536 research outputs found

    De-ossifying the Internet Transport Layer : A Survey and Future Perspectives

    Get PDF
    ACKNOWLEDGMENT The authors would like to thank the anonymous reviewers for their useful suggestions and comments.Peer reviewedPublisher PD

    Semantic multimedia remote display for mobile thin clients

    Get PDF
    Current remote display technologies for mobile thin clients convert practically all types of graphical content into sequences of images rendered by the client. Consequently, important information concerning the content semantics is lost. The present paper goes beyond this bottleneck by developing a semantic multimedia remote display. The principle consists of representing the graphical content as a real-time interactive multimedia scene graph. The underlying architecture features novel components for scene-graph creation and management, as well as for user interactivity handling. The experimental setup considers the Linux X windows system and BiFS/LASeR multimedia scene technologies on the server and client sides, respectively. The implemented solution was benchmarked against currently deployed solutions (VNC and Microsoft-RDP), by considering text editing and WWW browsing applications. The quantitative assessments demonstrate: (1) visual quality expressed by seven objective metrics, e.g., PSNR values between 30 and 42 dB or SSIM values larger than 0.9999; (2) downlink bandwidth gain factors ranging from 2 to 60; (3) real-time user event management expressed by network round-trip time reduction by factors of 4-6 and by uplink bandwidth gain factors from 3 to 10; (4) feasible CPU activity, larger than in the RDP case but reduced by a factor of 1.5 with respect to the VNC-HEXTILE

    Linux XIA: an interoperable meta network architecture to crowdsource the future Internet

    Full text link
    With the growing number of proposed clean-slate redesigns of the Internet, the need for a medium that enables all stakeholders to participate in the realization, evaluation, and selection of these designs is increasing. We believe that the missing catalyst is a meta network architecture that welcomes most, if not all, clean-state designs on a level playing field, lowers deployment barriers, and leaves the final evaluation to the broader community. This paper presents Linux XIA, a native implementation of XIA [12] in the Linux kernel, as a candidate. We first describe Linux XIA in terms of its architectural realizations and algorithmic contributions. We then demonstrate how to port several distinct and unrelated network architectures onto Linux XIA. Finally, we provide a hybrid evaluation of Linux XIA at three levels of abstraction in terms of its ability to: evolve and foster interoperation of new architectures, embed disparate architectures inside the implementation’s framework, and maintain a comparable forwarding performance to that of the legacy TCP/IP implementation. Given this evaluation, we substantiate a previously unsupported claim of XIA: that it readily supports and enables network evolution, collaboration, and interoperability—traits we view as central to the success of any future Internet architecture.This research was supported by the National Science Foundation under awards CNS-1040800, CNS-1345307 and CNS-1347525

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    Cooperative resource pooling in multihomed mobile networks

    Get PDF
    The ubiquity of multihoming amongst mobile devices presents a unique opportunity for users to co-operate, sharing their available Internet connectivity, forming multihomed mobile networks on demand. This model provides users with vast potential to increase the quality of service they receive. Despite this, such mobile networks are typically underutilized and overly restrictive, as additional Internet connectivity options are predominantly ignored and selected gateways are both immutable and incapable of meeting the demand of the mobile network. This presents a number of research challenges, as users look to maximize their quality of experience, while balancing both the financial cost and power consumption associated with utilizing a diverse set of heterogeneous Internet connectivity options. In this thesis we present a novel architecture for mobile networks, the contribution of which is threefold. Firstly, we ensure the available Internet connectivity is appropriately advertised, building a routing overlay which allows mobile devices to access any available network resource. Secondly, we leverage the benefits of multipath communications, providing the mobile device with increased throughput, additional resilience and seamless mobility. Finally, we provide a multihomed framework, enabling policy driven network resource management and path selection on a per application basis. Policy driven resource management provides a rich and descriptive approach, allowing the context of the network and the device to be taken into account when making routing decisions at the edge of the Internet. The aim of this framework, is to provide an efficient and flexible approach to the allocation of applications to the optimal network resource, no matter where it resides in a mobile network. Furthermore, we investigate the benefits of path selection, facilitating the policy framework to choose the optimal network resource for specific applications. Through our evaluation, we prove that our approach to advertising Internet connectivity in a mobile network is both efficient and capable of increasing the utilization of the available network capacity. We then demonstrate that our policy driven approach to resource management and path selection can further improve the user’s quality of experience, by tailoring network resource usage to meet their specific needs

    Automotive Cognitive Access: Towards customized vehicular communication system

    Get PDF
    The evolution of Software Defined Networking (SDN) and Virtualization of mobile Network Functions (NFV) have enabled the new ways of managing mobile access systems and are seen as a major technological foundation of the Fifth Generation (5G) of mobile networks. With the appearance of 5G specifications, the mobile system architecture has the transition from a network of entities to a network of functions. This paradigm shift led to new possibilities and challenges. Existing mobile communication systems rely on closed and inflexible hardware-based architectures both at the access and core network. It implies significant challenges in implementing new techniques to maximize the network capacity, scalability and increasing performance for diverse data services. This work focuses preliminary on the architectural evolutions needed to solve challenges perceived for the next generation of mobile networks. I consider Software defined plus Virtualization featured Mobile Network (S+ MN) architecture as a baseline reference model, aiming at the further improvements to support the access requirements for diverse user groups. I consider an important class of things, vehicles, which needs efficient mobile internet access at both the system and application levels. I identify and describe key requirements of emerging vehicular communications and assess existing standards to determine their limitations. To provide optimized wireless communications for the specific user group, the 5G systems come up with network slicing as a potential solution to create customized networks. Network slicing has the capability to facilitates dynamic and efficient allocation of network resources and support diverse service scenarios and services. A network slice can be broadly defined as an end-to-end logically isolated network that includes end devices as well as access and core network functions. To this effect, I describe the enhanced behaviour of S+ MN architecture for the collection of network resources and details the potential functional grouping provided by S+ MN architecture that paves the way to support automotive slicing. The proposed enhancements support seamless connection mobility addressing the automotive access use case highly mobile environment. I follow the distribution of gateway functions to solve the problem of unnecessary long routes and delays. Exploiting the open SDN capabilities, the proposed S+ NC is able to parallelize the execution of certain control plane messages thus enabling the signalling optimisation. Furthermore, it enables the (Re)selection of efficient data plane paths with implied upper-layer service continuity mechanisms that remove the chains of IP address preservation for session continuity during IP anchor relocation. An implementation setup validates the proposed evolutions, including its core functionalities implemented using the ns-3 network simulator. The proposed slicing scheme has been evaluated through a number of scenarios such as numbers of signalling messages processed by control entities for an intersystem handover procedure relative to current mobile network architecture. I also perform the performance improvement analysis based on simulation results. Furthermore, I experimentally prove the feasibility of using Multipath TCP for connection mobility in intersystem handover scenario. The experiments run over the Linux Kernel implementation of Multipath TCP developed over the last years. I extend the Multipath TCP path management to delegates the management of the data paths according to the application needs. The implementation results have shown that the proposed S+ MN slicing architecture and enhancements achieve benefits in multiple areas, for example improving the mobility control and management, maintaining QoS, smooth handover, session continuity and efficient slice management and orchestration

    Towards video streaming in IoT environments: vehicular communication perspective

    Get PDF
    Multimedia oriented Internet of Things (IoT) enables pervasive and real-time communication of video, audio and image data among devices in an immediate surroundings. Today's vehicles have the capability of supporting real time multimedia acquisition. Vehicles with high illuminating infrared cameras and customized sensors can communicate with other on-road devices using dedicated short-range communication (DSRC) and 5G enabled communication technologies. Real time incidence of both urban and highway vehicular traffic environment can be captured and transmitted using vehicle-to-vehicle and vehicle-to-infrastructure communication modes. Video streaming in vehicular IoT (VSV-IoT) environments is in growing stage with several challenges that need to be addressed ranging from limited resources in IoT devices, intermittent connection in vehicular networks, heterogeneous devices, dynamism and scalability in video encoding, bandwidth underutilization in video delivery, and attaining application-precise quality of service in video streaming. In this context, this paper presents a comprehensive review on video streaming in IoT environments focusing on vehicular communication perspective. Specifically, significance of video streaming in vehicular IoT environments is highlighted focusing on integration of vehicular communication with 5G enabled IoT technologies, and smart city oriented application areas for VSV-IoT. A taxonomy is presented for the classification of related literature on video streaming in vehicular network environments. Following the taxonomy, critical review of literature is performed focusing on major functional model, strengths and weaknesses. Metrics for video streaming in vehicular IoT environments are derived and comparatively analyzed in terms of their usage and evaluation capabilities. Open research challenges in VSV-IoT are identified as future directions of research in the area. The survey would benefit both IoT and vehicle industry practitioners and researchers, in terms of augmenting understanding of vehicular video streaming and its IoT related trends and issues

    Immersive interconnected virtual and augmented reality : a 5G and IoT perspective

    Get PDF
    Despite remarkable advances, current augmented and virtual reality (AR/VR) applications are a largely individual and local experience. Interconnected AR/VR, where participants can virtually interact across vast distances, remains a distant dream. The great barrier that stands between current technology and such applications is the stringent end-to-end latency requirement, which should not exceed 20 ms in order to avoid motion sickness and other discomforts. Bringing AR/VR to the next level to enable immersive interconnected AR/VR will require significant advances towards 5G ultra-reliable low-latency communication (URLLC) and a Tactile Internet of Things (IoT). In this article, we articulate the technical challenges to enable a future AR/VR end-to-end architecture, that combines 5G URLLC and Tactile IoT technology to support this next generation of interconnected AR/VR applications. Through the use of IoT sensors and actuators, AR/VR applications will be aware of the environmental and user context, supporting human-centric adaptations of the application logic, and lifelike interactions with the virtual environment. We present potential use cases and the required technological building blocks. For each of them, we delve into the current state of the art and challenges that need to be addressed before the dream of remote AR/VR interaction can become reality
    corecore