10,772 research outputs found

    Monte Carlo Greeks for financial products via approximative transition densities

    Full text link
    In this paper we introduce efficient Monte Carlo estimators for the valuation of high-dimensional derivatives and their sensitivities (''Greeks''). These estimators are based on an analytical, usually approximative representation of the underlying density. We study approximative densities obtained by the WKB method. The results are applied in the context of a Libor market model.Comment: 24 page

    Variational Analysis of Constrained M-Estimators

    Get PDF
    We propose a unified framework for establishing existence of nonparametric M-estimators, computing the corresponding estimates, and proving their strong consistency when the class of functions is exceptionally rich. In particular, the framework addresses situations where the class of functions is complex involving information and assumptions about shape, pointwise bounds, location of modes, height at modes, location of level-sets, values of moments, size of subgradients, continuity, distance to a "prior" function, multivariate total positivity, and any combination of the above. The class might be engineered to perform well in a specific setting even in the presence of little data. The framework views the class of functions as a subset of a particular metric space of upper semicontinuous functions under the Attouch-Wets distance. In addition to allowing a systematic treatment of numerous M-estimators, the framework yields consistency of plug-in estimators of modes of densities, maximizers of regression functions, level-sets of classifiers, and related quantities, and also enables computation by means of approximating parametric classes. We establish consistency through a one-sided law of large numbers, here extended to sieves, that relaxes assumptions of uniform laws, while ensuring global approximations even under model misspecification

    An Extended Empirical Saddlepoint Approximation for Intractable Likelihoods

    Get PDF
    The challenges posed by complex stochastic models used in computational ecology, biology and genetics have stimulated the development of approximate approaches to statistical inference. Here we focus on Synthetic Likelihood (SL), a procedure that reduces the observed and simulated data to a set of summary statistics, and quantifies the discrepancy between them through a synthetic likelihood function. SL requires little tuning, but it relies on the approximate normality of the summary statistics. We relax this assumption by proposing a novel, more flexible, density estimator: the Extended Empirical Saddlepoint approximation. In addition to proving the consistency of SL, under either the new or the Gaussian density estimator, we illustrate the method using two examples. One of these is a complex individual-based forest model for which SL offers one of the few practical possibilities for statistical inference. The examples show that the new density estimator is able to capture large departures from normality, while being scalable to high dimensions, and this in turn leads to more accurate parameter estimates, relative to the Gaussian alternative. The new density estimator is implemented by the esaddle R package, which can be found on the Comprehensive R Archive Network (CRAN)

    Online Sequential Monte Carlo smoother for partially observed stochastic differential equations

    Full text link
    This paper introduces a new algorithm to approximate smoothed additive functionals for partially observed stochastic differential equations. This method relies on a recent procedure which allows to compute such approximations online, i.e. as the observations are received, and with a computational complexity growing linearly with the number of Monte Carlo samples. This online smoother cannot be used directly in the case of partially observed stochastic differential equations since the transition density of the latent data is usually unknown. We prove that a similar algorithm may still be defined for partially observed continuous processes by replacing this unknown quantity by an unbiased estimator obtained for instance using general Poisson estimators. We prove that this estimator is consistent and its performance are illustrated using data from two models

    A selective overview of nonparametric methods in financial econometrics

    Full text link
    This paper gives a brief overview on the nonparametric techniques that are useful for financial econometric problems. The problems include estimation and inferences of instantaneous returns and volatility functions of time-homogeneous and time-dependent diffusion processes, and estimation of transition densities and state price densities. We first briefly describe the problems and then outline main techniques and main results. Some useful probabilistic aspects of diffusion processes are also briefly summarized to facilitate our presentation and applications.Comment: 32 pages include 7 figure

    Estimation of latent variable models for ordinal data via fully exponential Laplace approximation

    Get PDF
    Latent variable models for ordinal data represent a useful tool in different fields of research in which the constructs of interest are not directly observable. In such models, problems related to the integration of the likelihood function can arise since analytical solutions do not exist. Numerical approximations, like the widely used Gauss Hermite (GH) quadrature, are generally applied to solve these problems. However, GH becomes unfeasible as the number of latent variables increases. Thus, alternative solutions have to be found. In this paper, we propose an extended version of the Laplace method for approximating the integrals, known as fully exponential Laplace approximation. It is computational feasible also in presence of many latent variables, and it is more accurate than the classical Laplace method
    • …
    corecore