis of that particular 

parameter is required however, in relation to the other parameters before such conclusion 

could be confirmed. It is possible that pre-disposition to an asthma attack might be 

associated with specific parameter values within the unified distribution range. This 

association could only become apparent after the vector of values collected by each cluster 

had been examined in more detail. 

Although not fully developed in this thesis, the use of frequency analysis as a means of 

defining cluster boundaries opens the prospect of combining the advantages of the neural 

network, with more traditional statistical analysis. The major advantage of the neural node 

is that it provides a means of classifying and immediately identifying a particular vector of 

environmental conditions. A disadvantage of the neural network technique is that it 

provides only an arbitrary classification of the data, and although certain data sets may be 

assigned to different network nodes, it does not necessarily indicate that the identified data 

sets are drawn from statistically-significant different data. It was this deficiency which 

prompted the development of FBCA. 

Through prototyping the analytical components, in particular the neural network (SOM) 

and FBCA components, the usefulness of operating two supportive methods in the same 

system was highlighted. During evaluation, test results could be corroborated by both 

techniques. The implementation of both components into a hybrid system increases system 

reliability by confirmation and enhancement of results. 

Use of correlation techniques during the course of the research were shown to be an option 

for identifying relationships between air quality and lung function. However, the technique 

was found to be susceptible to noise and a slow process due to the infinite number of 

correlation calculations that were required, especially when lag effects were analysed. 
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7.2 Recommendations for Further Research 
This research has taken the first step in defining a scalable system architecture suitable for 

facilitating predictor identification of asthma exacerbations. The work begun by this thesis 

requires further research to refine the analytical techniques before being taken forward for 

testing in a clinical, and real-time environment. With the eventual view of developing a 

fully functioning clinical system. A number of recommendations can be made to guide 

future research into a suitable system. 

7.2.1 Data Analytics 
A number of general analytical aspects of the work require further research, these include: 

the effect of medication on automated pattern recognition; the automated choice of 

environmental factors to monitor; the identification, and use of predictors belonging to 

groups of patients; and improvements to Feature Detection Analysis. 

Medication Details 

Medication details were recorded for a minority of patients during the Medicate (2000) 

clinical trial and the work of Cobern et al. (2005). It is clear that the use of medication will 

have a significant influence as to how environmental conditions will affect a patient's lung 

function. Inclusion of this important information as a parameter, to explain changes in 

response, would be a useful addition to the system. Enabling, for example, the 

effectiveness of various medications and their dosage to be evaluated. Research should be 

undertaken into how best to incorporate this additional information into the EMS. 

Factor Analysis 

It is envisaged that the selection of environmental parameters for inclusion in analysis by 

an application (such as an extended version of the EMS) would be facilitated through the 

addition of some automated factor analysis. Methods of factor analysis appropriate to this 

research problem should be researched, and incorporated into the system for this purpose. 

Group Studies 

There is a strong argument that a group of patients may all suffer from the same type of 

environmental predictors. It may become apparent through further research that a number 

of identification components analysing patient-specific predictors may indicate similar 
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characteristics for groups of patients, and could therefore be used to confirm a particular 
trait for a group of patients. Analysis over a group of patients using the patient-specific 

techniques developed by this thesis is an area where further research may prove beneficial. 

Feature Detection Analysis 

It was found during module prototyping that FDA had a tendency to shift reference datums 

to the right of maximum values. To overcome any inconsistency resulting from this shift, 

FDA could be adapted by adding a peak locking mechanism. This would enable the system 

to lock onto peaks by locating the point of inflexion (by checking left/right), ensuring that 

the true peak (reference datum) had been correctly identified. However caution would be 

required in adoption of this technique so as not to influence the analysis away from the 

trend of the data. 

7.2.2 Extending the Seif-organising Map (SOM) 
Further research should be undertaken into the issue of when and how neural network 

nodes split. For the SOM technique to achieve a representation of commonly occurring 

patterns, the network is required to grow and adapt to new data. As nodes contract their 

area of activation, less input data is recognised by the neuron. To compensate, the system 

requires a way to add new nodes to the network. The process is shown in Figure 83. 

Work by Kohonen and summarised by Schalkoff (1997) showed that input data can be 

characterised by a single density function, and that the point density function of each 

neurons weight vector will approximate to that single density function. If the functions are 

compared using a variance ratio a probability that the neuron under question will be 

activated in comparison to the others in the network might be used as the basis for 

determining a method of system reliability. 

Measurement of system reliability has three scenarios: 

1. Initiating a false alarm to a patient or clinician, or alternatively 

2. Failing to alert when a patient is at risk of an impending asthma attack, or 

3. Alerting patient or clinician correctly. 

194 



Figure 83a shows the neighbourhood distribution of a node (Node A) at the beginning of 

the identification process. As more and more data is processed the distribution covered by 

Node A is contracted. This is shown by Figure 83b. The area covered by the system is 

significantly less than the area covered by the node at the initiation of the process. Hence a 

new node is required in order to ensure that the whole area is covered by the system. A new 

node (Node B) would be added to the system (Figure 83c). It is necessary to ensure that 

when an input falls outside an existing neighbourhood of the network, a new neuron is 

added to cover this new input otherwise it will not be included in any further analysis. 

hi. 
r 

Node A 

a) 

d1,, 

h,, j 

b) 

hfi Node A Node B 

C) 

d,., 
Figure 83 A second node (neuron) is added to the 
neural network to represent new data, not previously 
covered by the first neuron. The activation of the neuron 
is indicated by hj, whilst the relative distance between 

neurons and the input data is represented by d1,,. 

It is important to prevent overfitting the data. The input should be represented sufficiently 

but with the minimum number of neurons. A minimum solution increases the model's 

resistance to noise. Separation between neighbouring neurons is needed in so far as each 

neuron is required to represent a new or significantly different pattern. The neural network 

should be capable of finding these patterns automatically over a period of time. 
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A characteristic of the SOM algorithm is that the neighbourhood function tends to lock 

onto a particular input pattern established by the contents of the initial processed data 

vectors. While this characteristic is not necessarily unwanted, it means that the algorithm 

does not easily adapt to data patterns which might emerge at a later time. To improve the 

adaptability of the SOM algorithm, Haykin (1999, pg 481, Table P9.8) proposed the 

withdrawal of a node from further learning if the node is constantly a winner. This would 

allow other nodes in the network to adapt to represent the data distribution. 

Examination of neurons representing patterns closest to those with the most interest, 

possibly through the use of visualisation of the self-organising map, could be used to 

identify clusters of predictors that would not normally be identified as resulting in the 

same health outcome. 

Through the use of the SOM technique it is possible to visualise relationships and 

associations between identified patterns. Similar patterns will be physically close to each 

other, determined by the (euclidean) distance between them. Future research could 

investigate the use of a priority weighting to give certain parameter dimensions more 

prominence, and show more reflective relations between the represented patterns. 

7.2.3 Frequency Boundary and Cluster Analysis Refinement 
The form of frequency analysis employed in the thesis prototypes was basic. Statistical 

techniques for examining frequency distributions and fixing cluster boundaries (that arc of 

statistical significance) are well developed and could be incorporated within an application 

such as the EMS. Such techniques include: 

a) the Anderson-Darling Test (Stephens, 1974), which could be used to test if the data is a 

continuous normal distribution. 

b) the Chi-Square Test which could be applied to discrete distributions (Snedecor & 

Cochran, 1989), or 

c) to test for outliers, that is, identifying data points which, given the statistical mean and 

standard deviation of the total set, are so far removed from the mean value, that it is 

extremely unlikely that they are members of the same data set (Grubbs, 1969). 

Although these techniques are well developed, their use within the FBCA component 

would require further research, particularly their use within multidimensional spaces. 
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The ability of the Boundary Clustering technique to change cluster boundaries in response 
to the input data presented to the system, is sufficient when employed on batch data. 

However, to facilitate real-time analysis it will be necessary to develop a process which 

will systematically re-evaluate the cluster boundaries in response to changes in the input 

distribution, and influence the neural network component in an appropriate way. 

7.2.4 Service Architecture Implementation 
The use of concepts like Service Oriented Architecture (SOA) lend to the notion of 

extensibility and scalability that are promoted by the five features of the ISO model (ISO, 

2007). SOA combines relatively large (previously un-associated) units of functionality into 

a service to achieve the execution of a specific task. The service can then be subsequently 

used by other systems. SOA is often used over a network to facilitate the use of 

computational resources. 

Research into how SOA could be used to implement the EMS process architecture, and 

enhance the analysis of enviromedic data, through the autonomous integration of 

appropriate services should be considered. Integration with other healthcare providers 

could also be considered as a further research area. 

As technology improves, the opportunity to integrate new devices, providing new 

monitoring functionality becomes possible. The initiative called Sensor Web Enablement 

(OGC, 2005) outlines a framework to help exploit the advantages of web-connected 

sensors and sensor systems. The aim of their work is to make sensors, instruments and 
imaging devices available over the Internet. The sensor's capabilities, location and 
interfaces can be published using XML, thereby enabling web-based (and real-time) 
discovery of suitable monitoring devices and collection of their information. Integration of 

these types of monitoring device with the EMS is encouraged, as they become available, 
but requires further research. 

Future research could be undertaken that promotes the use of ambulatory Internet enabled, 
and inter-connected medical devices; facilitating around-the-clock monitoring and 
execution of treatment protocols. Instant alerts could be generated when medication levels 

were low, if environmental conditions matched a pre-determined pattern, or if adverse 
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events were detected or malfunctions occurred. 

7.2.5 Using Grid Concepts 
A grid is not subject to centralised control, and integrates and coordinates resources and 

users that are within different control domains. A grid addresses fundamental issues such as 

authentication, authorisation, resource discovery, and resource access, using standard, 

open, general-purpose protocols and interfaces. The goal is that the utility of the combined 

system is significantly greater than the sum of its parts (Foster, 2005). 

The NEESGrid project (Spencer et at, 2004) shows how a distributed system was 

implemented using Grid technology to link earthquake researchers across the United States 

with leading-edge computing resources and research equipment to allow complex 

simulations. Other Grid technology applications include: Disease and Bio-Surveillance 

Grid, Pervasive Mobile Environmental Sensor Grid (IET, 2006), and Personalised 

Healthcare. Research into how the EMS could benefit from the use of Grid methodology is 

required, especially to optimise scalability. Research into the use of the EMS within a 

geographically diverse collaboration of interacting systems could also be undertaken to 

discover how air quality patterns that cross large areas could be used to alert patients to 

impending asthma exacerbation earlier. 

7.2.6 Clinical Testing 
Further research and development is required if the work presented by this thesis is to be of 

eventual value to clinicians (and their patients). As part of this further research, clinical 

trials on a significant scale are vital to test the analytical processes. Clinical trials aimed at 
both refining the analytical processes and proving them with a wider sample of the 

population are necessary if confidence in the new techniques presented by this thesis is to 

be gained. 

Eventually, research, testing, and feedback from a clinical environment should lead to a 

system capable of giving clinical staff and patients real-time information to assist in their 

choice of preventative action, and avoidance of asthma exacerbations. 
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7.3 Concluding Summary 
Future systems implementing the architecture developed by this thesis, will promote 

improved patient care by providing advanced warning of impending periods of poor air 

quality. Patients will benefit from automatic prompts to use preventative medication before 

specific danger periods, enabling them to stabilise their condition or prevent deterioration 

all together. Clinical staff could also be notified that a particular patient needs extra care. 

The cost of patient care would be reduced by focusing treatment on individual patients at 

the time, and for the period they need it most. A system capable of alerting patients to 

environmental health effects is not new (Cobern et al., 2005), but the architecture 

developed here, and its capability, and the depth to which the pattern recognition detail 

goes, along with the drawing together of the two data sets (environmental and respiratory) 

into the field of enviromedics, and use of the delay characteristic to identify patient- 

specific trends is new and novel. 
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Appendix A 

Medicate Project 

A. I. Functional Specification 
The Medicate project required an Internet based tool for viewing and analysing lung 

function and environmental data. The use of the Internet to transfer data had been shown to 

be of value in health informatics and therefore formed the basis of the approach to the 

work. 

Software developed during the project was the first prototype version of the Environmental 

Monitoring System (EMSv, ). The EMSv, aimed to provide an environment for the analysis 

and management of lung function and air quality (enviromedic) data. Air quality data is 

obtainable from archived web pages (from the National Environmental Technology Centre, 

NETCEN). Lung function archives were originally stored in a legacy database (using 

Dbase), this was converted to a Microsoft Access database using Standard Query Language 

(SQL) during the Medicate (2000) project. Lung function data was then available from this 

database on a continual basis throughout the Medicate clinical trial. 

The system architecture was composed of several distinct elements, an object database, 

Java classes (programs) run via a web server, and a user interface accessed via a standard 

web browser. 

A. 2. Prototype Architecture used in the Medicate Project 
The overall architecture of the system, shown in Figure 84 consisted of two main 

constituents: 
1. A Client, which was the user interface to the system and the main method of 

communication to the data. 

2. A Server, where all the work in the manipulation of the data was achieved. 
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Figure 84 High-level diagram of the EMS architecture 

A. 3. Communication 
Communication between the client and the server was achieved through the Transmission 

Control Protocol (TCP) and the implementation of sockets that used server ports and an 
Internet Protocol (IP) address. This method was chosen to comply with the web browser 

technology available at the time of the research. The client used Java (applet) technology to 

facilitate the transfer of instruction from the user to the server. Applets are small pieces of 

software written in accordance with the Application Programming Interface (API) 

specification developed by Sun Microsystems and are capable of running inside any Java 

enabled web browser. Applets were useful as they were capable of controlling their 

environment as well as existing within it, for example applet software was used to instruct 

the browser to reference a particular web page. 

Figure 85 shows the communication process between the client and the server. The user 
first opened a web browser and connected to the server using an appropriate URL 

(Uniform Resource Locator) for example, http: //ems. mdx. ac. uk. The Java applet (classes) 

were then transferred to the clients browser for execution (Stage 2 in Figure 85). At this 

point the EMSv, Primary Graphical User Interface (GUI) was displayed to the user and 

could be used like a normal program. Once the user instructed the GUI to make a query on 

the database, an instruction was sent to the server to execute the query (Stage 3). The query 

was then made on the database and the results returned to the GUI over the Internet. At the 

same time a web page showing the results was created automatically and stored on the web 

server, the browser on the client then pointed to this page automatically (Stage 4). 
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A. 4. Client Component 
Figure 86 below shows the primary GUI for the EMSv, system. The GUI consisted of a 

menu bar like many found on standard desktop computers. The menu bar gave a number of 

options to the user in a simple format. The interface also provided text fields and drop 

down menus for entering query information. Parameters available for the user to modify 

were: start and end dates for the query, patient identifier (presented to the user using a drop 

down menu which showed the patients available for a particular hospital), location of air 

quality readings (also presented to the user in a drop down menu), and time lag (measured 

in day-, ) between lung function and air quality data sets. 

C. ytaba_eyQuer Time Frame F-4 prt I 

Start Date (dd / MM / yy): 108/0512000 Patient ID: fWHT009 

End Date (dd ! MM f yV) 21/0512000 Location ID: jCamden Roadside 

Time Lag: 0 

Patient ID: WHT009 Air Quality Location UK-L-CAR 
Date, PEF_av, FEV1_av, FVC_av, PEF_min, FEV1_min, FVC min, N02_av, PM10_av, PM2.5_, 
815/2000, 

,,,,, , 
40.625,47.5, 

,,, , 
62.0,78.0, 

,,, 91512000....... 34.292,42.125,,,,, 53.0,56.0,,,, 
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,,, 151.0.53.0 ,,, 
v, 11/512000,9.135,1066,14511,736,2111,231,118.125.27.625 35,3.066,3.451,7.36,2.31,2.31,18.125,27.625.,,,, 31.0,36.0, ,,, 121512000,9.233,2.769,2.769,8.39,2.42,2.42,27.913,36.783, 
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A. 5. Server Component 
The server was the main part of the EMSv, and was where most of the data manipulation 

took place. The architecture was split into four distinct sections: 

" Web Server 

" Process Controller 

" Query/Utility Library 

9 Database Controller 

Each section is shown in Figure 87. The sections each had an important function within the 

architecture. 

Client Server .. 
td 

d0 

= 
Data Input 

Daily Av. 

Daily Max. 
Object 

Database 
Daily Min. º 

F7 
Process Controller 

Web Server 
Query/Utility Library 
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Figure 87 Server High-level Architecture 

The web server received requests from clients to start-up the EMSv, client software (within 

the client web browser), and passed instructions from the client to the process controller as 

well as storing the query results pages as HTML documents. The process controller was 

responsible for handling the requests passed from the web server, all instructions were 

passed except those for looking up HTML query result pages. The process controller 

determined the action that the client (user) wished to perform on the database and 

translated the request into an appropriate execution using the query/utility library. A 

number of methods were stored in the library ranging from standard queries to other 

statistical functions and methods for data entry into the database. A database controller 

was then used to monitor access to the object database and send back any query results, 

complications or errors to the process controller for further manipulation (results page 
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creation etc. ) and for notification to the client that the query has been completed (via the 

web server). Once this cycle has been completed and the client notified, the client 

automatically looked for the results page stored on the web server. 

A. 6. Testing the Medicate Prototype 
To test the system a simple demonstrator was created. The demonstrator used a total of 

approximately 370 different data sets. Incorporating data from two major locations: 

London, UK and Barcelona, Spain. 

A data set was defined as, one day's record for all data types. Therefore if six pollutants 

were measured and incorporated into a dataset, the data set would increase by the six 

parameters (or pollutants) in size. The number of data sets would not increase. A new data 

set was created for each separate day. 

A single day's worth of air quality data, usually consisted of 24 readings (one per hour) for 

each of the six measured pollutant types (CO, NO2,03, SO2, PM10, PM2.5). The EMSv1 then 

condensed these readings into maximum and daily average readings for each pollutant. 

These were then incorporated into the each final data set. 

Similarly, lung function data consisting of approximately two to three readings per day of 

PEF, FEV,, and FVC were transformed to their minimum and daily average values. Both 

lung function and air quality data readings were taken over a period of 14 days. Therefore 

this led to 14 data sets per patient. 

For UK patients a total of four air quality monitoring stations were chosen as local sites to 

the patients' daily activities: Bloomsbury, Haringey Park, Haringey Roadside, and Camden 

Roadside (TAQA, 2007). The demonstrator was tested with each of these four air quality 

monitoring sites, depending on the patient's locations in relation to them. A total of 16 

patients returned good data readings using the electronic spirometry device, therefore a 

figure of approximately 224 (14 days x 16 patients) different data sets were created and 

analysed, each containing up to 18 (9 data types x2 statistics) parameters. Data sets from 

Barcelona, Spain totalled approximately 150. 

The results of one computation are shown below, where one row represents one data set. 
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Figure 88 Results - Matrix 

Figure 88 shows the top third of the results page produced from a query on the EMS 

database. The section shown in the figure shows readings of daily lung function (average 

and minimum) and daily air quality (average and maximum) in chronological order. Daily 

average results are obtained from the complete day's worth of figures for a particular type 

of data (e. g. PEF or 03) while basic statistics are used to obtain the mean value. Daily 

maximum and minimum results for air quality and lung function respectively are also 

obtained from the data belonging to the particular day's readings for each data type. 

Figure 89 shows standard statistics in four tables, one table each for: 

" Lung function daily minimum. 

" Lung function daily average. 

" Air quality daily maximum. 

" Air quality daily average. 

where the minimum, maximum, range, mean and standard deviation along with the number 

of readings in the result set are displayed. The results are all derived from the individual 

result sets, so for example, the maximum reading of the Lung Function Daily Minimum 

results would be the maximum of the daily minimum results, and the maximum reading of 
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Air Quality Daily Maximum would be the true maximum reading in the 14 day result set 

for the particular air quality parameter. 
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Figure 89 Results - Statistics 

The third section of the results page (shown in Figure 90) shows correlations between the 

result sets. The correlation matrix contains all possible combinations of results from the 

values contained in the four tables shown in Figure 89. The correlation uses the Pearsons 

correlation formula. 

n it 

n 
2: 

xEY 

E xY 
n 

r= 
Eq. Al . 

(Pearsons Correlation Formula) 

n2 ý_dx)z n2 Y)Z ýx 
-n 

EY 

where x represents values of air quality, y values of lung function, and n the number of 

values. A significance rating of 0.05 was also used to determine which correlation results 
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were showing levels of correlation. A typical results table is shown below. Where the 

results highlighted in green represents correlation combinations with a degree of 

significance (greater than 5%), and the AuPMIO and AuPM2_5 lines show particularly 

high levels of inversely correlated combinations against minimum PEF, FVC and FEV, 

values and average PEF. 

A. 7. Conclusions 
The EMSv, was used successfully to produce required data sets and additional information 

for further analysis by independent users. The system functionality satisfied specifications, 

allowing users of the system remote access (to data) across the Internet. The user interface 

was evaluated by its users to be sufficiently flexible for the purpose of correlating the air 

quality and lung function data sets. 

Using the EMSv, in the analysis of environmental and lung function data was particularly 

useful in facilitating multiple correlations and introducing time lag effects into result sets. 

Significantly correlated variables (using the 95-percentile) such as those shown in Figure 

90 in green were then chosen as sub sets of data for further analysis. For one particular 

patient (WHTO10) from the Whittington Hospital London, this was related to mainly PM, o 
(daily average), PM2.5 (daily averages and maxima) and NO2 (daily averages and maxima) 
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recorded at the London Bloomsbury air quality monitoring site. Further analysis used a 

backward stepwise multiple linear regression procedure resulting in the following equation 

(Crabbe et al., 2001); 

PEFav = (-5.059x10-2) (PM, oav)+7.614 
Eq. A. 2 

which suggested that PEF daily average is inversely related to PM, o daily average values. 

This result could be used in automated monitoring systems if the average PEF value was 

known for a particular patient. If the monitoring system detected that the average PM 10 

value had risen to a value where the balance of Equation A. 2 (PEFav value) fell below the 

patients danger threshold it could alert both the clinician and patient. However it was also 

noted that as the data sample was small, this could not be drawn as a conclusive result. 

The system architecture performed well, with all parts of the system functioning reliably. 

Time taken to retrieve results across the Internet and the database varied slightly due to 

variations in network connections and internal processes of the database. Initially, the 

average time taken to retrieve a full result set was approximately seven seconds. The 

measurements of time taken were achieved using the server to monitor user connections to 

the EMS, times were clocked for various stages in seconds. The actual database query took 

the majority of the time, approximately 4 seconds. This was found to be reduced when 

another similar query was performed. The most recently used objects were cached within 

the database, saving query time. Result sets which matched an existing query were served 

straight from the web server in a matter of seconds, the maximum request time taking 

around three seconds but usually reducing to approximately one second. 

The accuracy of the data presented to the user was assured through continuous testing 

during development. Formulae were tested and checked by hand by independent users of 

the system. Calculations were executed using floating point numbers to an accuracy of 10'$ 

then rounded up to 3 significant figures for display to the user, this ensured an accuracy 

that was actually greater than needed. Crabbe et al. (2004) provide further discussion. 
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Appendix B 

Data from the Great London Smog (1952) 

B. I. Correlation Example 
Data from the Great London Smog in 1952 (shown in Figure 91) presents at least two sets 

of highly correlated data; the first between the number of deaths per day and the level of 

sulphur dioxide in the atmosphere, and the second between the level of smoke particulates 

and the death rate. The trends during December 1952 can be seen in the figure below. 
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A correlation component was devised for the Environmental Monitoring System (EMS) to 

test a set of interpolated values from a well known real-world data set. The purpose of the 

test was to demonstrate the difficulty in defining the period over which to correlate. The 

component read off corresponding y-axis values at regular intervals along the time series 

(x) axis. 

Death rate and sulphur dioxide data sets were extracted from the graphs above, and a small 

London smog database created. The periods that the correlation measurements were taken 

over were identified using Feature Detection Analysis (FDA) (explained in Section 5.2). 

Analysis of the values can be seen in Figure 92 (showing deaths per day and air quality, 

measured using S02)- 

Once the death rate data had been analysed with FDA and reference datums identified 

(explained in Section 3.2), SO2 data for the period prior to the death rate datums were 

analysed. The graphs in Figure 92 show the results of the analysis, where the identified 

reference datums are shown with red lines for both data sets. 
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Figure 92 Graphs showing the 1952 London Smog data plotted by the EMS FDA, 
and identified reference datums (red markers) in each data set 
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The period of time between the start of the time series on the I" December 1952 and the 

death rate reference datum on the 3"' December was analysed using the correlation 

component. By inspection of the original data (found in Figure 91) it was expected that 

there would be a high correlation between the data sets. Two further reference datums 

(from the death rate graph) between the 8th and 14th December (shown above in Figure 92) 

were used. To investigate the correlation between the data sets corresponding to these two 

reference datums, the periods from 1 S' December to 8th December, and from I" December 

to 13th December were examined. 

Figure 93 shows the graphs for death rate and air quality over the period 1" to 3" 

December and the corresponding correlation plot, with the line of best fit. 
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Figure 93 The correlation between deaths per day and sulphur dioxide levels 
between 1 S` and 3i° December 1952 

The period of SO2 and death rate data from the 1 S' December 12: 00 to 3d December 12: 00 

were plotted and a correlation of 89% (0.94492x100) found between them after 

interpolating values at 1 hour intervals from the Input Data data plots in Figure 93. 
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B. 2. Second Correlation between 1" and 8" December 
The data sets used for correlating the second period (I" December to the 8''' December) 

from the start of the time series until the 2"`' death rate reference datum are shown by the 

graphs in Figure 94 below. The correlation coefficient identified between the two data sets 

is 92%. 
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Figure 94 The correlation between deaths per day and sulphur dioxide levels between 1" 
and 8`" December 1952 

This analysis was achieved using the data series from the 1 S` December 12: 00 until the 8"' 

December 12: 00 (where the reference datum has been previously identified). The peak in 

both data sets on the 8`h can be clearly identified in Figure 94. A correlation of 92% was 

calculated. 
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B. 3. Correlation of the full Great London Smog data set 
The full data set (up until the final reference datum) for the Great London Smog (shown in 

Figure 92) was analysed by the correlation component. The result is presented in 

Figure 95 below. 
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Figure 95 The correlation between deaths per day and sulphur dioxide levels, for the 12 
days between ls` and 13`' December 1952. Where the blue line on the correlation plot is a 

regression line of best fit. The correlation ratio of this data is 68%. 

The correlation for the complete data set shown in Figure 95 is 68%, although a correlation 

of 92% was identified for the period 151 to 8`h December (Figure 94), shown above as the 

rising edge of the death rate and SO2 curves (until the 8`h December). However, the trailing 

edge from the 10th December 12: 00 onwards shows no correlation, represented by the 

correlation of the 2 day period before the 13`h December (result in the table below). The 

significance of this result is not calculated (is irrelevant), as the correlation example is 

demonstrating how correlation ratios are effected as the correlation period is extended. 
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Table 38 Summary of correlated sections, resulting from the Great London Smog data set, 
including 2 day periods before each identified reference datum of Figure 10 (two are not 

shown graphically). 

Correlated Section lime period 
Correlation 

(r) 
Ratio% 

(r2) 
Corresponding 

figure 

1" Dec 12: 00 to 3rd Dec 12: 00 (1952) 2 days 0.9449 89% Figure 93 

6`h Dec 12: 00 to 8' Dec 12: 00 (1952) 2 days 0.9725 95% - 

11`h Dec 12: 00 to 13' Dec 12: 00 (1952) 2 days -0.0550 0.3% - 

1" Dec 12: 00 to 8' Dec 12: 00 (1952) 7 days 0.9568 92% Figure 94 

1" Dec 12: 00 to 13`h Dec 12: 00 (1952) 12 days 0.8273 68% Figure 95 
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Appendix C 

Architectural Patterns 

There is a general overlap between the four categories (Table 39 below), with only 

Interactive Systems being distinct from the others. The overlap is to be expected as the 

architectural features of extensibility, scalability and simple management require a mixture 

of the patterns for an effective architectural design. For the purposes of the EMS the three 

architectural patterns chosen to fulfil the requirements of the architectural views are 
Layers, Model-View-Controller, and Reflection patterns. These three patterns have been 

chosen to provide separation between components and sub-components; increasing 

extensibility, scalability and re-use. 

Table 39 Showing the use of architectural patterns in the construction of system 
architecture, (data provided by Buschmann et al., 1996 p26). 

Category Name Use Patterns falling into the Category 

From Mud to 
Breaks down the overall system into a number " 

Layers pattern. 

Structure of cooperating subtasks, avoiding a sea of " Pipes & Filters pattern. 
components. 

" Blackboard pattern. 

" Broker pattern. 
Distributed Systems Provides a complete infrastructure for 

" Microkernel pattern. distributed applications 
" Pipes & Filters pattern. 

" Model-View-Controller pattern. 
Interactive Systems Supports the structuring of software systems 

that feature human interaction " Presentation-Abstraction-Control 
pattern 

Adaptable Systems 
Supports extension of applications and ' Reflection pattern. 

evolution to new technolo ies. g Microkernel pattern. 
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C. I. Layers 
Layers help structure applications that can be broken up into a number of subtasks at a 

similar level of abstraction. The layers must be strictly separated from each other. No 

component may spread over more than one layer. An example of a layer is network 

architecture. Each layer deals with a specific aspect of communication and uses the 

'services' of the next lower layer. 

C. 2. Pipes and Filters 
The Pipes and Filters architectural pattern gives structure to systems needing to process 

streams of data. The pattern divides the task of a system into several sequential processing 

steps. Data is passed through pipes between filters, while the filters can be used in 

succession to build a processing system. The method provides a simple mechanism to 

exchange sections of the pipeline with new filters making it a flexible approach to system 
design. It is not, however, regarded as good systems design when a large amount of global 
data has to be shared with each of the pipeline filters. 

C. 3. Blackboard 
This pattern is useful where the system's domain is immature. It can be used to experiment 

with different algorithms for the same subtask, for this reason individual modules should 
be easily inter-changeable. The blackboard is the central data store and provides an 
interface that enables knowledge sources to read and write from it. Elements from a 

solution can appear on the blackboard, and if rejected later in the process can then be 

removed. 

C. 4. Broker 
A broker pattern can be used in systems where components are decoupled from each other, 

usually distributed over a network. A broker component coordinates communication 
between software systems. The pattern uses remote service invocations to access services 

over a network without having to know their physical location. This allows replication and 

ease of service migration. By partitioning functionality into independent components the 

system becomes potentially distributable and scalable. A drawback to using the broker 

pattern is a possible reduction in efficiency, broker systems are usually slower due to the 

extra layers needed to maintain the decoupled aspects of the pattern. The pattern can 
increase the fault tolerance of a system through the ability to replicate components. 
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C. S. Microkernal 
The Microkernal pattern is suited to systems that must be able to adapt to change. It 

separates a minimal functional core from extended functionality and customer specific 

parts. The pattern also allows extensions to be plugged into the system and coordinates 

them. The microkernal includes functionality that enables other components running in 

separate processes to communicate with each other. 

C. 6. Model-View-Controller (MVC) 
This design pattern allows flexible use and reuse. Changes in any part of the system can be 

achieved without the need to change functionality in all components. The pattern divides 

an application (usually an interactive one with a graphical interface) into three 

components: 
1. Model: containing the core functionality and data. 

2. View: displays information to the user. 
3. Controller: handles user input and receives events from the model. This can be 

achieved through the Publisher-Subscriber pattern (Appendix D. 6). 

The user interface usually consists of both the View and Controller components. Different 

users place conflicting requirements on the user interface and this pattern method 
facilitates the use of multiple user interfaces that essentially use the same data but show it 

and engage with it in different ways. The change-propagation mechanism is the only link 

between the three components. 

C. 7. Presentation-Abstraction-Control (PAC) 
Defines a structure that is designed for a hierarchy of cooperating agents. Each agent is 

responsible for a particular aspect of the application's functionality, and consists of three 

components: 
1. Presentation, provides a particular view of the corresponding semantic concept. 

2. Abstraction, represents the data of the agent in a relevant way. 
3. Control, provides control and communication aspects of the architecture. 

This separation of components divides the presentation (human-computer interface) from 

the functional core, much like the MVC pattern. The first use of PAC was in the area of 

artificial intelligence (Crowley, 1985). Communication between the abstraction and 

presentation components is decoupled by the control component. In systems developed 
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through the use of the PAC architecture cooperating agents, all with specific tasks, work 

together to provide the system functionality. 

C. 8. Reflection 
Use of the reflection pattern enables dynamic changes to the structure and behaviour of 

software systems. This pattern has two parts: 

1. Meta-level, provides information about system properties and makes the software 

self-aware. This level encapsulates system internals that may change, changes in this 

level affect base-level behaviour. 

2. Base-level, implements the application logic. The implementation of which builds on 
information provided by the meta-level. 

The general structure of a reflective architecture is very similar to a layered system. The 

difference however is in the dependencies between layers. The levels used for reflection 

(Meta and Base) build on each other whilst in a pure layered architecture each layer only 

builds on those layers that are below. Reflection has benefits when modification of code is 

required, existing code can be modified by calling a function of the metaobject protocol. 

The metaobject protocol integrates the change requests and if necessary recompiles the 

changed parts and links them to the application while it is still executing. The architecture 

pattern may lead to a lower efficiency however, as the two levels consult each other, 

retrieve information and modify objects at run time. 
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Appendix D 

Design Patterns 
A design pattern can be described as a commonly occurring structure of components that 

work together to solve a general design problem, usually within a particular context. 

Design patterns specify functionality on a smaller scale than architectural patterns, but are 

at a higher level than programming language specifics. Implementation of a specific design 

pattern does not effect the fundamental structure of a software system, but may influence 

how a subsystem is designed. The table below shows eight design patterns that fall into 

five categories, detailed below; 

Table 40 Use of design patterns in the construction of system architecture, (data provided 
by Buschmann et al., 1996). 

CategoryName Use Patterns falling into the 
Category 

Decomposes systems and complex components 
Structural 

into cooperating parts. Independent components 

Decomposition can be simpler to handle, are easier to " Whole-Part 
understand and changes to them can be made 
more easily. 

Organisation of Work Component collaboration to solve complex " Master-Slave 
problems. 

Access Control Guard and control access to the system. " Proxy 

Management Handles collections of components in their " Command Processor 

entirety. " View Handler 

" Publisher-Subscriber 

Communication Organises communication between components. " Forwarder-Receiver 

" Client-Dispatcher-Server 
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D. I. Whole-Part 
An object described as Whole represents a grouping together of smaller objects called 
Parts into a collaboration. The functionality of the Whole object is an ordered culmination 

of the functionality of all the smaller Part objects. The pattern attempts to model real world 

relationships. Services belonging to a Whole object are visible to external clients, whilst 

the internal workings of the Parts are wrapped inside the Whole and can not be accessed 

unless they are allowed by method calls from the Whole object. 

D. 2. Master-Slave 
The Master-Slave pattern applies the divide and conquer principle, where work is 

partitioned into several subtasks for processing independently by the slaves. The master 

component splits the work and distributes it to the slave components and computes a final 

result from the results that the slaves return. The slaves usually perform semantically 

identical sub-tasks. The pattern supports fault tolerance, parallel computation and 

computational accuracy. 

The master component provides a service that allows external entities to access the service. 

They are unaware that the service implemented by the master partitions the work into 

several equal sub-tasks, computing a final result from all the results obtained. 

D. 3. Proxy 
A proxy is usually used to encapsulate the interface and remote address of a server. The 

proxy pattern is often used with a forwarder (Appendix D. 7) that takes the message and 

transforms it into IPC (Inter-process communication) level code. The design makes the 

client using a component communicate with a representative rather than to the component 
itself. This interface can be used for many purposes: enhanced efficiency through caching 

mechanisms, easier access, or protection from unauthorised access. The proxy pattern 

assists access to services provided by other systems especially when direct access with the 

system could be inappropriate or subject to regular change. 

The use of proxies can have an adverse affect on efficiency due to the extra layers of 

computation in the object communication channels. Caching only solves this inefficiency 

when the services or objects being cached are relatively static. If the rate at which the 

objects change are high then the overhead needed to invalidate old copies in the cache may 
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defeat any benefit from using the cache in the first place. 

DA Command Processor 
The Command Processor design can be used in applications requiring a mechanism to 

schedule or undo certain actions. The pattern separates the request from its execution. This 

separation of operations means that the execution section of the request can be stored for 

future use as a separate object entity, either as part of a scheduled action or as a record of 

what to undo if an outcome was not desired. 

The ability to que actions promotes flexibility, if a different user interface was required 

then as long as the interface created scheduled objects that the core functionality could 

understand the interfaces can be changed and modified at will. The methodology could 

similarly be used to log actions and events within the system without affecting its 

operation. Another use is the automatic rollback of transactions if they do not go to plan, 

keeping records intact. The pattern in some circumstances may also allow commands to be 

executed in concurrent threads. As with all patterns that use a decoupling methodology the 

additional indirect cost of storage time before execution must be considered before 

implementing the pattern. 

D. 5. View Handler 
A View Handler pattern can be used where a software system provides multiple views of 

the same document or supports working on multiple documents at the same time. The 

pattern overcomes the problems associated with multiple views of the same document and 

enabling editing in each one by providing an efficient update mechanism for propagating 

changes between windows containing the views. An update made to one view of the 

document will automatically be reflected in the other views too. It is worth noting that both 

the Model-View-Controller (MVC) and Presentation-Abstraction-Control (PAC) 

architectural patterns share the principles of the View Handler. 

D. 6. Publisher-Subscriber (or Observer) 
The Publisher-Subscriber pattern is especially useful when one or more components of a 

system wish to receive notification of an event or receive a particular object from the 

Publisher. A Publisher notifies any number of Subscribers about changes to its state, using 

this method cooperating components are kept synchronised. 
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D. 7. Forwarder-Receiver 
Using the Forwarder-Receiver design pattern, components are decouplcd from the 

underlying communication mechanism. On the client side a Forwarder receives a request 
from the client and handles the mapping to the communication facility used. On the server 
(or Receiver) the request is received via a general interface that has functionality for 

receiving and unmarshalling (extracting) the message. The design pattern addresses the 

issue of where to send a request by using a name space to identify the Receiver or group of 
Receivers that will receive the message. The message protocols are also defined. 

The Forwarder contains all the functionality for sending messages across process 

boundaries, using a name repository (or registry) to identify the physical address of the 

recipient. The Forwarder connects to the remote peer (or Server) via the registry. The 

Receiver is responsible for all the functionality required to receive the message, and 
decouple the actual message part. 

D. 8. Client-Dispatcher-Server 
A dispatcher allocates, opens and maintains a direct channel between a client and server. 
The dispatcher component acts as an intermediate layer between the client and server. This 

allows access to a service running on a server without knowing its physical location, and 
keeps the code implementing the server connection separate from the core functionality of 

the service. A server registers itself with the dispatcher by its name and address. Once this 

registration has taken place the dispatcher is now able to establish communication with the 

server when a client makes a service request. The connection is established once the look- 

up of the service (required by the client) has been successful. 
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Appendix E 

Service Oriented Architecture 

Service Oriented Architecture (SOA) provides a useful foundation on which to build an 

implementation of the EMS architecture. The foundations for SOA exist (W3C, 2004) 

(W3C, 2006). The use of web services is one way to implement a SOA. Advantages arc 

twofold: for the service, communication between additional system components is simple, 

and for the client, connection is simple; the latest version of system software is delivered 

each time the service is used and availability is made continuous. 

Foster and Kesselman (2004) promote the ideal that all entities of a service-oriented 

architecture are services; this implies that any user visible operation is the result of a 

message exchange. The standard service architecture usually consists of at least a pair of 

services able to communicate with each other. It is envisaged that as a long term objective, 

the EMS would be used in this type of component environment. Foster and Kessclman 

(2004) define a service as, "an entity that provides some capability to its client by 

exchanging messages" they go on to say that "a service is defined by identifying sequences 

of specific message exchanges that cause the service to perform some operation". 

The prototype modules were designed during this thesis using an iterative approach. The 

modules communicate through the exchange of messages that could be extended to operate 

in a Service Oriented Architecture (SOA) environment. Zimmermann et al. (2007) discuss 

the use of Service Oriented Architecture (SOA) and web services, suggesting that it 

reinforces general software architecture principles such as separation of concerns and 
logical layering. Web services are loosely coupled, communicating directly with other web 

services and end users via the Internet. A web service that adheres to the Open Grid 

Services Infrastructure (OGSI) (Tuecke et al., 2003) is called a Grid Service. The 

implementation of distributed systems working together to complete complex tasks is 
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made possible by the effectiveness of the network. The use of a network can often lead to 

substantial cost and time savings when used to assist with complex calculations. 

E. I. Lookup Service 
The purpose of a lookup service is to help devices, systems and other such processes to be 

found by each other on a single machine or over a network. Lookup services allow various 

combinations of functionality to be achieved by allowing a plug and play type of capability 

to a system, the look up service keeps a record of all the services that exist on a particular 

network. There are a number of examples of lookup services. JNDI (Java Naming and 

Directory Interface), Jini lookup service: 

"The Jini lookup service is a fundamental part of the federation 

infrastructure for a djinn, the group of devices, resources, and users that are 
joined by the Jini technology infrastructure. The lookup service provides a 

central registry of services available within the djinn. This lookup service is 

a primary means for programs to find services within the djinn, and is the 

foundation for providing user interfaces through which users and 

administrators can discover and interact with services in the djinn. " 

(Sun, 2003a) 

Novell's Directory Service (NDS) eDirectory, and Microsoft Active Directory are example 

of a lookup service. Most lookup services are LDAP (Lightweight Directory Access 

Protocol) compatible. 

The primary protocol used by web services is Simple Object Access Protocol (SOAP). 

SOAP is based on eXtensible Markup Language (XML) and allows dissimilar applications 

to interact regardless of their underlying platform, programming language or internal 

application calls. This description also loosely defines web services. 

E. 2. Web Service Architecture 
Through the use of web services, healthcare organisations are able to integrate IT assets 

and services across the network (Sun, 2003b). Web service protocols include: SOAP, XML, 

EDT, WSDL, UDDI. 

E. 3. Health Industry Model Architectures 
The Patient health network, supports emerging wireless, wearable medical devices. This 
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development, which enables patient mobility, has particular application to the EMS 

architecture. Another development is the use of a correlation identifier to handle users, and 

file patient specific reports (Singh et al., 2004). 

Integration of the EMS with a wider healthcare system is not widely considered by this 

thesis, however consideration has been made with respect to the types of input and output 

that the system can except and create. Choe and Yoo (2008) propose the use of XML for 

data interchange within a secure web-based repository system for healthcare records. The 

proposed system uses XML messages for communication, which enables a flexible design 

for the exchange of healthcare data in a common format. 

Messaging and Collaboration Services 

Provide consistent electronic communication using common medical terminology, code 

sets, transaction protocols, or application messaging. The industry standard for application 

to application message interchange. 

Health Level 7 Application Messaging 

HL7 messaging addresses the interoperability requirements of the healthcare industry. It is 

a standard providing a means of clinical and administrative data supporting patient care to 

be exchanged between healthcare applications.. 

Electronic Data Interchange (EDI) transactions 

EDI allows entities within the healthcare system to exchange medical, billing, and other 

information, as well as process transactions quickly and cost effectively. 

Standardised medical terminology and code sets 

There is not a single standard that meets the needs of healthcare providers. The most 

common terminology and code sets are: LOINC, SNOMED, ICD, CPT, UMLS, and DSM. 

DICOM 

The Digital Imaging and Communications in Medicine (DICOM) standard facilitates the 

interoperability of medical imaging equipment. 
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Appendix F 

EMS Service Implementation Architecture 
Figure 96 shows how the components of the EMS coordinate their work flow to achieve 

automatic recognition of air quality features leading to a decline in patient lung function. 

The flow begins with the workflow coordinator, where the initial parameters controlling the 

identification are entered by clinical staf. Once the system has been initialised, the work 

flow passes to the second component (Data Analyser) where data relevant to the patient is 

extracted from the database using the database query interface; also available as a service. 

The data is passed back to the analyser, where control is passed to the FDA component. 

Reference datums are returned to the Data Analyser and subsequently the worAflow 

coordinator. 

Control passes to the Data Locator component, where environmental data relating to the 

movements of the patient are extracted from the database (using the query interface). 

Depending on the analysis initially activated by the member of clinical staff, the process 

then either uses the FDA component to identify the environmental reference datums, or 

extracts time series data from the environmental data set, leading up to each identified lung 

function datum. 

The preprocessing stage of the data analysis is complete, and the work flow transfers to the 

vector Organiser. This component extracts the delay characteristics between the two data 

sets and prepares the input to the pattern recognition modules. The workflow coordinator 

stores the results from both the lung function and environmental analysis modules for this 

purpose. The parameters of the delay characteristic sent to the pattern recognition modules 

(date of environmental reference datum, value, and lag time to the lung function datum) 

can at this point be chosen (in the prototype). However this choice could be made in the 

initial system initialisation by clinical staff. 
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The remaining pattern recognition modules divide into two categories: 

1. FBCA (Frequency, Boundary, and Cluster Analysis). 

2. Neural Analysis (Self-organising map algorithm). 

Frequency, Boundary and Cluster Analysis (FBCA) is split into two modules; the 

functionality of the frequency and boundary analysis is transferable to other applications as 

a statistical tool, and the cluster analysis module. 

The event driven nature of the existing prototypes make them capable of adaptation to 

service driven environments. Defacto standards for the implementation of service 

architectures are XML and web services (e-Government Unit, 2005), they provide a loose 

coupling between multiple applications sharing the same infrastructure. 

Integration with existing healthcare systems is also simplified through the use of XML. Mullcr et 

al. (2001) show an example of a decision support system integrated with a hospital information 

system using XML, and distributed object technology. 
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Architecture using a Service Methodology 
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Figure 96 EMS Conceptual Service Architecture. Where the dotted purple lines represent 
each service, and solid black lines show the workflow. 
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Appendix G 

EMS Prototype Event Architecture 
Figure 97 shows the messages that are sent between the prototyped modules. The messages 

can be categorised into two basic types; those that are sending some information, and those 

that are requesting information from other modules, via the workflow coordinator. 

The EMS system architecture sends or requests data via the workflow coordinator. As the 

EMS prototype was built to demonstrate and test the methodology of each module, a 

graphical interface (activated by the user) controlled the input to each module. 

The message flow described by Figure 97 uses notation such that the numbers shown 

within green circular discs represent messages that are sent, and those within red discs 

represent messages that are requests for information. The numbers are used consecutively 

to annotate the order in which the messages are activated. 

The first message sent (annotation of "0" within a green circular disc), initiates the set up 

of the general parameters from the user interface. Any modules with green discs with 0 

appearing on the right hand side of the diagram receive the event. The DataLocator 

receives the majority of 0 events. In preparation for extraction of air quality data and 

associated reference datums. 

The Data Analyser is also made ready to begin the analysis of the lung function data and 
identifies the appropriate reference datums which it passes back through the workflow 

coordinator (annotation of "1" within a green circular disc). 

The Data Locator responds to the receipt of the reference datums by extracting the 
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appropriate environmental data from the database. The datums found using the FDA 

component are then used in one of two ways defined by the user interface; as markers to 

extract time series data leading to each datum, or the reference datums themselves are sent 

back to the workflow coordinator. 

The VectorOrganiser (part of the hypothesis builder) then collects the data from the 

workflow coordinator and orders the data according to the analysis required, passing the 

ordered data back to the workflow coordinator (annotation of "9" and "10" within green 

circular discs). 

At this stage, control is given over to each of the analytical components (Neural Network 

and FBCA) by the workflow coordinator. The Correlation component can be activated 

earlier during the work flow, once both corresponding air quality and lung function data 

sets are received by the component. (annotation of "2" and "3" within green circular discs). 

The results from both the FBCA and neural analyses are held within the respective 

prototype components. However, in a full implementation the results would be passed back 

to the workflow coordinator for further use by the dissemination components. 
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'Prototype Modules' in Chapter 4. 
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Appendix H 

Data Storage 
The data model of the EMS was developed to be flexible, allowing the addition of new 

record types (or removal) over time, and yet still being efficient when queries were 

executed. Bertino and Martino (1993) propose that a good data model expresses both the 

structure of individual objects, and existing relations between different objects in the most 

natural and direct way. They also state that the model must be extensible; in that the 

application must be able to define its own types of data, together with the associated 

operations. The data model shown in Figure 98 outlines the database schema deployed 

within the EMS. The model describes the relationships between each of the objects and 

gives an indication of how the data is stored for later retrieval. 

10 

+ name: String 

+ code: String 

+ description: String 

Absolute 

f location: Location 
+time: Time 

+ latitude: double Time 

+ longitude: double 
+ altitude: double 

AbsoluteDeta 

type: String 

Owner 

+ attributes: Hashset 

Data 

+ value: Object 
Object + type: String 

+ units: ID 
+ relations: Hashset 

+ provider: Provider 
+ owner: Owner 
+ data: Data 
+ taps: Hashset 

/+ String getProviderNeme() 
+ String getProviderCode() 
+ String get ProviderDescrlptlon() 
+ String getOwnerName() 
+ String getOwnerCode() 

Hashset + String getOwnerDescriptior ) 
+ String getProvlderType() 
+ Object getVahie( 
+ String getType( 
+ ID getUntsp 
+ Iong getEpoch() 
+ String getLocationNameq 
+ String getLocetionCodeq 
+ String getLocetionDescriptioro 
+ String getNameO 
+ String getCode() 
+ String getDescriptionp 
+ Location getPosRior() 

Figure 98 EMS Data Model 
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It is useful to note that the structure has been devised so that types of data storcd and 

manipulated within the EMS are not dictated by the system architecture. The architecture 

of the data model has been devised so that any object (or type of data value) can be stored 

by the system; shown by the Data section of Figure 98, where the value can be of any 

Object type. 
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Appendix I 

Frequency Analysis Implementation 
The structure to record the cluster boundaries within the FIICA component, and monitor for 

matching patterns is shown in Figure 99. There are three types of bucket: Date, Lag, and Wise. 

These three buckets extend the functionality contained by the AbstractBucket class, which 

implements the Bucket interface. The implication of this is that the three different types of bucket 

can be treated similarly when making comparisons, due to meeting the requirements of the Bucket 

interface. 

Bucket 

geti-lIghUnu) 
getLc lJri t) 
set8ucI t(long low, long high) 

AbstractBucket 

equals(Bucket obj) 
getKghUmit() 
getLow Limit() 
inBucket(Object in) 
set(Object low, Object high 
toString() 

ge1HIghIJn t() 
gnu) 
seta ici (I ng low, long Mgh) 

getHighUma) 
getLvAUtT t() 
set8uclet(doade low, double P gh) 

D 
Bucketp 

BucketNbtchCorTparafor 
Matches n 

Figure 99 The EMS uses three types of bucket; Date, Lag and Value. Each bucket type 
implements the Bucket interface which defines core f unctionality that each bucket must 
implement. All bucket types can then be compared against the same types automatically 

and matches logged within the BucketSet. 

The BucketSet class collates the vector that defines the ranges of a cluster. Each vector dimension 

(Bucket[l, ..., n]) holds a bucket, which in turn defines the limits of that dimension of the cluster. 

Once the limits of the cluster are defined in this way, the BucketMatchComparator monitors input 

data (in the form of vectors matching the bucket set). Each match is recorded so that patterns 

allocated to each cluster can be analysed further. Over time, bucket sets with a significantly high 

number of recognised input patterns become verifiable as possible predictors of asthma 

exacerbation. 
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Appendix J 

Reference Datum Vector Examples 

An example of the three types of ordering (discussed in Chapter 5) arc shown in their 

vector form by the Figures (100a to 100c): 

a) Type 1(Series, one parameter): Consists of a time series that could be taken at regular 
intervals if leading up to a trigger point, or irregular intervals if representing a series of 

points analysis, for one parameter. 

b) Type 2 (Series, many parameters): Similar to 7'pe 1, except that the vector will 

generally have a greater length in order to incorporate all the parameter data. 

c) Type 3 (Many parameters, snapshot): Used for point analysis involving more than one 

parameter. This type could be used for a single parameter, in which case the length of 
the vector would be restricted to this single parameter. 

Although only three types of analysis are given here, the use of a software interface within 

the prototype implementation facilitates the integration of other possible analysis types. 

Note, that the examples given here simplify the vector as they only include Values, rather 

than the possible inclusion by the prototypes of Lag and Date values. Although the date of 

the reading is shown in order to show a series. 

It should be noted that the examples given here have been simplified. The lag elements (as 

mentioned in example c below) have been excluded, but would normally be one of the 

most important data parameters to analyse. 
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Time Series one parameter 
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Appendix K 

Classification Models 

Three types of classification model are: decision-region boundaries, probability density 

functions, and posterior probabilities. Figure 101 (below) taken from Kennedy ('t a!. 

(1998), shows the three models in graphical form. An explanation of each model is then 

given. 

Decision-Region 
Boundaries 

0 
aý 

0 

Q 

Probability Density 
Functions 

Class A Class B 

Ü 
g i! ý 

Posterior 
Probabilities 

Class A Class 

xx 
Figure 101 Comparison of classification model types. 

X 

K. 1. Decision-Region Boundaries 
This type of model constructs decision boundaries within the input space and is the 

simplest way to minimise classification error. This type of model works best when the data 

is clearly defined into classification type, for example everything below x is Class A, 

everything above x is Class B. 

K. 2. Probability Density Functions 
The probability density function (PDF) for a normal distribution is given by the 

expression; _(x_p)2 

. 
1(x)= 1e 272 

2 rr r Eq. K. 1 

where p is the mean of the distribution, and 6 the standard deviation (Witten & Frank. 

2000). 
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PDF is a mapping of the input data to probability density values reflecting the statistical 
distribution of the data. The PDF for a class C evaluated at a point x in the input space, is 

denoted by p(xlC). 

Prior probabilities must be used alongside PDFs to enable the creation of a classification 

model. Prior probabilities (also known as a priori probabilities or unconditioned 

probability) denoted by P(C) where C represents a class, should be assigned to a class 

before any analysis of data input for its classification. P(C) is set by determining the 

number of data samples within a class then dividing by the number of class classifications 

available. Therefore, if 5 data samples where classified as similar and there existed a total 

of 20 different samples the probability assigned to the class C would be 5/20 (or 25%). 

The method of assigning both a PDF and an a priori probability to an input, facilitates the 

classification of data through the maximisation of P(C) p(xl C). This model assigns the 

most probable class to an input vector x. 

K. 3. Posterior Probabilities 
The probability that an input belongs to a certain classification is called the posterior 

probability (also known as the a posteriori probability or conditional probability), and 

denoted by P(CIx). Luger & Stubblefield (1998) give the following example to demonstrate 

posterior probability. The posterior probability of a person having a disease d with 

symptom S is; 

P(d lS)=ýd 
SS) Eq. K. 2 

where the right side of the equation reads, "the number of people having both the disease d 

and symptom S divided by the total number of people having symptom S. " This is Bayes' 

theorem. The posterior probability associated with an input x can be thought of as a vector 

with components P(C, kx), ..., P(C,, IX). This is an estimation problem where the total of the 

components should sum to 1. 

Haykin (1999) suggests that the ratio of two conditional PDFs is the equivalent of a 

likelihood ratio. The likelihood that a pattern belongs to a certain class. The ratio is also 

known as quantity A(x). 
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Appendix L 

Modelling Approaches 

L. I. Fixed Models 
Fixed models are typically described by a set of mathematical equations that define a 

transformation between the input vector and the model's output. An accurate model 

requires the complete understanding of the relationships between all the variables in the 

input vector and the output variables. Fixed models are usually only used when the 

classification problem is understood. The general mapping for a single variable is defined 

by; 

F(X) =X Eq. L. I 

Fixed models of this type often oversimplify the relationships between variables which can 

lead to inaccuracies. 

L. 2. Parametric 
Parametric modelling involves two stages. The first stage is similar to fixed modelling 

except that a set of free parameters (parameters that can be given numerical values) are 

inserted into the fixed model. The process can be described using the following diagram 

(Kennedy et al., 1997). 

Figure 102 A parametric form 

The second stage uses data to select numerical values for the free parameters. The 

parameters are usually chosen to minimise error on a given data set. An example of a 
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parametric model using linear regression (good for linear data) is givcn below; 

F(AJO) - Oo+Oix, +... +0�x� Eq. L. 2 

Where the input vector is represented by X= [x,, and the parameter vector by 0 

[0o, ..., On]. The parameter vector contains n+1 parameters (using the linear regression 

equation). With an input space with two or more dimensions the mapping becomes a plane. 

Linear regression methods can often lead to poor results when the underlying data is not 
linear. When the input data is in n>2 dimensions it becomes difficult to determine its 

characteristics. 

Parametric methods make assumptions about the nature of data distribution. They often 

assume that the data has a Gaussian distribution. The problem is reduced to estimating the 

parameters of the distributions (means and variances in the case of Gaussians). Parameters 

are typically selected using the mean of the distribution. 

Another form of parametric technique often used is Logistic Regression. This method, 

rather than using a linear parametric form (as used in linear regression), uses a sigmoid 
function instead. Sigmoids are more natural for estimating probabilities as they take on 

values between 0 and I with a smooth transition between the two extremes. 

L. 3. Nonparametric 
Nonparamctric modelling can be used where little or no prior understanding of 

relationships between data parameters exist. This allows the potential discovery of new 

relationships not previously conceived by human knowledge. Nonparamctric modelling is 

particularly useful when visualisation capabilities break down in estimation problems 

where the dimension of data is high and relationships arc complex. Non-parametric 

methods make no assumptions about the specific distributions involved, and arc therefore 

described, perhaps more accurately, as distribution free (Michic et a!., 1994). 

As there are always an infinite number of candidate models for a given data sct, the 

problem is in finding the one that will gencralisc to other data sets the best. It is common to 
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resort to intuition (or heuristics) to arrive at a solution. Nonparurnctric mcthods use a 

particular set of rules to guide the heuristics: smoothness, complexity, out-of-sample error. 

LA Smoothness 
In classification the meaning of smoothness varies between different types of model. For 

decision boundaries, smoothness is a measure of how the transition between regions is 

smooth (or that there are few decision regions by nature). Probability Density Functions 

(PDFs) refer to smoothing as the nature of the mapping defining the (profile of the) 

function. Whilst posterior probability refers to smoothing in a similar way to estimation, 

that smoother mappings restrict output values and is a measure of how much the output of 

a mapping changes due to small changes in the input. 

L. S. Complexity 
The larger the number of different models that can be produced, the greater the complexity 

of the mapping. The more complex a parametric form, the more likely there will be a large 

number of models. For example (Kennedy et al., 1997) use the following example; 

the quadratic, F(XJ0) = Oo + 01x +0 Eq. U3 

is more complex than the linear form 

F(XO)=Oo+Dix Eq. L4 

as the linear mapping can be generated from the quadratic if the last term (02) is reduced to 
zero. 

L. 6. Out-of-Sample Error 
The objective of nonparametric modelling is to arrive at the mapping that provides the best 

form of generalisation across a number of similar data sets. This is done via an iterative 

process controlled by a measurement of error. The error is derived from the estimation of 

an 'out-of-sample' error, which is found from the analysis of parametric fits through the 

data set. The out-of-sample error is allocated to each parametric fit after comparison with a 

test set of data. The parametric fit with the lowest out-of-sample error becomes the chosen 
fit for the generalised data samples. In cases where the errors arc similar the lowest order 

of parametric model is chosen for simplicity (and greater smoothness). 
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Appendix M 

Nonparametric Methods 
Many different types of architecture arc commonly used for data classification. Decision 

boundary methods often use learning vector quantisation (LVQ), K nearest neighbour 

classifiers, and decision trees. Probability Density Functions (PDFs) commonly use 
Gaussian mixture methods. Posterior probabilities however arc the most flexible and can 

use any estimation architecture. The most common however arc, multilaycrcd pcrceptron 
(back propagation neural network), radial basis functions, and the Group Method of Data 

Handling (GMDH). 

The following summary has been derived from work by Kennedy et at (1998). 

Table 41 Summary of non parametric methods 
Algorithm Parametric Non- Classification Es 

parametric 

Nearest 
cluster 

X X 

Linear X 
rcgrcssion 

Logistic X x 
rcgrcssion 

Back- X X 
propagation 

Gaussian X X Mixture 

timadon Kernal Boundaries (for Aiapping (for 
Function classiflcatlon) estimation) 

Piccc-wise Linear 
Euclidean 

Linear combination of 
Norm weighted 

Euclidean 
distances 

x Line tlypc plancs Best fit line 

Ilypcrplancs Wcightcd sum 
or inputs 

Sigmoid pnsscd through Iin 
ssigmoid 

nonlincurity 

Ilypcrnlancs Weighted sum' 
of inputs 

Sigmoid passel through 

in sigmoid 
nonlincarity 

Ovcrlapping Wcightcd SUM' 
Gaussian radial of Gaussian 

(rcccptivc) ficlds outputs 

262 



Algorithm Parametric Non- 
parametric 

Unimodal X Gaussian 

Radial basis x 
function 

K nearest x 
neighbour 

K means x 

Projection x 
pursuit 

Estimate- 
Maximise x 
clustering 

MARS X 

GMDII X 

Parzen's x 
window 

Linear x decision tree 

Binary x 
decision tree 

Hypcrspherc x 

Learning 
vector x 
quantisation 

Classlflcation Estimation Kcrnal I BounJarles (/'or marring (for 
Function classcatlon) estimation) 

Overlapping Weighted sum 
X Gaussian radial of Gnu%sian 

(receptive) fields outputs 

Overlapping Weighted sum 
X X Gaussian radial of Gaussian 

(receptive) fields outputs 

piece-wise Linear 

Euclidean linear combination of, 
X X Norm weighted 

Euclidean 
distances 

Piece-wise Linear 

Euclidean of linear 
X X 

Norm weighted gtecl 
Euclidean 
distances 

X X Line I1ypPlanes Linear inner 
product 

Piece-wise Linear 

X X Euclidean 
linear : combination of 

weighted Nom Euclidean 
distances 

x x Polynomial Piece-wise Piece-wise 
decision tree polynomial polynomial 

X X Polynomial , 
Piece-wise Nonlinear 
polynomial spline 

Overlapping Weighted sum 
X X Gaussian radial of Gaussian 

(receptive) fields I outputs 

Ilypcrplancs 
X X` parallel to input N/A 

axis 
t 
Dccision _.. _.... ,. _ Ftypcrplanca 
tree parallel to input! N/A 

axis 

x flypcrshpcrc Overlapping N/A hýphý 

XI f 
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Appendix N 

The Self Organising Map 

N. I. Competitive Process 
The process which the self-organising map (SOM) uses is as follows; 

An input pattern (or vector) taken from the input space (initial data set) takes the form; 

X [XI, X2, X3, ... x, � I 
Eq. N. 1 

where m denotes the dimension of the input space. 

The weight vector for each neuron in the network has the same dimension as the input space. 
Therefore a weight vector for neuron j would take on the form; 

Wj=[Wjl 9IJ2, fl ,... IVJM] J-1,2,3..., 1 

Eq. N. 2 

where 1 is the total number of neurons in the network. 

To find the best matched neuron for the input vector the weight vector of the neurons can be used. 
One method is to compare all the inner products (wj x) of the neurons and select the largest. The 

second method is to find the weight vector with the minimum Euclidean distance to the input 

vector. 

The winning neuron, or the neuron that best matches the input is identified by i(x) the index of the 

neuron which is chosen by applying the following condition 

i(x) = arg min 11x - w`'l, J=1,2,...,! Etj. N. 3 

The competitive process seeks to find the index i(x) of the winning neuron in preparation for 

interaction with neighbouring neurons. The neighbourhood is defined topologically, that is to say 

that a neighbouring neuron is not influenced by the stretching or bending of the output space (or 

mapping). The interaction follows the methodology thought to be achieved in the human brain 
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whcrc the firing of a neuron tends also to excite those that arc in the immediate neighbourhood. 
hß, 1 

Figure 103 A Gaussian neighbourhood 
function. 

Two requirements to enable the firing of local neurons are: 

d j,! 

1. The topological neighbourhood (hj, 
j) should be symmetrical about the winning neuron. 

2. The extent to which neurons further away from the winning neuron should be excited should 

decrease monotonically with increasing distance, decaying to d1, j--+ 00 . This is a necessary 

condition for convergence. 

A typical choice of neighbourhood (hß, 
1) function that satisfies the two requirements is the 

Gaussian function, shown in Figure 103 above and given by; 

i i hJ. «X)=exp - 
dt 
2a 2 

Eq. N.. 4 

So that neighbouring neurons cooperate, it is necessary that the distance d1,, between 

winning neuron i and excited neuron j is defined by the topological output space rather 

than with a distance measure defined by the original input space. The neighbourhood 
function hp(, ) is also known as the Probability Density Function (i laykin, 1999). 
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Appendix 0 

Distance Formulae 
Table 42 Options for the choice of distance formulae. 

Distance 
Measure 

Pythagorean 

Theorem 

Naversine 

Formula 

Polar Co- 

ordinate, 

Flat-Earth 

Formula 

Law of 

Cosines for 

Spherical 

Trigonometry 

Formula Accuracy Comments 

d= , 
%- 

xt ý2+ý y2 yi)2 
-~ u Varies by earths latitude but Good if distance 

between t9 and 30 meters. between locations 
! 

<'20km. Note 1. 

d =2R"alan2( a, 1-a) d±lm per 10km ofd Accurate over all 
distance. 

I -±Im 
d =R" a2+b2-2"a"b"cos(lon2-lonl)ýldistance. 

distanccs. Note 2. 

per l km of Computationally 

mors cxpcn+ivc 
than Pythagorean ? 

thcorcm but more 

accurate. Note 3. 

d =R"arccos(a+b) 
iA largc numbcr of Not good for small 

i significant numbers arc distances. Note 4. 

required during calculation 

to cope with the cos". 

Note 1. The use of Pythagorean theorem will also incur a computational cost of transforming the co- 

ordinates from the spherical measurement of latitude and longitude to Cartesian co-ordinates. 

Note 2. The Haversine Formula (Sinnott, 1984) where, 

a=sin((1at2-latl)/2)2+cos(latl )"cos(1at2)"(sin (1oß: 2-lonl /2))' 

The arguments of trigonometric functions arc expressed in radians. Longitude and Latitude 

measurements need to be converted from decimal (degrees, minutes and seconds) to radians (times 

dcgrces by zt /180). 

Note 3. The a and b for the Polar Co-ordinate formula arc; 

a® x/2 - latl 

b= TL /2 - lat2 

Note 4. The a and b for Law of Cosines for Spherical Trigonometry arc; 

a=sin (latl)"sin(lat2) 

b=cos(latl)"cos(lat2)"cos(lon2-lon]) 
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Appendix P 

Third Party Java API Used During Prototype Development 
The architecture of the system has been designed as generically as possible to allow flexible 

implementation. Particular mention should be made of the selection of Java API that have been 

used during the construction of the prototypes. The Java APIs that have been used arc: 

Table 43 Java API used in the development of the SAMS. 
Java API Description Y ~ý 

u v~ 

Use/Notes 

J2SE (Jdk2.2.1) The Java 2 Platform, Defines the manner by which an appict or application 
Standard Edition is at the can make requests to and use the functionality available 
core of Java technology, in the compiled Java class libraries. 

JAXB - Java Automates the mapping Used during preliminary database construction as a 
Architecture for XML between XML documents means to transfer data from XML documents. 
Binding and Java objects. 

PSEpro for Java API An object database. This was used during the preliminary stages of the 
project, before the JDO specification became available. 
Developed by ObjcctStore. 

Java Data Objects A standard interface-based Uses XML descriptors to enhance the persistent classes 
(JDO) model for data persistence. for storage. Applications written with the JDO API arc 

JDO technology can be used portable, and independent of the underlying database. 
to directly store Java 
domain instances into the 
persistent store (database). 

FastObjects A true object database. FastObjects' power comes from the ability to represent 
(implementation of complex object networks in the database on a one-to-' 
the JDO specification) one basis. 

Monarch Charts A collection of pure Java Assists the presentation of data using graphical means. I 
charting components that 
allows customised, cross 
platform, data visualization 
applications. 

Jama (jmat) A Java Matrix API Used in multidimensional scaling techniques which 
were experimented with as part of the project for the; 
display of information. 

JINI Network technology crcatcd For building distributed systems that arc highly 
by Sun Microsystems. adaptive to change. Used to crcatc systems that arc 

scalable, evolvable, and flexible. 

JExpress. A tool that was used to Written in Java and is capable of analysing data sets 
verify that some of the 

! 
with Principle Component Analysis, Hierarchical 

concepts were feasible. Clustering, K"means cluster, SOMs and visualisation 
techniques such as Sammons Mapping. Frcewarc, " 
developed by Molminc (www. molminc. com). 
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Appendix Q 

Database index descriptor XML file 
An example of a database index descriptor file is given below. Indexes arc specific to the particular 
database implementation used, and as such should follow the specification given with each 
database. The file given below is for an object database implemented with FastObjccts. 
<field name-"time"> 

<collection element-types"mdx. ems. odb. Time" I> 
</field> 
<field name="location"> 

<collection element-type-"mdx. ems. odb. Location" 
</field> 
<field name-"data"> 

<collection element-type-"mdx. ems. odb. Data" /> 
</field> 
<field name-"provider"> 

<collection element-type-"mdx. ems. odb. Provider" 
</field> 
<field name-"owner"> 

<collection element-type-"mdx. ems. odb. Owner" /> 
</field> 

I> 

I> 

<extension vendor-name-"FastObjects" key-"index" value-"datalndex"> 
<extension vendor-name-"FastObjects" key-"member" value-"data"> 

<extension vendor-name-"FastObjects" key-"lexicalOrder"! 
value-"true"/> 

</extension> 
</extension> 
<extension vendor-name-"FastObjects" key-"index" value-"ownerIndex"> 

<extension vendor-name-"FastObjects" key-"member" value-"owner"> 
<extension vendor-name-"FastObjects" key-"lexicalOrder" value-"true"/> 
<extension vendor-name-"FastObjects" key-"significance" value-"3"/> 

</extension> 
</extension> 
<extension vendor-name-"FastObjects" key-"index" value-"providerlndex"> 

<extension vendor-name-"FastObjects" key-"member" value-"provider"> 
<extension vendor-name-"FastObjects" key-"lexicalOrder" value-"true"/> 

</extension> 
</extension> 
<extension vendor-name-"FastObjects" key-"index" value-"timeIndex"> 

<extension vendor-name-"FastObjects" key-"member" value-"timo"/> 
</extension> 
<extension vendor-name-"FastObjects" key-"index" value-"locationIndex"> 

<extension vendor-name-"FastObjects" key-"member" value-"location"> 
<extension vendor-name-"FastObjects" key-"lexicalOrder" value-"true"/> 

</extension> 
</extension> 
<extension vendor-name-"FastObjects" key-"index" value-"absoluteDataIndex"> 

<extension vendor-name-"FastObjects" key-"member" value-"time"/> 
<extension vendor-name-"FastObjects" key-"member" value-"location"/> 
<extension vendor-name-"FastObjects" key-"member" value-"data"/> 
<extension vendor-name-"FastObjects" key-"member" value-"owner"/> 
<extension vendor-name-"FastObjects" key-"member" valuo-"provider"/> 

</extension> 
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Appendix R 

Manual Data Entry 
A graphical interface was created to facilitate the manual entry of data values into the 

database, and to view contents held within it. The figure below shows the interface and 

gives an overview of the data parameters held for each piece of location and time 

dependant data. 

la Time 

ID - --- -- Date/Firne: 

Code: Epoch: 

Name: Location 

Description: 
--- Code: 

eject 

Value:, 
Description: Type: 

Units:! 
F 

Vakies 

ilations Latitude: 
Lonpüude: 

" Altitude: 

nor Provider 

ID 

Code: Cam: 
Name: Narne: 

Description: Description: 

tributes Type 

is Update 

Figure 104 Graphical inlerface for the manual entry cif data, and the 
viewing of database contents. 
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Appendix S 

Quantity of data to justify splitting clusters 
An estimate of the minimum number of hits required to statistically justify the splitting of a 
distribution into separate parts, can be made using the Chi-Square Distribution Test. 

In this test the data is examined by bucket, and the number of hits found in the sample, 

compared with the number of hits expected. A measurement statistic, based on the formula 

shown below, is then calculated and compared with values shown in a Chi-Square 

distribution table. The hypothesis that the data under examination could have been drawn 

from a continuous normal distribution, is rejected if the calculated Chi-Square value, 

exceeds the value shown in the table. 

Values for varying sample sizes were calculated as shown below: 

Table 44 Chi-Square test 
Sample Size: 18 

Found Expected 

Bucket Bimodal Single-Mode Observed Expected 0- E (O-E)2 (O-E)21E 
1 1.73% 0.69% 0 0.1242 0 0.0154 0.1242 
2 11.92% 2.77% 2 0.4986 2 2.2542 4.5211 
3 22.57% 7.92% 5 1.4256 4 12.7763 8.9621 
4 11.92% 15.92% 2 2.8656 -1 0.7493 0.2615 
5 1.73% 22.57% 0 4.0626 -4 16.5047 4.0626 

6 1.73% 22.57% 0 4.0626 -4 16.5047 4.0626 
7 11.92% 15.92% 2 2.8656 -1 0.7493 0.2615 
8 22.57% 7.92% 5 1.4256 4 12.7763 8.9621 
9 11.92% 2.77% 2 0.4986 2 2.2542 4.5211 
10 1.73% 0.69% 0 0.1242 0 0.0154 0.1242 

18 17.9532 0 35e. 8628 

The example above shows how 18 observations have been classified into each bucket. For 

example 2 hits have been sorted into bucket 2, and 5 into bucket 3. The number of hits in 

each bucket are then compared with the number of hits that would be expected, if the 

distribution was in fact a continuous normal distribution. The example shows that 0.1242 
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observations would be expected in buckets 1 and 10. While 4.0626 observations would be 

expected in buckets 5 and 6. 

The statistic for each bucket is calculated, by squaring, difference between the actual 

number of hits and the expected number of hits, and dividing by the expected number of 
hits; the statistic for each bucket is shown in the last column. 

The total statistic, in this case 35.86 is compared with the value in the Chi-Square 

distribution table (Table 45), to test whether or not the apparent differences between the 

two sets of data are in fact significantly different. 

Table 45 Summary of results for different sizes of sample 

FROM XI TABLE 

Calculated '14 10 
Sample 5%P 2.5%P 1.0% P 0.5% P o. 1% P . 05% P 

Sample 
Size Xo X2 X, X! X2 X, Note 

10 15.2 16.919 a) 
20 35.9 30.144 34.17 36.191 b) 
30 50.98 43.773 46.979 50.892 c) 
40 64.16 55.758 59.342 63.691 66.766 d) 
50 77.99 67.505 71.42 76.154 79.49 e) 
80 131.755 101.879 106.629 112.329 116.321 124.839 128.261 f) 

Note 
a) Sample X2 below 5% level, not enough evidence to reject the hypothesis that the observed 

data is not a single distribution 
b) X2 of Sample higher than 5% level, the observed Bi-Modal distribution is different from 

single distribution, only 5% chance of being wrong 
c) Only about 1% chance of being wrong, if distribution is split 
d) Only about 1% chance of being wrong, if distribution is split 
e) Only about 1% chance of being wrong, if distribution is split 
f) At a sample of 80 only 0.05% chance of being wrong in separating into two distributions 
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To all those who have lost something great: 

look forward to the future with hope. 
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