
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2004

Expression Morphing Between Different Orientations Expression Morphing Between Different Orientations

Tao Fu
University of Central Florida

 Part of the Computer Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Fu, Tao, "Expression Morphing Between Different Orientations" (2004). Electronic Theses and
Dissertations, 2004-2019. 6126.
https://stars.library.ucf.edu/etd/6126

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236298822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Fetd%2F6126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/6126?utm_source=stars.library.ucf.edu%2Fetd%2F6126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

EXPRESSION MORPHING BETWEEN DIFFERENT ORIENTATIONS

by

TAO FU
B.S. Hohai University, 1993

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

in the Department of Electrical and Computer Engineering
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Summer Term
2004

ABSTRACT

How to generate new views based on given reference images has been an important and

interesting topic in the area of image-based rendering. Two important algorithms that can be

used are field morphing and view morphing. Field morphing, which is an algorithm of image

morphing, generates new views based on two reference images which were taken at the same

viewpoint. The most successful result of field morphing is morphing from one person’s face to

the other one’s face. View morphing, which is an algorithm of view synthesis, generates in-

between views based on two reference views which were taken at different viewpoints for the

same object. The result of view morphing is often an animation of moving one object from the

viewpoint of one reference image to the viewpoint of the other one.

In this thesis, we proposed a new framework that integrates field morphing and view morphing

to solve the problem of expression morphing. Based on four reference images, we successfully

generate the morphing from one viewpoint with one expression to another viewpoint with a

different expression. We also proposed a new approach to eliminate artifacts that frequently

occur in view morphing due to occlusions and in field morphing due to some unforeseen

combination of feature lines. We solve these problems by relaxing the monotonicity assumption

to piece-wise monotonicity along the epipolar lines. Our experimental results demonstrate the

efficiency of this approach in handling occlusions for more realistic synthesis of novel views.

ii

ACKNOWLEDGMENTS

I would like to thank, first and foremost, my advisor Dr. Hassan Foroosh, for his guidance during

the completion of this thesis. His expertise, understanding, and patience have been a tremendous

influence and an invaluable resource for me. I appreciate his advice in helping me doing the

research and his assistance in writing the thesis.

Also, I would like to thank the other members of my committee, Dr. Christian Bauer, Dr. Harold

Klee, and Dr. Charles Hughes for taking time out from their busy schedules and giving me

comments and suggestions.

Special thanks to my family for the support they provided me and in particular, my wife Yilin.

Without her love and encourage, all my work could not have been possible.

iii

TABLE OF CONTENTS

LIST OF FIGURES ... vi

LIST OF TABLES... viii

CHAPTER 1. INTRODUCTION ..1

CHAPTER 2. FIELD MORPHING...7

2.1 Field Morphing Steps...7

2.2 Calculating the Mapping Functions ...8

2.2.1 Mapping with One Pair of Feature Lines..8

2.2.2 Mapping with Multiple Line Pairs..10

2.3 Parameters in Field Morphing ...12

2.4 Problems with Field Morphing ..12

CHAPTER 3. VIEW MORPHING..14

3.1 Pinhole Camera Model ..14

3.2 View Morphing for Parallel Views..20

3.3 View Morphing for Non-parallel Views..23

3.4 View Morphing for Noncalibrated Views ...26

3.4.1 Prewarping Uncalibrated Images..26

3.4.2 Morph the Prewarped Images ...31

3.4.3 Specifying Postwarps..31

iv

3.5 Issues in View Morphing ...33

3.6 Experimental Result and Analysis ...33

CHAPTER 4. MORPHING BETWEEN DIFFERENT EXPRESSIONS.....................................36

4.1 Problem Description ..36

4.2 Problem Analysis ...36

4.3 Our Algorithm..37

4.3.1 Prewarp Ilc and Irc..37

4.3.2 Generate in-between images for Ilcw and Ircw ..37

4.3.3 Postwarp the In-between Images ..41

4.3.4 Generate In-between Images Io(i) (i =0.1, 0.2,… , 0.9) for Ilo and Iro41

4.3.5 Generate In-between Images I(a) (a =0.1, 0.2,… , 0.9) ..41

4.4 Experimental Results ...42

4.5 Extensions to Other Scenarios ...47

4.5.1 Morphing with Head Turning by 180 Degrees ...47

4.5.2 Extrapolation...49

4.6 Analysis of the Results...51

CHAPTER 5. CONCLUSION...55

5.1 Contributions..55

5.2 Limitations and Future Work...56

LIST OF REFERENCES...57

v

LIST OF FIGURES

Figure 1: Calculate Mapping Pixel Using One Pair Of Feature Lines ..9

Figure 2: Pixel Mapping Using Multiple Feature Line Pairs...10

Figure 3: Pinhole Camera Geometry ...15

Figure 4: Mapping of Point P Into the Image Plane In the x Direction...15

Figure 5: Image (x, y) and Camera (xcam, ycam) Coordinate System...17

Figure 6: Euclidean Transformation Between World and Camera Coordinate Frames20

Figure 7: Linear Interpolations of Corresponding Pixels In Parallel Views..................................23

Figure 8: View Morphing for Non-parallel Views. ...25

Figure 9: View Morphing of A Box ..34

Figure 10: Using Feathering Method to Blend Two Images ...40

Figure 11: Reference Images ...42

Figure 12: Prewarped Images ..42

Figure 13: Segmentation of prewarped open mouth images ...43

Figure 14: Segmentation of Prewarped Close Mouth Images ...43

Figure 15: Synthesized In-between Images of Different Expressions...46

Figure 16: Synthesized Finial In-between Images...46

Figure 17: Reference Images For Morphing Head Turning Dy 180 Degrees47

Figure 18: In-between Images For I1 And I2..48

vi

Figure 19: In-between Images For I2 And I3..48

Figure 20: In-between images for I3 and I4 ..48

Figure 21: Neighbor Images ..49

Figure 22: Reference Images For Extrapolation...50

Figure 23: Extrapolated Images Outside I0 ..50

Figure 24: Extrapolated Images Outside I1 ..51

Figure 25: Moving the Horizontal Feature Line Down Creates Ghosting Above the Line...........52

Figure 26: Morphing Results Without Segmentation ..52

Figure 27: Cross-dissolving After Segmentation...53

Figure 28: Prewarped Views Before Boundary Blending ...54

Figure 29: Finial Prewarped In-between Views. ...54

vii

LIST OF TABLES

Table 1: Regions and Their Reference Image for the Prewarped Close Mouth Images............... 44

Table 2: Regions and Their Reference Image for the Prewarped Open Mouth Images 45

viii

CHAPTER 1. INTRODUCTION

Image morphing has been widely used in the entertainment industry to achieve powerful visual

effects for many years. One of the most unforgettable results is from Michael Jackson’s famous

MTV “black and white”, in which one face transformed into the other smoothly. Generally

speaking, image morphing is a coupling of image warping with color interpolation [5]. After

specifying corresponding features on reference images (such as points, lines, and mesh nodes),

the pixel mapping function can be calculated between the novel image and reference images.

Then color interpolations, mostly cross-dissolve, can be applied to generate in-between images.

The most compelling results of image morphing are those involving transformations from one

person to another, and morphing between different expressions of the same person. Two

important requirements that make image morphing strikingly realistic are: reference images from

the same viewpoint and objects look alike.

One of the earliest methodologies used for image morphing was mesh warping [6], which is

based on using corresponding mesh nodes as image features. The in-between mesh nodes are the

linear interpolations of mesh nodes between reference images. After image warping, cross-

dissolving can be applied to generate in-between images.

Field morphing, which was developed by Beier and Neely [1], simplified the user interface to

handle correspondences by means of line pairs. After specifying corresponding feature lines on

reference images, pixel mapping functions can be calculated based on these feature lines.

 1

The warping functions of image morphing have also been widely studied. Since feature lines and

curves can be point sampled, it is possible to consider the features on an image to be specified by

a set of points. Based on scattered data interpolation, Ruprecht and Muller [7] investigated

several warping functions and showed that radial basis functions, particularly multi-quadrics, are

suitable for application to image warping. Using a small number of anchor points, Arad et al. [8]

demonstrated that radial basis functions provided a power mechanism for processing facial

expressions based on reference images.

Lee et al. [9] developed a two-dimensional deformation technique to calculate warp functions.

The resulting warp is C1-continuous and one-to-one and reflects the feature correspondences

between the images. Lee et al. [10] also introduced snakes into image morphing, which can

reduce the burden of feature specification. The multilevel free-form deformation (MFFD) used

by Lee et al. [10] can achieve C2-continuous and one-to-one warps among feature point pairs.

View synthesis, which also generates novel views based on given reference views, has been very

popular for many years in both computer vision and computer graphics. View synthesis methods

can be divided into two categories: one is reconstructing the scene using given views, and then

rendering the novel view using reprojection and texture mapping. This 2D-3D-2D approach can

generate novel views from different viewpoints if the reconstruction is accurate enough.

However, because of the complexity of the real world, accumulated errors during 2D to 3D and

3D to 2D cannot be avoided, which also make this approach difficult in practice. The other

approach, which is a 2D view synthesis technique, is referred to as image based rendering, and

 2

relies on generating novel views by rearranging pixels from reference images directly without

reconstruction of a 3D model. Because this approach bypasses the 3D reconstruction, the

complexity and accumulated errors can be reduced dramatically.

Among the early works of 2D view synthesis, Chen and Williams [11] described how to

interpolate new views of a scene based on images taken from closely spaced viewpoints. Their

result showed image-based rendering could speed up the rendering time. Their observation led to

the development of some later hardware systems to achieve real-time rendering rates for

synthetic 3D scenes [12-14].

QuickTime VR [15,16] is the system developed by Chen in Apple Computer Inc. It can provide

panoramic visualization of scenes using cylindrical image mosaics. Walking in a space is

accomplished by “hopping” to different panoramic point. The success of QuickTime VR and

other systems like Surround video [17], IPIX [18], Smooth-Move [19] and RealVR [20] brought

image-based scene visualization into mainstream.

McMillan and Bishop [21] also developed an image-based rendering approach using Adelson

and Bergen’s plenoptic modeling concept [22]. They propose a technique for sampling,

reconstruction, and resampling of the plenoptic function, which is similar to the QuickTime VR.

A panoramic image is generated in this way using a set of uncalibrated images, with new views

reprojected using the plenoptic function.

 3

Debevec et al. [23] proposed a photogrammetric approach to construct 3D models of

architectural scenes. Their work demonstrated that user-interaction could also play an important

role in view synthesis and in constructing high-quality 3D models.

Levoy [24] and Gortler et al. [25] both developed novel ray-based methods for view synthesis:

i.e. light field and Lumigraph. Their approaches use a four-dimensional ray space to represent

any visible scene. Although new views can be reconstructed very fast without knowing the pixel

correspondences, both methods require extensive data acquisition.

View morphing [2], proposed by Seitz and Dyer, solves the problem of synthesizing novel views

based on the reference views taken from different viewpoints for the same object. By exploiting

the epipolar geometry associated with a stereo pair, physically-valid in-between novel views can

be generated without knowing the camera parameters. The limitation of this approach is that the

viewpoints of novel views have to lie on the straight line connecting the reference viewpoints.

Recently, image-based rendering using the plenoptic function has been investigated further by

several researchers. Shum and He [26] presented a 3D plenoptic function called concentric

mosaics, in which the camera motion is restricted to planar concentric circles, and concentric

mosaics [27] are created by composing slit images taken from different locations. Novel views

can be rendered by combining the appropriate captured rays. Takahashi et al [28] created a 3D

plenoptic function for reconstructing novel views in large-scale scenes. They use an omni-

directional camera [29] to capture mosaicing panoramic images along a straight line and

 4

recording the capturing position of each image using a GPS system. Plenoptic stitching,

proposed by Aliaga and Carlbom [30], is another technique based on plenoptic function. It

parameterizes a 4D plenoptic function and supports walkthrough applications in large, arbitrarily

shaped environment.

Dynamic view morphing, which interpolates views for dynamic scenes, extends the concept of

view morphing. Manning and Dyer [31] assumed that each object in the original scene

underwent a series of rigid translations and generated one possible physically valid scene

transformation. Xiao et al [32] applied view morphing to non-rigid objects that contain both

rotation and translation. They assume that a non-rigid object can be separated into several rigid

parts. For each part, the least distortion method [33] is used to determine its moving path. Our

work focuses on two main issues:

1. Expression morphing: the emphasis is on developing tools that would allow for

synthesizing new views of human faces with expression change. In our case, a non-rigid

object (i.e. a human face) contains both rotation and translation, and facial deformations.

Moreover, this object cannot be separated into rigid parts. The approach that we propose

combines field morphing and view morphing in a single framework. It takes advantage of

field morphing’s ability to morph one expression to the other at the same viewpoint, and

view morphing’s ability to morph same expression from different viewpoints. Based on

four reference images we successfully generate the morphing from one viewpoint with

one expression to another viewpoint with a different expression.

 5

2. The second issue that we address in this thesis is the elimination of the artifacts known as

the “ghosting effects”, which are frequently caused in view morphing due to occlusions.

Because reference images are typically taken from different viewpoints, some scene

points may not be visible in both images and some parts of the object may be more

visible in one image than the other. As a result, the assumption of monotonicity and order

invariance of feature points along the epipolar lines is often violated, and hence during

the course of morph transition, the unmatched points appear to slowly fade in or out in

the occluded areas. These artifacts can be very noticeable and disturbing when reference

images are taken from distant viewpoints and directions. Our reference images are just in

this case, and hence simple cross-dissolve of reference images will inevitably introduce

many such artifacts. We propose to solve this problem by relaxing the monotonicity

assumption to piece-wise monotonicity along the epipolar lines. For this purpose, we

segment the object into several areas and divide it into labeled regions. According to the

label of each region, the pixels of that region can be mapped from one of the reference

images or from cross-dissolve of both images. Our experimental results demonstrate the

efficiency of this approach in handling occlusions for more realistic synthesis of novel

views.

Since our approach integrates the two methodologies of field morphing and view morphing in a

single framework, we have devoted the next two chapters of this thesis to a quick overview of

the technical details of these two approaches.

 6

CHAPTER 2. FIELD MORPHING

Field morphing is an image morphing algorithm originally proposed by Beier and Neely [1].

After specifying feature points and feature lines in reference images, the position of feature lines

in the in-between images can be linearly interpolated. A mapping function is then used to map

the pixels from the in-between image to reference images. This is done based on all the feature

lines. The final pixel values in the in-between image are the results of cross-dissolving from

reference images.

2.1 Field Morphing Steps

The field morphing algorithm can be divided into the following steps:

1. Specify a series of corresponding feature lines l0 and l1 from given images I0 and I1,

respectively.

2. For each pair of lines l0 and l1, interpolate the corresponding endpoints and get a new line

ls, which is the feature line corresponding to l0 and l1 in the in-between image Is.

3. Calculate the inverse mapping m0 based on line pair l0 and ls, which maps each pixel

from Is to its corresponding pixel in I0.

4. Calculate the inverse mapping m1 based on line pair l1 and ls, which maps each pixel

from Is to its corresponding pixel in I1.

5. For each point ps in Is, cross-dissolve m0(ps) and m1(ps) to get the pixel value for ps.

 7

2.2 Calculating the Mapping Functions

The most important step of field morphing is how to calculate the mapping functions m0 and m1

based on specified feature lines. Actually, there are two type of mapping functions: forward

mapping and reverse mapping. Let’s define the reference image as the source image and the in-

between image as the destination image. Forward mapping scans each pixel in the source image

and calculates its corresponding position in the destination image; whereas reverse mapping

scans each pixel in the destination image and samples the corresponding pixel from the source

image. Because reverse mapping has the advantage that each pixel in the destination image can

be calculated and get appropriate value, it is often the preferred approach in field morphing.

2.2.1 Mapping with One Pair of Feature Lines

In field morphing, each pair of corresponding feature lines in the source and destination images

can define a mapping from one image to the other. Suppose X is an image pixel in the

destination image and we want to map X to its corresponding pixel X’ in the source image. Also,

suppose PQ and P’Q’ are one pair of corresponding feature lines in the destination image and

the source image, respectively.

Let

 u = 2||PQ||
P)(QP)(X

−
−⋅− (2.1)

 8

 v =
||||

)lar(Perpendicu(
PQ

PQP)X
−

−⋅− (2.2)

then

 X’ =
||P'Q'||

P'Q'v)P'(Q'uP'
−

−⋅
+−⋅+

)lar(Perpendicu (2.3)

where Perpendicular() returns the vector perpendicular to, and the same length as, the input

vector. (There are two perpendicular vectors; either the left or the right one can be used, as long

as it is consistently used throughout, u specifies the position along the line, which takes values in

the range 0 to 1 as the pixel moves from P to Q, and is less than 0 or greater than 1 outside that

range, and v is the perpendicular distance in pixels from the line.

So, the mapping procedure using one pair of feature lines is as follows:

For each pixel X in the destination image

 calculate the corresponding u, v

 calculate the X' in the source image for using u, v ;

destination image(X) = source image(X');

Figure 1: Calculate Mapping Pixel Using One Pair Of Feature Lines

 9

2.2.2 Mapping with Multiple Line Pairs

In the case where there are multiple pairs of feature lines, field morphing introduces different

weighting for the coordinates calculated using different pairs of lines. The final solution is the

weighted result of all feature lines.

Let Xi’ (i = 1…n, n is the number of total feature line pairs) be the result pixel in the source

image calculated by the ith pair of feature lines. Suppose displacement Di = Xi’ - X is the

difference between the pixel location in the source and destination images. One weight will be

calculated for each displacement Di. As shown in Figure 2, the weighted average of the

displacements is also calculated and added to the current pixel location X to determine the

position X’ in the source image.

Figure 2: Pixel Mapping Using Multiple Feature Line Pairs

 10

The weight for each displacement is calculated using the following equation:

 weight =
bp

dist)(a ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

length (2.4)

where length is the length of the line, dist is the distance from the pixel to the line, and a, b and p

are constants that can be used to change the relative effect of the lines.

The mapping procedure using multiple line pairs is as follows:

For each pixel X in the destination

 DSUM = (0,0)

 weightsum = 0

 For each line PiQi (i = 1…n, n is the number of total feature line pairs)

 calculate u, v based on Pi, Qi

 calculate Xi’ based on u, v, Pi
’, Qi

’

 calculate displacement Di = Xi’ - Xi for this line

 dist = shortest distance from X to PiQi

 weight = (lengthp / (a + dist))b

 DSUM = DSUM + Di*weight

 weightsum = weightsum + weight

 X' = X + DSUM / weightsum

 destination image(X) = source image(X’)

 11

2.3 Parameters in Field Morphing

There are three parameters in field morphing: a, b, and p. In order to get a better morphing result,

these parameters should be specified carefully.

• If a is a positive number very close to zero, the weight will be nearly infinity when the

distance from the line to the pixel is zero. This will make the pixel on the line go exactly

where it should. A larger value will yield a more smooth warping, but with less precise

control.

• The variable b determines how the relative strength of different lines falls off with

distance. If b is large, only feature lines near the pixel will affect it; If b is zero, every line

will affect each pixel equally. The range of b is usually [0.5, 2].

• The value of p is typically in the range [0, 1]; if it is zero, then all lines have the same

weight, if it is one, then longer lines have a greater relative weight than shorter lines.

2.4 Problems with Field Morphing

The main problem with field morphing is that it is a shape-distorting transformation. It tends to

bend straight lines, yielding quit unintuitive image transitions. In particular, the projective

mapping of a planar surface between two different views has the following form:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++
++

++
++

=
ihygx
feydx

ihygx
cbyaxyx ,),(H (2.5)

 12

Such, projective mappings are not preserved under 2D linear interpolation because the sum of

such expressions is in general a ratio of quadratics and therefore not a projective mapping.

 13

CHAPTER 3. VIEW MORPHING

View morphing was proposed by Seitz and Dyer [2]. As a 2-D view synthesis algorithm, it can

be used to generate shape-preserving novel views based on given reference views without

knowing the camera parameters. The image centers of novel views are located along the line

C0C1, i.e. the line joining the camera perspective centers for the reference images. In order to

explain this approach, we first provide a brief description of a pinhole camera model.

3.1 Pinhole Camera Model

As shown in Figure 3, a pinhole camera projects points in the 3D space into an images plane. We

consider a 3D coordinate system attached to the camera (i.e. the canonical coordinate frame): In

this coordinate system the origin be is at the camera center C, and the x and y axes are parallel to

the image axes, with the z-axis determined by the right hand rule and intersects the image plane

at the so called principal point. The image plane (also called focal plane) is given by the plane z

= f.

Under the pinhole camera model, a point P in the Euclidean space is mapped to a point p in the

image plane, which is given by the intersection of the line PC with the image plane.

 14

Y

Z

X

x

y
P

C

image plane
camera
center

o

p

Figure 3: Pinhole Camera Geometry. C is the camera center and o is the principal point.

Suppose the coordinates of P are (X, Y, Z)T in the Euclidean 3D-space and p is (x, y)T in the

Euclidean 2D-space (image plane), then

x = fX/Z (3.1)

 y = fY/Z (3.2)

o
f

P

Z
C

X

fX/Z

Figure 4: Mapping of Point P Into the Image Plane In the x Direction

 15

If we use homogeneous coordinates to represent P and p, i.e. P = (X, Y, Z, 1)T and p = (x, y, 1)T,

we get:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

Z
fY
fX

Z
ZfY
ZfX

1

1
/
/

p

 (3.3)

Or alternatively

 (3.4) ⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1
0100
000
000

Z
Y
X

f
f

Z
fY
fX

we thus get

Pp ∏=
Z
1

 (3.5)

where

 (3.6) ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=∏

0100
000
000

f
f

However, in practice, the origin of the camera is not located at the principal point. Therefore as

shown in Figure 5, there is a coordinate system offset.

 16

v0

x u0

ycam

xcam
y

Figure 5: Image (x, y) and Camera (xcam, ycam) Coordinate System

So, after the projection, the point P is mapped to the point p = (x, y, 1)T via

x = fX/Z + u0 (3.7)

y = fY/Z + v0 (3.8)

Or

 (3.9)

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+
+

1
0100
00
00

0

0

0

0

Z
Y
X

vf
uf

Z
ZvfY
ZufX

which can be written in matrix notation as

 Pp ∏=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+
+

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+
+

=
Z

Z
ZvfY
ZufX

Z
vZfY
uZfX

11

1
/
/

0

0

0

0

 (3.10)

where

 17

 (3.11) ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=∏

0100
00
00

0

0

vf
uf

and

 (3.12) ⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

1
Z
Y
X

P

Let

 (3.13) ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
0

0

0

0

vf
uf

K

which is the camera intrinsic (calibration) matrix.

Then

 (3.14)

0]|K[I=∏

P0IKPp]|[11
ZZ

=∏=

 (3.15)

where [I | 0] represents a matrix divided up into a 3×3 block(the identity matrix) plus a column

zero vector.

 18

The above discussion assumes that the origin of the 3D Euclidian space is located at the camera

projection center. We call this coordinate system the camera coordinate frame. In general, the

points in space are expressed in terms of the world coordinate frame. And these two frames are

related via a rotation and a translation. Let X be the inhomogeneous 3-vector that represents the

coordinate of a point in the world coordinate frame and Xcam be the coordinate of the same point

in the camera coordinate frame. As shown in Figure3.4, we have Xcam = R(X – C), where C

represents the coordinates of the camera center in the world coordinate frame, and R is a 3×3

rotation matrix representing the orientation of the camera coordinate frame. This equation may

be written in homogeneous form as

 (3.16)

wcam P
RCRRCR

P ⎥
⎦

⎤
⎢
⎣

⎡ −
=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎦

⎤
⎢
⎣

⎡ −
=

10
1

10 Z
Y
X

Substituting (3.16) into (3.15), we get

wcam C]P|KR[IP0|IKp −==
ZZ
1][1 (3.17)

 19

Z

Y

X

ycam

zcam

xcam

R, t

C

Figure 6: Euclidean Transformation Between World and Camera Coordinate Frames

3.2 View Morphing for Parallel Views

When reference images are two parallel views, linear interpolation of both views can generate

shape-preserving in-between images.

 Supposed I0 and I1 are two parallel images of the same object as shown in Figure 7. The focal

length of I0 and I1 are f0 and f1 respectively. Also suppose the origin of the world coordinate

frame is located in the camera center of I0. And the camera center of I1 is located in (Cx, Cy, 0) in

the world coordinate system.

Based on equation (3.17):

wC]P|KR[I1p −=
Z

, we can map the point P from world coordinate

frame into the image plane as follows:

 20

For image plane I0, since its camera center is located in the origin of the world coordinate frame,

we get C0 = 0 and R = I. So,

P0]P|KI[Ip0 0
11
∏=−=

ZZ
 (3.18)

where

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=∏

0100
00
00

00

00

0 vf
uf

 (3.19)

For image plane I1, we have C1 = (Cx, Cy, 0) and R = I. So,

PC]P|KI[Ip1 1
11
∏=−=

ZZ
 (3.20)

where

 ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

=∏
0100

0
0

101

101

1 y

x

Cfvf
Cfuf

Let p0 ∈ I0 and p1 ∈ I1 be projections of the scene point P = [X Y Z 1]T. Linear interpolation of

p0 and p1 yields

PPpp 10 10
1s1s)1(ss)(1 ∏+∏−=+−
ZZ

 21

 Ps
1
∏=

Z
 (3.21)

where

10s ss)(1 ∏+∏−=∏

 (3.22)
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

=
0100
αv0
αu0

ss0

ss0s

Ys

X

Cff
Cff

fs = (1 – s) f0+ sf1 (3.23)

sα =
10

1

ss)(1
s

ff
f
+−

 (3.24)

From equation (3.21), we conclude that for parallel cameras shown in Figure 7, image

interpolation produces a new view whose projection matrix Пs is a linear interpolation of П0 and

П1, representing a camera with focal length and the perspective center Cs given by: sf

Cs = (0, ,Ysxs CC αα) (3.25)

In other words, interpolating images from parallel cameras produces images that correspond to

moving a camera on the line C0C1 between the two camera centers and zooming continuously.

Because a new view for the same object can be produced, this interpolation can be seen as shape-

preserving.

 22

P

C 0

C 1

I s

I0

I1

C s

p 0

p 1

p s
f0

fs

f1

Figure 7: Linear Interpolations of Corresponding Pixels In Parallel Views. Image planes I0 and
I1 creates image Is, which represents another parallel view of the same scene.

3.3 View Morphing for Non-parallel Views

As discussed above in Chapter 2, direct application of view morphing to non-parallel views will

lead to shape-distortions. The solution to this problem is therefore to first transform the two non-

parallel views into two parallel ones, and then apply the morphing process.

Let I0 and I1 be two perspective views of the same object P. Let also the camera centers be

located in C0 and C1, respectively. Based on equation (3.17):

wC]P|KR[Ip −=
Z
1 , and we can

map the point P from world to the image planes I0 and I1 using:

 23

 w000]PC|[IKRp −=
Z
1

 (3.26)

w111]PC|[IKRp −=
Z
1

 (3.27)

Let H0 = KR0 and H1 = KR1. The projection matrices Π0 and Π1 can be written as:

Π0 = KR0[I | -C0] = [H0 | -H0C0] (3.28)

Π1 = KR1[I | -C1] = [H1 | -H1C1] (3.29)

As shown in Figure 8, view morphing uses the following 3-step procedure to generate in-

between shape-preserving images Is with camera center Cs located on the line joining the camera

centers for the reference images, i.e. on C0C1.

1. Prewarp: Apply projective transform H0
-1 to I0 and H1

-1 to I1, to generate parallel views

 and . wI 0 wI1

2. Morph: Form by linearly interpolating positions and colors of corresponding points in

 and

swI

wI 0 wI1

3. Postwarp: Apply Hs to , to get the in-between image swI sI

 24

P

C0

C1

I0w

Cs

Isw

I1w

I0

I1

Is

Figure 8: View Morphing for Non-parallel Views.

After the prewarping, the projection matrices of the prewarped images and have the

following formats:

wI 0 wI1

Π0w = H0
-1 [H0 | -H0C0] = [I | -C0] (3.30)

 Π1w = H1
-1 [H1 | -H1C1] = [I | -C1] (3.31)

 25

This rectifies the two reference images so that the corresponding points in the two images appear

along the same scan line.

The projection matrix of Is can be written as Πs = [Hs | -HsCs], where Cs can be calculated using

equation (3.25).

Generally speaking, prewarping brings the image planes into alignment without changing the

optical centers of the two cameras; morphing the prewarped images moves the optical canter to

Cs; and finally postwarping transforms the image plane of the new view to its desired position

and orientation.

3.4 View Morphing for Noncalibrated Views

When reference images are uncalibrated, it is still possible to use the 3-step algorithm described

above to generate in-between images. The following sections describe the details.

3.4.1 Prewarping Uncalibrated Images

The purpose of prewapring of uncalibrated images is as before to make two reference images

parallel to each other so that the corresponding points appear along the same scanlines.

 26

In the uncalibrated case we need to find two 2D projective transformations H0
-1 and H1

-1 that

would rectify I0 and I1, respectively. Because the prewarped images are rectified, it can be shown

that the fundamental matrix for I0w and I1w is given by [4]:

 Fw = (3.32)
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
010
100

000

Based on the epipolar geometry, a point p0w in I0w and its corresponding point p1w in I1w have the

following relationship:

p1w
T Fw p0w = 0 (3.33)

Substituting p0w with H0
-1p0 and p1w with H1

-1p1, we get:

 p1
TH1

-TFwH0
-1p0 = 0

Since p1
TFp0 = 0,

 H1
-TFwH0

-1 = F (3.34)

i.e.,

 H1
TFH0 = Fw (3.35)

So, the prewarping can be solved if we can find a pair of homographies H0 and H1 that satisfy

Equation (3.35). The following procedure can be used to find these two homographies, which

basically rotate the image planes to obtain parallel views and then apply 2D affine

transformations to align corresponding scanlines.

 27

We therefore need to first compute the fundamental matrix F using for instance the well-known

8-point algorithm [3]:

Once the Fundamental matrix is known, one can find the epipoles of the two images using the

following equations [4]:

 Fe0 = 0 (3.36)

 FTe1 = 0 (3.37)

Given the epipoles the two images can then be made parallel using the following approach. Let

E be a plane parallel to C0C1, suppose E intersects the image plane Ii at di, the rotation of Ii about

di will make the two image planes parallel. Alternatively rotating Ii about any line parallel to di

will also make image planes parallel to each other.

Suppose E intersects I0 at d0, that passes through the image center of I0: d0 = [-d0
y d0

x 0] T. Point

p on d0 has the form p = [sd0
x sd0

y 0] T and satisfy the equation

 d0
Tp = 0 (3.38)

Because the epipoles of the image planes after rectification are located at infinity, the new

epipole for I0 after rotating about d0 has the form

e0N = R e0

0

d
θ 0 (3.39)

 = [e0
x, e0

y, 0]T (3.40)

 28

Where the rotation matrix is given by

 R = (3.41) 0

0

d
θ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−+−

−−+

00000

000
2

0
2

0000

000000
2

0
2

0

cossinsin
sincos))(1()()cos1(

sin)cos1(cos))(1()(

θθθ
θθθ
θθθ

xy

xyyyx

yyxxx

dd
ddddd

ddddd

Substituting (3.40) and (3.41) into (3.39), we get:

 θ0 = tan-1(yxxy

z

eded
e

0000

0

−
) (3.42)

In order to minimize the rotation angle θ0, we can chose d0
x = αe0

y, d0
y = -αe0

x, where α =

2
0

2
0)()(

1
yx ee +

. So the line d0 = [-d0
y d0

x 0] T = α[e0
x e0

y 0].

Let E’ be an epipolar plane parallel to E. E’ intersects Ii in an epipolar line li parallel to di.

Because they are parallel, l0 and d0 intersect at the ideal point i0 = []000
yx dd T. Since i0 is on

the epipolar line l0, we can get the epipolar line l1 using the following equation:

 l1 = Fi0 (3.43)

Let d1 be the line passing through the image origin of I1 and parallel to l1. A rotation of I1 about

d1, which makes I1 parallel to E’ will also make it parallel to E. Accordingly, if [x y z]T = Fi0 =

 29

F[]000
yx dd T, then the rotation axis is d1 = α[x y 0]T, i.e. = αy and = -αx, where α = xd1

yd1

22

1
yx +

.

After aligning the image planes, the two image planes are parallel to each other with the new

epipole e0N = R 0

0
ed

θ 0 of the form e0N = [e0
x e0

y 0] T. The next step is to rotate the images about

the z-axis so that the epipolar lines become horizontal. i.e. the epipole will be of the form e0N =α

[1 0 0] T . The rotations are given by

 φi = -tan-1(e0
y/ e0

x) (3.44)

 Rφi = (3.45)
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

100
0cossin
0sincos

ii

ii

φφ
φφ

After applying these image plane rotations, the fundamental matrix will have the form:

Fw = (3.46)
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

b
a

10
00

000

In order to make Fw of the form , the second image should be vertically scaled and

translated by the matrix

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
010
100

000

 30

 T = (3.47)
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−
100

0
001
ba

Therefore the two prewarp transforms H0
-1 and H1

-1 are given by

 H0
-1 = Rφ0 R (3.49) 0

0

d
θ

 H1
-1 = T Rφ1 R (3.50) 1

1

d
θ

3.4.2 Morph the Prewarped Images

Since the images are now parallel and corresponding points appear in the same scanline, the

morphing process is simply achieved by applying a linear interpolation.

3.4.3 Specifying Postwarps

Postwarping transforms the image plane to its desired position and orientation. From this

viewpoint, postwarping is a projective transformation Hs that transforms Isw to Is. Let

 Hs = (3.51)
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

333231

232221

131211

hhh
hhh
hhh

 31

and suppose pw = [xw yw 1]T and ps = [xs ys 1]T are one pair of corresponding points in Isw to Is

respectively. We have cps = Hspw, where c is a scale factor. Eliminating c yields two linear

equation for one pair of pw and ps.

 xs(h31xw + h32yw + h33) – (h11xw + h12yw + h13) = 0 (3.52)

 ys(h31xw + h32yw + h33) – (h21xw + h22yw + h23) = 0 (3.53)

Using 4 pair of such corresponding points, we can get 8 linear equations in terms of the

components of the matrix Hs. These equations can be written in homogeneous form as Ah = 0,

where A is the coefficient matrix and h = [h11 h12 h13 h21 h22 h23 h31 h32 h33]T. The solution is then

given by the unit eigenvector of ATA corresponding to the smallest eigenvalue. By adding the

constraint h33 = 1, we can get the final solution for Hs.

Therefore the postwarping can be done as follows: we first specify the paths of at least four

image points through the entire morph transition; for each in-between image Is, we specify the

position of these control points in Is; we then find the corresponding position of the control

points from the morphed image Isw; the positions of the control points in Is and Isw specify a

homogeneous linear system of equations whose solution yields Hs; Apply Hs to Isw will yield the

in-between image Is.

 32

3.5 Issues in View Morphing

The prewarping transformation relies heavily on the fundamental matrix. In order to get a stable

solution for the fundamental matrix, it is important to choose a reliable subset of feature points.

Degeneration of feature points (e.g., coplanar features) should be avoided. In addition, better

results are obtained when feature points are well distributed throughout the pair of images.

During the prewarping and postwarping, images are transformed by applying transformation

matrices. During this process, some pixels in the destination may not get painted. One approach

to solve this problem it is to use reverse mapping, which goes through the destination image

pixel-by-pixel, and samples the correct pixel from the source image. The most important feature

of reverse mapping is that every pixel in the destination image gets an appropriate value.

3.6 Experimental Result and Analysis

Compared to field morphing, view morphing can generate a shape-preserving in-between image

using two reference images, taken from different viewpoints from the same object. The most

impressive part of view morphing is the prewarping procedure. Using epipolar geometry, a plane

that is parallel to the line joining the camera centers can be found. Then the reference images are

rotated so that they are made parallel to this plane. This also makes them parallel to each other.

Since linear interpolation of two parallel views can generate shape-preserving in-between

images, new high-quality images can be artificially synthesized.

 33

Prewarpimg and postwarping introduce more image resampling operations than field morphing,

which may lead to noticeable blurring in the in-between images. This is particularly true when

low-resolution images are used as reference images. The example in Figure 9 demonstrates these

effects: I0.5 is the in-between image of I0 and I1 generated using view morphing. The blurs can be

found in each line in I0.5. And the letters” Pentium 4 Processor”, which are clear in both I0 and I1,

become blurred in I0.5.

 I0 I0.5 I1

Figure 9: View Morphing of A Box: left and right: reference images, middle: the synthesized
image.

Sometimes the prewarping procedure may not work, i.e., the two images can not be made

parallel. One situation is when the optical center of one camera is within the field of view of the

other. In the parallel configuration, each camera’s optical center is out of the field of view of the

other. Since the image reprojection does not change a camera’s field of view, it can not make the

optical center out of the field of view of the other if it is already located inside in the reference

image.

 34

The other case where prewarping would fail is when the epipole of the image is located inside

the image. In prewarping (rectification) stage the epipole, is projected to infinity. Therefore,

since the size of the prewarped image can’t be infinite, this point can not be visible in the

prewarped image. The points outside the epipole will also become invisible. So only part of the

image will be seen in the prewarped image. The best results are obtained when visibility is nearly

constant, i.e., when most scene points are visible in both reference views. Occlusion is another

source of problem, which can cause ghosting effects, due to the cross-dissolve, i.e. unmatched

points will appear at fractional-intensity in in-between views.

 35

CHAPTER 4. MORPHING BETWEEN DIFFERENT EXPRESSIONS

4.1 Problem Description

Suppose we are given four reference images: one pair from left and right with the mouth closed

(Ilc, Irc), and another pair from approximately the same positions, but with the mouth open (Ilo,

Iro). Is it possible to generate in-between images for Ilc and Iro or alternatively in-between images

for Irc and Ilo, i.e., is it possible to create a morphing animation that this person turns his head

from left to the right and moves his mouth gradually at the same time?

4.2 Problem Analysis

Let’s discuss one case of the problem, i.e. generating morphing images between Ilc and Iro.

Unlike the problem of view morphing, in which only the camera moves from left to right, the

object in this case also moves a lot: the mouth from the closed position in Ilc moves to the open

position in Iro. Moreover, the moving of the object is not rigid: the moving quantities are

different for different parts of the object. The hair of the person is almost at the same position in

both images while the mouth and the chin move a lot. So this problem is out of the range of view

morphing.

Applying field morphing can’t solve this problem either. The cameras in both images are far

apart from each other. As discussed above, field morphing is suitable for morphing the person’s

 36

expression changes in the same viewpoint. Changing orientation of the camera will cause

distortion effects for field morphing in the in-between images.

4.3 Our Algorithm

Our algorithm is developed by combining field morphing and view morphing: it takes advantage

of field morphing’s ability to morph one expression to the other in the same viewpoint and view

morphing’s ability to morph the same expression from different viewpoints. The detailed steps

are as follows:

4.3.1 Prewarp Ilc and Irc

In Ilc and Irc, the camera is facing the person from different positions and orientations, while the

pose of the person is kept constant. So it is easy to apply the prewarping procedure of the view

morphing to make the two images parallel and generate parallel images Ilcw and Ircw.

4.3.2 Generate in-between images for Ilcw and Ircw

We use field morphing to generate in-between images of Ilcw and Ircw. However, occlusion is a

major issue in this step: As the face turns around the left side may be visible in Ilcw but occluded

in Ircw and vice versa. . Occlusions cause a disturbing effect referred to as “ghosting”, where

occluded parts appear as fading in or out during rendering. We solve this problem by relaxing the

 37

monotonicity assumption of the feature points along the epipolar lines to piece-wise

monotonicity.

For this purpose, we specify the boundaries of left and right homogeneous regions as feature

lines. This essentially leads to segmented reference images where each segment is assumed to

preserve monotonicity of the feature points along the epipolar lines. Therefore interpolation can

be performed without error in each segmented using only the boundaries and the feature lines

that lie inside the region. Segmented regions are labeled for book keeping, so that if a feature

line is crossing over multiple regions, only the segments inside each region are used for

morphing within that region.

In this thesis the segmentation was done by user interaction as follows:

• We segmented the reference images into three types of regions: 1st type of regions are the

ones that have almost the same visibilities in both images, such as eyes in our

experimentations; 2nd type of regions are the ones that have more visibility in one image

than the other, e.g. certain parts of the face; 3rd type of regions are the ones that are only

visible in one image, i.e. occluded in the other one.

• Regions that are visible only in one image are segmented in that image and then the

boundaries of these regions are projected in the second image.

After segmentation, all feature lines are selected, some of which may overlap between several

regions. Segmentation allows processing and interpolating each region individually based on

 38

their visibilities. For the 1st type of region, since their visibilities in both images are almost the

same, we can use the same method of field morphing to interpolate feature lines and get pixels of

in-between image using cross-dissolving the pixels from both images. For the 2nd type of region,

since the shape of the area change dramatically in both images (from big area to small area or

vice versa), only pixels from the most visible image are used. For the 3rd type of the region, since

the information is only available in one image, we only use the pixels from that image.

After specifying the feature lines, we can calculate their positions in the in-between images using

field morphing. Depending on the position of in-between images Icw(i) (i =0.1, 0.2,… , 0.9), the

position of each feature line in Icw(i) is readily computed by linear interpolation of their

endpoints.

Then for each pixel pcw in the in-between image Icw(i) (i =0.1, 0.2,… , 0.9), we calculate it’s

mapping pixels plcw in Ilcw and prcw in Ircw using field morphing. However, the morphing is done

based on segmentation: a pixel pcw is morphed based only on the feature lines inside the

segmented area where the pixel resides..

Once the geometric interpolation is performed, pixel color is selectively assigned based again on

segmentation, i.e. cross-dissolve if the region is the 1st type, and use only the color of visible (or

more visible) region if the region is of the other two types.

 39

The approach proposed above eliminates all ghosting effects. However, it introduces problems at

the region boundaries: due to segmentation seam may occur at the boundaries. However, this

problem is fairly easy to solve by using a blending technique, which would yield a more smooth

transition between neighboring regions.

+

0
1

0
1

image I1 α image I2 β

=

 blended image

Figure 10: Using Feathering Method to Blend Two Images

The blending is done as follows. Suppose regions A and B are neighboring regions, such that the

pixels of region A are from Ilcw and the pixels of region B are from Ircw. We use feathering

method to blend their boundary as shown in Figure 10. This is done by first, specifying a small

 40

window (a small boundary band) as the transition area, where the colors are linearly interpolated

between the two regions within the window.

4.3.3 Postwarp the In-between Images

For each in-between image Icw(i) (i =0.1, 0.2,… , 0.9), we can get in-between images Ic(i) (i =0.1,

0.2,… , 0.9) by applying the postwarping procedure of view morphing.

4.3.4 Generate In-between Images Io(i) (i =0.1, 0.2,… , 0.9) for Ilo and Iro

Apply the same step of 4.3.1 to 4.3.3 on Ilo and Iro and generate In-between Images Io(i) (i =0.1,

0.2,… , 0.9) for them.

4.3.5 Generate In-between Images I(a) (a =0.1, 0.2,… , 0.9)

At this point, we have in-between close-mouth images Ic(i) (i =0.1, 0.2,… , 0.9) and in-between

open-mouth images Io(i) (i =0.1, 0.2,… , 0.9). We can take advantage of field morphing’s ability

to morph different expression in the same viewpoint. When Ic(i) and Io(i) (i =0.1, 0.2,… , 0.9) are

at the same position, it is possible to generate in-between images for them: for each pair of Ic(i)

and Io(i) (i =0.1, 0.2,… , 0.9), we generate their in-between images I(i) = Ia. This would allow us

to include expression changes while the head is rotating from left to right..

 41

4.4 Experimental Results

The reference images that we used are shown in Figure 11. Ilc and Ilo were taken approximately

in the same orientation but with different expressions. Similarly, Irc and Iro were taken

approximately from the same orientation with different expressions.

 Ilc Irc Ilo Iro
Figure 11: Reference Images

The results after prewarping are shown in Figure 12. For prewarping, we manually chose 12

corresponding points for each pair of images in order to calculate the fundamental matrix and

hence the homographies as described earlier.

 Ilcw Ircw Ilow Irow

Figure 12: Prewarped Images

 42

8

9

10
11

7

12

1 2

3
4

5

6

1

Figure 13: Segmentation of prewarped open mouth images

6

7

8

9

1

2

3

4

5

Figure 14: Segmentation of Prewarped Close Mouth Images

After prewarping the images are segmented into several regions. In this case the open mouth

images were segmented into 12 regions. The segmented images are shown in Figure 13. Table 1

shows the reference image used for each region in the in-between images. The prewarped close

mouth images were segmented into 10 regions as shown in Figure 14. Table 2 gives the

reference image used for each part in the in-between images.

 43

Table 1: Regions and Their Reference Image for the Prewarped Close Mouth Images

Region Number Face Part Reference Images

1 Right shoulder Left, right

2 Right neck Right

3 Right side face Right

4 Right front face Right

5 Right eye Left, right

6 Middle neck Right

7 Left eye Left, right

8 Left front face Left

9 Left side face Left

10 Left neck Left

11 Left shoulder Left

12 Mouth Left, right

 44

Table 2: Regions and Their Reference Image for the Prewarped Open Mouth Images

Region Number Face Part Reference Images

1 Right should Right

2 Right neck + right side face Right

3 Right front face Right

4 Right eye Right, left

5 Middle neck Right

6 Left eye Left, right

7 Left front face Left

8 Left side face + left neck Left

9 Left shoulder Left

The regions were then interpolated as described above. The results after the postwarping are

shown in Figure 15. There is practically no ghosting effect in the images and area transitions are

also very smooth, making the rendering appear very realistic. .

 45

After generating in-between images for each pair of Ic(i) and Io(i) (i =0.1, 0.2, … ,0.9), we can

get the animation of the same person turn his head from right to the left while at the same time

opening his mouth gradually. The results are shown in Figure 16.

 Ilc Ic(0.2) Ic(0.5) Ic(0.8) Irc

 Ilo Io(0.2) Io(0.5) Io(0.8) Iro

Figure 15: Synthesized In-between Images of Different Expressions. Top: in-between images for
the close mouth images. Bottom: in-between images for the open mouth images.

Ilc I(0.2) I(0.5) I(0.8) Iro

Figure 16: Synthesized Finial In-between Images

 46

4.5 Extensions to Other Scenarios

In addition to the above experimentations that led to excellent results, we considered other

possible scenarios, and extensions of our algorithm. In particular we considered view changes

around 180 degrees and also view extrapolation based on the reference images.

4.5.1 Morphing with Head Turning by 180 Degrees

This experimentation was aimed to extend the work described above and to determine how far

segmentation can help to handle occlusions. The goal was to synthesize an animation where a

person would be turning his/her head from left to right by 180 degrees. The reference images

used for this experimentations are shown in Figure 17:

 I1 I2 I3 I4

Figure 17: Reference Images For Morphing Head Turning Dy 180 Degrees

Some of the in-between images are shown in Figures 18, 19, and 20.

 47

 I1.2 I1.4 I1.6 I1.8

Figure 18: In-between Images For I1 And I2

 I2.2 I2.4 I2.6 I2.8

Figure 19: In-between Images For I2 And I3

 I3.2 I3.4 I3.6 I3.8

Figure 20: In-between images for I3 and I4

These images demonstrated the clear advantage of our approach in handling regions with

occlusions. As shown in I1 and I2, most scene points of right face were only visible in I2, which

made view morphing very difficult to implement.

 48

The animations we created showed smooth transitions from I1 to I2, I2 to I3, and I3 to I4. But when

we connected these animations together and made a transition from I1 to I4 directly, we found

jumps in the process. As shown in Figure 21, noticeable jumps can be found when I1.98 goes to

I2.02 and I2.98 goes to I3.02.

 I1.98 I2.02 I2.98 I3.02

Figure 21: Neighbor Images

The reason for these jumps is that the pixels of the same parts of the neighboring image frames

(I1.98 and I2.02, I2.98 and I3.02) were from different reference images. Although, original images

were taken in the same lighting situation using the same camera, the color difference of the left

side face can also be noticed in I1 and I2, which led to a “jumping” effect from I1.98 to I2.02. We

suggest that this problem can be solved by developing a temporal blending similar to spatial

blending the removes seams.

4.5.2 Extrapolation

Here we tried to see if we could generate outside views from the given reference images. We

used the same reference images shown in Figure 22. .

 49

 I0 I1

Figure 22: Reference Images For Extrapolation

When generating in-between images, the feature points were interpolated from starting positions

in I0 to ending positions in I1 gradually. Suppose x coordinate of point p moves from x0 in I0 to x1

in I1, let d = x1 – x0, the x coordinate of p is just x0 + i*d in each in-between image Ii (i = 0.1, 0.2,

…). During the extrapolation, we let i = -0.1, -0.2, … or i = 1.1, 1.2, … so that generated images

were located outside the range of I0 and I1. Figure 23 and Figure 24 are some of our results:

 I-0.05 I-0.1 I-0.15 I-0.2

Figure 23: Extrapolated Images Outside I0

 50

 I1.05 I1.1 I1.15 I1.2

Figure 24: Extrapolated Images Outside I1

The results have considerable amount of distortions, especially when the generated images are

far from the original ones. The reason is because the positions of feature lines in above images

were extrapolated and could not reflect the real positions. For example, the right front face

should be hidden gradually when images move toward outside I0 in real circumstance. While

from I1 to I0, this region only changes its size rather than having hiding effects.

This example shows the fact that morphing algorithms rely heavily on accurate boundaries. In

particular, surface and texture discontinuities represent the strongest boundaries. Most of our

feature lines were along these boundaries. Without knowing the accurate positions of them (like

in this example), it’s difficult to generate realistic morphing results.

4.6 Analysis of the Results

Occlusion has been the most challenging problem in both view morphing and field morphing.

However, in addition to occlusions, the ghosting can also be caused by some unforeseen

 51

combination of the specified line segments as shown in Figure 25. An important aspect of our

algorithm is that it successfully eliminates these problems.

Figure 25: Moving the Horizontal Feature Line Down Creates Ghosting Above the Line

 Icw0.5 Iow0.5

Figure 26: Morphing Results Without Segmentation. Applying view morphing and field
morphing directly without segmentation. Icw0.5: prewarped in-between image for close mouth
images; Iow0.5: prewarped in-between image for open mouth images.

Both types of problems can be seen in the Figure 26, which are in-between images generated

using field morphing and view morphing without segmentation. Both problems lead to ghosting

effects leading to unrealistic rendering of those parts of the image.

 52

Figure 27 are in-between images using piece-wise processing of the 2D image features based on

segmented images. However, each part in the in-between image is the result of cross-dissolving

both images. Although the artifacts due to field morphing are eliminated, the fading of colors are

still disturbing and unrealistic. In addition, to the ghosting effects on both sides of the face, the

nose does not appear realistic due to partial occlusions.

 Icw0.5 Iow0.5

Figure 27: Cross-dissolving After Segmentation. Icw0.5: prewarped in-between image for close
mouth images; Iow0.5: prewarped in-between image for open mouth images.

The problem is readily solved by selectively interpolating pixel colors based on the three types of

regions described above, i.e. based on the visibility of the segmented regions. Figure 28 shows

the results of in-between images that use our algorithm without boundary blending. After

boundary blending, we get the prewarped in-between images, which are shown in Figure 29.

 53

 Icw0.5 Iow0.5

Figure 28: Prewarped Views Before Boundary Blending

 Icw0.5 Iow0.5

Figure 29: Finial Prewarped In-between Views.

 54

CHAPTER 5. CONCLUSION

In this thesis we investigated the problem of expression morphing. The goal was to synthesize

new views of human faces with expression changes based on reference images.

5.1 Contributions

One of the contributions of our work is proposing a new framework to solve expression

morphing. This framework integrates field morphing and view morphing. It takes advantage of

field morphing’s ability to morph one expression to the other from the same viewpoint, and view

morphing’s ability to morph the same expression from different viewpoints. Based on four

reference images we successfully generate the morphing from one viewpoint with one expression

to another viewpoint with a different expression.

The other contributions of our work is proposing a new approach to eliminate artifacts that

frequently occur in view morphing due to occlusions and in field morphing due to some

unforeseen combination of feature lines. We propose to solve these problems by relaxing the

monotonicity assumption to piece-wise monotonicity along the epipolar lines. For this purpose,

we segment the object into several areas and divide it into labeled regions. According to the label

of each region, the pixels of that region can be mapped from one of the reference images or from

cross-dissolve of both images. Our experimental results demonstrate the efficiency of this

approach in handling occlusions for more realistic synthesis of novel views.

 55

5.2 Limitations and Future Work

The approach we proposed in this thesis combines both field morphing and view morphing,

which has much more image resampling operations. These operations are very sensitive to image

noise. In order to get better results, high quality images, which were taken in the same good

lighting configuration, may be required. One of the future work might be considering the

influence of illumination and modeling the surface reflectance in different viewpoints during

view synthesis.

Like any other image morphing algorithms, both the starting and ending positions of feature

boundaries should be known in advance to implement image interpolation in our approach.

Although we have done some experimentation with extrapolation, results indicate that this

problem is highly ill-posed. Some of the future work might be studying the movements of the

feature points/lines and predicting reasonable feature positions outside the range of reference

images. Temporal blending is also another issue that we would like to consider.

 56

LIST OF REFERENCES

[1] Thaddeus Beier and Shawn Neely. Feature-based image metamorphosis. In Proc.
SIGGRAPH 92, 1992.

[2] Steven M. Seitz and Charles R. Dyer. View morphing. In Proc. SIGGRAPH 96, 1996.

[3] Richard I. Hartley. In defense of the 8-point algorithm. In Proc. Fifth Int. Conf. On

Computer Vision, 1995

[4] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision.

Cambridge University Press, 2000

[5] George Wolberg. Recent advances in image morphing. Computer graphics international,

1996

[6] George Wolberg. Digital image warping. IEEE Computer Society Press, 1990

[7] Detlef Ruprecht and Heinrich Muller. Image warping with scattered data interpolation.

IEEE Computer Graphics and Applications, 1995

[8] Nur Arad, Nira Dyn, Daniel Reisfeld, Yehezkel Yeshurun. Image warping by radial basis

functions: Applications to facial expressions. CVGIP: Graphical Models and Image
Procession. 1994

[9] Seung-Yong Lee, Kyung-Yong Chwa, James Hahn, Sung Yong Shin. Image morphing

using deformation techniques. The Journal of Visualizatin and Computer Animatin, 1996

[10] Seung-Yong Lee, Kyung-Yong Chwa, Sung Yong Shin, George Wolberg. Image

metamorphosis using snakes and free-form deformations. Computer Graphics. 1995

[11] Shenchang Eric Chen, Lance Williams. View interpolation for image synthesis. Proc.

SIGGRAPH 93, 1993

[12] Mattew Regan, Ronald Post. Priority rendering with a virtual reality address recalculation

pipeline. Proc. SIGGRAPH 94, 1994

[13] Jay Torborg, James T. Kajiya. Talisman: Commodity realtime 3D graphics for the PC.

Proc. SIGGRAPH 96, 1996

[14] Jed Lengyel, John Snyder. Rendering with coherent layers. Proc. SIGGRAPH 97, 1997

 57

[15] Apple Computer Inc. QuicktimeVR

[16] Shenchang Eric Chen. Quicktime VR – An image-based approach to virtual environment

navigation. Proc. SIGGRAPH 95, 1995

[17] Black Diamond Inc. Surround Video, 1997

[18] Interactive Picture Corporation Inc. IPIX, 1997

[19] Infinite Pictures Inc. SmoothMove, 1997

[20] Live Picture Inc. RealSpace Viewer, 1997

[21] Lenoard McMillan, Gray Bishop Plenoptic modeling: An image-based rendering system.

Proc. SIGGRAPH 95, 1995

[22] Edward H. Adelson, James R. Bergen. The plenoptic function and the elements of early

vision. Computational Models of Visual Processing The MIT Preess, Cambridge, MA
1991

[23] Paul E. Debevec, Camillo J. Taylor, Jitendra Malik. Modeling and rendering architecture

from photographs: A hybrid geometry- and image-based approach. Proc. SIGGRAPH 96,
1996

[24] Marc Levoy, Pat Hanrahan. Light field rendering. Proc. SIGGRAPH 96,1996

[25] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, Michael F. Cohen. The

lumigraph. Proc. SIGGRAPH 96, 1996

[26] Heung-Yeung Shum, Li-Wei He. Rendering with concentric mosaics. Proc. SIGGRAPH

99, 1999

[27] Shmuel Peleg and Joshua Herman. Panoramic mosaics by manifold projection. Proc

CVPR 97, 1997

 [28] Takuji Takahashi, Hiroshi Kawasaki, Katsushi Ikeuchi, Masao Sakauchi. Arbitrary view

position and direction rendering for large-scale scenes. IEEE Computer Vision and
Patrern Recongnition (CVPR00), 2000

[29] Shree Nayar. Catadioptric omnidirectional camera. IEEE Computer Vision and Pattern

Recognition, 1997

 58

[30] Daniel G. Aliaga, Ingrid Carlbom. Plenoptic stitching: A scalable method for
reconstructing 3D interactive walkthroughs. Proc. SIGGRAPH 01, 2001

[31] Russell A. Manning, Charles R. Dyer. Interpolating view and scene motion by dynamic

view morphing. Proc. Computer Vision and Pattern Recognition, 1999

[32] Jiangjian Xiao, Cen Rao, Mubarak Shah. View interpolation for dynamic scenes.

EUROGRAPHICS, 2002

[33] Mare Alexa, Daniel Cohen-Or, David Levin. As-rigid-as-possible shape interpolation.

Proc. SIGGRAPH 00, 2000

 59

	Expression Morphing Between Different Orientations
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1. INTRODUCTION
	CHAPTER 2. FIELD MORPHING
	2.1 Field Morphing Steps
	2.2 Calculating the Mapping Functions
	2.2.1 Mapping with One Pair of Feature Lines
	2.2.2 Mapping with Multiple Line Pairs

	2.3 Parameters in Field Morphing
	2.4 Problems with Field Morphing

	CHAPTER 3. VIEW MORPHING
	3.1 Pinhole Camera Model
	3.2 View Morphing for Parallel Views
	3.3 View Morphing for Non-parallel Views
	3.4 View Morphing for Noncalibrated Views
	3.4.1 Prewarping Uncalibrated Images
	3.4.2 Morph the Prewarped Images
	3.4.3 Specifying Postwarps

	3.5 Issues in View Morphing
	3.6 Experimental Result and Analysis

	CHAPTER 4. MORPHING BETWEEN DIFFERENT EXPRESSIONS
	4.1 Problem Description
	4.2 Problem Analysis
	4.3 Our Algorithm
	4.3.1 Prewarp Ilc and Irc
	4.3.2 Generate in-between images for Ilcw and Ircw
	4.3.3 Postwarp the In-between Images
	4.3.4 Generate In-between Images Io(i) (i =0.1, 0.2,… , 0.9)
	4.3.5 Generate In-between Images I(a) (a =0.1, 0.2,… , 0.9)

	4.4 Experimental Results
	4.5 Extensions to Other Scenarios
	4.5.1 Morphing with Head Turning by 180 Degrees
	4.5.2 Extrapolation

	4.6 Analysis of the Results

	CHAPTER 5. CONCLUSION
	5.1 Contributions
	5.2 Limitations and Future Work

	LIST OF REFERENCES

