4 research outputs found

    View Synthesizing for a Large-Scale Object in a Scene

    Get PDF
    A robust method for panorama view reconstruction of a scene is presented. The images of a scene are acquired by moving a camera to multiple viewpoints. We present a robust method of panorama synthesizing based on image mosaicing approach. The edge detection and feature points extraction are performed for each image. The corresponding feature points between two successive images are estimated and the between these images is computed. These two images are integrated based on the different of minimum threshold values between them. After that, the full-view of a scene is reconstructed by merging the successive integrated images by developed image mosaicing approach. This research describes how to establish feature correspondences between images accurately and effectively. Image registration technique provides an initial estimation for establishing feature correspondences of point features. The linear solution with the reliable correspondences makes the computation of the geometric transformation between two images

    Expression Morphing Between Different Orientations

    Get PDF
    How to generate new views based on given reference images has been an important and interesting topic in the area of image-based rendering. Two important algorithms that can be used are field morphing and view morphing. Field morphing, which is an algorithm of image morphing, generates new views based on two reference images which were taken at the same viewpoint. The most successful result of field morphing is morphing from one person\u27s face to the other one\u27s face. View morphing, which is an algorithm of view synthesis, generates in between views based on two reference views which were taken at different viewpoints for the same object. The result of view morphing is often an animation of moving one object from the viewpoint of one reference image to the viewpoint of the other one. In this thesis, we proposed a new framework that integrates field morphing and view morphing to solve the problem of expression morphing. Based on four reference images, we successfully generate the morphing from one viewpoint with one expression to another viewpoint with a different expression. We also proposed a new approach to eliminate artifacts that frequently occur in view morphing due to occlusions and in field morphing due to some unforeseen combination of feature lines. We solve these problems by relaxing the monotonicity assumption to piece-wise monotonicity along the epipolar lines. Our experimental results demonstrate the efficiency of this approach in handling occlusions for more realistic synthesis of novel views

    Spherical Image Processing for Immersive Visualisation and View Generation

    Get PDF
    This research presents the study of processing panoramic spherical images for immersive visualisation of real environments and generation of in-between views based on two views acquired. For visualisation based on one spherical image, the surrounding environment is modelled by a unit sphere mapped with the spherical image and the user is then allowed to navigate within the modelled scene. For visualisation based on two spherical images, a view generation algorithm is developed for modelling an indoor manmade environment and new views can be generated at an arbitrary position with respect to the existing two. This allows the scene to be modelled using multiple spherical images and the user to move smoothly from one sphere mapped image to another one by going through in-between sphere mapped images generated

    Spherical image processing for immersive visualisation and view generation

    Get PDF
    This research presents the study of processing panoramic spherical images for immersive visualisation of real environments and generation of in-between views based on two views acquired. For visualisation based on one spherical image, the surrounding environment is modelled by a unit sphere mapped with the spherical image and the user is then allowed to navigate within the modelled scene. For visualisation based on two spherical images, a view generation algorithm is developed for modelling an indoor manmade environment and new views can be generated at an arbitrary position with respect to the existing two. This allows the scene to be modelled using multiple spherical images and the user to move smoothly from one sphere mapped image to another one by going through in-between sphere mapped images generated.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore