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ABSTRACT 

 

 Biomedical data are a rich source of information and knowledge. Not only are 

they useful for direct patient care, but they may also offer answers to important 

population-based questions. Creating an environment where advanced analytics can be 

performed against biomedical data is nontrivial, however. Biomedical data are currently 

scattered across multiple systems with heterogeneous data, and integrating these data is a 

bigger task than humans can realistically do by hand; therefore, automatic biomedical 

data integration is highly desirable but has never been fully achieved. This dissertation 

introduces new algorithms that were devised to support automatic and semiautomatic 

integration of heterogeneous biomedical data. The new algorithms incorporate both data 

mining and biomedical informatics techniques to create “concept bags” that are used to 

compute similarity between data elements in the same way that “word bags” are 

compared in data mining.  Concept bags are composed of controlled medical vocabulary 

concept codes that are extracted from text using named-entity recognition software. To 

test the new algorithm, three biomedical text similarity use cases were examined: 

automatically aligning data elements between heterogeneous data sets, determining 

degrees of similarity between medical terms using a published benchmark, and 

determining similarity between ICU discharge summaries. The method is highly 

configurable and 5 different versions were tested. The concept bag method performed 

particularly well aligning data elements and outperformed the compared algorithms by 
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more than 5%. Another configuration that included hierarchical semantics performed 

particularly well at matching medical terms, meeting or exceeding 30 of 31 other 

published results using the same benchmark. Results for the third scenario of computing 

ICU discharge summary similarity were less successful. Correlations between multiple 

methods were low, including between terminologists. The concept bag algorithms 

performed consistently and comparatively well and appear to be viable options for 

multiple scenarios. New applications of the method and ideas for improving the 

algorithm are being discussed for future work, including several performance 

enhancements, configuration-based enhancements, and concept vector weighting using 

the TF-IDF formulas. 



 

 
 

 

 

 
 

 
 
 

 
 
 
 
 
 
 
 
 

Simplicity is the ultimate sophistication. 
 

Leonardo da Vinci, 1452 to 1512 AD 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Importance of Data Reuse in Biomedical Informatics 

 Biomedical data are a potentially rich source for information and knowledge 

discovery. Biomedical data that are collected for patient care and stored in electronic 

health records (EHR) are often reused to support clinical research [1-3], translational 

research [4], comparative effectiveness research (CER) [5, 6], population health [7], 

public health [8], quality improvement [9, 10], and for measuring healthcare practices in 

general [11-13]. There are far too many publications to list them all. Both the “bio” and 

“medical” aspects of biomedical data are deep and wide in both scope and breadth, with 

countless opportunities for study and discovery. 

 Data reuse is also referred to as “secondary use,” and has been a popular topic in 

the literature for decades, but has been especially popular since the National Institute of 

Health (NIH) started supporting reuse directly. The NIH granted Clinical and 

Translational Science Awards (CTSA) to over 60 academic medical centers across the 

U.S. starting in 2006, with the mission to facilitate more efficient translational research. 

Multiple awards were granted to research and build innovative solutions that would 

enable biomedical data sharing. The CTSA program recognized that innovative solutions 

are required to enable both “sharing” and “reusing” biomedical data and dedicated 
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resources via awards to institutions to break down barriers. Multiple policies deliberately 

prevent or restrict sharing, and technical barriers prevent the efficient reuse of biomedical 

data after sharing has occurred. 

 More recently, in 2009 the U.S. Government passed legislation that invests 

heavily in interoperable EHR technologies supportive of instantaneous biomedical data 

sharing and reuse by third parties. The HITECH Act allocated $19.2 billion for healthcare 

delivery organizations that implement certified EHR technology that meets “Meaningful 

Use” criteria [14]. Healthcare organizations across the U.S. now have an opportunity to 

adopt interoperable EHR solutions at a much lower cost due to these incentives. Just to be 

clear, interoperable EHRs facilitate instantaneous data sharing and reuse, and this is 

exactly what this legislation was intended to achieve. 

 All of the discoveries that have been made reusing biomedical data as well as the 

substantial U.S. government efforts to support sharing underscore how valuable 

biomedical data are. Biomedical data are at the heart of multibillion-dollar healthcare and 

biomedical research industries such as clinical research, pharmaceutical research, 

translational research, and public health. The considerable efforts to improve the sharing 

and reuse of biomedical data are also indicative of the surrounding complex issues and 

challenges.  

 

1.2 Issues with Biomedical Data Reuse 

1.2.1 Privacy 

 The initial barriers for reusing human biomedical data (more so than other 

species) are typically privacy issues. Clinicians or healthcare staff with proper “need to 
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know [to provide or support patient care]” are the only people who have access to EHR 

data due to privacy laws such as HIPAA, the U.S. Government’s official health 

information privacy regulations [15]. 

 Access and reuse of fully identifiable data for the purpose of research typically 

requires human subject research training, a significant affiliation with the data provider, 

and an IRB approval from that provider. IRBs are routinely granted in one’s local 

institution, but having a significant affiliation with a remote provider to obtain an IRB 

may be a barrier. There is an exception. IRB may not be necessary when biomedical data 

are deidentified [16, 17]. In this case researchers may need to provide verification of 

human subject research training before deidentified data are released, but this is much 

more straightforward than completing and passing an IRB review. Automated methods 

are being developed to streamline the approval processes but have not been adopted at 

this point in time. 

 Working with deidentified data has a new list of challenges. While they are easier 

to access, the deidentification process strips out variables that would normally be used to 

link data sets. This implies that a deidentified breast cancer data set cannot be linked to 

diagnostic data from an EHR to identify comorbidities, for example. There are tradeoffs 

between time to data access and what information or knowledge the data are capable of 

providing. 

 Privacy also plays a crucial role when data sharing agreements need to be 

established between potential competitors. Business privacy between large healthcare 

organizations that compete for patient business or for research dollars may prevent 

sharing. Sharing business data with a competitor is risky; it could be used to identify 
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business opportunities and/or to disadvantage the competition. Biomedical data have the 

potential to contain business-related information, and organizations are interested in 

protecting it. 

 Biomedical data privacy laws protect patients from improper use of their personal 

information, but also make it difficult to reuse valuable data for valid research. Methods 

are being developed to overcome these barriers such as automated approval processes 

[18] and data deidentification. Deidentification has become mainstream but the 

automated approval processes have not. Easy access to some data is better than no access 

and no data. 

 

1.2.2 Unknown Data Quality 

 When biomedical data are reused for research, unknown data quality may 

invalidate important study findings. Comparative effectiveness research (CER) studies, 

for example, attempt to associate clinical practice variations with clinical outcomes, and 

in these studies, multisite study findings are more likely to be generalizable than single- 

site findings. Site-level findings have different prediction variables, disease incidence, 

and outcomes, and these differences may represent true variation in outcomes and 

practice patterns, or they may represent artificial variation due to data collection method 

variability across sites. A quality framework created to distinguish between true and false 

variation found that when true variation was present, CER studies could deliver important 

information regarding treatment safety and effectiveness between sites and populations. 

Conversely, the framework found artificial variation between sites could invalidate study 

findings altogether [19].  
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 Another cause of unknown data quality originates from undocumented, 

inadequately documented, or otherwise misunderstood metadata and data [20]. When 

explicit dictionaries or access to data providers who can define and describe the details of 

how and when data were collected do not exist, improper assumptions may lead to 

improper interpretations of results [21]. Variables may be misunderstood and utilized 

inappropriately. Systems may turn on and off for periods of time. New buildings with 

new services may be added to an organization that then start feeding new data spikes into 

the collective data, and so on. Imagine a new breast cancer facility is erected, breast 

cancer treatment begins, and suddenly the number of breast cancer cases appears to 

skyrocket in the patient data warehouse. When cases like this go undetected, new spikes 

may be viewed as problematic increases when they are not. Numerous anomalies like 

these can occur from lack of documentation and/or understanding of the data, especially 

when there are a large number of heterogeneous data providers and sophisticated data 

integration processes are involved. 

 

1.2.3 Heterogeneity 

 Biomedical data are modeled and represented using various formats, syntaxes, 

and values to represent clinical statements or facts. While several significant clinical data 

modeling efforts have been designed to reduce heterogeneity and to improve clinical data 

consistency and interoperability [22-25], the market remains slow to adopt and 

implement such models. Healthcare and research communities are decentralized and 

continue to produce heterogeneous data sets. When the goal is to reuse multiple 

heterogeneous data sets, they typically require aggregation and/or integration involving 



 

 

6 

several forms of heterogeneity resolution [26, 27]. Resolution of heterogeneity is 

essentially the resolution of the differences between data sets. The next sections review 

the data set differences that cause data heterogeneity.  

 

1.2.3.1 Structural differences 

 Structural heterogeneity occurs when data model constructs, constraints, and data 

are modeled differently [27]. Data may require “vertical integration” (integrating 

semantically similar data) or “horizontal integration” (integrating data from different 

domains) with information distributed and expressed differently across data structures. 

Hierarchical relationships between data in relational models are structurally different than 

they are when represented using XML, for example. Structural differences may also 

result from diverse data types and conceptual granularities. A “Clinician type,” for 

example, may be modeled with one data element with a value such as “critical care 

nurse,” or it may be modeled with two, one for “specialty” and another for “role,” with 

values such as  “critical care” and “nurse,” respectively. When one data set implements 

the single-element strategy and another data set implements the two-data-element 

strategy, we have both a structural difference (one versus two data elements) and 

conceptual difference (one versus two concepts). Both the single-element and double-

element versions represent semantically identical information but are managed differently 

according to how data are structured. Additionally, there may be dependency conflicts 

(different cardinalities) or key conflicts (unresolved identifiers) that occur due to 

structural differences.  
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1.2.3.2 Naming differences 

 In reference to the semiotic triangle [28], naming differences occur when different 

symbols (words in this case) are used to represent the same referents (concepts). Different 

words that have the same conceptual meaning may be in the form of synonyms or 

abbreviations and may manifest in the metadata or in the data—“Doctor” versus 

“physician” or “MRN” versus “Patient ID,” for example. These kinds of naming 

differences are typically managed by “terminologists” using a “terminology” and/or an 

“ontology” that are used to model “concepts,” “terms” (linguistic labels), “codes” (a 

unique identifier that designates a single concept), and lexical or semantic “relationships” 

[29, 30].  

 

1.2.3.3 Semantic differences 

 Semantic differences occur between data sets when the meanings of metadata or 

data are similar but are not equivalent [27]. For example, a data set with data element 

“Blood culture growth” with possible values 0, 1+, 2+, 3+, and 4+, and another data set 

with the same data element and possible values of “no growth,” “moderate growth,” or 

“significant growth” are possible to align semantically by mapping to the least granular 

set (the categorical values) as follows: 

 0 = no growth 

 1+, 2+ = moderate growth 

 3+, 4+ = significant growth 

Imagine another data set is added that stores the answer as “no growth” or “growth.” 

Then the semantic mappings are as follows: 
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 0 = no growth 

 1+, 2+, 3+, 4+, moderate growth, significant growth = growth. 

In both cases the integrated form of the data loses meaning. The only values that can be 

queried across the integrated set are “growth” or “no growth.” 

 The previous two examples are both resolvable using semantic mappings, but not 

all semantic differences are logically resolvable. Consider another example similar to the 

previous, where data element A’s value set is “light or no growth,”  “moderate or 

significant growth,” and data element B’s value set contains “no growth,” “light or 

moderate growth,” and “significant growth.” There is simply not a mapping solution 

between these value sets that guarantees an accurate result [27].  Querying for “no 

growth” for example, is not an option because data element B’s value set does not 

support this level of granularity. Querying for A’s “light or no growth” is not an option 

since data element B’s value set does not have a logistically equivalent value. None of the 

values between these two sets can be logically mapped.  

 Semantic differences that occur at the conceptual level may be by design to suit 

clinical contexts or it may occur from a difference of modeling style or opinion [29]. One 

clinical specialist may require a different level of detail that is not necessary helpful for 

other specialists— “myocardial infarction” may be sufficient for a general practitioner, 

but a cardiologist benefits from the more detailed “left ventricular infarction,” for 

example. Similarly, semantic differences may be due to precoordination versus 

postcoordination disparities. Is there one concept for “right” and another for “lung” or a 

single concept for “right lung?” Or how many concepts are there in “nonsmall cell lung 

carcinoma stage III of the right upper lobe?” Should there be one concept for laterality, 
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one for body site, one for the problem, and one for the stage? Or is there one 

precoordinated concept that means, “nonsmall cell carcinoma stage III,” and a single 

concept for “right upper lobe?” There are valid reasons for the different options [31, 32]. 

One might be more suitable for analysis while another might require less data entry. 

 

1.2.3.4 Content differences 

 The most extreme content difference occurs when one attempts to perform a 

horizontal integration and there is no semantic overlap [33]; there is nothing in common 

to link or share. A set of patient demographics will not intersect with a set of DNA 

sequences that have no common patient identifiers that can be used to link them together. 

Each data set is essentially an orphan in this case. In less extreme cases content 

differences occur when a portion of data is not represented in a data set [27]. Facts may 

be implied or not straightforward to interpret. A “Diabetes patient cohort” data set may 

not contain computable facts that indicate that subjects have diabetes directly in the name 

of an object, attribute, or in the data; data are implied but are not explicit. The existence 

of the subject in the data set implies they have met the diabetes criteria.  

 Empty or NULL data values without explicit specifications are ambiguous. An 

empty value may indicate “normal,” “not evaluated,” or “unavailable.” Not knowing 

what the implied meaning is may lead to erroneous assumptions. 

 Content differences may occur due to different assumptions about what should be 

derived from existing data and what should be stored in the database. Data integration 

interventions may be required to derive “age” from “birth date” or “birth year” from the 

“current age” because of different assumptions about what is stored in what is derived. 
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The other common example is storing only a “ZIP code” and not the “state” or the “city” 

since the ZIP Code can be used to derive states and cities.  

 

1.2.3.5 Syntactic differences 

 Syntactic differences are related to structural heterogeneity, in that syntax relates 

to the data structure but involves additional nuances. Syntactic heterogeneity occurs when 

data sets are not expressed using the same syntax or technical language [27], implying 

interpretation and translation must occur when interoperability or data integration is 

desired. Figure 1.1 shows an example of two types of syntax that contain semantically 

homogeneous and syntactically heterogeneous data, where the syntax of one is XML and 

the other is a comma-delimited text file (CSV). There are no structurally- induced 

inconsistencies in these data, only syntactic differences that are simple to manage, but 

this is not to imply that managing syntactic heterogeneity is simple. A less trivial and 

common scenario is translating between XML and JSON [34]. They are both very 

popular syntaxes supportive of not only the HL7 service-oriented architecture [35], 

 

 

Figure 1.1 Example of syntactic heterogeneity; two data sets with the same data 
and different syntax, a snippet of XML and CSV. 
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but service-oriented architecture and web-based technologies in general. Syntax-related 

issues that occur when translating between XML and JSON [36] include the following: 

• XML namespaces do not exist in JSON. 

• XML supports repeating elements, JSON does not. 

• Base data types are different, as are class/data type definitions. 

• Element arrays are handled differently. 

• XML supports mixed data types with tags embedded in natural language, JSON 

does not. 

• Special characters are handled differently. 

There are more, but these are the primary issues. Many of the issues in this specific case 

are recoverable by adopting agreed upon translation patterns [36], but syntactic 

heterogeneity can be associated with complex translation issues. There are many software 

tools that can assist with syntactic translation issues.  

 

1.2.4 Lossy Data Conversions 

 “Lossy” data conversions are discussed in the context of data compression for 

various kinds of media, such as images or videos, where the original format is 

compressed and only the most important data are kept while the less significant data are 

“lost.” The same concept applies to biomedical data. When biomedical data are 

interpreted and translated, sometimes only the most important data are kept to comply 

with a specific data model or coding scheme while other unsupported data are lost in 

translation. The previous examples describing semantic difference mappings in section 

1.2.3.3 illustrate how the loss of data also potentially implies the loss of semantics. To 
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avoid misinterpretation, losses must be accounted for and presented to data analysts. This 

is another significant research topic: representing and communicating “data provenance” 

[37, 38]. Understanding the origin and pedigree of data is critical to maintain high-quality 

analysis and reproducibility of integrated biomedical data. 

 Losing semantics of data due to heterogeneity is a reality that occurs when 

biomedical data sets are integrated. All the forms of heterogeneity are common and often 

occur together. Tools that have been specifically designed for integrating heterogeneous 

biomedical data sets are discussed next. 

 

1.3 Biomedical Data Integration Software 

 Biomedical data are typically integrated using one of two basic architectures, 1) 

the centralized data warehouse architecture where all data are copied and resolved into a 

common data model and database [39, 40], or 2) the federated database architecture 

where data are left in their original databases and are queried across networks using a 

federated query engine [41-44] to analyze data. Two software products that integrate 

biomedical data are described: one that uses a centralized data warehouse and one that 

uses federated data architecture. 

 

1.3.1 i2b2 

 The Informatics for Integrating Biology and the Bedside (i2b2) software suite is 

based on the centralized data warehouse architecture and was designed to give 

researchers direct access to existing biomedical data sets [45] that have been previously 

merged and integrated into an i2b2 data warehouse. The i2b2 software supports diverse 
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forms of biomedical data, including natural language clinical texts and genomic data 

documents via the i2b2 “cells” and “hive” [45, 46]. The software is open source and 

freely available but requires a highly skilled staff to set up and maintain. 

 The i2b2 software should be installed and configured by information technology 

(IT) experts capable of setting up secure database servers, web servers, and application 

servers. Setting up, preparing, and loading biomedical data requires both data architecture 

experience and clinical terminology experience. The terminologist must learn the i2b2 

ontology model and infrastructure, and then must design and load the i2b2 ontology to 

match the local site’s metadata and data. This requires in-depth knowledge and expertise 

of modeling clinical events and facts, such as “serum creatinine is a laboratory 

measurement used to evaluate kidney function with normal healthy values between 0.6 to 

1.3 milligrams per deciliter (mL/dL).” This knowledge is required to perform semantic 

integration [47] and involves recognizing the semantic differences and similarities 

between observations such as “BUN,” “serum creatinine” and “creatinine clearance,” in 

terms of how they are represented in each data source and how they relate to each other 

in medicine. The terminologist semantically harmonizes the data by mapping each 

semantic alignment using the i2b2 ontology. The terminologist’s semantic alignments 

must be coordinated with the organization of the “observation fact” database that is 

typically populated by the data architect. This requires in-depth knowledge of i2b2’s data 

model and data extract, transform, and loading (ETL) procedures. ETL processes are 

responsible for maintaining privacy, data quality, patient record linking [47], managing 

structural differences, syntactic differences, and for maintaining integrity between the 

semantic alignments contained in the i2b2 ontology. The integration process requires 
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careful and tedious cooperation between the data architect and terminologist.     

 The time required for i2b2 setup depends entirely on how much work is required 

to resolve data integration issues. When patient identity has been well maintained and 

data heterogeneity is low, this process may be straightforward. When thousands of data 

elements need to be semantically aligned, months of tedious semantic integration work 

may be required. It is important to recognize that the time to perform and complete the 

ETL process is not a shortcoming of i2b2; the amount of work required is largely a 

platform-independent consequence of integrating biomedical data. Once completed, 

however, the work left to configure the i2b2 software is straightforward. New users must 

have user accounts created and require a light amount of training, but training is pre-

recorded and available online for free 

(https://www.youtube.com/results?search_query=i2b2). 

 A federated version of i2b2 is also available. Sites that have i2b2 can add the 

SHRINE extension [48] and participate in research networks. Participation in a SHRINE 

network allows researchers access to query for cohort counts across the network of 

participants. When researchers find subjects who meet specific cohort criteria at another 

site, they must then work out the details of sharing the biomedical data based on the site’s 

policies. SHRINE does not support automated sharing. 

 Participation in a SHRINE requires additional setup and configuration. The 

physical network must be set up securely and connected to the i2b2 SHRINE extension 

and network, and local data must be semantically aligned to the SHRINE ontology. 

Mapping to the SHRINE ontology requires additional work by the terminologist at each 

site, and again, the amount of time depends completely on how similar the local site’s 
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ontology is with the SHRINE ontology. By design, a considerable portion of the SHRINE 

ontology is based on the use of common coding systems, such as ICD-9 billing codes, 

that many sites already support to ease the burden of complicated semantic mappings. 

 The i2b2 software has a proven track record of delivering translational features. 

Forty-nine CTSA sites, 34 additional academic medical institutions, and 20 international 

organizations use i2b2 [49]. In terms of publications, “i2b2” was contained in the 

PubMed title attribute property of 44 publications, and an additional 158 times searching 

all other attributes. Most importantly, researchers have been successful using i2b2 to 

make important clinical discoveries [50-52]. 

 

1.3.2 OpenFurther 

 OpenFurther [41] is an example of the federated database architecture and was 

originally designed as a statewide informatics platform housed in the Center for Clinical 

and Translational Science at the University of Utah [53]. The objective of OpenFurther is 

to deliver innovative and practical software tools and services that can directly support 

data and knowledge access, integration, and discovery more efficiently than has 

previously been possible. The software is open source and is available [54-56] for use by 

other organizations. 

 In the past, obtaining simple counts from a collection of distributed biomedical 

databases owned and managed by a list of institutions would have involved months of 

processes requiring individual sponsors from each institution, IRB approvals, 

communications with multiple IT staff members from each organization, project data 

integration and data management for each data set, and so on. OpenFurther however, 
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allows researchers to construct queries [57] and find specific cohorts without requiring all 

of these time-consuming processes. The OpenFurther data integration process replaces 

the manual processes by performing the following technical steps: 

1. When the researcher logs into OpenFurther, data access is determined by 

the user’s roles and privileges. 

2. The researcher builds and submits a query to data they have access to. 

3. The query is sent to the query translator that constructs a platform-

specific data query for each of the state’s databases. 

4. The query distributor distributes each platform-specific query to its 

respective data service. 

5. The query is executed and returns a data set result. 

6. Each result from each database is then translated into a common data 

model and stored in an intermediate database. 

7. When all results have been received and translated, they are intersected or 

aggregated to compute the final results. 

8. The final result set is reported to the researcher. 

Step 1 occurs once for each query session. Steps 2-7 are performed each time a query 

request is received. Steps 3, 4, 6, 7 and 8 are unique to the federated query process and 

are required to support on-the-fly data integration for each query request. By comparison, 

data warehouse systems execute step 1 for each query session, steps 2 and 5 when a 

query is performed, and step 6 needs to be run once prior for the whole data set (the ETL 

process to load all the data must be performed before the data may be queried). Five of 

the 8 steps are unique to the federated data architecture. 
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 The benefits of a federated architecture may be attractive, but the cost of setup is 

also high in terms of time and the required expertise. OpenFurther setup requires skilled 

IT professionals, including software engineers, data architects, and biomedical 

terminology experts. A custom semantic framework was designed for OpenFurther that 

utilizes an open source terminology system and tools supporting the terminologist’s work 

of performing semantic alignments [58] and integration [47]. The framework additionally 

includes a metadata management system that was designed to augment the terminology 

system’s capabilities to support more sophisticated semantic alignments, data element 

(DE) alignments that involve multiple DEs, values, and conditional logic [59]. The data 

architect and terminologist perform semantic alignments by loading and aligning 

metadata for each data source. Alignments have properties that indicate the nature and 

specific conditional logic. This work is very similar to the work that is performed using 

off-the-shelf ETL tools, but ETL tools are designed to support large batch processes 

rather than very specialized query-specific transformations. Additionally, the added work 

of the federated approach specified in step 2 (query translation) requires on-the-fly 

interpretation and translation of query logic for each data source, a significant challenge. 

A detailed explanation of the data architecture-specific details are contained in [42], 

software implementation details are described in [43], and an overview of the semantic 

frameworks that the query translation framework utilizes is described in [58, 59]. While 

there are similarities with data warehousing, the federated approach adds more 

complexity. 

 OpenFurther has a track record of supporting translational research efforts in Utah 

and a large CER study conducted at six pediatric hospitals across the U.S. [5, 6]. The 
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pediatric data integration project produced three journal papers with clinically significant 

findings that are in the process of publication. OpenFurther produced 10 informatics-

based journal papers, 25 conference posters, and 7 professional presentations that have 

been presented at informatics conferences.  

 

1.3.3 Issues with Biomedical Data Integration Software 

 Many of the issues of integrating biomedical data are primarily the same between 

the two described technical architectures. The semantic alignment work is primarily the 

same. One who understands clinical concepts must resolve the naming and semantic 

differences between the heterogeneous data sources into computable semantic 

alignments. The data architecture work is also primarily the same. Structural and 

syntactic differences must be reconciled and addressed and the semantic alignments must 

be incorporated into the data integration operations to support data aggregation and 

analysis. 

 OpenFurther and i2b2 are representative of current state-of-the-art biomedical 

data integration tools. With both tools, the integration of heterogeneous biomedical data 

sets is a prerequisite. Of the issues that have been identified, most biomedical data 

integration experts agree that semantic integration (resolution of naming and semantic 

differences) of heterogeneous data is the most challenging aspect of integration [27, 60, 

61], requiring costly terminologists and/or highly trained knowledge engineers to perform 

the work [62-64]. Specific costs have not been formally reported, but salaries for 

“Clinical Terminologist” jobs currently range from $120,000 to $130,000/year online 

(www.glassdoor.com), and consulting rates are approximately double that. Complexity, 



 

 

19 

time, and costs of semantic integration underscore the need for continued research on 

automated, or at the very least semiautomatic semantic integration to help reduce these 

burdens. 

 

1.4 Preventing or Resolving Heterogeneous Biomedical Data 

 The most desirable strategy for resolving heterogeneous biomedical data is to 

prevent it from happening in the first place. There has always been a tricky balance 

between “allowing” clinicians to express themselves using free-text versus “forcing” 

them to encode all observations such that data are computable [65]. Whether data are 

free-text or coded, heterogeneous data integration is nearly always required when 

combining data from biomedical data sets, and the chosen strategy should be specific to 

the goal of integration. The goal may be well defined where the questions and data needs 

are known, or the goal may involve data mining where the goal is to discover knowledge, 

find correlations, determine reliability, or discover anomalies [66]. When the goal is the 

former and the needed data is well defined, the strategy is to collect exactly what is 

needed. When the goal is the former, the strategy is to collect as much data as possible to 

expand the opportunity for discovery. In both cases the goal of integration is to 

disambiguate and resolve heterogeneity between data sets such that they can be analyzed 

harmoniously together. This goal can be reached in multiple ways. See Figure 1.2 for a 

graphical representation that summarizes approaches used to prevent or resolve data 

heterogeneity.  

 

 
 



 

 

20 

 
 
Figure 1.2 Strategies for preventing or resolving data heterogeneity. Automatic and 
semiautomatic data integration strategies are research topics of this dissertation. 
 
 
 

1.4.1 Required Data Models 

 Data models define the organization of DEs required to represent a domain of 

discourse. Biomedical systems that do not offer content customization essentially require 

conformance to a data model and domain of discourse, and then every party that uses the 

same models will ideally be able to share data much more easily, since most of the 

heterogeneity issues do not occur; each data set will have the same syntax, same 

structure, same names, same codes, and therefore the same semantics. 

 In terms of data models, not all data models provide adequate structure or detail to 

maximize their value for reuse. A data set with a “diagnosis” DE that has a free-text data 

type where humans type in a diagnosis, does not contain optimally computable diagnosis 

data [65, 67]. Amplifying this simple example by modeling a large number of data 

domains this way equates to sharable data, but these types of data are much less 
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computable and are unsuitable for highly accurate analysis. 

 Within the biomedical domain, Detailed Clinical Models (DCM) are the basis for 

clinical data consistency, interoperability, and highly accurate analysis. They are 

rigorously defined such that they retain computable meaning [68]. Sharable, computable 

meaning is the basis of shared computable logic [69] for applications such as clinical 

decision support, clinical trial eligibility criterion, or for computational analysis in 

general. DCMs make computations possible by providing formal specifications of the 

logical structure of clinical data, including their terminological specifications for value 

sets and forms of coded values. 

 “Required Data Models” is one of the U.S. government’s primary intentions of 

the HITECH act. The government has incentivized healthcare organizations to support 

consistent data models such that computable data can be shared between organizations, 

applications, and systems [14, 35, 70-72]. The potential benefit of embracing and 

supporting DCMs is significant and there are several ongoing efforts that continue to 

develop and support DCM-based technologies [73, 74] (http://www.openehr.org), but 

wide dissemination and utilization of DCMs [22] has never been achieved, despite 

significant efforts to do so [75]. Utilization of DCMs requires very highly specialized 

skills that are expensive and hard to find. This, paired with the fact that standards-based 

approaches often do not cover specialized clinical workflows and practices [76, 77], 

makes adoption an expensive and time-consuming option; adoption does not guarantee 

adequate coverage in all domains. 
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1.4.2 Suggested Data Models 

 The “Suggested Data Models” strategy is popular with vendor-based EHR 

systems such as Cerner (Cerner.com) and Epic (www.epic.com) because it has the 

potential benefits of the “Required Data Models” and also supports flexibility. 

Implementers can select from the vendor’s data dictionary or they can create new 

dictionary entries when necessary. This is particularly attractive for organizations with 

diverse data requirements, but leaves the interoperability issues that DCMs address 

unresolved since these vendors are not yet supporting DCMs at this point in time. Custom 

site-specific data will not inherently interoperate between different organizations; the 

degree of interoperability depends on the degree of customization.  

  

1.4.3 Manual Alignment 

 Manual alignment implies that experts manually perform the work of 

heterogeneous data integration, as described for i2b2 in section 1.3.1 and OpenFurther in 

section 1.3.2. These processes were manual, involving human professionals (versus 

computer algorithms) who evaluate individual DEs one by one, remembering, 

classifying, and comparing DEs with other DEs they have encountered. Based on their 

decisions they must align and move data into their proper slots.  

 Trained professionals develop data integration skills that may involve any number 

of technologies or they may utilize off-the-shelf ETL tools, but tools that automatically or 

semiautomatically resolve the naming and semantic differences are not typically 

packaged with ETL tools. In the cases of OpenFurther and i2b2, both are designed to 

support heterogeneous data integration, but neither provides automatic nor semiautomatic 
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data alignment tools. 

 

1.4.4 Semi-automatic Alignment 

 Semiautomatic alignment occurs when data integration experts use software that 

identifies and suggests DE alignments. The experts then review the suggested alignments 

and make alignment decisions. This is highly beneficial since human experts manage 

complexity more accurately, especially when they have alignment visualization tools. 

Semiautomatic systems are designed to reduce the amount of time it takes an expert to 

perform integration tasks, and also improve alignment accuracy over manual approaches. 

Most “real” algorithm-aided alignment systems are semiautomatic since high alignment 

accuracy is usually a top requirement and is difficult to achieve with purely automatic 

methods [78, 79]. The challenges of the “automatic” portion of semiautomatic alignment 

are outlined in the next section. 

 

1.4.5 Automatic Alignment 

 Automatic alignment algorithms attempt to align heterogeneous data without 

human intervention [78-80] and are particularly complex and challenging. The 

documented reasons are directly related to the data reuse issues described in section 1.2, 

and especially the data heterogeneity issues previously discussed in section 1.2.3 [27, 61, 

78, 79, 81]. The primary topics are as follows: 

• Data sets are developed independently for different purposes, resulting in 

different data structures with overlapping concepts. 

• The same elements of a dataset schema may be named differently. 
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• Semantics are not consistently modeled; they are defined inconsistently using 

both data model metadata and instance data; ambiguity in semantics and language 

can be very difficult or even impossible to resolve. 

• Metadata and data contain different levels of conceptual granularity. 

• Data sets may not contain overlapping concepts. 

• Alignment requires both technical expertise and domain-level expertise.  

• Metadata is not typically modeled to support computable semantics. 

• Lack of documentation and/or domain knowledge makes it difficult to interpret 

metadata and data [47]. 

Generally, computing semantic alignments between biomedical data sets relies on 

metadata, data structures, or language-based strings that are typically not consistent or 

precise.  

 Requirements, budgets, and specific technologies dictate the rigor with which 

biomedical data sets are created and maintained. Data viewed to be of importance for 

longer periods of time naturally require more documentation and organization. EHR 

retention requirements are typically based on state laws, but generally require retention 

for at least 10 years. Data sets created for a single purpose and immediate need may lack 

the same amount of organization, documentation, or features, such as rich metadata, that 

assist with data integration. Even for EHR data with the strictest requirements, semantic 

models have not been widely adopted and significant efforts have been deprecated in 

some cases due to overly complex and/or misunderstood semantic models [75]. 

 Investing heavily in an implementation-specific data model and/or technology at 

this point in time is risky. Adopting specific models does not guarantee interoperability 
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until there are others who have adopted the same strategy. This constitutes a lack of 

incentive and implies that we are left with the reality that computing data set alignments 

will likely continue to rely on imperfect data models and data for the foreseeable future. 

Meaningful Use and HITECH will hopefully start to change this direction, but in all 

likelihood, it will take decades to penetrate the entire market. 

 

1.5 Advancing Methods for Computing Semantic Similarity 

 Advancing automated methods to semantically align both today’s and yesterday’s 

biomedical data sets is currently an important research topic that has the potential for 

significant returns. Large volumes of heterogeneous biomedical data are growing at an 

exponential rate that exceeds human abilities to integrate by hand; yet integrating these 

data contains information that unlocks important unanswered questions of healthcare, 

such as which treatments are the most effective at curing cancer.  

 

1.5.1 Current Automatic Alignment Approaches 

 Automatic data integration techniques are based on computing “alignments” 

between data sets. Data sets are also referred to as “schemas” although there can be subtle 

differences, depending on the context of the discussion. “Data set” is very generic and 

does not necessarily imply a specific structure, but in the context of popular spreadsheet 

software, a data set is a table with columns and rows. “Schema” has a stronger 

implication of an underlying structure beyond a single table. This distinction is important 

when deciding on an alignment approach. Approaches vary based on the data and data 

structure that need to be integrated, the purpose of the integration, and the tools that are 
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available. Figure 1.3 shows the taxonomy of automatic schema matching approaches. 

This taxonomy not only helps to classify solutions, it also helps to select an approach that 

is based on the schema/data set parameters of the matching problem. 

 

1.5.2 Contribution of the Dissertation 

 As we look for opportunities to make a contribution that improves on existing 

methods, we must also consider what an accomplishable nontrivial contribution is. Upon 

examination of the matching taxonomy and assuming that the bulk of the market uses 

relational databases, we decided to focus on solutions that are conducive to DEs as 

defined by ISO 11179 [82], an abstraction that works well with the relational meta-model 

and with other common meta-models. These decisions also led to a decision to work at 

the “Schema-only/Element-level/Linguistic/Name” similarity level of the taxonomy in 

Figure 1.3. DEs do not include instance data and are not constraint-based 

models. This also fits the requirement of being nontrivial, because biomedical data 

linguistics are nontrivial. Moreover, one of the most challenging aspects of the automatic  

 

 

Figure 1.3 Taxonomy of automatic schema-matching schema-only approaches 
[80]. The bolded lines indicate the automatic matching strategy pursued.  
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alignment process is computationally solving the semantic “impedance mismatch” [78, 

79, 81]. 

 The underlying methods that address semantic impedance mismatches between 

DEs at the “Schema-only/Element-level/Linguistic/Name” level are algorithms that 

compute semantic similarity between language-based entities [83]. This is the primary 

topic and contribution of this dissertation, describing and contributing a new semantic 

similarity algorithm that computes the semantic similarity between language-based 

entities.  

 

1.5.3 Dissertation Aims 

The aims of this dissertation are as follows: 

Aim 1: Introduce a new method for measuring semantic similarity that offers 

significant advances in biomedical data integration research.  

Aim 2: Operationalize aim 1 by eliminating and/or reducing the amount of work 

required to semantically align heterogeneous biomedical data sets.  

Aim 3: Expand, generalize, and measure the new algorithm’s ability to compute 

a. semantic similarity between medical terms, 

b. semantic similarity between clinical notes.  

Aims one and two are based on the introduction and explanation of the need for 

continued research on semiautomatic and automatic data integration research. The two 

use cases introduced in aim three were added to test the algorithm’s boundaries. 

Measuring degrees of semantic similarity between medical terms tests the algorithm’s 

similarity measurement range more specifically than data set alignment (details in section 
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4.3). Measuring similarity between clinical notes tests the algorithm on much larger and 

sophisticated clinical texts (details in Section 4.4). 

 Each of the 3 applications, performing data set alignments, calculating medical 

term similarity, and calculating clinical note similarity, are tested using the newly 

introduced methods as well as with other leading methods that are suitable for each 

application. This allows us to evaluate how well the new algorithm performs in a variety 

of scenarios. We also recognize the importance of scalability. To be highly relevant in the 

biomedical domain, data processing methods need to be highly scalable. Large data set 

alignment applications require significant computational resources and performance will 

therefore be addressed and discussed in the study. 

 

1.6 Introduction Summary 

 In this chapter we have described how important and valuable biomedical data 

are. We described the primary challenges of reusing and integrating heterogeneous 

biomedical data. We described two architectural approaches and state-of-the-art tools for 

integrating and managing heterogeneous data sets. We described and illustrated 

approaches for integrating heterogeneous data and recognized the need for continued 

research. And finally, we described the aims of the dissertation and the applications of a 

new method that will be formally described within. 

 The rest of the dissertation is organized as follows: Chapter 2 defines semantic 

measures and describes existing best-of-breed semantic similarity algorithms for each of 

the 3 applications. Chapter 3 introduces the new algorithms for computing semantic 

similarity. Chapter 4 is the methods chapter, with a methods section-style description for 
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each application. Chapter 5 contains the results and discussion of application-specific 

results. And customarily following the results, Chapter 6 contains a general discussion of 

the concept bag and for all the applications as a whole, followed by the future directions 

and conclusions of the study. 

 

 



 

 
 
 
 

CHAPTER 2 

 

COMPUTING SEMANTIC SIMILARITY 

 

 This chapter reviews the literature on semantic matching algorithms to give 

context to the research reported here, with emphasis in describing state-of-the-art 

algorithms used for computing the semantic similarity between biomedical text strings 

(short texts), controlled vocabulary concepts, text documents (longer texts), and methods 

that support each of these cases. All methods considered were either unsupervised or 

semisupervised to support the aim of eliminating or reducing human labor. Supervised 

methods were considered out-of-scope. 

 

2.1 Semantics 

 The following definitions are part literal and part interpreted to fit the context of 

this dissertation. The intention is to disambiguate concepts with varying meanings in the 

literature. The definitions that help define semantics are as follows: 

• Concept – an embodiment of a particular meaning [29]; unit of thought [30]. 

• Term – linguistic labels used to designate a concept [30]. 

• Code – a unique identifier used to designate a concept [30]. 

• Philological relationships – ontological relations between concepts [30].  
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• Taxonomy – a classification scheme dealing with the description, 

identification, naming, and organization of biomedical concepts [84]. 

• Ontology – comprised of concepts, philological relationships, and functions 

used to describe a domain of knowledge at the semantic level [30, 85].  A 

taxonomy can be represented in an ontology, but an ontology has the 

capability to express more sophisticated relationships between entities in a 

taxonomy. 

• Semantic knowledge base – computable semantic networks modeled in 

controlled vocabularies, taxonomies, ontologies, and/or graphs.  

• Semantic relatedness – concepts that are related by semantic interactions 

without regard for the specific type of semantic link. Example: the concepts 

for the terms “surgeon” and “scalpel” are related because they are frequently 

used together, but their meanings are not similar. The measure indicates 

closeness (versus far) where a high value means close and low value is not 

close [86]. 

• Concept similarity - within a semantic knowledge base concepts that are close 

together in the graph are considered similar [86]. Concepts for “delusion” and 

“schizophrenia” are close in the SNOMED CT is-a hierarchy, but are not as 

close as the concepts for the terms “heart” and “myocardium.” The concepts 

for “renal failure” and “kidney failure” are closer together even still; they are 

synonyms of the same concept and therefore considered semantically 

equivalent [87]. Methods are discussed more formally in section 2.3. 

• Lexical similarity – a measure that indicates lexical unit similarity.  
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• Lexical units - language-based text entities such as words, sentences, or 

paragraphs.  

• Semantic similarity – a measure implicating a quantity of shared meaning 

between two compared entities. For the purposes of this work, the similarity 

of meaning is extrapolated from lexical similarity methods and/or concept 

similarity methods.  

• Semantic distance – a measure indicating how semantically far apart two 

words, expressions, or documents are without restriction on the actual 

semantic relationship type; this is the opposite of semantic relatedness [86]. 

Based on these definitions, the primary focus of this work was to computationally 

measure semantic similarity between biomedical concept sets. How concept sets are 

composed is an essential consideration. In the context of biomedical texts, we explore the 

idea of converting lexical units into sets of concept codes using named-entity recognition 

software and semantic knowledge bases, and then we measure similarity between these 

sets using similarity algorithms. 

 

2.1.1 Similarity Algorithms 

 Similarity algorithms typically employ some kind of systematic strategy for 

comparing candidate matches where the output of the comparison is a quantitative 

measurement indicating how similar or dissimilar the match is. Similarity is central to 

pattern recognition, categorization, memory retrieval, problem solving, and reasoning, 

and is also the basis of a similarity measurement (SM). SM is formally defined as follows 

[86]: 
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 𝜎! :𝐸!  × 𝐸! →  ℛ 

 𝐸! = the set of elements of type 𝑘 ∈ 𝐾 

 𝐾 =  𝑐ℎ𝑎𝑟𝑎𝑐𝑒𝑟𝑠,𝑤𝑜𝑟𝑑𝑠, 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠, 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠,𝑝𝑎𝑟𝑎𝑔𝑟𝑎𝑝ℎ𝑠, 𝑡𝑒𝑥𝑡𝑠   

 ℛ =  0,1 ,ℝ!, 𝑎, 𝑏, 𝑐…  

The basic idea is that two entities of the same type can be compared for similarity (word-

to-word, concept code-to-concept code, sentence-to-sentence, etc.) to produce a SM with 

a value between 0 and 1. 

 SMs can be normalized to be “dissimilarity measures” such that 0 is “no 

dissimilarity” and 1 is “complete dissimilarity,” but the “normal” assumption is generally 

that 0 is “no semantic similarity” and 1 is “perfect” semantic similarity [88]. The reader 

can refer to additional mathematical definitions of distance and similarity in [86, 88], 

including comments about the Triangle Inequality [89] and whether or not it must be 

satisfied to be considered a distance metric. For the purposes of this work, the Triangle 

Inequality is not a requirement of a SM, based on the argument that many algorithms that 

do not satisfy the Triangle Equality perform well in practice. 

  

2.2 String Similarity 

 In the technical community a “string” is an ordered sequence of characters. A 

word is a string of characters. A sentence is a string of characters. A paragraph is also a 

string of characters. There are no specific rules or standard size limitations, but database 

restrictions generally support up to several gigabytes for a single string. Character strings 

are not specific to language. The information in a DNA sequence can be represented in a 

string of characters, for example. String similarity algorithms compare character 
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sequences to measure character pattern similarity. When one is interested in computing 

semantic similarity between biomedical language-based character strings, lexical and 

concept similarity methods can be used independently or in conjunction [90]. 

 The n-gram method is frequently used to measure string similarity and is 

described in detail first, since it is the basis for many of the string similarity algorithms 

that follow.  

 

2.2.1 The n-gram Method 

 The n-gram method is a foundational text-mining method. The method applies to 

many applications, including mining biomedical words and language [91-94]. It is a 

generic method for decomposing strings into smaller units of text. It is not a 

measurement, but its output is used as the basis for measurement. The “n” in n-gram 

represents a number and “grams” represent textual units. Textual units or “chunks” may 

be defined in character-based units as single-character “unigrams,” or two-character 

“bigrams,” or three-character “trigrams,” and so on. Or, units may be represented in 

words, sentences, paragraphs, and so forth. In the case where n > 1, a sliding window 

approach is used. The “window” is made up of n chunks and slides from left to right one 

chunk at a time to create each gram of text. Figure 2.1 illustrates the sliding window for 

character and word-based n-grams in 6 different n-gram patterns. 

 The n-gram patterns shown in Figure 2.1 appear to be ordered but sets do not 

inherently maintain order. Interestingly, the method responds to the order of things due to 

the way the sliding window works. See Figure 2.2 and notice how two sentences with 

exactly the same words and different word orders do not have any trigrams in 
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Text:   “John Doe has a history of pneumonia” 
 
Character unigram: j, o, h, n, d, e, a, s, i, t, r, y, f, p, u, m 
 
Character bigram: jo, oh, hn, do, oe, ha, as, a, hi, is, st, to, or, ry, of, pn, ne,  

 eu, um, mo, on, ni, ia 
 

Character trigram: joh, ohn, doe, has, a, his, ist, sto, tor, ory, of, pne, neu,  
   eum, umo, mon, oni, nia 
 
Word unigram: John, Doe, has, a, history, of, pneumonia 
 
Word bigram:  John Doe, Doe has, has a, a history, history of, of   

  `  pneumonia 
 
Word trigram:  John Doe has, Doe has a, has a history, a history of, history  

    of pneumonia  
 

Figure 2.1 Example character and word-based n-grams. Note that each set of n-
grams is a set in the mathematical sense where set elements are not duplicated 
when there are multiple occurrences, e.g., it is correct that there is only one ‘o’ in 
the character unigram example when there were four in the original text. 
 
 
 

 
 Text 1:  “John Doe has a history of pneumonia” 

Text 2:  “pneumonia of history a has Doe John” 

Trigram 1: John Doe has, Doe has a, has a history, a history of, history of  
   pneumonia  

 
Trigram 2:  pneumonia of history, of history a, history a has, a has  
  Doe, has Doe John 
 

Figure 2.2 Compare two word-based trigrams containing exactly the same words 
except that words in Text 2 are in reverse order of Text 1. None of the trigram set 
elements match, illustrating how the method is sensitive to word order when n > 
1; “history a has” is not equal to “has a history,” for example.  
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common. If character-based unigrams were selected, transposing words would have no 

effect. In the case of unigrams order is completely lost, but in all other cases both 

character and word order do impact n-grams, illustrating how they are sensitive to order. 

 

2.2.1.1 Strengths of n-grams 

 Character-based n-grams are useful for detecting words that are spelled similarly. 

This makes it a good strategy for detecting slight misspellings and/or slight word 

variations (see Figure 2.3).  

 As previously mentioned, n-grams are not language-specific. Strings of any type 

can be split apart into more granular chunks and analyzed at a more granular level for 

subpattern comparison and analysis using a similarity formula such as the Jaccard 

Similarity algorithm [95]. The Jaccard Similarity formula is as follows: 

 

Jaccard Similarity (S1,S2) = |S1 ∩ S2| / |S1 ∪ S2|         [2.1] 

 

The n-gram method, for example, applies to comparing biological sequence strands [96-

100]. See examples in [101] to observe how n-grams of different configurations can be 

used to compare genetic sequences to identify DNA-binding proteins where example 

formulas are presented to compute the optimal “n.” 

 There are many options for analyzing n-grams. Algorithms such as the Jaccard 

Similarity algorithm (equation 1) can be applied to compute the ratio of matching 

elements, or more sophisticated, vector-based approaches may be used such as the bag-

of-words method [102-107]. Prediction algorithms use n-gram corpora to establish  
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 Comparing “brain” and “brainy” 
 
 Character bigram S1 = br,ra,ai,in  
 Character bigram S2 = br,ra,ai,in,ny 
 Jaccard(S1,S2) = 4/5 = .80 
 
 Character trigram S3 = bra, rai, ain  
 Character trigram S4 = bra, rai, ain, iny 
 Jaccard(S3,S4) = 3/4 = .75 
 
 Word unigram S5 = brain 
 Word unigram S6 = brainy 
 Jaccard(S5,S6) = 0/2 = 0 
 
Figure 2.3 Example unigrams, bigrams, and trigrams and how they are used to 
decompose strings that are then compared using the Jaccard Similarity algorithm 
to compute similarity between two similar words; each n-gram method yields a 
different result. 

 

probabilities that are used for predicting character-occurrence and word-occurrence 

patterns [93, 108]. Character pattern prediction may be used for suggesting error 

corrections [107] and for determining word senses [109]. Whatever the case may be, the 

point is, the method used to analyze the output of n-grams is an implementation-specific 

choice, and there are many options. 

 

2.2.1.2 Limitations of n-grams 

The different types of n-grams have different limitations performing approximate 

matching. Character-based grams, such as bigrams, are good at detecting words that have 

similar character sequences, but do not detect semantic similarity between words that are 

not spelled similarly, dissimilarly spelled synonyms like “doctor” and “physician,” for 

example. Neither do they detect the difference in meanings between homonyms like the 

word “cold” as in “I have a cold” versus “It is cold outside.” Character-based n-grams 
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can only detect similarity when character sequences are similar. 

Word-based n-grams are sensitive to word spellings. A single letter difference 

between word-based unigrams, bigrams, or larger, and comparisons will not match. This 

is a limitation when approximate word matching is desired. When n > 1, word-based n-

grams are also sensitive to word order (see Figure 2.3 for a concrete example). Generally 

speaking, recognizing word order is a positive feature, but from a purely logical 

viewpoint, cases exist where strict adherence to word order eliminates or reduces the 

possibility of valid approximate matches. 

 As has been described and demonstrated, the n-gram method is the basis of many 

different text-mining applications, including for mining semantics via string-similarity 

and document-similarity algorithms. Several techniques that use the n-gram method to 

compute semantic similarity are described in the following sections. 

 

2.2.2 Dice 

 The Dice coefficient, also referred to as the Sorenson Index [95, 110], computes 

lexical similarity between language-based entities . The Dice method is similar to the 

bigram version of the n-gram method paired with the Jaccard similarity formula, but 

Dice’s similarity formula is slightly different. The Dice coefficient is twice the 

intersection of bigrams divided by the sum of the bigram set cardinalities, as follows: 

 

 Dice Similarity = 2|X ∩ Y| / (|X| + |Y|)         [2.2] 

 

The Jaccard Similarity formula does not double the intersection in the numerator, and the 
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denominator is a sum of the union of the bigram sets. Dice is a semimetric variant of 

Jaccard since it obeys all of the mathematical “axioms of metrics” except for the Triangle 

Inequality. The Dice method essentially adds extra weight to the similarity measure when 

grams match.  

 The Dice algorithm has been used in bioinformatics for medical term matching 

[94] and is often a top performer for DE matching [111-113].  

 

2.2.3 Levenshtein 

 The Levenshtein string distance algorithm, also known as the “edit distance,” is 

also a lexical similarity method. The Levenshtein method calculates the number of 

single-character substitutions, deletions, or insertions it would take to change one string 

into the other [114, 115]. Zero edits indicate that strings are exactly the same. The edit 

distance is converted to a similarity score between 0 and 1 as follows: 

 Levenshtein Similarity =  1 – number of edits/lowest possible edits.  

The full algorithm is shown in Figure 2.4. The algorithm is not complex but is 

computationally expensive and therefore is generally recommended for short string 

comparisons.    

 

2.2.4 Jaro-Winkler 

 The Jaro-Winkler string distance and lexical similarity measure, shown in Figure 

2.5, is generally used to compare short strings and has been successfully applied to 

automated person-record linkage [116]. As the name implies, Jaro published a portion 

[117] and Winkler published an add-on [118]. The Jaro portion calculates the weighted  
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Figure 2.4 Levenshtein string distance algorithm. Taken from [115], with 
permission. 

 

 

 

 
 
 Figure 2.5 Jaro-Winkler algorithms. Taken from [119], with permission. 
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sum of the percentage of matched characters between each text and transposed 

characters. The Winkler portion then increases the similarity value when initial characters 

match and rescales the value by a piecewise function with configurable intervals and 

weights. These configurations make the algorithm tunable and able to support strings 

with different characteristics. 

 

2.3 Concept Similarity 

 Concept similarity is different than the word-based lexical similarity methods. 

“Concept” implies that a semantic knowledge base is involved with the similarity 

computation, a semantic graph, for example, that is utilized to measure similarity. Path-

based measures (PBM) evaluate the paths between two concepts where paths are based 

on conceptual nodes and edges of a semantic knowledge base graph structure. A short 

path implies concepts are very similar and conversely a long path implies concepts are far 

apart and less similar. Several variations are explored in the following sections. 

Many concept similarity algorithms also incorporate different kinds of measures based on 

information content (IC). IC can be obtained from semantic knowledge base structures 

(intrinsic IC) or from existing text corpora (corpus IC) [120]. Intrinsic IC measures may 

use additional information from concepts in the path, such as how many nodes a given 

concept is related to [121], whereas a PBM alone does not, it only considers the number 

of nodes between two concepts. Corpus IC measures use information gained from a 

corpus such as the probability a given word occurs near another word [87]. Such 

probabilities can be used as weights of PBM. Examples and variations of IC measures 

and PBMs follow in the next sections. 
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2.3.1 Pedersen: Path 

 The most basic PBM is simply called “Path” [87], as it defines similarity between 

two concepts, c1 and c2, as the inverse of the shortest path length, p, as follows: 

 

 𝑠𝑖𝑚!"#! 𝑐!, 𝑐! = !
!
            [2.3] 

 

This measure gives equal weight to each node transition in the path, no matter where it 

exists in the graph, and does not consider IC of the nodes. 

 

2.3.2 Leacock and Chadorow: LC 

 Leacock and Chadorow (LC) proposed a PBM that asserts deeper concepts in the 

semantic knowledge base graph are more specific, contain more IC, and should carry 

more semantic weight. To add weight to deeper nodes, the ratio of path length, p, to the 

depth, d, of the concept in the graph is computed [122] as follows: 

 

 𝑠𝑖𝑚!" 𝑐!, 𝑐! = log 2𝑑 −  log(𝑝)          [2.4] 

 

2.3.3 Wu and Palmer: WP 

 Wu and Palmer (WP) [123] is also a PBM that adds to the Path measure by 

weighing the depth of the least common subsumer (LCS) rather than the total depth. The 

LCS is the lowest level node both concepts have in common. The WP method scales the 

LCS by the length of the path between the two concepts as follows: 

𝑠𝑖𝑚!" 𝑐!, 𝑐! = !∗!"#$!(!"# !!,!! )
!!!!!∗!"#$!(!"# !!,!! ) 

         [2.5] 
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2.3.4 Resnik: Concept Frequency 

 Resnik proposed another method that incorporated both IC and path-based 

information. His method incorporated concept frequency weights obtained from an 

existing corpus [124] with structured semantic knowledge. The IC of a concept, c, is as 

follows: 

 

 𝐼𝐶 𝑐 = −log !"#$%#&'( !
!"#$%#&'((!""#)

          [2.6] 

 

Corpus concept frequent weight is essentially the concept specificity that becomes the 

weight of each semantic concept or node in the graph. This assures a concept with high 

IC is very specific, while lower IC values are associated with more general concepts. The 

similarity function for IC is as follows: 

 

 𝑠𝑖𝑚!"#$%& 𝑐!, 𝑐! = 𝐼𝐶(𝐿𝐶𝑆 𝑐!, 𝑐! )          [2.7] 

 

This equation implies the IC of the shared LCS of the evaluated concepts represents the 

similarity of the two concepts. One of the criticisms of this approach is that it does not 

consider the depth of the compared children under the LCS [87]. 

 

2.3.5 Lin Similarity 

 Lin goes a step further and adds IC based on individual concepts [88] rather than 

for the shared LCS of both concepts, as Resnik proposed to consider the depth of the 

concepts under the LCS. Lin’s similarity calculation was as follows: 
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 𝑠𝑖𝑚!"# 𝑐!, 𝑐! = !∙!"(!"# !!,!! )
!" !! !!"(!!)

          [2.8] 

 

For the sake of fitting it into a category, the Lin similarity measure is a PBM combined 

with intrinsic IC. 

 

2.3.6 Caviedes and Cimino: CDist 

 The concept distance (CDist) algorithm is a PBM that uses relationships in the 

UMLS to find the shortest path between two concepts in the UMLS [125]. The UMLS 

manages multiple semantic knowledge bases in a relationship table (MRREL) where 

specific terminology relationships are queried to determine all possible path lengths 

between concepts. The shortest path length between two concepts determines the 

similarity score. CDist utilizes both the hierarchical structure of UMLS and IC contained 

within UMLS to compute path lengths and is therefore considered a PBM and IC-based 

method.  

 

2.3.7 Personalized PageRank: PPR 

 The PageRank algorithm is a published portion of the Google Search engine [126] 

and was created by one of Google’s founders, Larry Page. The algorithm estimates the 

importance of a website based on the idea that important websites are linked to by other 

websites. A probability vector (probability distribution) contains nodes (websites) and 

each has a score representing the portion of time a random visitor will stay. The 

Personalized PageRank (PPR) algorithm adds probability mass to specific websites to 
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artificially direct traffic. Website advertisers, for example, pay Google to add weight to 

their website (node in the graph) so they are ranked very highly in Google searches. 

 The same principles apply to conceptual graphs represented in biomedical 

vocabularies. Graphs are created where vertices are concepts and edges are semantic 

relationships. A probability vector is computed for each concept using PPR, where 

random jumps are weighted toward the modeled concept. Semantic similarity is 

computed using the cosine of the angle between two concept probability vectors [121]. 

 Both intrinsic and corpus IC techniques can be used to create probability vectors.  

Intrinsic IC can be calculated using SNOMED CT. Concepts that have more links are 

weighted more than those that do not since they have a higher probability of being 

“visited.” Corpus IC can also be used to calculate probability vectors based on corpus co-

occurrence probabilities. 

 

2.3.8 Pedersen: Context Vector 

 The Concept Vector strategy is a corpus IC measure based on the idea that words 

that are frequently near each other are also semantically related. To identify words that 

are often together, co-occurrence word vectors are created from a corpus of text. Co-

occurrence between two words occurs when a word is within a specified window of 

another word. Using a controlled vocabulary and thesaurus, additional terms are 

identified and concept mappings are added to word vectors. UMLS concept terms are 

then added to the word vectors to create context vectors. The similarity between a pair of 

concepts is defined as the cosine of the angle between their context vectors [87]. 
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2.4 Document Similarity 

 Document similarity methods became particularly popular and relevant in the 

early 1990s, when the Internet started to grow at a rapid pace and search engines became 

big business. The main use case was to match a user’s search to the most relevant 

documents, a 2 or 3-word search phrase to a collection of documents, each containing 

hundreds or thousands of words. Today the use case is still the same, except that 

scalability requirements have changed. Big Data document collections contain Petabytes 

or even Exabytes of data, emphasizing the importance of algorithm specificity and 

scalability [127]. Searching sophisticated biomedical texts adds to the challenge.  

 Outside of searching for relevant documents, the operational use cases for 

document similarity algorithms are limited. The most common unsupervised methods 

that are utilized for document similarity use cases follow in the next sections. 

 

2.4.1 Shingling 

 The Shingling method is a lexical similarity method that compares documents for 

similarity using the n-gram method and Jaccard similarity [128]. “Shingles” are word-

based unigrams, bigrams, or trigrams and are the typical units of comparison. Whole 

documents are shredded into n-grams and n-grams are compared as sets to determine 

similarity. It is very simple to understand and implement but is not as scalable as vector-

based methods. It is slightly different than the Bag-of-words approach [129]. The 

Shingling method is more flexible. The Bag-of-words approach is the same as when 

Shingles are unigrams, but Shingles can be configured as bigrams or trigrams, for 

example. 
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2.4.2 TF-IDF 

 TF-IDF, or “term-frequency inverse document frequency,” is based on the Vector 

space model [130] and the Bag-of-words model [129] and is based on lexical similarity 

methods. Words from a body of text are each assigned a position in a vector. The value of 

any given word’s position in the vector is the inverse-document frequency (IDF) value 

for that word in the document. Documents that have been converted to vectors are 

compared for similarity by assessing the angle between the two document’s vectors using 

the cosine similarity function. When the angle between the two vectors is small, the 

compared texts are similar. Conversely, the documents are dissimilar according to larger 

angles. 

 TF-IDF is a very popular “Google-like” strategy that scales very highly into the 

Big Data realm. It is also the basis for the “Lucene” document indexing software [131]. 

Document queries are very fast and accurate even with huge volumes of document data.  

 

2.4.3 LSA 

 Latent Semantic Analysis (LSA) is a technique used to analyze relationships 

between documents based on their lexical patterns. LSA is also based on the Vector space 

model and Bag-of-words model, but uses dimension-reduction techniques (singular value 

decomposition) to create a reduced space. Similarities are computed in the reduced space 

where document vectors and term vectors are both in the same vector space, implying 

more sophisticated searching capabilities. Not only can document term vectors be 

compared (as with TF-IDF), but document vectors can also be compared with other 

document vectors, term vectors with other term vectors, and term vectors with document 
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vectors. Additionally, new combined term-document vectors can be “folded in” or added 

to the vector space to augment the space [132].  

 In practical terms, LSA adds the ability to search for “cardiac” and find 

documents that have the word “heart” or other related terms instead. This is a result of 

LSA’s term-to-term vector composition that would relate “cardiac” and “heart” 

(assuming they occurred frequently together in the text). Then, comparing these highly 

similar term vectors with document vectors, all documents similar to the term vectors are 

retrieved. This example demonstrates a term-term and term-document vector similarity 

comparison, and more sophisticated utilization of the vector space is also possible. 

Document-document similarity comparisons are utilized for clustering, for example 

[133].  

 

2.5 Named Entity Recognition 

 Named entity recognition (NER) software mines language-based text and 

identifies concepts from ontologies that contain additional computable semantic 

knowledge; therefore, biomedical text-mining applications use NER software to extract 

and enhance biomedical texts. For example, the concept “Oxycodone” mined from a text 

document could be part of an ontology that asserts “Oxycodone is-a pain medication” and 

“Oxycodone is-a controlled substance.” After making these associations, searches for 

“pain medications” and “controlled substances” would return this document. Associating 

concepts to texts has a wide variety of useful applications [134-136] for text mining 

applications. 

 



 

 

49 

2.5.1 Open Source NER Tools 

2.5.1.1 MetaMap 

 The NLM has developed MetaMap [137, 138] for NER and offers it for free. 

MetaMap is backed by the UMLS [139] and the UMLS’ USAbase default vocabulary set. 

The USABase is made up of freely available vocabularies that do not have license 

restrictions in the USA. See categories 0, 4, and 9 online in the MetaMap UMLS Source 

Vocabulary instructions [140]. 

 

2.5.1.2 cTAKES 

 The clinical Text Analysis and Knowledge Extraction System (cTAKES) is an 

open source text-processing tool that utilizes the Unstructured Information Management 

Architecture framework and OpenNLP to generate linguistic and semantic annotations. 

As the name indicates, cTAKES is tuned for clinical text and the generated annotations 

are useful for higher-level semantic processing [141].  

 

2.5.1.3 Sophia 

 Sophia software has been recently released (in 2014) [142]. It was developed for 

Veteran Affairs and the famous VINCI database with over 2.8 billion clinical notes that 

would theoretically take years to process using MetaMap or CTakes. Authors claim their 

solution is state-of-the-art based on its highly scalable architecture, faster throughput, and 

improved precision over MetaMap. The precision of cTAKES is barely higher (+ 0.04 F-

score), but Sophia is 18 times faster. 

 The described set of similarity measures in this chapter represents a set of primary 
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strategies used to compute semantic similarity between biomedical texts with different 

size and length characteristics. Additionally, biomedical semantic knowledge base 

utilization techniques and NER tools were briefly described since they play a significant 

role in the methods that are described in following chapters, where the new method for 

computing concept bag similarity is introduced and methods for testing the algorithms are 

described. 

 



 

 
 
 
 

CHAPTER 3 

 

THE NEW CONCEPT BAG ALGORITHMS 

 

In a graduate-level data-mining course at the University of Utah, the professor, 

Dr. Jeff Philips, challenged the students to do a real data-mining project for the final 

project. With recent exposure to a particularly challenging biomedical data integration 

project and newly acquired data-mining skills, the new Concept Bag (CB) algorithm was 

composed based on the recognition that n-grams and named-entity recognition (NER) 

software could be used together to create comparable concept bags rather than word or 

character-based bags. This chapter describes the idea, the CB and Hierarchical Concept 

Bag (HCB) algorithms, and provides examples. 

 

3.1 Concept Bag Conception 

The CB method, like the n-gram, was designed to be multipurposed. The original 

use case was to perform automatic data integration between highly heterogeneous 

biomedical datasets collected from 5 large academic medical centers across the U.S.A.; in 

all, the combined datasets contained 899,649 unique DEs from 20,724 research datasets 

(see section 4.2.7.1). 

Further inspection and analysis of the large number of DEs and datasets revealed 

DEs were in the form of variable-length biomedical expressions where synonyms, 
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abbreviations, and other textual anomalies appeared frequently. Existing matching 

solutions all had something to offer, string matching, concept matching, and document 

matching, but the problem appeared to require a combination of techniques, techniques 

that would disambiguate synonyms and common abbreviations used by medical 

professionals.   

Disambiguating synonyms and abbreviated terms such as “SBP” and “systolic 

BP” to a common concept code is a specialty of biomedical NER tools and was therefore 

one of the first recognized components of the solution. The second realization came 

shortly thereafter during a pilot study that was conducted to study if NER was a feasible 

method for processing metadata. The pilot study revealed that NER essentially produced 

a bag of concept codes for each text. What could be done with a bag of concept codes? 

Recognizing the parallel with the n-gram method and how it produced bags of things that 

could be compared many ways, we recognized CBs could be compared using the same 

methods. Further research and analysis of computable similarity methods confirmed its 

uniqueness and the study of the new method began. 

 

3.1.1 Creating Concept Bags 

To operationalize and test the CB method, MetaMap [137, 138] was the NER tool 

utilized for experimentation. MetaMap fulfilled the requirements and supported a rich set 

of biomedical vocabularies and ontologies with literally millions of computational 

semantic relationships, is free, is supported by the NLM, and is well understood by the 

biomedical text mining research community. Using MetaMap as the NER tool, the 

stepwise process used to create CBs was as follows: 
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1. Textual elements were organized and saved in a comma-delimited (CSV) file 

where each row contained one textual element and a unique identifier (primary 

key for the text). 

2. Each textual element was processed using MetaMap’s default dictionaries and 

parameter settings, with the exception of the output flag that directs MetaMap to 

output XML, because XML is conducive for automated concept code extraction 

[138]. 

3. Capture the XML output from step 2 for each row and extract each of the distinct 

concept codes (CUIs) from the XML file. 

4. Write the distinct concept codes from step 3 to a new row in another CSV file 

with the same unique identifier used in step 1. 

5. Each row in the file created in step 4 contains the CB for a textual element. 

To compare CBs for similarity, the Jaccard Similarity formula (Equation 1 in section 

2.2.1.1) was selected for the initial experiments. The Jaccard formula computes a decimal 

value between 0 and 1 where 0 represents no similarity, and 1 represents a perfect match. 

Values between 0 and 1 represent the ratio of the matching concept codes. Interpretation 

of the similarity score is left to the application and its purpose. Figure 3.1 demonstrates 

the idea visually with an example. 

 

3.2 Hierarchical Concept Bags 

 The CB’s NER method resolves strings such as “SBP” and “systolic BP” to the 

same concept, recognizing synonymy between the two strings, but the method does not 

consider similarity between words such as “abortion” and “miscarriage” where they are 
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S1 = MetaMap(“right handed”)  
     = [C1281583, C0018563, C0205090, C0230370, C1288948] 
 
S2 = MetaMap(“dominant right hand”) 
     = [C1281583, C0018563, C0205090, C0230370, C1288948, C0449722] 
 
Jaccard(S1,S2) = |S1 ∩ S2|/|S1 ∪ S2|  

= |C1281583, C0018563, C0205090, C0230370, C1288948| / 
|C1281583, C0018563, C0205090, C0230370, C1288948, C0449722| 

 = 5/6 = 0.83 
 
Figure 3.1 Venn diagram illustrating Concept Bag code sets for “right handed” 
and “dominant right hand. ”  The concept bags are compared using the Jaccard 
Similarity formula (equation 1 in section 2.2.1.1). The alphanumeric concepts 
(UMLS CUIs) were extracted using MetaMap and the SNOMEDCT_US 
dictionary. 
 
 
 

spelled very differently, are not synonyms, and are semantically similar according to 

terminology experts [87]. Recognizing the flexibility of the CB method, we could see that 

CBs could be enhanced with additional concept codes by using relationships from the 

semantic knowledge base that MetaMap’s output CUIs are a part of. MetaMap discovers 

concept codes (CUIs) in the texts that are associated with a variety of semantic 

relationships contained in the UMLS and source vocabularies. This presents the 
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opportunity to utilize these added semantics to further expand CBs. HCBs are CBs that 

have been enhanced with hierarchical semantic concept codes that have been obtained 

from the UMLS’ semantic knowledge base. 

To demonstrate the HCBs, the SNOMED CT “is-a” relationships were selected as 

the knowledge resource to extract hierarchical concepts for this work, but nothing 

precludes using other philological relationships (although the name of the method might 

need to be reconsidered if nonhierarchical relationships were selected). SNOMED CT 

contains well over 100 different relationships [143, 144]. UMLS version 2015AA 

contains 153 different relationships that could be utilized in a similar fashion. We chose 

the “is-a” relationship for practical reasons. The “is-a” relationship conceptually implies 

similarity and every SMOMED CT concept is included in the hierarchy (an acyclic 

directed graph), which is not true for any of the other relationships. Some of the next 

most frequently used SNOMED CT philological relationships are “episodicity,” “clinical-

course-of,” “has-severity,” “has-finding-site,” “causative-agent,” and “has-active-

ingredient.” These relationships have between 5% and 25% coverage; each could add to 

the sophistication of a similarity measure, especially for specific use cases, but each 

added relationship requires analysis and would require additional research to fully 

understand. For example, adding “episodicity” concept codes for every concept in a given 

bag may add noise in some cases, whereas adding “clinical-course-of” concept codes 

may add specificity in others. To expand, one might consider forming composite codes 

between the codes and relationships to retain the semantics in the bag of codes 

(composing codes for “causative-agent” and “streptococcus pneumonia” such that 

problems having “causative-agent streptococcus pneumonia” are similar). The 
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possibilities of what could be done are endless. As with the other CB methods, the idea of 

enhancing CBs using externally defined philological relationships is intentionally left as a 

generic strategy, leaving the implementation-specific details to the implementer such that 

the method could apply to other use cases or domains of knowledge. The UMLS contains 

literally hundreds of controlled medical vocabularies, domain topics, and knowledge 

structures, and each can vary drastically. Plus, there is a plethora of other sources that 

UMLS does not contain, WordNet [145], for example, is another popular option that does 

not specialize in biomedical vocabulary but is a rich source, nevertheless.  

 

3.2.1 Adding Hierarchical Semantics to Concept Bags 

Using the CB method previously described, controlled vocabulary concepts are 

extracted from the text using NER tools first. Then the next and new step is to select and 

insert the conceptual hypernym hierarchy (demonstrated using an is-a hierarchy) into the 

HCBs for each text analyzed. The very top level of the hierarchy, the SNOMED CT root 

concept code, in this case, was left out, as it did not add information. If multiple 

vocabulary sources were being utilized, the root concept code may have been useful. 

Figure 3.2 illustrates how the CB is used to build the HCB with visual aids. 

Creating HCBs from CBs adds new dimensions and possibilities, and like the 

NER tool implementation, does require a specific method of analysis. The next section 

provides diagrams and a specific example to illustrate this point. 
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 CB1  = ConceptBag(“abortion”) = C0156543 
 CB2  = ConceptBag(“miscarriage”) = C0000786 
 
 HCB1  = HierarchicalConceptBag(“abortion”)  
  = C0037088, C0012634, C0427350, C0425961, C0559565, C0151864,   
     C0156543 
   
 HCB2  = HierarchicalConceptBag(“miscarriage”)  
 
       = C0037088, C0012634, C0427350, C0425961, C0559565, C0151864,     
     C0156543, C0000786 
 
 Jaccard(CB1, CB2) = 0  
 Jaccard(HCB1, HCB2) = 8/9 = 0.89 
 

Figure 3.2 Examples of the CB and HCB with hierarchical concept codes (CUIs) 
from the SNOMED CT is-a hierarchy comparing “miscarriage” and “abortion.”  
The “Parents” figure shows the hierarchies (SNOMED CT is-a hierarchy is poly-
hierarchical) and all of the UMLS clinical concepts for both “miscarriage” and 
“abortion.” The Jaccard Similarity (equation 1 in section 2.2.1.1) scores illustrate 
the differences between the two methods. 
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3.2.2 Method Diagrams 

 The CB and subsequent HCB are intended to be generic alternatives to the n-gram 

method that can similarly be configured in many different ways to support a variety of 

use cases. In this section we diagram the idea to illustrate this point, see Figure 3.3.  

Figure 3.4 illustrates two different similarity implementations using the previous example 

from Figure 3.2. 

 Additional drawings based on Figure 3.3 are illustrated in the following section 

for each of the implementations tested. They are all based on comparing medical texts of 

 

 
Figure 3.3 Concept Bag method comparison diagrams illustrating how a bag-of-
words (or character strings) produced by the n-gram method compares to the 
Generic Concept Bag method. The Named-Entity Recognition component is 
added to derive bags of concept codes from text. 
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Figure 3.4 Demonstrating two different similarity implementations comparing the 
same Hierarchical Concept Bag codes. 
 
 
 

different types, but as the middle diagram in Figure 3.3 implies, the “Convert to Concept 

Code” method could be based on nontextual processes, as well, such as billing or 

procedure codes derived by human coders. 

 As the figures and diagrams show, HCBs and CBs can be analyzed in nearly all 

the same ways text-based n-grams are analyzed, using any of the methods available in the 

literature. 

 



 

 
 
 
 

CHAPTER 4 

 

APPLICATIONS OF THE CONCEPT BAG 

 

 A new method needs to be tested rigorously in a variety of use cases. The three 

use cases chosen here to meet this goal were, 1) the application of aligning heterogeneous 

data elements (DE), 2) measuring degrees of similarity between medical terms, and 3) 

measuring patient case similarity between intensive care unit (ICU) discharge 

instructions. Four data sets were used to test the three use cases as follows: 

1. DEs from a controlled vocabulary (see section 4.2.5), 

2. DEs from an uncontrolled vocabulary (see section 4.2.7),  

3. A medical term pair similarity benchmark (see section 4.3), 

4. Deidentified ICU discharge instructions (see section 4.4). 

 

4.1 Descriptive Analysis 

 A descriptive analysis was performed on each of the four data sets to describe 

their characteristics and to facilitate comparisons between data sets. The following textual 

features were tabulated and reported: 

• Textual element counts - the individual DEs, medical terms, and ICU discharge 

summaries, 

• Character count means, 
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• Word count means, 

• Concepts per element means, 

• Concepts per word means. 

Each of the data sets was managed in a relational database and structured query language 

(SQL) queries were utilized to compute these statistics.  

 

4.2 Application: Aligning Data Elements 

4.2.1 Semantic Alignment of Data Elements 

 Integrating heterogeneous data sets involves semantically aligning DEs between 

data sets. The goal was to test the new algorithm on the task of semantically auto-aligning 

DEs. Optimally no humans would be required; suboptimally, human intervention would 

be required, but less than without assistance with other existing methods. The decision to 

focus on the automatic mapping challenge had implications on the chosen matching 

strategies. There are literally an unlimited number of possible kinds of data alignments 

required to map data sets, and the possibilities are specific to the purpose of the 

alignment, the alignment language, and the capabilities of the alignment interpreter. We 

chose to focus this portion of the study on the most universally supported and well-

understood alignment, “equals,” or more specifically, “is semantically equivalent,” and 

focus on the semantic matching component rather than specific alignment 

implementations.  

 Identifying semantically equivalent matches does not imply that only perfect 

similarity scores were acceptable and that there is not an acceptable amount of fuzziness; 

it implies that the goal of interpreting fuzziness is to identify semantically equivalent 
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matches; aligning DEs that have different names but exactly the same semantic 

meanings, such as “first name” and “given name,” was the goal. We did not attempt to 

automatically align partial matches that require specific functional interpretations, such as 

“patient name” and “first name.” This may not seem complicated for a human who is 

mapping familiar names (versus names from another country or language), but the 

alignment operation for this use case is quite complicated since it requires specific 

knowledge about the data that is rarely in computational form. The algorithm must 

consider the direction of the alignment, mapping “patient name” to “first name,” or vice 

versa, “first name” to “patient name,” or possibly the direction is known and specified. 

The algorithm must determine whether the first word of “patient name” is the first name, 

last name, middle name, first part of the first name, first part of the last name, etc. 

Moreover, neither did we attempt to automatically align semantically related (see 

definition in section 2.1) DEs, such as “scalpel” and “surgical procedure,” for similar 

reasons. This level of functional interpretation was considered out-of-scope for this work. 

Determining that DEs are semantically related is one problem, auto-aligning them in a 

computationally “meaningful” way is a different problem that is very use-case specific.  

 The taxonomy of automatic alignment techniques outlined in Section 1.5.1 can be 

summarized into 4 types, 1) “name-based techniques” where the focus is aligning entity 

names; 2) “structural techniques” where the focus is matching data structures and data 

types; 3) “extensional techniques” where the focus is matching instance data; 4) 

“semantic techniques” where intermediate ontologies are used as entity “anchors” to 

merge others entities [33]. Two of these alignment techniques were utilized for this 

portion of the study, the name-based technique and the semantic technique. The name-
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based technique was the primary strategy used for each of the tested algorithms, 

including the CB, but the CB also used the semantic technique by utilizing intermediate 

ontology concept codes to anchor concepts based on existing semantic relationships. The 

other two methods were not used. As is often the case, neither of the DE data sets 

(described below) contained rich structural information; therefore, structural techniques 

were left for future study. Extensional techniques did not apply either; they were simply 

not an option since instance data (containing patient/subject data) were not available. 

 Additional preparation techniques were used to normalize the DE names before 

they were compared. Exact string matches were counted and removed to avoid duplicate 

comparisons. Also, strings were duplicated and converted to uppercase to support case-

insensitive comparisons, i.e., duplicate DEs and letter cases did not influence the results. 

 

4.2.2 Aligning Data Elements with Similarity Algorithms 

 Recalling that similarity algorithms return a real value score between 0 and 1 that 

indicates how similar two given DEs are (1 = perfect similarity, 0 = no similarity), to 

make the alignment decision, a cutoff score must be selected. Cutoff scores determining 

the alignment decisions are algorithm-specific. Each similarity algorithm’s score 

distribution can be very different. One algorithm’s score of 0.5 might represent a very 

high probability of equivalence, while it might represent a very low probability using a 

different algorithm.  

 Cutoff scores were computed using decision analysis. Using a reference standard, 

scores that maximized the specificity and sensitivity of the decision were chosen for each 

algorithm. This strategy is called the “Youden” method [146]. 
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4.2.3 Measuring Alignment Compliance 

 The alignment compliance measures how well alignment strategies agree. DE 

alignments are essentially decisions, and alignment compliance is a form of decision 

analysis. The reference alignment is a gold standard set of alignments typically curated 

by experts and is intended to be compared with algorithm-generated alignments. The 

decision analysis in this case was performed using standard confusion matrix statistics.  

 Confusion matrix decision analysis statistics were computed using R statistics 

software with the “ROCR” [147] and “Optimal Cutpoints” [146] packages. The ROCR 

package specializes in building Receiver Operator Curves (ROC) for viewing classifier 

performance. The Optimal Cutpoints package computes optimum cutoff points and 

reports confusion matrix statistics. Using these R packages, the following alignment 

compliance results were reported: optimal cut-points, sensitivity, specificity, true positive 

(TP), false positive (FP), false negative (FN), positive predictive value (PPV), negative 

predictive value (NPV), area under the curve (AUC). The F-measure was also computed 

using the recall (sensitivity) and precision (PPV) values for each algorithm.  

 

4.2.4 Alignment Algorithms Tested 

 A total of five unsupervised string similarity algorithms were applied to the task 

of aligning DEs, the CB, the HCB, and three well-known unsupervised string similarity 

algorithms, Dice [95, 110] (see Section 2.2.1), Levenshtein [114] (see Section 2.2.3), and 

Jaro-Winkler [117] (see Section 2.2.4). Each of these latter three algorithms has an 

established string-matching track record matching biomedical concepts and DEs [94, 111, 

148]. The CB and HCB method implementations are diagramed in Figure 4.1. These  
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Figure 4.1 Concept Bag and Hierarchical Concept Bag implementations used for 
the Data Element alignment use case. 
 
 
 

diagrams are extensions of the diagrams previously shown in Figure 3.3. 

Alignment compliance statistics were measured and reported for all five algorithms on 

two DE data sets. A description of each DE set is given in detail below.    

 

4.2.5 Data Set: UMLS Data Elements 

 Seventeen DEs from three domains were selected for the study, seven 

demographics, five vital signs, and five echocardiogram measures. All 17 DEs were 

found in the UMLS by searching for their common names. Then, using existing semantic 

relationships in the UMLS, all distinct English synonyms were extracted, adding an 

additional 298 semantically matching DE names. This process generated an additional 
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298 DE names stemming from the original 17 totaling 315 distinct DEs by 

name (298+17). The selected DEs and small sample of synonyms and abbreviations were 

included in Table 4.1. 

 

4.2.6 Reference Alignment: UMLS Data Elements 

 Reference alignments were identified using UMLS synonym relationships for all 

of the DE names selected and identified in UMLS. UMLS synonym relationships were 

curated by the original terminology contributors and by UMLS experts. For example, the 

DE name “SBP” and “systolic blood pressure” were synonyms mapped by terminology 

experts and were counted as an exact semantic match with an alignment score equal to 1. 

DE names that were not synonyms within the UMLS were considered nonmatching and 

were assigned alignment scores equal to 0. The reference alignment was a complete list 

of all DE pairs with alignment scores of 0 or 1. There were a total of 49,455 pairs 

(315*(314)/2) in the reference alignment. 

 

4.2.7 Data Set: REDCap Data Elements 

 Aim two of the study is to improve upon previous methods that semantically align 

heterogeneous biomedical data sets. To obtain a representative set of heterogeneous data 

sets we utilized datasets created using REDCap [149]. REDCap, or Research Electronic 

Data Capture, is software developed at Vanderbilt for managing research projects and 

data capture. It is free and has become very popular, with over 1500 installations 

worldwide at this point in time. REDCap uses the “Suggested Data Models” strategy and  
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Table 4.1 Seventeen common data elements including example synonym terms 
extracted from UMLS. 

 
Data	Elements	and	UMLS	Terms	

Topic	 Data	element	
Term	
count	 Example	terms	

Demographics	

Date	of	birth	 15	 birth	date,	date	of	birth	of	person	cared	for,	DOB	
Sex	 7	 gender,	sex	of	individual	

Ethnicity	 26	 ethnic	background,	ethnic	group	
Race	 14	 human	race,	racial	stock	

Address	 13	 address,	physical	address,	addresses	
Primary	language	 2	 language	primary	

Education	level	 43	 education,	academic	achievement	

Vital	Signs	

Body	
temperature	 28	 temp,	temperature,	body	temperature	

Pulse	rate	
(beats/minute)	 14	 pulse,	heart	rate	
Blood	pressure	 50	 arterial	blood	pressure,	arterial	tension	

Respiratory	rate	 25	 breathing	rate,0	breath	rate	
Oxygen	
saturation	 21	 O2	saturation,	oximetry	

Echo	
Cardiogram	
Measures	

LVEF	(%)	 5	
left	ventricular	ejection	fraction,	left	ventricular	
ejection	fraction	(finding)	

LVIDd	(cm)	 2	 diastolic	left	ventricular	internal	diameter	

LVH	(y/n)	 43	
ECG	LVH,	electrocardiogram	left	ventricular	
hypertrophy	

Septum	thickness	
(mm)	 4	

atrial	septum	thickness,	echocardiography:	thickness	
of	atrial	septum	

echoPASP	
(mmHg)	 3	 pulmonary	artery	main	branch	systolic	pressure	
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it was suspected that the data models suggested were rarely used. A pilot study confirmed 

this suspicion. The REDCap installation at the University of Utah was analyzed, and less 

than 1% of the projects used one or more of the recommended models, none of which had 

been operationalized beyond a few records that appeared to be for testing.   

 Beyond recognizing the potential for heterogeneous data, the other reason we 

chose REDCap was for its large and unpredictable domain of discourse. In the pilot study 

we also discovered that the U had collected over 313 data sets and 39,129 DEs in 18 

months of use. As this work originated as a data-mining exercise, the goal was to collect 

as many data sets as possible from more than one site to discover potential relationships 

and test the algorithm’s scalability [66]. A highly scalable and accurate DE alignment 

algorithm would provide potentially useful enhancements for projects such as dbGap 

[150] or other large collections of scientific data (http://www.nature.com/sdata/). 

 REDCap sites that were engaged in clinical and translational research were 

contacted via email and asked to contribute DEs from their sites. No patient or subject-

sensitive data were required or requested, only the defining elements of their data sets, 

the DEs. Five collaborating institutions responded to the email request and submitted 

899,649 DEs, 1) University of Utah School of Medicine, 2) Einstein College of 

Medicine, 3) Duke University, 4) University of Colorado Denver, 5) Children’s National 

Medical Center. 

 REDCap data sets followed a key-value-pair data pattern, where keys were 

synonymous with column names and values were synonymous with data cells in a table 

row. REDCap’s alphanumeric column keys (somewhat cryptic) were linked to additional 

DE metadata, including informal data types and display-formatting information. In 
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particular, the “element label” was an attribute used to label columns and field names on 

data-entry forms and reports. For example, “q1_rbc” was the alphanumeric key name for 

an element labeled “Red blood cell count.” Element labels contained human readable 

language with complete words and expressions and were chosen to represent DE names 

from REDCap. 

 All DE properties were hand-authored for each REDCap project. Specific user 

identifiers were not collected for the study, but it is important to recognize this set 

represents the number of researchers that it took to author 899,649 DEs; it must have at 

least been in the order of a few thousand individuals.  

 

4.2.7.1 Preprocessing REDCap Data Elements 

 The contributed DEs were loaded into a relational database for the initial analysis. 

A total of 899,649 unique DEs were contributed from the five sites. Letter cases were 

removed for case insensitive comparisons, but all other textual features were left in their 

original form. DEs were then processed using MetaMap and the extracted concepts were 

stored and associated to each DE.  

 

4.2.7.2 Aligning Data Elements via the Concept Bag 

 Concept bags were compared for similarity using the Jaccard Similarity formula. 

This process required n(n-1)/2 comparisons, or approximately half a trillion comparisons. 

The University of Utah’s Center for High Performance Computing was required to 

complete this large number of comparisons. A special parallel matching [151] Java 

program was designed to work with the Message Passing Interface (MPI) [152] to 
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compute a virtual matrix of all comparisons. Essentially the MPI was configured to pass 

instructions to a job (Java programs), indicating to each a specific portion of the matrix to 

compute. While each job computed its specific portion of the matrix, it would write the 

similarity scores and matrix coordinates to a file. At the end of the process all files were 

aggregated using Linux utilities for analysis.  One of the benefits of this strategy is that 

more jobs and CPUs can be added to reduce computing time. It is also highly scalable 

due to the fact that similarity computations can be dynamically subdivided and executed 

in parallel tasks based on the available computing resources.  

 

4.2.7.3 Reference Alignment: REDCap Data Elements 

 Preliminary exploration of the computed comparison data indicated that match 

candidates were infrequent, 3 per 1000 pairs, indicating an unreasonably large random 

sample would have been required for human review while maintaining both an accurate 

sample distribution and conclusive confidence interval; therefore, a stratified random 

sample was assembled with 12 buckets based on the computed Concept Bag Similarity 

scores, 10 buckets distributed between 0 and 1 (0 < score <= 0.10, 0.10 < score <= 0.20, 

… , 0.90 < score < 1.0), plus one bucket where the scores equaled 0, and another bucket 

where scores equaled 1. A set of 1200 DE pairs were then randomly sorted and manually 

reviewed for semantic matches by a professional clinical data architect. The alignments 

identified by the architect were used as the reference alignment. 
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4.2.8  Comparison of Alignment Performance 

 In this work we compare alignment performance and calculate the potential 

savings. The “%Savings” (Equation 4.2 below) represents the percentage of errors that 

were corrected by the CB over the next-best algorithm. It is also the percentage of 

additional manual mappings that would have been required to create a perfect alignment. 

Error percentages and savings were calculated as follows: 

 

 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟𝑠 = (!"#$% !"#$%$&'!!"#$% !"#$%&'")
|!"#$%&'%( !"#$#|

        [4.1] 

 

 %𝑆𝑎𝑣𝑖𝑛𝑔𝑠 = !"#$%&'%( !""#"!"#$%&!!"#$%&'%( !""#"!"#$
!""

        [4.2] 

 

This strategy is the equivalent of evaluating and comparing matching accuracy [153] 

between the top two evaluated systems and the percentage of work saved between the 

two systems. 

 

4.2.9 Summary of Data Element Analysis 

 Both of the two DE data sets, the UMLS DEs and the REDCap DEs, were 

analyzed by first computing the descriptive statistics described in Descriptive Data 

Element Statistics. Then, each set was tested against its designated reference alignment to 

measure alignment compliance. Both the descriptive and alignment compliance statistics 

were reported in the results, and then interpreted in the discussion section. 
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4.3 Application: Semantic Similarity Between Medical Terms 

 Aligning DEs challenged the CB algorithms’ ability to identify exact semantic 

matches but did not measure its ability to identify partial semantic matches. Computing 

partial concept similarity is potentially useful for terminology development, decision 

support, information retrieval, document retrieval, or patient cohort identification [86, 87, 

125].  

 To test how well CB and HCB perform on partial semantic matches, a published 

concept similarity benchmark was utilized [87]. The benchmark contained a set of 30 

medical term pairs that have been curated and judged by physicians, terminologists, and 

informaticists. The pairs were systematically selected to test a full range of similarity 

comparisons. Correlation scores between the annotators and several concept similarity 

algorithms have been published and stand as a recognized benchmark [87, 120]. 

 Four implementations of the CB and HCB were tested using the benchmark. The 

first two are the same as shown in Figure 4.1, and the third and forth are shown in Figure 

4.2. In the third and forth implementations, MetaMap was restricted to SNOMED CT and 

the highest-ranking match. The author resolved ties, leaving a single SNOMED CUI 

hierarchy for comparisons. 

 Each of the 4 similarity algorithm configurations produced similarity values for 

each of the 30 pairs from the benchmark data. Correlations were measured and compared 

to the expert benchmark between the four CB algorithm configurations above and the 7 

highest-correlating algorithms published in [120]. The compared concept similarity 

algorithms and the supporting knowledge bases they used were as follows: 

1. Leacock and Chadorow (LC) [122] with UMLS 
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Figure 4.2 Third and fourth implementations of the Concept Bag and Hierarchical 
Concept Bag algorithms tested in the medical term similarity study (Figure 4.1 
shows the first and second). 

 
 

2. LC with SNOMED CT 

3. Wu and Palmer (WP) [123] with UMLS 

4. WP with SNOMED CT 

5. Personalized PageRank (PPR) [121] with UMLS 

6. PPR with SNOMED CT 

7. Context Vector [87]. 

The Dice coefficient [95, 110] was also included to compare one of the top-performing 

lexical methods with the concept similarity methods.  

 

4.4 Application: Matching Discharge Summaries 

 The next application was to test the CB on larger bodies of clinical text, namely 

clinical documents. The operational use case is matching discharge summaries for 

similarity such that clinicians could “find patients like mine” using clinical text similarity 
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as a proxy for patient similarity. For this purpose we used an online resource, the 

MIMIC-II online database [154] tools and services, and it offered deidentified intensive 

care unit (ICU) discharge summaries from 2001 to 2007. Access was requested via an 

online request process. The requirements were straightforward; standard research training 

and affiliations were required but IRB approval from the University of Utah was not 

necessary. The MIMIC-II IRB was as follows [155]: 

This study was approved by the Institutional Review Boards of Beth Israel 
Deaconess Medical Center (Boston, MA) and the Massachusetts Institute of 
Technology (Cambridge, MA). Requirement for individual patient consent was 
waived as the study did not impact clinical care and all data were deidentified. 
 

Our request for access to the data was granted within 2 days. A light amount of reading 

was necessary to learn how to use the provided online query tools, but this process was 

straightforward and the resource proved to be valuable for research. 

 One thousand randomly selected electronic text-based ICU Discharge Summaries 

(DS) were downloaded from the MIMIC-II database. DSs were deidentified within the 

MIMIC-II database but were otherwise fully intact. Patient and provider data had been 

removed and dates were randomly offset by the same random offset keeping time 

intervals between events accurate; patient ages and other time range lengths were 

computable when they were not explicitly stated.  

  

4.4.1 Discharge Summary Benchmark 

 One hundred random pairs were assembled from the 1000 DSs that were 

downloaded. Two biomedical terminologists manually reviewed each pair. They were 

given specific instructions on how to login to the secure web site and how to judge each 

pair of DSs for similarity. For the review, they were instructed to “...[rank the document 
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similarity] to indicate to other clinicians there are common features between these ICU 

visits that are worth/not worth observing for the sake of case comparisons.” Reviewers 

were given choices from a 5-point Likert scale to mark how similar the DSs were (see 

Figure 4.1). Reviewers were also given the chance to add comments when they could not 

decide. Comments and answers were stored in the relational database for reference. 

 

4.4.2 Discharge Summary Similarity Comparator Algorithms 

 The CB and HCB algorithms were compared with terminologists, Dice [110], and 

TF-IDF [156]. Dice is a specific form the n-gram method (see section 2.2.1), is a form of 

Shingling (see section 2.4.1), and performs well comparing DEs [111]. TF-IDF performs 

well matching “documents.” Evaluating and comparing the performance of each 

algorithm on the much larger DSs provides additional evidence about where the textual 

boundaries are for each algorithm. The CB and HCB implementations used were the 

same two that were used in both of the previous studies, 1) MetaMap with Jaccard 

Similarity, and 2) MetaMap with hierarchical SNOMED CT CUIs and Jaccard Similarity. 

They are diagramed in Figure 4.3. 

 

4.4.3 Algorithm Correlation Analysis 

 Similarity measures were computed between the 100 randomly selected DS pairs 

using the CB, HCB, and comparator algorithms. Two terminologists reviewed the same 

100 DS pairs to provide human-expert comparisons. Correlations between all similarity 

measurements were then calculated between each algorithm and expert. The R statistics 

software was used to measure correlation via the Spearman method. 
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Figure 4.3 The application used to perform ICU Discharge comparisons for 
similarity. A small portion of the first discharge summary is shown and the 
second follows below it (not shown).  
 
 



 

 
 
 
 

CHAPTER 5  

 

RESULTS 

 

 The results of the use cases discussed in Chapter 4 are presented in this chapter. 

The previous chapter, Chapter 4, served as the methods chapter and, in general, is where 

the reasoning for the chosen methodologies was documented. Also, within this chapter 

specific sections are referenced to help the reader find the supportive text. In other cases, 

we restate assumptions and specific values. We also included elements of the results-

specific discussion into this chapter for the same reason. The general discussion, future 

directions, and conclusions are contained in Chapter 6. 

 

5.1 Descriptive Statistics for Studied Data Sets 

 This section contains the descriptive statistics for the four studied data sets, 1) the 

UMLS data elements (DE) used for the DE alignment study, 2) the REDCap DEs used 

for the alignment study, 3) the medical term similarity benchmark used to test degrees of 

semantic similarity, and 4) the intensive care unit (ICU) discharge summaries used to 

measure patient case similarity. 

 The descriptive statistics show that each of these data sets had different textual 

features such as characters per element, words per element, and controlled vocabulary 

coverage. These measurements are useful for comparing corpora and for identifying the 
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contexts where algorithms perform well and where they do not. Comparing the textual 

features of the studied data sets (Table 5.1), one can see that each of the data sets had 

rather different textual characteristics. The text size averages varied from 13.4 to 2347.5 

characters per element, while the mean number of concepts per word varied from 1.0 to 

3.2. These statistics confirm that our goal to test the new Concept Bag (CB) and 

Hierarchical Concept Bag (HCB) methods on dissimilar data sets could be accomplished 

using the selected data sets. The results for each method can then be used to make some 

generalizable conclusions on the advantages and disadvantages of using CB and HCB for 

different types of data sets. 

 

Table 5.1 Descriptive statistics for the studied data sets, UMLS-selected DEs, 
REDCap DEs, the medical terms reference, and the ICU discharge summaries. 
 

		 Data	sets	

		 UMLS	DEs	 REDCap	DEs	 Medical	Terms	
ICU	Discharge	
Summaries	

Element	Counts	 315	 899649	 60	 200	
Mean	
Characters/Element	 24	+/-	13.1	 43.1	+/-	74.9	 13.4	+/-	6.0	 2347.5	+/-	1111.2	
Mean	
Words/Element	 3.1	+/-	1.5	 7.1	+/-	11.8	 1.6	+/-	0.7	 308.8	+/-	164.6	

Concepts/Data	set	 380	 4187	 133	 7177	

Hierarchical	
Concepts/Data	set	

753	 6929	 740	 19685	
Mean	
Concepts/Element	 9.8	+/-	6.7	 10.4	+/-	10.0	 2.6	+/-	1.9	 316.0	+/-	150.7	
Mean	
Concepts/Word	 3.2	+/-	1.8	 2	+/-	1.4	 1.5	+/-	0.6	 1.0	+/-	0.2	

Mean	Hierarchical	
Concepts/Word	

15.6	+/-	11.0	 12.8	+/-	14.5	 20.0	+/-	14.3	 2.8	+/-	0.6	
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5.2 Data Element (DE) Alignment Compliance 

 Heterogeneous DEs from two DE corpora were aligned using multiple algorithms. 

Alignment compliance measures are based on decision analysis where algorithm 

alignments are compared to expert alignments. The expert’s alignments are in the form of 

binary decisions (align = true or false). Algorithm-based similarity measures are not 

inherently binary, they are real values between 0 and 1; therefore, to compare the two, the 

algorithm measures must be converted into binary decisions by selecting an appropriate 

cutoff such that they can be compared with the expert’s decisions. Once converted, the 

alignment compliance analysis was performed.   

 Alignment compliance of the controlled (UMLS) and uncontrolled (REDCap) DE 

vocabularies is depicted in the following tables and graphs. Tables for each data set 

contain the confusion matrix results and statistics for each algorithm. Receiver operator 

characteristic (ROC) curves are plotted and graphed for each data set and each algorithm 

to show the performance results graphically. 

 

5.2.1 UMLS and REDCap Data Elements 

 Section 4.2.5 describes the methods that were used to obtain the UMLS DEs as 

well as how the alignment statistics were obtained. Similarly, Section 4.2.7 contains 

information about REDCap DEs and the methods that were used to obtain the REDCap 

DE alignment results. Both data sets were compared with three comparable methods from 

the literature; they are contained in Table 5.2 and Table 5.3 for UMLS and REDCap, 

respectively.  The ROC curves follow in Figure 5.1 and Figure 5.2, respectively.    

 The 315 UMLS DEs are synonyms and abbreviations of 17 DEs (see Table 2.1)  
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Table 5.2 UMLS DE alignment statistics for each algorithm including standard 
confusion matrix statics, the Optimum Cutoff points used as the similarity score 
decision points, the area under the curve (AUC), and the F-measure. 
 
 

Measure	 Dice	 Lev	 Jaro	 CB	 HCB	
Opt	
Cutoff	 0.25	 0.24	 0.61	 0.04	 0.02	
Sensitivity	 0.80	 0.68	 0.71	 0.86	 0.82	

Specificity	 0.91	 0.82	 0.79	 0.96	 0.93	

PPV															 0.50	 0.29	 0.27	 0.73	 0.57	
NPV															 0.98	 0.96	 0.96	 0.98	 0.98	

FP																 4031	 8083	 9352	 1573	 3031	
FN																 981	 1596	 1456	 701	 911	

AUC	 0.88	 0.80	 0.82	 0.92	 0.89	
F-meas	 0.61	 0.41	 0.39	 0.79	 	0.67	

 

 

Table 5.3 REDCap DE alignment statistics for each algorithm including standard 
confusion matrix statics, the Optimum Cutoff points used as the similarity score 
decision points, the area under the curve (AUC), and the F-measure.  
 
 

Measure	 Dice	 Lev	 Jaro	 CB	 HCB	

Opt	Cutoff	 0.49	 0.45	 0.73	 0.91	 0.92	
Sensitivity	 0.88	 0.78	 0.75	 0.85	 0.91	

Specificity	 0.79	 0.81	 0.82	 0.89	 0.86	
PPV					 0.27	 0.26	 0.27	 0.41	 0.37	

NPV						 0.99	 0.98	 0.97	 0.99	 0.99	
FP			 235	 214	 200	 118	 151	

FN							 12	 21	 24	 15	 9	
AUC	 0.89	 0.85	 0.81	 0.92	 0.91	

F-measure	 0.41	 0.39	 0.39	 0.55	 	0.53	
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Figure 5.1 ROC curve of the UMLS DE alignment algorithm performance. 
Curves closest to the top left corner are the best performers. 
 
 
 

and the intention of this data set was to test and tune the CB and HCB algorithms. The 

reference alignment was simple to create using the UMLS relationships to determine 

semantic alignments. The chances of success were higher than they would likely be for 

data sets collected in the wild, but it was a great way to test and observe the algorithms. 

 The optimal cutoff score range is 0 <= cutoff score <= 1 (same as the similarity 

measurement range), and indicates what the semantic similarity score needs to be to 

decide to align or not align the tested DE pair. The CB and HCB have very low cutoffs 

for the UMLS set (Table 5.2) and this indicates that even a slight similarity score is 

sufficient to confidently decide to make the alignment decision. 
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Figure 5.2 ROC curve of the REDCap DE alignment algorithm performance. 
Curves closest to the top left corner are the best performers. 
 

 

 In terms of performance, the CB performs the best in this group according the 

area under the curve (AUC), F-measure, and receiver operating characteristics (ROC) 

curve. The false positive and false negative rates (error rates) are significantly lower than 

they were for the others. Given that there were only 17 logical DEs to choose from in the 

UMLS data, to make the correct alignment decision, the alignment only needed a minor 

signal to have a very high chance of success, i.e., the chances of having one concept 

match an erroneous DE was very low. Additionally, named entity recognition (NER) 

software essentially acts as a preprocessor and filters out unrecognized text, but in this 
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case there should not be any unrecognized text. All of the DEs were taken from the same 

controlled vocabulary.  

 The HCB alignment performance was also respectable at aligning UMLS DEs but 

produced twice the false positives of the CB. Adding hierarchical concepts essentially 

added partial matches to the CBs (versus only equivalent matches), making the bags more 

sensitive but less specific. Despite this, the HCB still outperformed all the other methods 

considered here. 

 As we compare the REDCap alignment performance statistics (Table 5.3), notice 

the difference in the cutoff scores. The CB cutoff increased from 0.04 for the UMLS DEs 

to 0.91 for REDCap for the same reason that there was a lower alignment error rate; in 

the UMLS data, the chance of having one concept match an erroneous DE was much 

lower. In the REDCap data set the opposite was true: there were 1,199 other DEs to 

choose from in the REDCap reference alignment, versus 17 in the UMLS set, indicating 

that a much stronger similarity measurement signal was required to predict a semantically 

equivalent alignment. 

 In terms of performance, the CB performed very well at the task of aligning 

REDCap DEs, as indicated by the AUC of 0.92, F-measure of 0.55, and ROC curve in 

Figure 5.2. These performance numbers are slightly lower than the UMLS DE alignment 

performance numbers, but this is certainly expected due to the more complex nature of  

the REDCap DEs. REDCap DEs were created without a controlled vocabulary or a 

formal curating process, allowing arbitrary abbreviations and local jargon. Even with the 

added complexities of REDCap DEs, the CB still had much lower combined false 

positive and false negative rates than the other algorithms did. 
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 The HCB alignment performance was also good with an AUC = 0.91 and F-

measure = 0.53 for REDCap DEs, and AUC = 0.89 and F-measure = 0.67 for UMLS 

DEs. The increased error rate (more false positives and negatives) is consistent with what 

happened with the UMLS data, adding hierarchical concepts to CBs added partially 

matching concepts to the CB and made the algorithm more specific but less sensitive. 

Had the goal been to identify degrees of semantic similarity where correctly identifying 

partial matches was considered a success, the HCB would have likely performed better. 

The stated goal and criterion for performing auto-alignments was to identify exact 

semantic matches, and therefore, adding partially similar concepts added error.  

 The DE alignment results show that CB reduces errors and improves DE 

alignment accuracy on the two data sets studied, and the highly dissimilar characteristics 

of these data sets infer that this finding is generalizable. The results also indicate that CB 

is adequate for automatic discovery systems where the goal is to search large volumes of 

heterogeneous data to discover semantically equivalent DEs. For example, the use case 

“find echocardiogram data mine” would require an analyst to input echocardiogram DEs; 

from there the algorithm performs the similarity measures and identifies the semantically 

equivalent DEs that were discovered. On the other hand, if the application were used to 

automatically discover and align patient records for patient care without further manual 

review, none of the studied algorithms were adequate and the improvements reported for 

CB would not accomplish the levels of performance that may be required in such use 

cases.  

 The CB is definitely appropriate for semiautomatic alignment. The improved 

performance reduces the amount of matching corrections an expert must fix. For instance, 
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the total number of UMLS DE mapping tasks is 49,455, and using the top-performing 

algorithm, CB, only 2,274 corrections (4.60% error) would have been required. Using the 

next-best algorithm, Dice, 5,012 corrections (10.13% error) would have been required. 

And similar results are derived when using the CB algorithm to align DEs from REDCap. 

The DE alignment results show that the CB and HCB are competitive options to other 

methods in the same class. The CB was better at identifying exact semantic matches and 

decreased the error rate by 5.54% on the UMLS set and by 5.18% on the REDCap set.  

 

5.2.2 Error Analysis 

 Additional analysis was performed to compare the nature of the CB, HCB, and 

Dice errors. Table 5.4 contains a list of examples. The examples that show the false 

positives from the CB (1,2,3 in Table 5.4) are caused by underinterpretation, when the 

NER software did not recognize some or several of the textual expressions and therefore 

did not output concept codes for those expressions; unrecognized expressions and codes 

that may modify the meaning are not included in the bags.  

 False negatives were often due to overinterpretation, when the NER could not 

disambiguate text and would output multiple codes for a single concept, negatively 

impacting the similarity ratio. In the CB (4,5,6 in Table 5.4) the false negatives are 

largely boundary cases where the strict cutoff score (0.91) filtered out otherwise high 

scores. The method of choosing the cutoff score was to optimize performance, but was 

intolerant of near misses. Consequently, concept bags had to contain either a perfect 

match or a ratio equivalent to 11 out of 12 equal concept codes for the alignment to be 

made automatically. 
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Table  5.4 Three example errors for each of the CB, HCB, and Dice in terms of 
false positive (FP) false negatives (FN) errors and comparisons between 
algorithms. Examples are from the REDCap DE alignment results. 
 
 

Case	 #	 DE	1	 DE	2	 Reason	
CB	FP	 1	 CHARLSON	

CATEGORY	1	
QNST	SUBTEST	7	
CATEGORY	

"Category"	was	the	only	NER-
extracted	concept.	

2	 WEIGHT	 OVERHEAD	PRESS	
WEIGHT	

"Weight"	was	the	only	NER-extracted	
concept.	

3	 DATE	OF	
ADMISSION4	

DATE	(CATH)	 "Date"	was	the	only	concept;	others	
unrecognized.	

CB	FN	 4	 2.	HOW	MUCH	DID	
THE	CHILD	WEIGH	
AT	BIRTH?	

2.	BIRTH	WEIGHT	 22	concepts	in	DE	1.	24	concepts	in	
DE	2;	19	in	common	and	8	non-
overlapping.	

5	 OTHER	MEDICAL	
HISTORY?	

PLEASE	SPECIFY	
OTHER	MEDICAL	
HISTORY	

10/11	codes	matched;	missed	cutoff	
off	by	0.01	

6	 INFANT	BLOOD	
DRAW	(DATE)	

BABY	BLOOD	
DRAW	1	(DATE)	

The	"1"	is	the	only	non-matching	
concept;	14/16	=	0.88	

HCB	FP	 7	 NON-WEBCAMP	
TOTAL	6100	

TOTAL	SOFA	1	 Concept	is	“Total”	

8	 DATE	OF	BLOOD	
GAS#44	

BLOOD	SHIPMNT	
DATE	

"Date"	and	"Blood"	were	the	only	to	
concepts	

9	 MAP	 MAP	ACH2	 "Map"	was	the	only	concept	
HCB	FN	 10	 5.	DURING	THE	

PAST	30	DAYS,	FOR	
ABOUT	HOW	MANY	
DAYS	HAVE	YOU	
FELT	VERY	HEALTHY	
AND	FULL	OF	
ENERGY?	

45.	DURING	THE	
PAST	30	DAYS,	FOR	
ABOUT	HOW	
MANY	DAYS	HAVE	
YOU	FELT	VERY	
HEALTHY	AND	FULL	
OF	ENERGY?	

"5"	has	two	conceptual	meanings;	
phrase	has	12	other	concepts;	12/14	
of	leaf-level	matches.	

11	 5)	UNITS	 49.	UNITS	 "5"	has	two	conceptual	meanings.	
12	 2.	HOW	MUCH	DID	

THE	CHILD	WEIGH	
AT	BIRTH?	

2.	BIRTH	WEIGHT	 "Child"	is	unique;	"Birth	weight"	is	
not	mined	from	the	first.	

Dice	FP	 13	 HISTORY	OF	
SYPHILIS?	

HISTORY	OF	
STRICTURES	

Similar	spellings	different	concepts	

14	 LOW	HEDONIC	
IMAGE	30,	
APPEALING	RATING	
AFTER	MEAL	

LOW	HEDONIC	
IMAGE	04,	DESIRE	
RATING	BEFORE	
MEAL	

Similar	spellings	different	concepts	

15	 DATE	AND	TIME	
ADMITTED	TO	
CNMC	

AST	(DATE	AND	
TIME)	

Similar	spellings	different	concepts	
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Table 5.4 continued 
 

Case	 #	 DE	1	 DE	2	 Reason	
Dice	FN	 16	 H3B.	HOW	WOULD	

YOU	DESCRIBE	
YOUR	SYMPTOMS?	

1498.	OTHER	
SYMPTOMS	

Different	lexical	phrases	with	same	
meaning.	

17	 PLEASE	DESCRIBE	
YOUR	ROLE	

WHAT	IS	YOUR	
ROLE	

Different	lexical	phrases	with	same	
meaning.	

18	 29C.	DOSE	 8)	DOSE	 Leading	numbers	do	not	match.	
CB	agrees	
with	experts,	
Dice	does	not	

19	 H3B.	HOW	WOULD	
YOU	DESCRIBE	
YOUR	SYMPTOMS?	

1498.	OTHER	
SYMPTOMS	

Conceptually	the	same,	lexically	
different.	

20	 PLEASE	DESCRIBE	
YOUR	ROLE	

WHAT	IS	YOUR	
ROLE	

Conceptually	the	same,	lexically	
different.	

21	 DATE	_________	 BB42.	DATE	 Difference	in	noise.	
Dice	agrees	
with	experts,	
CB	does	not	

22	 HOW	MUCH	TIME	
DURING	THE	PAST	
FOUR	WEEKS	HAVE	
YOU	FELT	
DOWNHEARTED	OR	
BLUE?	

HOW	MUCH	OF	
THE	TIME	DURING	
THE	PAST	4	WEEKS	
HAVE	YOU	FELT	
DOWNHEARTED	
AND	BLUE?	

Very	small	lexical	difference.	
Boundary	case	for	CB	-	"Four"	and	
"4"	are	different	concepts.	

23	 V1A	F5	HISPANIC	
OR	LATINO	ORIGIN	
OR	DESCENT?	

ARE	YOU	HISPANIC,	
LATINO/A,	OR	
SPANISH	ORIGIN?	

Lexical	differences	less	significant.	
"Latino/a"	not	recognized	by	NER.	

24	 INFANT	BLOOD	
DRAW	(DATE)	

BABY	BLOOD	
DRAW	1	(DATE)	

"Baby"	and	"infant"	are	not	the	same	
concept;	more	significant	to	the	
match	ratio	than	lexical	differences.	

HCB	agree	
with	experts,	
CB	does	not	

25	 V1A	F5	HISPANIC	
OR	LATINO	ORIGIN	
OR	DESCENT?	

ARE	YOU	HISPANIC,	
LATINO/A,	OR	
SPANISH	ORIGIN?	

Boundary	case	-	adding	hierarchy	
increased	the	match	ratio	slightly.	

26	 LESION	9	-	
BRAINSTEM	MAX	
PT	DOSE	(GY)	

LESION	1	-	
BRAINSTEM	MAX	
PT	DOSE	(GY)	

Boundary	case	-	adding	hierarchy	
increased	the	match	ratio	slightly.	

27	 OTHER	MEDICAL	
HISTORY?	

PLEASE	SPECIFY	
OTHER	MEDICAL	
HISTORY	

Boundary	case	-	adding	hierarchy	
increased	the	match	ratio	slightly.	

CB agrees 
with experts, 
HCB does not 

28	 (none)	 		 HCB	only	increases	the	probability	of	
a	match	-	adds	hierarchies.	Nothing	is	
ever	removed.	
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 Similar to the CB, the false positive examples from the HCB (7,8,9 in Table 5.4) 

were also caused by underinterpretation, when the NER software did not recognize 

textual expressions. The false negatives of the HCB (10,11,12 in Table 5.4) were also 

boundary cases where the strict cutoff score (0.92) again filtered out close matches. 

Adding hierarchical codes to the bags increased the weight of a match since many codes 

in the hierarchy would match as a result of a single leaf concept code match. This was the 

reason that HCB would sometimes succeed when the CB would not (see examples 

25,26,27 in Table 5.4); in boundary cases the larger number of matched concept codes 

would push the ratio value over the cutoff boundary. 

 The lexical methods, such as Dice, produce false positives on phrases that are 

spelled similarly but are not exactly the same semantically (see examples 13,14,15 in 

Table 5.4). Lexical methods produce false negatives when lexical representations are 

different but are semantically similar, or when there is excessive noise or misspellings. 

Dice outperformed CB and HCB in several cases where small lexical differences (see 22, 

23, 24 in Table 5.4) were subject to multiple semantic interpretations. Numbers, for 

example, may be added for display ordering or they may have a significant meaning. The 

number “4” may indicate that it is the fourth question or may be part of a question related 

to, “4 times a day.” The NER software may not recognize the difference and erroneously 

overinterprets and outputs concept codes that do not represent the true meaning in the 

context of use. 

 In summary, CB and HCB errors were cased by overinterpretation, 

underinterpretation, or by the chosen boundary restrictions. Overinterpretation occurred 

when NER could not disambiguate text and would output multiple meaning codes for a 
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single concept, negatively impacting the similarity ratio. Underinterpretation occurred 

when the NER dictionary did not cover the domain adequately, creating false positives 

when two texts were really just misunderstood. And boundary restrictions resulted in 

false negatives that were very close similarity measurements but were just slightly below 

specification due to underinterpretation or overinterpretation errors. 

 

5.3 Medical Term Similarity 

5.3.1 Correlation with Physicians and Terminologists 

 The goal of testing the CB and HCB algorithms for medical term similarity was to 

test their ability to assess the degrees of similarity between two terms versus their ability 

to identify exact semantic matches. For example, “first name” and “given name” are 

exactly the same and perfectly similar, whereas “name” is only partially similar to “first 

name,” “last name,” and “middle name.” In the automatic alignment study, only the exact 

alignment was acceptable. In this study we were interested in how similar 2 medical 

terms were.  

 To assess the CB and HCB with a full range of similarity measurements, we 

utilized a published benchmark of carefully curated medical term pair similarity 

measurements. In this benchmark terminology experts and physicians evaluated pairs of 

medical concepts and ranked their similarity using a Likert scale. CB and HCB similarity 

calculations were compared with the benchmark and other published results on the same 

benchmark. Each of the compared methods was described in Section 2.3 and is 

referenced individually in Table 5.5. For reference, the breakdown for correlation 

measures is as follows [157]: 
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Table 5.5 Correlation of the similarity scores obtained with Hierarchical Concept 
Bag (HCB), Concept Bag (CB), Dice [110], Leacock and Chadorow (LC) [122], 
Wu and Palmer (WP) [123], Personalized PageRank (PPR) [121], and Context 
Vector [87]. The results obtained with the algorithms highlighted in gray were 
previously published in reference [120]. 

 
	 	Configurations	 Physicians	 Terminologists	

1	 SNOMED		
HCB	 0.72	 0.76	

2	
SNOMED		
HCB-Vector	 0.65	 0.67	

3	
UMLS	
CB	 0.46	 0.59	

4	 UMLS	
HCB	 0.46	 0.57	

5	 Dice	 0.27	 0.37	
6	 SNOMED	LC	 0.50	 0.66	
7	 UMLS	LC	 0.60	 0.65	
8	 SNOMED	WP	 0.54	 0.66	
9	 UMLS	WP	 0.66	 0.74	
10	 SNOMED	PPR	 0.49	 0.61	
11	 UMLS	PPR	 0.67	 0.76	
12	 Context	Vector	 0.84	 0.75	

 
 

• correlation = 0.0 indicates no relationship, 

• 0 < correlation <= 0.30 indicates a very weak relationship, 

• 0.30 < correlation <= 0.50 indicates a weak relationship, 

• 0 .50 < correlation <= 0.70 indicates a moderate relationship, 

• 0.70 < correlation < 1.0 indicates a strong relationship, 

• correlation = 1.0 indicates a perfect relationship. 

 Of the four CB algorithms tested (the first four methods in Table 5.5), the HCB 

using SNOMED CT concepts, “is-a” hierarchy, and Jaccard similarity measure 

performed the same as the highest published result on these data, with a correlation of 

0.76 with the terminologists and 0.72 with the physicians [87]. Overall, the HCB 
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correlation scores matched or exceeded 31 other published algorithms [120]. The seven 

highest correlating algorithms were added to Table 5.5 for comparison. Of the nine 

similarity algorithms and 31 published combinations of similarity algorithms and concept 

sources, the HCB performed as well as the Leacock and Chadorow’s (LC in chapter 2)  

path-based measure [122, also configured with SNOMED CT’s “is-a” hierarchy, 

correlating with terminologists at 0.76. All of the other published results had lower 

correlations except for one, Pedersen’s Context Vector [87], which had the highest 

reported correlation with physicians, 0.84, not surprising because the data set had been 

augmented with physician-based information content (IC) from a large physician-created 

corpus.  

 The SNOMED HCB-Vector implementation (Table 5.5) was also based on 

SNOMED CT concepts and SNOMED CT’s “is-a” hierarchy. SNOMED concept vectors 

were constructed using concepts obtained using the HCB method and then compared via 

the cosine similarity function. Using this approach, correlation with terminologists was 

0.67 and 0.65 with physicians. The only difference between the SNOMED HCB and the 

SNOMED HCB-Vector was the similarity calculation method. This result implies the 

HCB with Jaccard similarity method correlates better with human experts than it does 

when using the cosine similarity method. The HCB results are comparable with other 

respectable methods reported in the literature [87, 120]. 

 The other two CB-based approaches tested here also performed moderately well, 

with correlation scores close to or above the other reported methods. The CB and HCB 

methods using UMLS (USABase library) and Jaccard similarity measure had a 

correlation value of 0.46 with physicians, while the correlation with terminologists was 
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higher for both, 0.59 and 0.57 for the CB and HCB, respectively. The lower correlations 

are likely due to the broader concept coverage contained in UMLS (contains SNOMED 

CT) with over 1.3 million concepts [138], i.e., UMLS produces larger concept bags than 

it does when there is a reduced set of source vocabularies. In general terms this implies 

the results of the CB comparisons will be more sensitive (more hits) and less specific 

(more error), and even more so with HCB. Adding additional hierarchical concepts 

magnify this effect.  

 The Dice algorithm did not correlate well with physicians and terminologists 

comparing medical terms from the benchmark. While the medical terms in the 

benchmark are semantically similar, they do not appear to be lexically similar, illustrating 

specific examples where lexical methods are not as effective as concept similarity 

methods. 

 Overall this portion of the study demonstrated that the HCB performed 

particularly well comparing medical terms for partial similarity. We learned that the 

SNOMED HCB approach (see Table 5.5) correlated highest with terminology experts, 

tying the highest published approach and exceeding 31 others.  We learned that both the 

Jaccard similarity method and Cosine similarity method are valid methods for computing 

concept bag similarity, and that the Jaccard similarity function using HCBs was 

correlated higher with human experts than the Cosine similarity method was. We also 

learned that HCB using the SNOMED CT vocabulary set alone produced higher 

correlation with experts than it did with the MetaMap’s UMLS vocabulary set. This 

finding about SNOMED versus UMLS is consistent with other published findings on this 

benchmark [120]. 
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5.4 ICU Discharge Summary Similarity 

 Computing similarity between larger medical texts is more complex than 

comparing specific medical terms or DEs, in terms of both semantic complexity and 

computation. The methods we have explored so far have been focused on relatively short 

expressions from 1.6 to 7.1 mean words (see Table 5.1). The studied ICU discharge 

summaries (DS) have a mean size of 308.8 words, two orders of magnitude larger. Due to 

this size difference we chose a slightly different comparator lineup, TF-IDF (Section 

2.4.2), Dice (Section 2.2.2), CB (Section 3.1), and HCB (Section 3.2). The reasoning 

behind why these algorithms were selected is given in Section 4.4.2. 

 One hundred randomly selected ICU discharge summary (DS) pairs were 

evaluated by 2 terminologists and 4 algorithms, the CB (see Section 3.1), the HCB (see 

Section 3.2), Dice (see Section 2.2.2), and TF-IDF (see Section 2.4.2). The instructions 

terminologists were asked to follow are included in Section 4.4.1.   

 The results are correlations between the similarity scores given by the different 

approaches. A correlation of 0.0 indicates there was absolutely no linear relationship 

between the two sets compared, whereas a correlation of 1.0 indicates the relationship is 

perfectly linear. See the correlation results in Table 5.6. A reference for correlation value 

interpretations was provided in Section 5.2.1. 

 Determining similarity between DSs is much more complicated and challenging 

than any of the other two applications discussed above. The text size difference implies 

there is significantly more semantic complexity. Moreover, DSs include a large number 

of nonspecific common words, increasing the computational challenge of identifying the 

key words that truly characterize the document.  
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Table 5.6 ICU discharge summary similarity measurement correlations across 
algorithms CB, HCB, Dice, TF-IDF and two terminologists  

 
		 CB	 HCB	 Dice	 TF-IDF	 Terminologist	1	 Terminologist	2	

CB	 1	
	

	
	 	

	

HCB	 0.91	 1	 	
	 	

	

Dice	 0.40	 0.51	 1	 	 	 	

TF-IDF	 0.38	 0.42	 0.58	 1	
	

	

Terminologist	1	 0.15	 0.20	 0.24	 0.06	 1	 	

Terminologist	2	 0.17	 0.25	 0.23	 0.08	 0.42	 1	

 

 

 The relatively low correlation between the two terminologists is clear evidence of 

the semantic challenge. Despite this complexity, CB, HCB, and Dice were approximately 

2 to 3 times more likely to be correlated with terminology experts than TF-IDF, the 

algorithm behind industry-leading document-indexing products [131].  

 The CB and HCB similarity scores were most highly correlated with each other at 

0.91, as was expected since they were based on highly similar methodologies and 

concepts. In this study, the Dice method had the highest overall correlation with the other 

methods and the experts. 

 



 

 
 
 
 

CHAPTER 6 

 

GENERAL DISCUSSION, FUTURE DIRECTIONS, AND CONCLUSIONS 

 

6.1 General Discussion 

6.1.1 Advancing Methods for Computing Similarity 

 A new method for computing semantic similarity has been introduced and 

described, the Concept Bag method (CB). The original purpose of its creation was to 

align heterogeneous datasets by auto-aligning data elements (DE), and it performed 

particularly well at this task. Comparing the CB with Dice, the next closest non-CB 

algorithm, the performance gain of the CB reduced the amount of alignment work by 

over 5% in both tested data sets (5.54% for the controlled set and 5.18% for the 

uncontrolled set). The results were surprisingly replicable between two very different 

data sets, a small set of DEs derived from a controlled vocabulary and a very large set 

from an uncontrolled vocabulary. We consider this a significant finding that advances the 

field of biomedical data integration research. 

 

6.1.2 Expanding Concept Bags with Hierarchical Concepts 

 The Hierarchical Concept Bag (HCB) was the second configuration of the CB and 

it was essentially the same except that hierarchical semantics were added. The original 

CB contained only concept matches produced by the named-entity recognition (NER) 
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software. The HCB had the highest overall standing of the three applications. In the case 

of aligning DEs, the HCB was only second to the CB but still outperformed the other 

algorithms. On the medical term set the HCB was ranked 2nd when compared 7 to other 

well-established algorithms [120]. And comparing intensive care unit (ICU) discharge 

instructions, the HCB appeared to be second to the Dice algorithm. Due to its versatility, 

the HCB would be the best “catch-all” algorithm if requirements were unclear. 

 One of the surprises of the HCB results was that vector-based HCB correlations 

were lower than the bag-based approach for the medical term study. Vector-based 

solutions are behind many of the highly successful algorithms in the document similarity 

space [158]. One of the consequences of having a small data set with short strings was 

that there were not many concepts to establish frequency weights. HCB Vectors were not 

weighted like they are in many vector-based implementations. Weights only make sense 

when there are significant frequency metrics, however.  

 

6.1.3 Comparison with Compositional Semantics 

 “Compositional semantics” is based on the definition of compositionality, where 

the meaning of an expression is determined by the structure and the meaning of its 

components [159]. CBs and HCBs are composed of conceptual codes and are lexicon-

free, but do not support structure beyond set membership and potentially set order when 

sets are extended to vectors. They do not contain adequate structure to reverse engineer 

meaningful language-based lexical expressions, but they are compositions of semantic 

expressions (as expressed by concept codes) that are used to mathematically compare 

semantics. The CBs and HCBs are similar to compositional semantics but are not 
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considered compositional semantics as described in the literature. 

 

6.1.4 ICU Discharge Similarity 

 The first two studies had conclusive results, but the results of the ICU discharge 

summary study were inconclusive. The correlation between human experts and/or 

algorithms was too low. The terminologists who judged ICU discharge summaries were 

admittedly challenged, despite multiple verbal conversations and explicit written 

instructions. This is consistent with the literature. Human-based annotation of biomedical 

text is recognized as challenging, often requiring a multistep process to achieve modest 

consistency [160]. In this experiment terminologists were asked to make a single 

judgment between two texts averaging over 300 words each, whereas the task of 

annotating texts typically requires sentence-level interpretation. Perhaps a more granular 

approach could be followed, annotating the ICU discharge instructions at the sentence 

level first, and then using these annotations a final similarity judgment could be made.  

Whichever strategy is chosen, more effort needs to be applied to establish a suitable 

reference for correlation. 

 The only highly correlated algorithms were the CB and HCB, and this is a 

consequence of one being a derivative of the other. The high correlation between the two 

is validation that the methods are not exactly the same but perform similarly, as we saw 

in the results of the other studies. One of the weak signals that had a potentially 

interesting implication was the fact that all three non-TF-IDF methods had slightly higher 

correlations between the other methods and with terminologists. What makes this 

interesting is that it starts to form evidence that indicates that the text sizes of the ICU 
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discharge summaries may not have reached the threshold where TF-IDF starts to 

outperform the other set comparison approaches (Jaccard and Dice). The TF-IDF 

algorithm is “the one to beat” in document matching [158], although we did not find 

studies that validated a boundary or rule-of-thumb that identifies when algorithms for 

“short” strings are better than algorithms for documents. This was not a conclusive 

finding but is an interesting topic that could benefit from more research.  

 

6.1.5 Concept Bag Is Highly Configurable and Generalizable 

 The CB method is highly configurable and versatile. It was designed such that it 

could be tuned for a variety of use cases. The three primary opportunities for tuning the 

algorithm are, 1) the named-entity recognition (NER) software and underlying 

vocabularies can be changed, 2) the implementation of the concept bag can be a set or a 

weighted vector, 3) and the concept bag analysis method could be any number of 

analytical methods. Moreover, secondary configuration options include settings that can 

be manipulated on the NER software. MetaMap has nearly 100 settings and multiple 

underlying vocabularies that contain additional semantic knowledge similar to the 

SNOMED CT hierarchy. Additional tuning options for the concept bag implementation 

include the way that concept bags are populated, how concepts are selected from the 

NER tool output, and how concepts are weighted. CB analysis methods could be simple 

sets or vector-based, with a sophisticated weighting strategy. With all of these options 

there are many opportunities for further exploration.  

 All of the options available to configure the CB make it a broadly generalizable 

similarity algorithm that can be tailored to perform similarity measurements for nearly 
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any topic. 

 

6.1.6 Scalability and Performance 

 Given the datasets that were used for the studies, only the REDCap DEs were big 

enough to be a computer time/speed performance concern. The term “big” is not used in 

terms of bytes, but in terms of the number of comparisons that had to be performed. 

Comparing 899,649 DEs from 20,724 data sets requires nearly half a trillion 

comparisons. This places the REDCap DE alignment project in the “large schema 

matching” category. This study was based on matching DEs and did not scale up to 

individual data sets, although this work is feasible, based on what has been done already.  

The idea of aggregating aligned data elements is mentioned below in the future work.  

We did not find any comparison studies that were in the same category.  

 Our solution, the parallel matching [151] process (see section 4.2.7.2), was 

configured to run 256 parallel jobs using the Center for High Performance Computing 

and took 4.1 +/- 1.3 hours for all 256 jobs to complete. One of the benefits of this strategy 

is that more jobs and CPUs can be added to reduce the elapsed computing time required; 

it is highly scalable due to the fact that similarity computations can be dynamically 

subdivided and executed in parallel tasks based on the available computing resources. 

 

6.1.7 Suggested Use 

 The CB and HCB are recommended for projects where the 5% savings in errors 

outweighs the added sophistication required to implement the algorithms. The lexical 

methods are very simple and do not require terminologies, database software, or the 
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described process to implement the CB and HCB. The CB and HCB software could be 

simplified by bundling the software into a product that would behave almost as simply as 

the lexical methods, but still requires more sophisticated computational support, 

especially for large numbers of data set comparisons. The cost of implementation would 

definitely payoff in a big data project but may not be as compelling for small-ish 

alignment projects. 

 

6.2 Future Directions 

6.2.1 MetaMap Settings 

 Several discoveries and realizations occurred during and after the initial 

experiments were completed. More experience with MetaMap, for example, helped us 

recognize more opportunities for tuning MetaMap. As mentioned, MetaMap has nearly 

100 settings for configuring and tuning input and output. The first tuning target will be to 

filter out low confidence matches using MetaMap’s confidence score. The second will be 

to identify and select relevant semantic types that are associated with UMLS concepts. 

The third will focus on selecting the most relevant source vocabularies. We intend to use 

the current dataset and linear regression to identify which of these settings impact the 

output most positively.  

 

6.2.2 Aligning Data Sets and Projects 

 One of the interesting results of this method is that concept bags can be 

aggregated based on any kind grouping that is desired. The concept bag approach applies 

to a project in a similar way that large bags of words are created for large documents. 
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Converting individual DE concept bags into larger sets by performing a union of all the 

bags in a given data set creates the “data set” concept bag, and similarly for a project. Or, 

by aggregating DE alignments by data set we can identify data set alignments. This 

becomes an “n-way” matching problem [78]. Dataset matching techniques normally 

focus on 2-way matching, aligning one dataset to another. Preforming data set matching 

with these data is performing a 20,724-way matching solution. This is logically 

conceivable to imagine but is not trivial to implement, making it a great future research 

topic. Or how about comparing institutions, states, or countries? We do not understand 

where the limits are yet, but this is the idea, to learn about the concept bag approach on 

larger sets. 

 

6.2.3 Comparing Diagnosis and Procedure Codes 

 Concept bags could be created from diagnosis, procedure codes, laboratory codes, 

or using any kinds of codes. Choosing which codes and how to apply weights basically 

serves the same function as feature vector engineering that is performed for machine 

learning, except that these methods are unsupervised. The use of diagnosis codes and 

procedure codes, for example, is a particularly interesting combination. It seems intuitive 

that people who share diagnosis and procedure codes would share other things in 

common as well.  

 

6.2.4 Reducing Comparisons 

 A significant amount of the effort for performing big data set analysis is 

identifying methods that reduce the data and/or computational complexity as much as 
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possible before the analysis takes place [151, 161]. We recognized significant space- 

reduction opportunity that could be highly beneficial to bag set comparison algorithms. 

For the purposes of comparing and aligning DEs, the concept counts could be used to 

reduce the number of comparisons required before the actual comparisons are computed. 

Two DEs that have a significantly different number of concepts may not even be worth 

comparing. Assuming the DE alignment similarity cutoff point is known, the comparison 

cutoff is as follows: 

 

 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 𝑖𝑓 !"# !"!!"#!$%& , !"!!"#!$%&
!"# ( !"!!"#!$%& , !"!!"#!$%& )

≥ 𝐷𝐸 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑐𝑢𝑡𝑜𝑓𝑓     [6.1] 

 

This formula computes the maximum possible similarity score based on concept code 

counts without actually performing the set comparisons, and compares it with the DE 

alignment cutoff. If the maximum comparison score does not meet the cutoff 

requirement, no comparison is required. Time and computation savings may not be 

significant enough for small-set comparisons but would likely save time and CPU cycles 

as sets get large. Using the REDCap DE comparison set as an example, the number of 

comparisons would have been reduced to 1/30 its original size, from nearly half a trillion 

to just over 16 billion comparisons. If count comparisons are less expensive than 

computing set similarities, this has the potential to make a significant impact on the 

number comparisons that are required. 
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6.2.5 Adding Philological Relationships 

 The HCB uses SNOMED CT’s is-a hierarchy to measure similarity. Adding 

concept codes that share additional philological relationships is a natural extension of the 

work that has been performed. Semantic relationships are used to formulate concept 

definitions with 80% to 90% accuracy [162], implying that concepts with similar 

relationships would have similar definitions as well. It stands to reason that adding 

additional philological relationships to Concept Bags would have the same effect; similar 

definitions imply similar concepts. A specific strategy to accomplish this was introduced 

in Section 3.2. The idea is to pair philological relationships with concepts to create a 

composite key that becomes an additional Concept Bag set element. The added elements 

essentially add the full meaning of the concept code and philological relationship to the 

Concept Bag. We believe this is an interesting new idea that deserves additional research. 

 

6.3 Conclusions 

 Automatic alignment of heterogeneous biomedical data is very challenging due to 

the sophisticated semantics of clinical data. In this dissertation we introduced a new 

method that compares ”concept bags” to compute similarity and apply it to the automatic 

alignment problem. The algorithm was tested against two diverse data element sets, one 

from a controlled vocabulary and one from an uncontrolled vocabulary, and the new 

similarity algorithm consistently decreased the alignment error rate by more than 5% as 

compared to other well-established alignment methods. 

 To demonstrate the concept bag’s generalizability, the new method was 

configured in different ways, in two ways for the DE alignment study, in four ways for 
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the medical term similarity study, and two ways for the ICU discharge summary study. 

Evaluating medical terms for similarity, the CB ranked second among 7 well-established 

semantic similarity algorithms after it was configured to utilize SNOMED CT concept 

semantics. Measuring patient case similarity between ICU discharge instructions was 

much more complex, and human expert judgments had a very low correlation. More 

exploration needs to be performed in this area to establish a source of truth such that 

algorithms can be iteratively tuned and tested. As with most customizable algorithms, 

high performance, both in terms of algorithm accuracy performance and computational 

performance, requires iterative tuning and experimentation. Computational performance 

was measured on the largest set of comparisons, but performance was not an issue for the 

other applications. The similarity methods that were used (Jaccard and TF-IDF) have 

been proven to be highly scalable in real-world Big Data applications; it stands to reason 

that the new concept bag algorithm will scale similarly. We believe this work applies to 

large-scale data-set-alignment projects where the number of data sets is large and auto-

discovery of alignments would help to identify data sets with similar data. 
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