39 research outputs found

    The Role of Free/Libre and Open Source Software in Learning Health Systems

    Get PDF
    OBJECTIVE: To give an overview of the role of Free/Libre and Open Source Software (FLOSS) in the context of secondary use of patient data to enable Learning Health Systems (LHSs). METHODS: We conducted an environmental scan of the academic and grey literature utilising the MedFLOSS database of open source systems in healthcare to inform a discussion of the role of open source in developing LHSs that reuse patient data for research and quality improvement. RESULTS: A wide range of FLOSS is identified that contributes to the information technology (IT) infrastructure of LHSs including operating systems, databases, frameworks, interoperability software, and mobile and web apps. The recent literature around the development and use of key clinical data management tools is also reviewed. CONCLUSIONS: FLOSS already plays a critical role in modern health IT infrastructure for the collection, storage, and analysis of patient data. The nature of FLOSS systems to be collaborative, modular, and modifiable may make open source approaches appropriate for building the digital infrastructure for a LHS.</p

    Scalable Decision Support at the Point of Care: A Substitutable Electronic Health Record App for Monitoring Medication Adherence

    Get PDF
    Background: Non-adherence to prescribed medications is a serious health problem in the United States, costing an estimated $100 billion per year. While poor adherence should be addressable with point of care health information technology, integrating new solutions with existing electronic health records (EHR) systems require customization within each organization, which is difficult because of the monolithic software design of most EHR products. Objective: The objective of this study was to create a published algorithm for predicting medication adherence problems easily accessible at the point of care through a Web application that runs on the Substitutable Medical Apps, Reusuable Technologies (SMART) platform. The SMART platform is an emerging framework that enables EHR systems to behave as “iPhone like platforms” by exhibiting an application programming interface for easy addition and deletion of third party apps. The app is presented as a point of care solution to monitoring medication adherence as well as a sufficiently general, modular application that may serve as an example and template for other SMART apps. Methods: The widely used, open source Django framework was used together with the SMART platform to create the interoperable components of this app. Django uses Python as its core programming language. This allows statistical and mathematical modules to be created from a large array of Python numerical libraries and assembled together with the core app to create flexible and sophisticated EHR functionality. Algorithms that predict individual adherence are derived from a retrospective study of dispensed medication claims from a large private insurance plan. Patients’ prescription fill information is accessed through the SMART framework and the embedded algorithms compute adherence information, including predicted adherence one year after the first prescription fill. Open source graphing software is used to display patient medication information and the results of statistical prediction of future adherence on a clinician-facing Web interface. Results: The user interface allows the physician to quickly review all medications in a patient record for potential non-adherence problems. A gap-check and current medication possession ratio (MPR) threshold test are applied to all medications in the record to test for current non-adherence. Predictions of 1-year non-adherence are made for certain drug classes for which external data was available. Information is presented graphically to indicate present non-adherence, or predicted non-adherence at one year, based on early prescription fulfillment patterns. The MPR Monitor app is installed in the SMART reference container as the “MPR Monitor”, where it is publically available for use and testing. MPR is an acronym for Medication Possession Ratio, a commonly used measure of adherence to a prescribed medication regime. This app may be used as an example for creating additional functionality by replacing statistical and display algorithms with new code in a cycle of rapid prototyping and implementation or as a framework for a new SMART app. Conclusions: The MPR Monitor app is a useful pilot project for monitoring medication adherence. It also provides an example that integrates several open source software components, including the Python-based Django Web framework and python-based graphics, to build a SMART app that allows complex decision support methods to be encapsulated to enhance EHR functionality

    Comparative study of healthcare messaging standards for interoperability in ehealth systems

    Get PDF
    Advances in the information and communication technology have created the field of "health informatics," which amalgamates healthcare, information technology and business. The use of information systems in healthcare organisations dates back to 1960s, however the use of technology for healthcare records, referred to as Electronic Medical Records (EMR), management has surged since 1990’s (Net-Health, 2017) due to advancements the internet and web technologies. Electronic Medical Records (EMR) and sometimes referred to as Personal Health Record (PHR) contains the patient’s medical history, allergy information, immunisation status, medication, radiology images and other medically related billing information that is relevant. There are a number of benefits for healthcare industry when sharing these data recorded in EMR and PHR systems between medical institutions (AbuKhousa et al., 2012). These benefits include convenience for patients and clinicians, cost-effective healthcare solutions, high quality of care, resolving the resource shortage and collecting a large volume of data for research and educational needs. My Health Record (MyHR) is a major project funded by the Australian government, which aims to have all data relating to health of the Australian population stored in digital format, allowing clinicians to have access to patient data at the point of care. Prior to 2015, MyHR was known as Personally Controlled Electronic Health Record (PCEHR). Though the Australian government took consistent initiatives there is a significant delay (Pearce and Haikerwal, 2010) in implementing eHealth projects and related services. While this delay is caused by many factors, interoperability is identified as the main problem (Benson and Grieve, 2016c) which is resisting this project delivery. To discover the current interoperability challenges in the Australian healthcare industry, this comparative study is conducted on Health Level 7 (HL7) messaging models such as HL7 V2, V3 and FHIR (Fast Healthcare Interoperability Resources). In this study, interoperability, security and privacy are main elements compared. In addition, a case study conducted in the NSW Hospitals to understand the popularity in usage of health messaging standards was utilised to understand the extent of use of messaging standards in healthcare sector. Predominantly, the project used the comparative study method on different HL7 (Health Level Seven) messages and derived the right messaging standard which is suitable to cover the interoperability, security and privacy requirements of electronic health record. The issues related to practical implementations, change over and training requirements for healthcare professionals are also discussed

    Doctor of Philosophy

    Get PDF
    dissertationBiomedical data are a rich source of information and knowledge. Not only are they useful for direct patient care, but they may also offer answers to important population-based questions. Creating an environment where advanced analytics can be performed against biomedical data is nontrivial, however. Biomedical data are currently scattered across multiple systems with heterogeneous data, and integrating these data is a bigger task than humans can realistically do by hand; therefore, automatic biomedical data integration is highly desirable but has never been fully achieved. This dissertation introduces new algorithms that were devised to support automatic and semiautomatic integration of heterogeneous biomedical data. The new algorithms incorporate both data mining and biomedical informatics techniques to create "concept bags" that are used to compute similarity between data elements in the same way that "word bags" are compared in data mining. Concept bags are composed of controlled medical vocabulary concept codes that are extracted from text using named-entity recognition software. To test the new algorithm, three biomedical text similarity use cases were examined: automatically aligning data elements between heterogeneous data sets, determining degrees of similarity between medical terms using a published benchmark, and determining similarity between ICU discharge summaries. The method is highly configurable and 5 different versions were tested. The concept bag method performed particularly well aligning data elements and outperformed the compared algorithms by iv more than 5%. Another configuration that included hierarchical semantics performed particularly well at matching medical terms, meeting or exceeding 30 of 31 other published results using the same benchmark. Results for the third scenario of computing ICU discharge summary similarity were less successful. Correlations between multiple methods were low, including between terminologists. The concept bag algorithms performed consistently and comparatively well and appear to be viable options for multiple scenarios. New applications of the method and ideas for improving the algorithm are being discussed for future work, including several performance enhancements, configuration-based enhancements, and concept vector weighting using the TF-IDF formulas

    Front-Line Physicians' Satisfaction with Information Systems in Hospitals

    Get PDF
    Day-to-day operations management in hospital units is difficult due to continuously varying situations, several actors involved and a vast number of information systems in use. The aim of this study was to describe front-line physicians' satisfaction with existing information systems needed to support the day-to-day operations management in hospitals. A cross-sectional survey was used and data chosen with stratified random sampling were collected in nine hospitals. Data were analyzed with descriptive and inferential statistical methods. The response rate was 65 % (n = 111). The physicians reported that information systems support their decision making to some extent, but they do not improve access to information nor are they tailored for physicians. The respondents also reported that they need to use several information systems to support decision making and that they would prefer one information system to access important information. Improved information access would better support physicians' decision making and has the potential to improve the quality of decisions and speed up the decision making process.Peer reviewe

    How can Increased Electronic Health Record Interoperability be Achieved through the use of APIs?

    Get PDF
    This paper investigates how application programming interfaces can be used to improve the interoperability (or shareability) of health records. Electronic health records store health information that originates from various sources like prescription order systems, medical devices and even other EHRs. An API helps these disparate systems exchange information with one another. APIs can improve data sharing by using secure standards like FHIR. Having all off this integrated and usable data can aid in the clinical decision process. This would also allow patients to have a more comprehensive look at their health data in patient portals.Master of Science in Information Scienc
    corecore