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ABSTRACT 

How to generate new views based on given reference images has been an important and 

interesting topic in the area of image-based rendering. Two important algorithms that can be 

used are field morphing and view morphing. Field morphing, which is an algorithm of image 

morphing, generates new views based on two reference images which were taken at the same 

viewpoint. The most successful result of field morphing is morphing from one person’s face to 

the other one’s face. View morphing, which is an algorithm of view synthesis, generates in-

between views based on two reference views which were taken at different viewpoints for the 

same object. The result of view morphing is often an animation of moving one object from the 

viewpoint of one reference image to the viewpoint of the other one. 

 

In this thesis, we proposed a new framework that integrates field morphing and view morphing 

to solve the problem of expression morphing. Based on four reference images, we successfully 

generate the morphing from one viewpoint with one expression to another viewpoint with a 

different expression. We also proposed a new approach to eliminate artifacts that frequently 

occur in view morphing due to occlusions and in field morphing due to some unforeseen 

combination of feature lines.  We solve these problems by relaxing the monotonicity assumption 

to piece-wise monotonicity along the epipolar lines. Our experimental results demonstrate the 

efficiency of this approach in handling occlusions for more realistic synthesis of novel views.  
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CHAPTER 1. INTRODUCTION 

Image morphing has been widely used in the entertainment industry to achieve powerful visual 

effects for many years. One of the most unforgettable results is from Michael Jackson’s famous 

MTV “black and white”, in which one face transformed into the other smoothly. Generally 

speaking, image morphing is a coupling of image warping with color interpolation [5]. After 

specifying corresponding features on reference images (such as points, lines, and mesh nodes), 

the pixel mapping function can be calculated between the novel image and reference images. 

Then color interpolations, mostly cross-dissolve, can be applied to generate in-between images. 

The most compelling results of image morphing are those involving transformations from one 

person to another, and morphing between different expressions of the same person. Two 

important requirements that make image morphing strikingly realistic are: reference images from 

the same viewpoint and objects look alike.       

 

One of the earliest methodologies used for image morphing was mesh warping [6], which is 

based on using corresponding mesh nodes as image features. The in-between mesh nodes are the 

linear interpolations of mesh nodes between reference images. After image warping, cross-

dissolving can be applied to generate in-between images.   

 

Field morphing, which was developed by Beier and Neely [1], simplified the user interface to 

handle correspondences by means of line pairs. After specifying corresponding feature lines on 

reference images, pixel mapping functions can be calculated based on these feature lines.  

 1



The warping functions of image morphing have also been widely studied. Since feature lines and 

curves can be point sampled, it is possible to consider the features on an image to be specified by 

a set of points. Based on scattered data interpolation, Ruprecht and Muller [7] investigated 

several warping functions and showed that radial basis functions, particularly multi-quadrics, are 

suitable for application to image warping. Using a small number of anchor points, Arad et al. [8] 

demonstrated that radial basis functions provided a power mechanism for processing facial 

expressions based on reference images.  

 

Lee et al. [9] developed a two-dimensional deformation technique to calculate warp functions. 

The resulting warp is C1-continuous and one-to-one and reflects the feature correspondences 

between the images. Lee et al. [10] also introduced snakes into image morphing, which can 

reduce the burden of feature specification. The multilevel free-form deformation (MFFD) used 

by Lee et al. [10] can achieve C2-continuous and one-to-one warps among feature point pairs.      

 

View synthesis, which also generates novel views based on given reference views, has been very 

popular for many years in both computer vision and computer graphics. View synthesis methods 

can be divided into two categories: one is reconstructing the scene using given views, and then 

rendering the novel view using reprojection and texture mapping. This 2D-3D-2D approach can 

generate novel views from different viewpoints if the reconstruction is accurate enough. 

However, because of the complexity of the real world, accumulated errors during 2D to 3D and 

3D to 2D cannot be avoided, which also make this approach difficult in practice. The other 

approach, which is a 2D view synthesis technique, is referred to as image based rendering, and 
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relies on generating novel views by rearranging pixels from reference images directly without 

reconstruction of a 3D model. Because this approach bypasses the 3D reconstruction, the 

complexity and accumulated errors can be reduced dramatically.  

 

Among the early works of 2D view synthesis, Chen and Williams [11] described how to 

interpolate new views of a scene based on images taken from closely spaced viewpoints. Their 

result showed image-based rendering could speed up the rendering time. Their observation led to 

the development of some later hardware systems to achieve real-time rendering rates for 

synthetic 3D scenes [12-14]. 

 

QuickTime VR [15,16] is the system developed by Chen in Apple Computer Inc. It can provide 

panoramic visualization of scenes using cylindrical image mosaics. Walking in a space is 

accomplished by “hopping” to different panoramic point. The success of QuickTime VR and 

other systems like Surround video [17], IPIX [18], Smooth-Move [19] and RealVR [20] brought 

image-based scene visualization into mainstream. 

 

McMillan and Bishop [21] also developed an image-based rendering approach using Adelson 

and Bergen’s plenoptic modeling concept [22]. They propose a technique for sampling, 

reconstruction, and resampling of the plenoptic function, which is similar to the QuickTime VR. 

A panoramic image is generated in this way using a set of uncalibrated images, with new views 

reprojected using the plenoptic function.  
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Debevec et al. [23] proposed a photogrammetric approach to construct 3D models of 

architectural scenes. Their work demonstrated that user-interaction could also play an important 

role in view synthesis and in constructing high-quality 3D models.  

 

Levoy [24] and Gortler et al. [25] both developed novel ray-based methods for view synthesis: 

i.e. light field and Lumigraph.  Their approaches use a four-dimensional ray space to represent 

any visible scene. Although new views can be reconstructed very fast without knowing the pixel 

correspondences, both methods require extensive data acquisition.  

 

View morphing [2], proposed by Seitz and Dyer, solves the problem of synthesizing novel views 

based on the reference views taken from different viewpoints for the same object. By exploiting 

the epipolar geometry associated with a stereo pair, physically-valid in-between novel views can 

be generated without knowing the camera parameters. The limitation of this approach is that the 

viewpoints of novel views have to lie on the straight line connecting the reference viewpoints.   

 

Recently, image-based rendering using the plenoptic function has been investigated further by 

several researchers.  Shum and He [26] presented a 3D plenoptic function called concentric 

mosaics, in which the camera motion is restricted to planar concentric circles, and concentric 

mosaics [27] are created by composing slit images taken from different locations. Novel views 

can be rendered by combining the appropriate captured rays.  Takahashi et al [28] created a 3D 

plenoptic function for reconstructing novel views in large-scale scenes. They use an omni-

directional camera [29] to capture mosaicing panoramic images along a straight line and 
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recording the capturing position of each image using a GPS system. Plenoptic stitching, 

proposed by Aliaga and Carlbom [30], is another technique based on plenoptic function. It 

parameterizes a 4D plenoptic function and supports walkthrough applications in large, arbitrarily 

shaped environment.   

 

Dynamic view morphing, which interpolates views for dynamic scenes, extends the concept of 

view morphing. Manning and Dyer [31] assumed that each object in the original scene 

underwent a series of rigid translations and generated one possible physically valid scene 

transformation. Xiao et al [32] applied view morphing to non-rigid objects that contain both 

rotation and translation. They assume that a non-rigid object can be separated into several rigid 

parts. For each part, the least distortion method [33] is used to determine its moving path. Our 

work focuses on two main issues: 

 

1. Expression morphing: the emphasis is on developing tools that would allow for 

synthesizing new views of human faces with expression change. In our case, a non-rigid 

object (i.e. a human face) contains both rotation and translation, and facial deformations. 

Moreover, this object cannot be separated into rigid parts. The approach that we propose 

combines field morphing and view morphing in a single framework. It takes advantage of 

field morphing’s ability to morph one expression to the other at the same viewpoint, and 

view morphing’s ability to morph same expression from different viewpoints. Based on 

four reference images we successfully generate the morphing from one viewpoint with 

one expression to another viewpoint with a different expression.  
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2. The second issue that we address in this thesis is the elimination of the artifacts known as 

the “ghosting effects”, which are frequently caused in view morphing due to occlusions. 

Because reference images are typically taken from different viewpoints, some scene 

points may not be visible in both images and some parts of the object may be more 

visible in one image than the other. As a result, the assumption of monotonicity and order 

invariance of feature points along the epipolar lines is often violated, and hence during 

the course of morph transition, the unmatched points appear to slowly fade in or out in 

the occluded areas. These artifacts can be very noticeable and disturbing when reference 

images are taken from distant viewpoints and directions. Our reference images are just in 

this case, and hence simple cross-dissolve of reference images will inevitably introduce 

many such artifacts. We propose to solve this problem by relaxing the monotonicity 

assumption to piece-wise monotonicity along the epipolar lines. For this purpose, we 

segment the object into several areas and divide it into labeled regions. According to the 

label of each region, the pixels of that region can be mapped from one of the reference 

images or from cross-dissolve of both images.  Our experimental results demonstrate the 

efficiency of this approach in handling occlusions for more realistic synthesis of novel 

views.  

  

Since our approach integrates the two methodologies of field morphing and view morphing in a 

single framework, we have devoted the next two chapters of this thesis to a quick overview of 

the technical details of these two approaches.  
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CHAPTER 2. FIELD MORPHING 

Field morphing is an image morphing algorithm originally proposed by Beier and Neely [1]. 

After specifying feature points and feature lines in reference images, the position of feature lines 

in the in-between images can be linearly interpolated. A mapping function is then used to map 

the pixels from the in-between image to reference images. This is done based on all the feature 

lines. The final pixel values in the in-between image are the results of cross-dissolving from 

reference images.   

 

2.1 Field Morphing Steps 
 

The field morphing algorithm can be divided into the following steps: 

1. Specify a series of corresponding feature lines l0 and l1 from given images I0 and I1, 

respectively. 

2. For each pair of lines l0 and l1, interpolate the corresponding endpoints and get a new line 

ls, which is the feature line corresponding to l0 and l1 in the in-between image Is. 

3. Calculate the inverse mapping m0 based on line pair l0 and ls, which maps each pixel 

from Is to its corresponding pixel in I0. 

4. Calculate the inverse mapping m1 based on line pair l1 and ls, which maps each pixel 

from Is to its corresponding pixel in I1. 

5. For each point ps in Is, cross-dissolve m0(ps) and m1(ps) to get the pixel value for ps.  
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2.2 Calculating the Mapping Functions 
 

The most important step of field morphing is how to calculate the mapping functions m0 and m1 

based on specified feature lines. Actually, there are two type of mapping functions: forward 

mapping and reverse mapping. Let’s define the reference image as the source image and the in-

between image as the destination image. Forward mapping scans each pixel in the source image 

and calculates its corresponding position in the destination image; whereas reverse mapping 

scans each pixel in the destination image and samples the corresponding pixel from the source 

image. Because reverse mapping has the advantage that each pixel in the destination image can 

be calculated and get appropriate value, it is often the preferred approach in field morphing. 

 

2.2.1 Mapping with One Pair of Feature Lines 
 

In field morphing, each pair of corresponding feature lines in the source and destination images 

can define a mapping from one image to the other. Suppose X is an image pixel in the 

destination image and we want to map X to its corresponding pixel X’ in the source image. Also, 

suppose PQ and P’Q’ are one pair of corresponding feature lines in the destination image and 

the source image, respectively.  

 

Let 

 u = 2||PQ||
P)(QP)(X

−
−⋅−                                                                    (2.1) 
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 v = 
||||

)lar(Perpendicu(
PQ

PQP)X
−

−⋅−                      (2.2)  

then 

 X’ = 
||P'Q'||

P'Q'v)P'(Q'uP'
−

−⋅
+−⋅+

)lar(Perpendicu                    (2.3) 

where Perpendicular() returns the vector perpendicular to, and the same length as, the input 

vector. (There are two perpendicular vectors; either the left or the right one can be used, as long 

as it is consistently used throughout, u specifies the position along the line, which takes values in 

the range 0 to 1 as the pixel moves from P to Q, and is less than 0 or greater than 1 outside that 

range, and v is the perpendicular distance in pixels from the line.  

 

So, the mapping procedure using one pair of feature lines is as follows: 

For each pixel X in the destination image 

        calculate the corresponding u, v 

        calculate the X' in the source image for using u, v ; 

destination image(X) = source image(X'); 

 

 

Figure 1: Calculate Mapping Pixel Using One Pair Of Feature Lines 
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2.2.2 Mapping with Multiple Line Pairs 
 

In the case where there are multiple pairs of feature lines, field morphing introduces different 

weighting for the coordinates calculated using different pairs of lines. The final solution is the 

weighted result of all feature lines.  

 

Let Xi’ ( i = 1…n, n is the number of total feature line pairs) be the result pixel in the source 

image calculated by the ith pair of feature lines. Suppose displacement Di = Xi’ - X is the 

difference between the pixel location in the source and destination images. One weight will be 

calculated for each displacement Di.  As shown in Figure 2, the weighted average of the 

displacements is also calculated and added to the current pixel location X to determine the 

position X’ in the source image.  

 

   

Figure 2: Pixel Mapping Using Multiple Feature Line Pairs 
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The weight for each displacement is calculated using the following equation: 

 weight = 
bp

dist)(a ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

length                                             (2.4) 

where length is the length of the line, dist is the distance from the pixel to the line, and a, b and p 

are constants that can be used to change the relative effect of the lines. 

 

The mapping procedure using multiple line pairs is as follows:  

For each pixel X in the destination 

        DSUM = (0,0) 

        weightsum = 0  

        For each line PiQi ( i = 1…n, n is the number of total feature line pairs) 

                calculate u, v based on Pi, Qi

                calculate Xi’ based on u, v, Pi
’, Qi

’ 

                calculate displacement Di = Xi’ - Xi for this line 

                dist = shortest distance from X to PiQi                 

                weight = (lengthp / (a + dist))b

                DSUM = DSUM + Di*weight  

                weightsum = weightsum + weight  

        X' = X + DSUM / weightsum 

        destination image(X) = source image(X’) 
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2.3 Parameters in Field Morphing 
 

There are three parameters in field morphing: a, b, and p. In order to get a better morphing result, 

these parameters should be specified carefully.  

 

• If a is a positive number very close to zero, the weight will be nearly infinity when the 

distance from the line to the pixel is zero. This will make the pixel on the line go exactly 

where it should. A larger value will yield a more smooth warping, but with less precise 

control. 

• The variable b determines how the relative strength of different lines falls off with 

distance. If b is large, only feature lines near the pixel will affect it; If b is zero, every line 

will affect each pixel equally. The range of b is usually [0.5, 2]. 

• The value of p is typically in the range [0, 1]; if it is zero, then all lines have the same 

weight, if it is one, then longer lines have a greater relative weight than shorter lines. 

 

2.4 Problems with Field Morphing 
 

The main problem with field morphing is that it is a shape-distorting transformation.  It tends to 

bend straight lines, yielding quit unintuitive image transitions. In particular, the projective 

mapping of a planar surface between two different views has the following form:   

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++
++

++
++

=
ihygx
feydx

ihygx
cbyaxyx ,),(H                      (2.5) 
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Such, projective mappings are not preserved under 2D linear interpolation because the sum of 

such expressions is in general a ratio of quadratics and therefore not a projective mapping.  
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CHAPTER 3. VIEW MORPHING 

View morphing was proposed by Seitz and Dyer [2]. As a 2-D view synthesis algorithm, it can 

be used to generate shape-preserving novel views based on given reference views without 

knowing the camera parameters. The image centers of novel views are located along the line 

C0C1, i.e. the line joining the camera perspective centers for the reference images. In order to 

explain this approach, we first provide a brief description of a pinhole camera model. 

 

3.1 Pinhole Camera Model 
 

As shown in Figure 3, a pinhole camera projects points in the 3D space into an images plane. We 

consider a 3D coordinate system attached to the camera (i.e. the canonical coordinate frame): In 

this coordinate system the origin be is at the camera center C, and the x and y axes are parallel to 

the image axes, with the z-axis determined by the right hand rule and intersects the image plane 

at the so called principal point. The image plane (also called focal plane) is given by the plane z 

= f.  

 

Under the pinhole camera model, a point P in the Euclidean space is mapped to a point p in the 

image plane, which is given by the intersection of the line PC with the image plane.  

 14



            

Y

Z

X

x

y
P

C

image plane
camera
center

o

p

                

Figure 3: Pinhole Camera Geometry. C is the camera center and o is the principal point. 

 

Suppose the coordinates of P are (X, Y, Z)T in the Euclidean 3D-space and p is (x, y)T in  the 

Euclidean 2D-space (image plane), then  

x = fX/Z                        (3.1)  

 y = fY/Z                        (3.2) 

o
f

P

Z
C

X

fX/Z

 

Figure 4: Mapping of Point P Into the Image Plane In the x Direction 
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If we use homogeneous coordinates to represent P and p, i.e. P = (X, Y, Z, 1)T and p = (x, y, 1)T, 

we get: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

Z
fY
fX

Z
ZfY
ZfX

1

1
/
/

p

                                            (3.3) 

 

Or alternatively  

 

           (3.4) ⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1
0100
000
000

Z
Y
X

f
f

Z
fY
fX

we thus get 

 

Pp ∏=
Z
1

                                   (3.5) 

where 

             (3.6) ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=∏

0100
000
000

f
f

 

However, in practice, the origin of the camera is not located at the principal point. Therefore as 

shown in Figure 5, there is a coordinate system offset.  
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Figure 5: Image (x, y) and Camera (xcam, ycam) Coordinate System 

 

So, after the projection, the point P is mapped to the point p = (x, y, 1)T via 

x = fX/Z + u0                                                         (3.7) 

y = fY/Z + v0                        (3.8) 

 

Or 

 

                                (3.9)
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ZvfY
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which can be written in matrix notation as  

 Pp ∏=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+
+

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+
+

=
Z

Z
ZvfY
ZufX

Z
vZfY
uZfX

11

1
/
/

0

0

0

0

                             (3.10) 

 

where 
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                                                                              (3.11) ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=∏

0100
00
00

0

0

vf
uf

and 

                                   (3.12) ⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

1
Z
Y
X

P

 

Let  

                                                                   (3.13)  ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
0

0

0

0

vf
uf

K

which is the camera intrinsic (calibration) matrix. 

Then 

             (3.14) 

0]|K[I=∏

 

P0IKPp ]|[11
ZZ

=∏=

                                                                                 (3.15) 

where [I | 0] represents a matrix divided up into a 3×3 block(the identity matrix) plus a column 

zero vector. 
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The above discussion assumes that the origin of the 3D Euclidian space is located at the camera 

projection center. We call this coordinate system the camera coordinate frame. In general, the 

points in space are expressed in terms of the world coordinate frame. And these two frames are 

related via a rotation and a translation. Let X be the inhomogeneous 3-vector that represents the 

coordinate of a point in the world coordinate frame and Xcam be the coordinate of the same point 

in the camera coordinate frame. As shown in Figure3.4, we have Xcam = R(X – C), where C 

represents the coordinates of the camera center in the world coordinate frame, and R is a 3×3 

rotation matrix representing the orientation of the camera coordinate frame. This equation may 

be written in homogeneous form as 

 

       (3.16) 

wcam P
RCRRCR

P ⎥
⎦

⎤
⎢
⎣

⎡ −
=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎦

⎤
⎢
⎣

⎡ −
=

10
1

10 Z
Y
X

 

Substituting (3.16) into (3.15), we get  

 

wcam C]P|KR[IP0|IKp −==
ZZ
1][1                                (3.17) 
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Figure 6: Euclidean Transformation Between World and Camera Coordinate Frames 

 

3.2 View Morphing for Parallel Views 
 

When reference images are two parallel views, linear interpolation of both views can generate 

shape-preserving in-between images. 

 

 Supposed I0 and I1 are two parallel images of the same object as shown in Figure 7. The focal 

length of I0 and I1 are f0 and f1 respectively. Also suppose the origin of the world coordinate 

frame is located in the camera center of I0. And the camera center of I1 is located in (Cx, Cy, 0) in 

the world coordinate system.  

 

Based on equation (3.17):

 

wC]P|KR[I1p −=
Z

, we can map the point P from world coordinate 

frame into the image plane as follows: 
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For image plane I0, since its camera center is located in the origin of the world coordinate frame, 

we get C0 = 0 and R = I. So, 

P0]P|KI[Ip0 0
11
∏=−=

ZZ
                                                                          (3.18) 

 

where 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=∏

0100
00
00

00

00

0 vf
uf

                                                                                   (3.19)

 

 

For image plane I1, we have C1 = (Cx, Cy, 0) and R = I. So, 

  

            

PC]P|KI[Ip1 1
11
∏=−=

ZZ
                                                                         (3.20) 

 

where 

             ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

=∏
0100

0
0

101

101

1 y

x

Cfvf
Cfuf

 

Let p0 ∈ I0 and p1 ∈  I1 be projections of the scene point P = [X Y Z 1]T. Linear interpolation of 

p0 and p1 yields 

PPpp 10 10
1s1s)1(ss)(1 ∏+∏−=+−
ZZ
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    Ps
1
∏=

Z
                                          (3.21) 

where         

10s ss)(1 ∏+∏−=∏    

                                                                                (3.22)  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

=
0100
αv0
αu0

ss0

ss0s

Ys

X

Cff
Cff

fs = (1 – s) f0+ sf1                                                                                                                                       (3.23)

sα =
10

1

ss)(1
s

ff
f
+−

                                                                                            (3.24)  

 

From equation (3.21), we conclude that for parallel cameras shown in Figure 7, image 

interpolation produces a new view whose projection matrix Пs is a linear interpolation of П0 and 

П1, representing a camera with focal length  and the perspective center Cs given by: sf

Cs =  ( 0, ,Ysxs CC αα )                                 (3.25) 

 

In other words, interpolating images from parallel cameras produces images that correspond to 

moving a camera on the line C0C1 between the two camera centers and zooming continuously. 

Because a new view for the same object can be produced, this interpolation can be seen as shape-

preserving. 
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Figure 7: Linear Interpolations of Corresponding Pixels In Parallel Views.  Image planes I0 and 
I1 creates image Is, which represents another parallel view of the same scene. 

 

3.3 View Morphing for Non-parallel Views 
 

As discussed above in Chapter 2, direct application of view morphing to non-parallel views will 

lead to shape-distortions. The solution to this problem is therefore to first transform the two non-

parallel views into two parallel ones, and then apply the morphing process.  

 

Let I0 and I1 be two perspective views of the same object P. Let also the camera centers be 

located in C0 and C1, respectively. Based on equation (3.17):

 

wC]P|KR[Ip −=
Z
1 , and we can 

map the point P from world to the image planes I0 and I1 using: 
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 w000 ]PC|[IKRp −=
Z
1

                                                     (3.26) 

  

w111 ]PC|[IKRp −=
Z
1

                                                                                  (3.27) 

Let H0 = KR0 and H1 = KR1. The projection matrices Π0 and Π1 can be written as: 

Π0 = KR0[I | -C0] = [H0 | -H0C0]                                                               (3.28) 

Π1 = KR1[I | -C1] = [H1 | -H1C1]                                                                      (3.29) 

 

As shown in Figure 8, view morphing uses the following 3-step procedure to generate in-

between shape-preserving images Is with camera center Cs located on the line joining the camera 

centers for the reference images, i.e. on C0C1.  

 

1. Prewarp: Apply projective transform H0
-1 to I0 and H1

-1 to I1, to generate parallel views 

 and . wI 0 wI1

2. Morph: Form by linearly interpolating positions and colors of corresponding points in 

 and  

swI

wI 0 wI1

3. Postwarp: Apply Hs to , to get the in-between image  swI sI
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Figure 8: View Morphing for Non-parallel Views. 

 

After the prewarping, the projection matrices of the prewarped images  and  have the 

following formats:

  

wI 0 wI1

Π0w = H0
-1 [H0 | -H0C0] = [ I | -C0]        (3.30) 

       Π1w = H1
-1 [H1 | -H1C1] = [ I | -C1]        (3.31) 
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This rectifies the two reference images so that the corresponding points in the two images appear 

along the same scan line.  

 

The projection matrix of Is can be written as Πs = [Hs | -HsCs], where Cs can be calculated using 

equation (3.25). 

 

Generally speaking, prewarping brings the image planes into alignment without changing the 

optical centers of the two cameras; morphing the prewarped images moves the optical canter to 

Cs; and finally postwarping transforms the image plane of the new view to its desired position 

and orientation.  

 

3.4 View Morphing for Noncalibrated Views 
 

When reference images are uncalibrated, it is still possible to use the 3-step algorithm described 

above to generate in-between images. The following sections describe the details. 

 

3.4.1 Prewarping Uncalibrated Images 
 

The purpose of prewapring of uncalibrated images is as before to make two reference images 

parallel to each other so that the corresponding points appear along the same scanlines.  
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In the uncalibrated case we need to find two 2D projective transformations H0
-1 and H1

-1 that 

would rectify I0 and I1, respectively. Because the prewarped images are rectified, it can be shown 

that the fundamental matrix for I0w and I1w is given by  [4]:   

 Fw  =                                                                  (3.32) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
010
100

000

 

Based on the epipolar geometry, a point p0w in I0w and its corresponding point p1w in I1w have the 

following relationship: 

p1w
T Fw p0w  = 0                                                      (3.33) 

 

Substituting p0w with H0
-1p0 and p1w with H1

-1p1, we get: 

 p1
TH1

-TFwH0
-1p0 = 0                     

 

Since p1
TFp0 = 0,   

 H1
-TFwH0

-1 = F                                                                                                 (3.34)   

i.e., 

 H1
TFH0 = Fw                                                                                                                                                      (3.35) 

 

So, the prewarping can be solved if we can find a pair of homographies H0 and H1 that satisfy 

Equation (3.35). The following procedure can be used to find these two homographies, which 

basically rotate the image planes to obtain parallel views and then apply 2D affine 

transformations to align corresponding scanlines. 
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We therefore need to first compute the fundamental matrix F using for instance the well-known 

8-point algorithm [3]: 

 

Once the Fundamental matrix is known, one can find the epipoles of the two images using the 

following equations [4]: 

 Fe0 = 0                                                                              (3.36) 

 FTe1 = 0                                                                                        (3.37) 

 

Given the epipoles the two images can then be made parallel using the following approach.  Let 

E be a plane parallel to C0C1, suppose E intersects the image plane Ii at di, the rotation of Ii about 

di will make the two image planes parallel. Alternatively rotating Ii about any line parallel to di 

will also make image planes parallel to each other. 

 

Suppose E intersects I0 at d0, that passes through the image center of I0: d0 = [-d0
y d0

x 0] T. Point 

p on d0 has the form p =  [sd0
x sd0

y 0] T and satisfy the equation   

 d0
Tp = 0                                 (3.38) 

 

Because the epipoles of the image planes after rectification are located at infinity, the new 

epipole for I0 after rotating about d0 has the form 

e0N = R e0

0

d
θ 0                                                                                                       (3.39) 

      = [e0
x, e0

y, 0]T           (3.40) 
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Where the rotation matrix is given by 

            R  =  (3.41) 0

0

d
θ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−+−

−−+

00000

000
2

0
2

0000

000000
2

0
2

0

cossinsin
sincos))(1()()cos1(

sin)cos1(cos))(1()(

θθθ
θθθ
θθθ

xy

xyyyx

yyxxx

dd
ddddd

ddddd

 

Substituting (3.40) and (3.41) into (3.39), we get: 

  θ0 = tan-1( yxxy

z

eded
e

0000

0

−
)                                                     (3.42) 

 

In order to minimize the rotation angle θ0, we can chose d0
x = αe0

y, d0
y = -αe0

x, where α = 

2
0

2
0 )()(

1
yx ee +

. So the line d0 = [-d0
y d0

x 0] T = α[e0
x  e0

y  0]. 

 

Let E’ be an epipolar plane parallel to E. E’ intersects Ii in an epipolar line li parallel to di. 

Because they are parallel, l0 and d0 intersect at the ideal point i0 = [ ]000
yx dd  T. Since i0 is on 

the epipolar line l0, we can get the epipolar line l1 using the following equation: 

 l1 = Fi0                                                                                                              (3.43) 

 

Let d1 be the line passing through the image origin of I1 and parallel to l1. A rotation of I1 about 

d1, which makes I1 parallel to E’ will also make it parallel to E. Accordingly, if [x  y  z]T = Fi0 = 
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F[ ]000
yx dd  T, then the rotation axis is d1 = α[x  y  0]T, i.e. = αy and  = -αx, where  α = xd1

yd1

22

1
yx +

. 

 

After aligning the image planes, the two image planes are parallel to each other with the new 

epipole e0N = R 0

0
ed

θ 0 of the form e0N = [e0
x  e0

y  0] T. The next step is to rotate the images about 

the z-axis so that the epipolar lines become horizontal. i.e. the epipole will be of the form e0N =α 

[1  0  0] T . The rotations are given by 

 φi  =  -tan-1(e0
y/ e0

x)                                                      (3.44) 

 Rφi  =                                           (3.45) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

100
0cossin
0sincos

ii

ii

φφ
φφ

 

After applying these image plane rotations, the fundamental matrix will have the form: 

Fw   =                                            (3.46) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

b
a

10
00

000

 

In order to make Fw of the form , the second image should be vertically scaled and 

translated by the matrix  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
010
100

000
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 T  =                                 (3.47) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−
100

0
001
ba

 

Therefore the two prewarp transforms H0
-1 and H1

-1 are given by  

 H0
-1  = Rφ0 R                                                       (3.49) 0

0

d
θ

 H1
-1  = T Rφ1 R                      (3.50) 1

1

d
θ

 

3.4.2 Morph the Prewarped Images 
 

Since the images are now parallel and corresponding points appear in the same scanline, the 

morphing process is simply achieved by applying a linear interpolation. 

 

3.4.3 Specifying Postwarps 
 

Postwarping transforms the image plane to its desired position and orientation. From this 

viewpoint, postwarping is a projective transformation Hs that transforms Isw to Is. Let  

 Hs =                      (3.51) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

333231

232221

131211

hhh
hhh
hhh
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and suppose pw = [xw yw 1]T and ps = [xs ys 1]T are one pair of corresponding points in Isw to Is 

respectively.  We have cps = Hspw, where c is a scale factor. Eliminating c yields two linear 

equation for one pair of pw and ps.  

 xs(h31xw + h32yw + h33) – (h11xw + h12yw + h13) = 0                             (3.52) 

 ys(h31xw + h32yw + h33) – (h21xw + h22yw + h23) = 0                                          (3.53) 

 

Using 4 pair of such corresponding points, we can get 8 linear equations in terms of the 

components of the matrix Hs. These equations can be written in homogeneous form as Ah = 0, 

where A is the coefficient matrix and h = [h11 h12 h13 h21 h22 h23 h31 h32 h33 ]T. The solution is then 

given by the unit eigenvector of ATA corresponding to the smallest eigenvalue. By adding the 

constraint h33 = 1, we can get the final solution for Hs.  

 

Therefore the postwarping can be done as follows: we first specify the paths of at least four 

image points through the entire morph transition; for each in-between image Is, we specify the 

position of these control points in Is; we then find the corresponding position of the control 

points from the morphed image Isw; the positions of the control points in Is and Isw specify a 

homogeneous linear system of equations whose solution yields Hs; Apply Hs to Isw will yield the 

in-between image Is. 
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3.5 Issues in View Morphing 
 

The prewarping transformation relies heavily on the fundamental matrix. In order to get a stable 

solution for the fundamental matrix, it is important to choose a reliable subset of feature points. 

Degeneration of feature points (e.g., coplanar features) should be avoided. In addition, better 

results are obtained when feature points are well distributed throughout the pair of images.   

 

During the prewarping and postwarping, images are transformed by applying transformation 

matrices. During this process, some pixels in the destination may not get painted. One approach 

to solve this problem it is to use reverse mapping, which goes through the destination image 

pixel-by-pixel, and samples the correct pixel from the source image. The most important feature 

of reverse mapping is that every pixel in the destination image gets an appropriate value. 

 

3.6 Experimental Result and Analysis  
 

Compared to field morphing, view morphing can generate a shape-preserving in-between image 

using two reference images, taken from different viewpoints from the same object. The most 

impressive part of view morphing is the prewarping procedure. Using epipolar geometry, a plane 

that is parallel to the line joining the camera centers can be found. Then the reference images are 

rotated so that they are made parallel to this plane. This also makes them parallel to each other. 

Since linear interpolation of two parallel views can generate shape-preserving in-between 

images, new high-quality images can be artificially synthesized. 
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Prewarpimg and postwarping introduce more image resampling operations than field morphing, 

which may lead to noticeable blurring in the in-between images. This is particularly true when 

low-resolution images are used as reference images. The example in Figure 9 demonstrates these 

effects: I0.5 is the in-between image of I0 and I1 generated using view morphing. The blurs can be 

found in each line in I0.5. And the letters” Pentium 4 Processor”, which are clear in both I0 and I1, 

become blurred in I0.5. 

 

   

 

    

       I0                     I0.5                   I1

Figure 9: View Morphing of A Box: left and right: reference images, middle: the synthesized 
image.  

 

Sometimes the prewarping procedure may not work, i.e., the two images can not be made 

parallel. One situation is when the optical center of one camera is within the field of view of the 

other. In the parallel configuration, each camera’s optical center is out of the field of view of the 

other. Since the image reprojection does not change a camera’s field of view, it can not make the 

optical center out of the field of view of the other if it is already located inside in the reference 

image. 
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The other case where prewarping would fail is when the epipole of the image is located inside 

the image. In prewarping (rectification) stage the epipole, is projected to infinity. Therefore, 

since the size of the prewarped image can’t be infinite, this point can not be visible in the 

prewarped image. The points outside the epipole will also become invisible. So only part of the 

image will be seen in the prewarped image. The best results are obtained when visibility is nearly 

constant, i.e., when most scene points are visible in both reference views. Occlusion is another 

source of problem, which can cause ghosting effects, due to the cross-dissolve, i.e. unmatched 

points will appear at fractional-intensity in in-between views. 
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CHAPTER 4. MORPHING BETWEEN DIFFERENT EXPRESSIONS 

4.1 Problem Description 
 

Suppose we are given four reference images: one pair from left and right with the mouth closed 

(Ilc, Irc), and another pair from approximately the same positions, but with the mouth open (Ilo, 

Iro).  Is it possible to generate in-between images for Ilc and Iro or alternatively in-between images 

for Irc and Ilo, i.e., is it possible to create a morphing animation that this person turns his head 

from left to the right and moves his mouth gradually at the same time? 

 

4.2 Problem Analysis 
 

Let’s discuss one case of the problem, i.e. generating morphing images between Ilc and Iro. 

Unlike the problem of view morphing, in which only the camera moves from left to right, the 

object in this case also moves a lot: the mouth from the closed position in Ilc moves to the open 

position in Iro. Moreover, the moving of the object is not rigid: the moving quantities are 

different for different parts of the object. The hair of the person is almost at the same position in 

both images while the mouth and the chin move a lot. So this problem is out of the range of view 

morphing. 

 

Applying field morphing can’t solve this problem either. The cameras in both images are far 

apart from each other. As discussed above, field morphing is suitable for morphing the person’s 
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expression changes in the same viewpoint. Changing orientation of the camera will cause 

distortion effects for field morphing in the in-between images.    

 

4.3 Our Algorithm 
 

Our algorithm is developed by combining field morphing and view morphing: it takes advantage 

of field morphing’s ability to morph one expression to the other in the same viewpoint and view 

morphing’s ability to morph the same expression from different viewpoints. The detailed steps 

are as follows: 

 

4.3.1 Prewarp Ilc and Irc 

 

In Ilc and Irc, the camera is facing the person from different positions and orientations, while the 

pose of the person is kept constant. So it is easy to apply the prewarping procedure of the view 

morphing to make the two images parallel and generate parallel images Ilcw and Ircw. 

 

4.3.2 Generate in-between images for Ilcw and Ircw

 

We use field morphing to generate in-between images of Ilcw and Ircw. However, occlusion is a 

major issue in this step: As the face turns around the left side may be visible in Ilcw but occluded 

in Ircw and vice versa. . Occlusions cause a disturbing effect referred to as “ghosting”, where 

occluded parts appear as fading in or out during rendering. We solve this problem by relaxing the 
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monotonicity assumption of the feature points along the epipolar lines to piece-wise 

monotonicity.  

 

For this purpose, we specify the boundaries of left and right homogeneous regions as feature 

lines. This essentially leads to segmented reference images where each segment is assumed to 

preserve monotonicity of the feature points along the epipolar lines. Therefore interpolation can 

be performed without error in each segmented using only the boundaries and the feature lines 

that lie inside the region.  Segmented regions are labeled for book keeping, so that if a feature 

line is crossing over multiple regions, only the segments inside each region are used for 

morphing within that region.     

 

In this thesis the segmentation was done by user interaction as follows: 

• We segmented the reference images into three types of regions: 1st type of regions are the 

ones that have almost the same visibilities in both images, such as eyes in our 

experimentations; 2nd type of regions are the ones that have more visibility in one image 

than the other, e.g. certain parts of the face; 3rd type of regions are the ones that are only 

visible in one image, i.e. occluded in the other one.  

• Regions that are visible only in one image are segmented in that image and then the 

boundaries of these regions are projected in the second image.   

 

After segmentation, all feature lines are selected, some of which may overlap between several 

regions. Segmentation allows processing and interpolating each region individually based on 
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their visibilities. For the 1st type of region, since their visibilities in both images are almost the 

same, we can use the same method of field morphing to interpolate feature lines and get pixels of 

in-between image using cross-dissolving the pixels from both images. For the 2nd type of region, 

since the shape of the area change dramatically in both images (from big area to small area or 

vice versa), only pixels from the most visible image are used. For the 3rd type of the region, since 

the information is only available in one image, we only use the pixels from that image.  

 

After specifying the feature lines, we can calculate their positions in the in-between images using 

field morphing. Depending on the position of in-between images Icw(i) (i =0.1, 0.2,… , 0.9), the 

position of each feature line in Icw(i) is readily computed by linear interpolation of their 

endpoints.  

 

Then for each pixel pcw in the in-between image Icw(i) (i =0.1, 0.2,… , 0.9), we calculate it’s 

mapping pixels plcw in Ilcw and prcw in Ircw using field morphing. However, the morphing is done 

based on segmentation: a pixel pcw is morphed based only on the feature lines inside the 

segmented area where the pixel resides.. 

 

Once the geometric interpolation is performed, pixel color is selectively assigned based again on 

segmentation, i.e. cross-dissolve if the region is the 1st type, and use only the color of visible (or 

more visible) region if the region is of the other two types.  
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The approach proposed above eliminates all ghosting effects. However, it introduces problems at 

the region boundaries: due to segmentation seam may occur at the boundaries. However, this 

problem is fairly easy to solve by using a blending technique, which would yield a more smooth 

transition between neighboring regions.  

 

 

 

+ 

 

0 
1 

0
1

   

image I1       α                image I2        β 

 

 

 

 

       

 

= 

  blended image 

Figure 10: Using Feathering Method to Blend Two Images 

 

The blending is done as follows. Suppose regions A and B are neighboring regions, such that the 

pixels of region A are from Ilcw and the pixels of region B are from Ircw. We use feathering 

method to blend their boundary as shown in Figure 10. This is done by first, specifying a small 
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window (a small boundary band) as the transition area, where the colors are linearly interpolated 

between the two regions within the window.  

 

4.3.3 Postwarp the In-between Images 
 

For each in-between image Icw(i) (i =0.1, 0.2,… , 0.9), we can get in-between images Ic(i) (i =0.1, 

0.2,… , 0.9) by applying the postwarping procedure of view morphing. 

 

4.3.4 Generate In-between Images Io(i) (i =0.1, 0.2,… , 0.9) for Ilo and Iro

 

Apply the same step of 4.3.1 to 4.3.3 on Ilo and Iro and generate In-between Images Io(i) (i =0.1, 

0.2,… , 0.9) for them. 

 

4.3.5 Generate In-between Images I(a) (a =0.1, 0.2,… , 0.9) 
 

At this point, we have in-between close-mouth images Ic(i) (i =0.1, 0.2,… , 0.9) and in-between 

open-mouth images Io(i) (i =0.1, 0.2,… , 0.9). We can take advantage of field morphing’s ability 

to morph different expression in the same viewpoint. When Ic(i) and Io(i) (i =0.1, 0.2,… , 0.9) are 

at the same position, it is possible to generate in-between images for  them: for each pair of  Ic(i) 

and Io(i) (i =0.1, 0.2,… , 0.9), we generate their in-between images I(i) = Ia. This would allow us 

to include expression changes while the head is rotating from left to right.. 
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4.4 Experimental Results 
 

The reference images that we used are shown in Figure 11. Ilc and Ilo were taken approximately 

in the same orientation but with different expressions. Similarly, Irc and Iro were taken 

approximately from the same orientation with different expressions. 

 

          

 Ilc           Irc       Ilo      Iro   
Figure 11: Reference Images 

 

The results after prewarping are shown in Figure 12. For prewarping, we manually chose 12 

corresponding points for each pair of images in order to calculate the fundamental matrix and 

hence the homographies as described earlier.  

 

          

 Ilcw     Ircw     Ilow        Irow

Figure 12: Prewarped Images 
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Figure 13: Segmentation of prewarped open mouth images  
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Figure 14: Segmentation of Prewarped Close Mouth Images 

 

After prewarping the images are segmented into several regions. In this case the open mouth 

images were segmented into 12 regions. The segmented images are shown in Figure 13. Table 1 

shows the reference image used for each region in the in-between images. The prewarped close 

mouth images were segmented into 10 regions as shown in Figure 14. Table 2 gives the 

reference image used for each part in the in-between images. 
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Table 1: Regions and Their Reference Image for the Prewarped Close Mouth Images 

 

Region Number Face Part  Reference Images 

1 Right shoulder Left, right 

2 Right neck Right  

3 Right side face Right  

4 Right front face Right  

5 Right eye Left, right 

6 Middle neck Right  

7 Left eye Left, right 

8 Left front face Left  

9 Left side face Left  

10 Left neck Left  

11 Left shoulder Left 

12 Mouth  Left, right 
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Table 2: Regions and Their Reference Image for the Prewarped Open Mouth Images 

 

Region Number Face Part  Reference Images 

1 Right should Right 

2 Right neck + right side face Right  

3 Right front face Right  

4 Right eye Right, left  

5 Middle neck Right 

6 Left eye Left, right 

7 Left front face Left 

8 Left side face + left neck Left  

9 Left shoulder Left  

 

 

The regions were then interpolated as described above. The results after the postwarping are 

shown in Figure 15. There is practically no ghosting effect in the images and area transitions are 

also very smooth, making the rendering appear very realistic. . 
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After generating in-between images for each pair of Ic(i) and Io(i) (i =0.1, 0.2, … ,0.9), we can 

get the animation of the same person turn his head from right to the left while at the same time 

opening his mouth gradually. The results are shown in Figure 16.            

      

             

          Ilc  Ic(0.2)     Ic(0.5)       Ic(0.8)           Irc

             

          Ilo  Io(0.2)     Io(0.5)       Io(0.8)           Iro

Figure 15: Synthesized In-between Images of Different Expressions. Top: in-between images for 
the close mouth images. Bottom: in-between images for the open mouth images. 

 

             

Ilc  I(0.2)     I(0.5)                  I(0.8)           Iro 

Figure 16: Synthesized Finial In-between Images  
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4.5 Extensions to Other Scenarios 
 

In addition to the above experimentations that led to excellent results, we considered other 

possible scenarios, and extensions of our algorithm. In particular we considered view changes 

around 180 degrees and also view extrapolation based on the reference images. 

 

4.5.1 Morphing with Head Turning by 180 Degrees 
 

This experimentation was aimed to extend the work described above and to determine how far 

segmentation can help to handle occlusions. The goal was to synthesize an animation where a 

person would be turning his/her head from left to right by 180 degrees. The reference images 

used for this experimentations are shown in Figure 17: 

 

          

 I1            I2        I3      I4 

Figure 17: Reference Images For Morphing Head Turning Dy 180 Degrees 

 

Some of the in-between images are shown in Figures 18, 19, and 20. 
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 I1.2            I1.4        I1.6      I1.8 

Figure 18: In-between Images For I1 And I2

 

           

 I2.2            I2.4        I2.6      I2.8

Figure 19: In-between Images For I2 And I3

 

          

 I3.2            I3.4        I3.6      I3.8 

Figure 20: In-between images for I3 and I4

 

These images demonstrated the clear advantage of our approach in handling regions with 

occlusions. As shown in I1 and I2, most scene points of right face were only visible in I2, which 

made view morphing very difficult to implement.  
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The animations we created showed smooth transitions from I1 to I2, I2 to I3, and I3 to I4. But when 

we connected these animations together and made a transition from I1 to I4 directly, we found 

jumps in the process.  As shown in Figure 21, noticeable jumps can be found when I1.98 goes to 

I2.02 and I2.98 goes to I3.02. 

 

            

  I1.98           I2.02        I2.98   I3.02 

Figure 21: Neighbor Images 

 

The reason for these jumps is that the pixels of the same parts of the neighboring image frames 

(I1.98 and I2.02, I2.98 and I3.02) were from different reference images. Although, original images 

were taken in the same lighting situation using the same camera, the color difference of the left 

side face can also be noticed in I1 and I2, which led to a “jumping” effect from I1.98 to I2.02. We 

suggest that this problem can be solved by developing a temporal blending similar to spatial 

blending the removes seams. 

 

4.5.2 Extrapolation 
 

Here we tried to see if we could generate outside views from the given reference images. We 

used the same reference images shown in Figure 22. . 
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 I0          I1

Figure 22:  Reference Images For Extrapolation 

 

When generating in-between images, the feature points were interpolated from starting positions 

in I0 to ending positions in I1 gradually. Suppose x coordinate of point p moves from x0 in I0 to x1 

in I1, let d = x1 – x0, the x coordinate of p is just x0 + i*d in each in-between image Ii (i = 0.1, 0.2, 

…). During the extrapolation, we let i = -0.1, -0.2, … or i = 1.1, 1.2, … so that generated images 

were located outside the range of I0 and I1. Figure 23 and Figure 24 are some of our results: 

 

        

 I-0.05         I-0.1  I-0.15   I-0.2

Figure 23: Extrapolated Images Outside I0
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 I1.05         I1.1   I1.15   I1.2

Figure 24: Extrapolated Images Outside I1

 

The results have considerable amount of distortions, especially when the generated images are 

far from the original ones. The reason is because the positions of feature lines in above images 

were extrapolated and could not reflect the real positions. For example, the right front face 

should be hidden gradually when images move toward outside I0 in real circumstance. While 

from I1 to I0, this region only changes its size rather than having hiding effects.   

 

This example shows the fact that morphing algorithms rely heavily on accurate boundaries. In 

particular, surface and texture discontinuities represent the strongest boundaries. Most of our 

feature lines were along these boundaries. Without knowing the accurate positions of them (like 

in this example), it’s difficult to generate realistic morphing results.  

 

4.6 Analysis of the Results 
 

Occlusion has been the most challenging problem in both view morphing and field morphing. 

However, in addition to occlusions, the ghosting can also be caused by some unforeseen 
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combination of the specified line segments as shown in Figure 25. An important aspect of our 

algorithm is that it successfully eliminates these problems.   

 

 

 

Figure 25: Moving the Horizontal Feature Line Down Creates Ghosting Above the Line 

 

    

  Icw0.5       Iow0.5 

Figure 26: Morphing Results Without Segmentation. Applying view morphing and field 
morphing directly without segmentation. Icw0.5: prewarped in-between image for close mouth 
images; Iow0.5: prewarped in-between image for open mouth images. 

 

Both types of problems can be seen in the Figure 26, which are in-between images generated 

using field morphing and view morphing without segmentation. Both problems lead to ghosting 

effects leading to unrealistic rendering of those parts of the image.  
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Figure 27 are in-between images using piece-wise processing of the 2D image features based on 

segmented images. However, each part in the in-between image is the result of cross-dissolving 

both images. Although the artifacts due to field morphing are eliminated, the fading of colors are 

still disturbing and unrealistic. In addition, to the ghosting effects on both sides of the face, the 

nose does not appear realistic due to partial occlusions.   

 

    
  Icw0.5       Iow0.5 

Figure 27: Cross-dissolving After Segmentation. Icw0.5: prewarped in-between image for close 
mouth images; Iow0.5: prewarped in-between image for open mouth images. 

 

The problem is readily solved by selectively interpolating pixel colors based on the three types of 

regions described above, i.e. based on the visibility of the segmented regions. Figure 28 shows 

the results of in-between images that use our algorithm without boundary blending. After 

boundary blending, we get the prewarped in-between images, which are shown in Figure 29. 
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  Icw0.5       Iow0.5 

Figure 28: Prewarped Views Before Boundary Blending  

 

   

  Icw0.5       Iow0.5 

Figure 29: Finial Prewarped In-between Views.  
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CHAPTER 5. CONCLUSION 

In this thesis we investigated the problem of expression morphing. The goal was to synthesize 

new views of human faces with expression changes based on reference images.  

 

5.1 Contributions 
 

One of the contributions of our work is proposing a new framework to solve expression 

morphing. This framework integrates field morphing and view morphing. It takes advantage of 

field morphing’s ability to morph one expression to the other from the same viewpoint, and view 

morphing’s ability to morph the same expression from different viewpoints. Based on four 

reference images we successfully generate the morphing from one viewpoint with one expression 

to another viewpoint with a different expression. 

 

The other contributions of our work is proposing a new approach to eliminate artifacts that 

frequently occur in view morphing due to occlusions and in field morphing due to some 

unforeseen combination of feature lines.  We propose to solve these problems by relaxing the 

monotonicity assumption to piece-wise monotonicity along the epipolar lines. For this purpose, 

we segment the object into several areas and divide it into labeled regions. According to the label 

of each region, the pixels of that region can be mapped from one of the reference images or from 

cross-dissolve of both images.  Our experimental results demonstrate the efficiency of this 

approach in handling occlusions for more realistic synthesis of novel views.  
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5.2 Limitations and Future Work 
 

The approach we proposed in this thesis combines both field morphing and view morphing, 

which has much more image resampling operations. These operations are very sensitive to image 

noise. In order to get better results, high quality images, which were taken in the same good 

lighting configuration, may be required. One of the future work might be considering the 

influence of illumination and modeling the surface reflectance in different viewpoints during 

view synthesis.  

 

Like any other image morphing algorithms, both the starting and ending positions of feature 

boundaries should be known in advance to implement image interpolation in our approach. 

Although we have done some experimentation with extrapolation, results indicate that this 

problem is highly ill-posed. Some of the future work might be studying the movements of the 

feature points/lines and predicting reasonable feature positions outside the range of reference 

images. Temporal blending is also another issue that we would like to consider.  
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