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Abstract: The challenges posed by complex stochastic models used in
computational ecology, biology and genetics have stimulated the develop-
ment of approximate approaches to statistical inference. Here we focus on
Synthetic Likelihood (SL), a procedure that reduces the observed and sim-
ulated data to a set of summary statistics, and quantifies the discrepancy
between them through a synthetic likelihood function. SL requires little
tuning, but it relies on the approximate normality of the summary statis-
tics. We relax this assumption by proposing a novel, more flexible, density
estimator: the Extended Empirical Saddlepoint approximation. In addition
to proving the consistency of SL, under either the new or the Gaussian
density estimator, we illustrate the method using three examples. One of
these is a complex individual-based forest model for which SL offers one of
the few practical possibilities for statistical inference. The examples show
that the new density estimator is able to capture large departures from
normality, while being scalable to high dimensions, and this in turn leads
to more accurate parameter estimates, relative to the Gaussian alternative.
The new density estimator is implemented by the esaddle R package, which
is freely available on the Comprehensive R Archive Network (CRAN).
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1. Introduction

Synthetic Likelihood (SL) (Wood, 2010) is a simulation-based inferential proce-
dure similar to Approximate Bayesian Computation (ABC) (Beaumont et al.,
2002), but with the practical advantage of requiring less tuning. In Wood (2010)
tuning is avoided partly through a Gaussian assumption on the distribution of
the statistics used to compare the data and the model output. This assumption
can be problematic, as illustrated by the following simple population dynamic
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model of an organism subject to boom and bust dynamics with stochastic ex-
ternal recruitment

Nt+1 ∼
{
Pois{Nt(1 + r)}+ εt, if Nt ≤ κ,

Binom(Nt, α) + εt, if Nt > κ,
(1)

where εt ∼ Pois(β) is a stochastic arrival process, with rate β > 0, and t =
1, . . . ,T. The population Nt grows stochastically at rate r > 0, but it crashes
if the carrying capacity κ is exceeded. The severity of the crash depends on the
survival probability α ∈ (0, 1). Two fairly natural statistics for this model are
the population mean and the number of periods during which Nt ≤ 1, the latter
being useful for identifying β. However, as Figure 1 shows, the distribution
of these statistics is far from normal, which could affect the accuracy of the
parameter estimates produced by SL. The purpose of this paper is to develop a
version of SL that relaxes the normality requirement, while retaining the tuning
free advantages of the original method. We do this by replacing the Gaussian
assumption with a new density estimator: the Extended Empirical Saddlepoint
(EES) estimator. We prove the consistency of the resulting parameter estimator,
and illustrate that the method can yield substantial inferential improvements
when multivariate gaussianity is untenable. We also provide examples where
ABC methods would require exceedingly low tolerances and low acceptance
rates in order to achieve equivalent accuracy.

The most important commonality between SL and ABC methods is that
both base statistical inference on a vector of summary statistics, s0 = S(y0),
rather than on the full data, y0. However, while ABC methods explicitly aim at
sampling from an approximation to p(θ|s0), SL provides a parametric approx-
imation to p(s0|θ) (Hartig et al., 2011). This synthetic likelihood, pSL(s

0|θ),
can then be used within a Bayesian or a classical context. Wood (2010) used
a multivariate Gaussian density to approximate the distribution of the sum-
mary statistics. Under this distributional assumption, a pointwise estimate of
the synthetic likelihood at θ can be obtained using Algorithm 1.

Algorithm 1 Estimating pSL(s
0|θ)

1: Simulate datasets Yi, . . . ,Ym from the model p(y|θ).
2: Transform each dataset Yi to a vector of summary statistics Si = S(Yi).

3: Calculate sample mean μ̂θ and covariance Σ̂θ of the simulated statistics, possibly robustly.

4: Estimate the synthetic likelihood

p̂SL(s
0|θ) = (2π)−

d
2 det

(
Σ̂θ

)− 1
2 exp

{
− 1

2
(s0 − μ̂θ)

T Σ̂−1
θ (s0 − μ̂θ)

}
,

where d is the number of summary statistics used.

The approximate posterior sampled by ABC algorithms is often of the form

pε(θ|s0) ∝ pε(s
0|θ)p(θ) =

[ ∫
I{ρ(s0, s) < ε}p(s|θ)ds

]
p(θ),
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where ε > 0 is the so-called tolerance or acceptance threshold, ρ() is a distance
function and I() is an indicator function. When pε(θ|s0) is sampled using Markov
chain Monte Carlo (MCMC) methods, ABC can be viewed as a pseudo-marginal
method (Andrieu et al., 2009) where the ABC likelihood is substituted by the
unbiased estimator

p̂ε(s
0|θ) = 1

m

m∑
i=1

I{ρ(s0,Si|θ) < ε},

with S1, . . . ,Sm ∼ p(s|θ). The choice of tolerance is critical to the performance
of ABC, as decreasing εmakes the ABC posterior closer to p(θ|s0), but decreases
the probability that any of the statistics simulated from the model will fall
within distance ε of s0. A common choice of distance function is ρ(s0, s) =
(s0−s)TQ(s0−s), where Q is a positive definite scaling matrix, needed to take
into account the fact that the elements of s might be on different scales and
possibly highly correlated. Given that the distribution of the summary statistics
depends on θ, a single scaling matrix might not be sufficient for normalizing
summary statistics simulated using different parameter values. See Fasiolo and
Wood (2015) for an example where using a scaling matrix which does not depend
on θ leads to inaccurate ABC estimates, and Prangle et al. (2017) for an adaptive
solution to this problem.

One advantage of SL, over most ABC methods, is that it does not require
the user to choose ε and that the summary statistics are scaled automatically
and dynamically by Σ̂θ. In addition, Blum (2010) showed that the convergence
rate of ABC methods degrades rapidly with d. This curse of dimensionality,
brought about by the non-parametric nature of ABC, forces practitioners to use
dimension reduction or statistics selection techniques, such as those described
by Blum et al. (2013). SL is less sensitive to the number of statistics used, due
to the parametric likelihood approximation (Price et al., 2017).

The development of approximate inferential approaches, such as SL and ABC,
has been driven by the increasing availability of computational resources and by
the challenges to model-based inference emerging in computational biology, ecol-
ogy and genetics. These methods address the issue that, for many scientifically
motivated models, the likelihood function is intractable; it may be too expensive
to evaluate, unknown, or too time-consuming to derive analytically. Further-
more, even when sophisticated integration approaches, such as particle filters
(Doucet et al., 2000), could provide consistent likelihood estimators, using ap-
proximate methods might still be preferable in practice, because automation and
robustness to implementation details. Particle filters often rely on the specific
structure of the chosen model, hence their implementation may need substantial
changes if a different model is considered. In contrast, SL and ABC treat the
model as a black box, thus allowing practitioners to rapidly explore a variety
of models. Approximate methods might also have computational advantages
over particle filters, but this depends on factors such as the specific model and
summary statistics considered. For example, the first two steps of Algorithm 1
can be computed in an embarrassingly parallel fashion, while parallelizing the
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Fig 1. a: First 50 steps of two sample paths, simulated from model (1). b and c: Marginal
distributions of the population mean and of the number of periods t during which Nt ≤ 1,
when T = 250. Both distributions are highly skewed, and the EES density achieves a much
better fit than a Gaussian approximation.

resampling step of particle filters is less straightforward (see e.g. Murray et al.
(2016)). However, the time needed to compute the summary statistics might
more than offset this advantage.

The performance of SL, ABC and particle filters has been compared in detail
by Fasiolo et al. (2016) and Everitt et al. (2015), respectively in the context of
parameter estimation for non-linear state space models and of Bayesian model
selection for Markov random field models. It is not the purpose of this paper
to provide another extensive comparison. Instead, we focus on SL, and we start
from the observation that the above-mentioned properties of this method are
not without cost. In fact, although the Central Limit Theorem (CLT) assures
asymptotic normality of many classes of statistics, improving the quality of the
multivariate normal approximation is not easy in practice. Finding a suitable
normalizing transformation is particularly challenging in the context of param-
eter estimation, because such transformation would need to ensure normality
across the parameter space. This motivates the main contribution of this work:
we relax the multivariate normality assumption, while maintaining the ease-
of-use and scalability of SL. We achieve this by proposing a flexible density
estimator, namely the EES approximation. In addition to illustrating empiri-
cally that, when the distribution of the summary statistics is far from normal,
the EES-based version of SL leads to more accurate parameter estimates than
its Gaussian alternative, we prove that maximizing the synthetic likelihood pro-
duces consistent parameter estimators, under either the EES or the Gaussian
density estimator.

The paper is organized as follows. We introduce the empirical saddlepoint
approximation in Section 2 and we propose its extended version in Section 3.
In Section 4 we clarify how the new density estimator can be used within the
context of SL and we prove the consistency of the resulting parameter estimator.
In Sections 5 and 6 we illustrate the method on model (1) and on another
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simple example, designed to show the potential limitations of ABC and of the
Gaussian version of SL, and in Section 7 we apply the method to inference
for a complex individual-based forest model, for which statistical inference is
challenging without the use of summary statistics, while the model is sufficiently
computationally costly that extensive method tuning is impractical.

2. Saddlepoint approximations

Recall that we are interested in using saddlepoint methods to closely approxi-
mate the statistics-based likelihood, p(s0|θ). However, the following discussion
is valid beyond the context of SL, hence we temporarily suppress all depen-
dencies on θ. We restore them in Section 4, which describes how the proposed
density estimator can be used within SL.

We were led to saddlepoint approximations, among other multivariate density
estimators, by the following considerations. While saddlepoint approximations
are derived from asymptotic expansions, they are often very accurate even in
small samples and, in contrast to Edgeworth approximations, they are strictly
positive and do not show polynomial-like waves in the tails. In addition, their
empirical version provides a close approximation to the density of widely used
statistics, such as M - (Ronchetti and Welsh, 1994) and L-estimators (Easton
and Ronchetti, 1986).

Saddlepoint expansions were introduced into the statistical literature by
Daniels (1954) and can be used to approximate the density function of a random
variable, starting from its moment or cumulant generating function. When S
is a continuous d-dimensional random vector, its probability density function,
p(s), is associated with the moment generating function

M(λ) = E
(
eλ

TS
)
=

∫ +∞

−∞
eλ

T s p(s) ds,

while the cumulant generating function is defined as K(λ) = logM(λ). In the
following we assume that M(λ) exists for λ ∈ I, where I is a non-vanishing sub-
set of Rd containing the origin. The Taylor series coefficient of M(λ) and K(λ),
that is the collection of higher derivatives evaluated at λ = 0, are respectively
the moments and cumulants of the random variable S. It is easy to show that
the first two cumulants are equal to the mean vector and covariance matrix of
S, that is K ′(0) = E(S) = μ and K ′′(0) = E{(S − μ)(S − μ)T } = Σ. If S is
a discrete random vector, the generating functions are obtained by substituting
the integrals with summations over the support of S.

Saddlepoint approximations rely on the one-to-one correspondence between
the cumulant generating function and the probability density function of S. For
a continuous S, the saddlepoint density is

p̂(s) =
1

(2π)
d
2 det{K ′′(λ̂)} 1

2

eK(λ̂)−λ̂T s , (2)
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where λ̂ is such that

K ′(λ̂) = s. (3)

Condition (3) is often called the saddlepoint equation. When the solution λ̂
can be found analytically, then it is plugged into (2) which leads to an analytic
saddlepoint density approximation. If the solution is not available analytically,
then the saddlepoint approximation is implicit and must evaluated by solving
(3) numerically (typically using Newton-Raphson algorithm) and then plugging

the resulting numerical solution λ̂ into (2).

The saddlepoint density is defined only on the interior, JVs , of the support,
Vs, of the original density, p(s). Another important property of p̂(s) is that it
is generally improper. A proper density can be obtained through normalization

p̄(s) =
p̂(s)∫

JVs
p̂(s)ds

.

While Durbin (1980) provides asymptotic arguments demonstrating the superior
accuracy achieved by normalized saddlepoint approximations, the normalizing
constant is often analytically unavailable and must be approximated numeri-
cally, which can be expensive when d is moderately large and the saddlepoint
equation must be solved numerically. For a discrete S the saddlepoint expres-
sion (2) still applies and can be computed across JVs , however its value can be
interpreted as an approximation to pr(S = s) only when all the elements of S
are integer-valued. Formula (2) also applies to mixed settings, where some of
the components of S are continuous, while others are discrete.

Saddlepoint approximations are typically more accurate than Gaussian ap-
proximations based on the CLT. Intuitively, this is because CLT approximations
use only the first two cumulants of the distribution, while saddlepoint methods
take into account all cumulants, hence the full shape of the cumulant generat-
ing function over its convergence region. This means that saddlepoint approxi-
mations use more information regarding the distribution, which often leads to
higher accuracy. For a comprehensive introduction to saddlepoint approxima-
tions, see Butler (2007). In particular, Section 5.2 therein provides a derivation
of (2) that does not requires any knowledge of complex analysis and that clarifies
how saddlepoint methods relate to Edgeworth and Gaussian approximations.

2.1. Empirical saddlepoint approximation

Suppose that the analytic form of K(λ) is unknown, as it generally is for
simulation-based methods such as SL. If we can simulate from p(s), then it is
possible to estimate K(λ) using the estimator proposed by Davison and Hinkley
(1988)

K̂m(λ) = log M̂m(λ) = log

(
1

m

m∑
i=1

eλ
T si

)
, (4)
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where m is the number of simulations used. Derivative estimates of K̂m(λ) are

K̂ ′
m(λ) =

∑m
i=1 e

λT sisi∑m
i=1 e

λT si
, K̂ ′′

m(λ) =

∑m
i=1 e

λT sisis
T
i∑m

i=1 e
λT si

− K̂ ′
m(λ)K̂ ′

m(λ)T .

These can be used to obtain an empirical saddlepoint approximation

p̂m(s) =
1

(2π)
d
2 det{K̂ ′′

m(λ̂m)} 1
2

eK̂m(λ̂m)−λ̂T
ms, (5)

where λ̂m is the solution of

K̂ ′
m(λ̂m) = s. (6)

Notice that K̂ ′
m(λ) is a convex combination of the simulated vectors si, hence

(6) has no solution if s falls outside the convex hull of the si’s. This limitation
is addressed in Section 3.

Feuerverger (1989) provides asymptotic results regarding how well p̂m(s) ap-
proximates p̂(s) in a univariate setting. In Appendix B.1 we show how these
carry over to the current multivariate setting. In particular, p̂m(s) converges
to p̂(s) at parametric rate O(m−1/2) for λ ∈ I/2, where I/2 is the subset of I
such that λ ∈ I/2 if 2λ ∈ I, while the convergence is slower outside this region.
Regardless of the distribution of S, s = μ = E(S) corresponds to λ = 0 ∈ I/2,
hence it might be advantageous to think of K̂ ′

m(I/2) as a region approximately
centred around μ. In Section 3 we build upon this interpretation.

3. Extended empirical saddlepoint approximation

The aim of this work is to use the flexibility of the empirical saddlepoint approx-
imation to estimate densities for which the normal approximation is poor. The
asymptotic results of Feuerverger (1989) suggest that the saddlepoint approxi-
mation should perform reasonably well in the central part of the distribution,
while its accuracy decreases in the tails. More importantly, as stated in Section
2.1, the empirical saddlepoint equation (6) has a solution only if s lies inside the
convex hull of the simulated data, so the resulting empirical saddlepoint density
is not defined outside this subset of Rd. This is problematic in the context of SL
because, whether we wish to estimate the unknown parameters by Maximum
Likelihood or MCMC, we cannot generally expect s0 to fall inside the convex
hull of the simulated statistics in early iterations. In addition, if the model of
interest is unable to generate summary statistics that are close to the observed
ones, its inadequacy should ideally be quantified by a low, rather than an un-
defined, value of the synthetic likelihood. Hence, we need a remedy that allows
us to solve (6) for any s = s0.

To motivate our solution, notice that solving (6) is equivalent to minimizing

{K̂m(λ)− λTs}2,
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which would be guaranteed to have a unique minimum, if strong convexity held.
That is, if

∃ ε ∈ R
+ such that zT K̂ ′′

m(λ)z > ε||z||2, ∀ λ, z ∈ R
d such that ||z|| > 0,

(7)
then (6) could be solved for any s. Unfortunately, the following proposition
states that this in not the case.

Proposition 1. K̂m(λ) is strictly, but not strongly, convex.

Proof. See Appendix A.1.

To address this problem, we propose to tilt K̂(λ) using a strongly convex
function. In particular, we propose to use a modified estimator

K̂m(λ, γ, s) = g(s, γ)K̂m(λ) + {1− g(s, γ)}Ĝm(λ), (8)

where Ĝm(λ) is a strongly convex function, while g(s, γ) is a function of s,
parametrized by γ, which determines the mix between the two functions. Fur-
thermore, we require

g(s, γ) : Rd → [0, 1],

g(s = μ̂, γ) = 1, g(s 	= μ̂, γ) < 1,

lim
||s−μ̂||→∞

g(s, γ) = 0. (9)

If estimator (8) is adopted and conditions (9) are met, then the saddlepoint equa-
tion (6) can be solved for any s. In fact, at s = μ̂, we have that K̂m(λ, γ, s) =

K̂m(λ) and the solution of (6) is λ̂ = 0. If s 	= μ̂, then K̂m(λ, γ, s) is strongly
convex, because the sum of a strictly and a strongly function is itself strongly
convex. This can be verified using the fact that the smallest eigenvalue of the
Hessian matrix of a strongly convex function is bounded from below by a positive
constant, together with the fact that the smallest eigenvalue of the sum of two
positive definite matrices is larger than the sum of their smallest eigenvalues.

A natural choice for Ĝm(λ) is the following parametric estimator of K(λ)

Ĝm(λ) = λT μ̂+
1

2
λT Σ̂λ, (10)

which is unbiased and consistent for multivariate normal random variables. This
leads to

K̂m(λ, γ, s) = λT μ̂+
η

2
λT Σ̂λ

+ g(s, γ)

{
1

3!

d∑
i=1

d∑
j=1

d∑
k=1

∂3K̂m

∂λi∂λj∂λk

∣∣∣∣
λ=0

λiλjλk + · · ·
}
,

where η = 1− g(s, γ)/(m− 1) appears because here Σ̂ is the standard unbiased

covariance estimator, while K̂ ′′
m(λ = 0) = mΣ̂/(m − 1). Similarly, evaluating

higher derivatives of K̂m(λ) at λ = 0 produces consistent, but biased, esti-
mators of the corresponding cumulants. Unbiased cumulant estimators are the
k-statistics (McCullagh, 1987).
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Our solution is related to that of Wang (1992), who modified the truncated
estimator of Easton and Ronchetti (1986), and to the proposal of Bartolucci
(2007), in the context of Empirical Likelihood (Owen, 2001). We refer to the
density obtained by using estimator (8) within (5) as the Extended Empirical
Saddlepoint approximation (EES). In Section 3.1 we propose a particular form
for g(s, γ).

3.1. Choosing and tuning the mixture function g(s, γ)

In Appendix A.2 we derive the MSEs of estimators (4) and (10), under normality
of S. We then base our choice of g(s, γ) on the relative MSE performance of the
two estimators. In particular, we choose

g(s, γ) =

[
(s− μ̂)T Σ̂−1(s− μ̂)

{
1 + 1

2 (s− μ̂)T Σ̂−1(s− μ̂)
}
+ 1

exp
{
(s− μ̂)T Σ̂−1(s− μ̂)

}
]γ

≈
[
MSE{Ĝm(λ)}+ 1

MSE{K̂m(λ)}+ 1

]γ
,

(11)

where γ > 0 is a tuning parameter, which determines the rate at which g(s, γ)
varies from 1 to 0, as the distance between s and μ̂ increases. Apart from
fulfilling requirement (9), function (11) has the desirable property of being
invariant under linear transformations. More precisely, if z = a + Bs and
Zi = a + BSi, for i = 1, . . . ,m, then gz(z, γ) = g(s, γ). Using this fact, it
is simple to show that EES is equivariant under such transformations, that
is log p̂zm(z, γ) = log p̂m(s, γ) − log det(B). In practice, this allows us to nor-
malize s and S1, . . . ,Sm before fitting, which generally enhances numerical
stability. This is achieved by setting a = −μ̂ and B = diag(Σ̂)−1/2, so that

log det(B) = −
∑d

i=1 log Σ̂ii/2.
Our choice (11) has two main shortcomings: it is based on a normality as-

sumption for S and, most importantly, it does not take the sample size m into
account. In regard to the first issue: using higher moments of the simulated
statistics to determine (11) might be attractive, but our experience suggests
that this would result in very unstable estimates. The second problem can be
addressed by appropriately selecting the tuning parameter γ. Its value is critical
for the performance of our method, and at first sight it not clear on what princi-
ple this choice should be based. However, saddlepoint approximations are exact
for Gaussian densities (Butler, 2007), hence γ is fundamentally a complexity-
controlling parameter, which determines the balance between two density esti-
mators: the empirical saddlepoint, which is characterized by higher flexibility
and variance, and the normal distribution, which generally has higher bias, but
lower variance. Hence, we propose to select γ by k-fold cross-validation, as de-
tailed in the Algorithm 2.

In Appendix B.2 we show that, as m and l → ∞, Algorithm 2 consistently
selects the value of γ which minimizes the Kullback-Leibler divergence between
p̄(s, γ) and p(s). The Gaussian case is recovered as γ → ∞.
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Algorithm 2 Cross-validation with nested normalization
1: Create a grid of r possible values, γ1, . . . , γr, for the tuning parameter.
2: Simulate m random d-dimensional vectors S1, . . . ,Sm from the true density p(s) and

divide them into k folds. For simplicity, assume that m is a multiple of k. Indicate with
S̄t the vectors in the t-th fold, and with S̄−t the remaining r = m(1 − 1/k) vectors. Let
p̂−t
r (s, γ) be the EES density based on the vectors in S̄−t.

3: For i = 1, . . . , r

For t = 1, . . . , k

· Estimate the normalizing constant of p̂−t
r (s, γi) by importance sampling, that

is

ẑ−t
r (γi) =

1

l

l∑
j=1

p̂−t
r (S∗

j , γi)

q(S∗
j )

, S∗
j ∼ q(s), for j = 1, . . . , l.

A reasonably efficient d-dimensional importance density q(s) can be obtained by
constructing a multivariate normal density with mean and covariance equal to the
sample mean and covariance of S̄−t. Notice that (9) and (10) assure the bound-
edness of the importance weights, under this choice of q(s).

· Using the normalized EES density,

p̄−t
r (s, γi) =

p̂−t
r (s, γi)

ẑ−t
r (γi)

,

evaluate the negative log-likelihood − log p̄−t
r (S̄t, γi).

4: Select the value γi that minimizes the negative validation log-likelihood, averaged across
the k folds.

4. Use within synthetic likelihood

We now describe how the proposed density estimator can be used within the
context of SL, hence we restore all dependencies on the model parameters, θ.
We obtain an approximate estimate of the parameters, θI , by maximizing the
synthetic likelihood based on the Gaussian approximation. This step allows us
to move toward a more likely area of the parameter space, and typically it does
not add much to the computational cost, as the Gaussian density is cheaper to
evaluate and can be estimated using fewer simulated statistics. Then, γ can be
selected using Algorithm 2, with p(s) = p(s|θI). Given γ, pointwise estimates
of the synthetic likelihood can be based on the new density estimator by using
a procedure analogous to Algorithm 1, which we describe in Appendix C.1.

In terms of computational effort, if we assume that m, the number of sum-
mary statistics simulated from p(s|θ), is much larger than d, then the cost of
evaluating the Gaussian synthetic likelihood is O(md2), which is the cost of

obtaining Σ̂θ. Calculating K̂ ′′
m(λ) has the same complexity, but solving the

empirical saddlepoint equation (6) numerically implies that K̂ ′′
m(λ) will be eval-

uated at several values of λ. The proposal described in Section 3 assures that
the underlying root finding problem is strongly convex, hence few iterations of a
Newton-Raphson algorithm are generally sufficient to solve (6) with high accu-
racy. The computational cost of a synthetic likelihood estimate is then O(lmd2),
if the normalizing constant is estimated using l importance samples. In prac-
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tice, we have not yet encountered an example where the normalizing constant
strongly depended on θ. However, the normalizing constant often varies sig-
nificantly with γ. Hence, in the examples presented in this paper, we estimate
the normalizing constant when selecting γ using Algorithm 2, but we use the
unnormalized EES density during parameter estimation.

Before testing the ESS-based version of SL on the examples, we now prove
that, under the conditions to be specified shortly, maximizing the synthetic like-
lihood leads to consistent parameter estimators. Here we denote the Gaussian-
based synthetic likelihood with p̂G(s

0|θ) and its EES-based version with
p̂S(s

0|θ). We firstly consider the Gaussian case and we prove identifiability,
which means that the (scaled) synthetic likelihood converges to a function which
is maximized at the true parameter vector, θ0. This is guaranteed under the fol-
lowing assumptions.

Assumption 1. The summary statistics depend on a set of underlying obser-
vations Y1, . . . ,Yn, and have mean and covariance matrix

μn
θ = E(Sn|θ), Σn

θ = E
{
(Sn − μn

θ)(Sn − μn
θ)

T |θ
}
,

where Sn = S(Y1, . . . ,Yn). In addition there exists δ > 0 such that, for any θ,
we have

μ̂n
θ → μθ and nδΣ̂n

θ → Σθ,

in probability, as m and n → ∞.

Assumption 2. Let ∗ψθ and ∗ψθ be, respectively, the smallest and the largest
eigenvalues of the asymptotic (scaled) covariance matrix, Σθ. There exists two
positive constants, ∗ψ and ∗ψ, such that ∗ψθ > ∗ψ and ∗ψθ < ∗ψ for any θ.

Assumption 3. μθ = μ(θ) is one to one.

Theorem 1. If Assumptions 1 to 3 hold, as m and n → ∞ the scaled syn-
thetic log-likelihood, n−δ log p̂G(s

0|θ), is asymptotically proportional to a func-
tion, fθ0(θ), which is maximal at θ = θ0.

Proof. See Appendix A.3.

Here Assumption 1 guarantees pointwise convergence to fθ0(θ), while As-
sumptions 2 and 3 assure identifiability. The fact that fθ0(θ) is maximal at the
true parameter is not itself sufficient to assure weak consistency, which is instead
guaranteed under the additional condition that the convergence of the Gaussian
synthetic likelihood is uniform (Van der Vaart, 2000). To assure this, we make
the following assumptions.

Assumption 4. The parameter space, Θ ⊂ R
p, is compact and convex.

Assumption 5. The derivatives of μ̂n
θ and nδΣ̂n

θ are continuous and dominated
by two Op(1) positive random sequences, an,m and bn,m. More precisely∣∣∣∣

∣∣∣∣∂μ̂n
θ

∂θk

∣∣∣∣
∣∣∣∣
2

≤ an,m, and

∣∣∣∣
∣∣∣∣∂nδΣ̂n

θ

∂θk

∣∣∣∣
∣∣∣∣
2

≤ bn,m,

for k = 1, . . . , q and for any θ ∈ Θ.
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Assumption 6. Let ∗ψ̂
n
θ and ∗ψ̂n

θ be, respectively, the smallest and the largest

eigenvalue of nδΣ̂n
θ and assume that there exist two Op(1) positive random se-

quences, cn,m and un,m, such that

(
∗ψ̂

n
θ

)−1 ≤ cn,m, and ∗ψ̂n
θ ≤ un,m,

for any θ ∈ Θ.

Assumption 7. The derivatives of the asymptotic mean vector, μθ, and (scaled)
covariance matrix, Σθ, are bounded. In particular, there exist two positive con-
stants, Mμ and MΣ, such that∣∣∣∣

∣∣∣∣∂μθ

∂θk

∣∣∣∣
∣∣∣∣
2

≤ Mμ, and

∣∣∣∣
∣∣∣∣∂Σθ

∂θk

∣∣∣∣
∣∣∣∣
2

≤ MΣ,

for any θ ∈ Θ.

Newey (1991) shows that pointwise convergence in probability, proved as
part of Theorem 1, implies uniform convergence as long as: Assumption 4 holds;
the derivatives of n−δ log p̂G(s

0|θ) are continuous and dominated by an Op(1)
random sequence; fθ0(θ) is equicontinuous. Hence, in the Gaussian case, proving
consistency requires only assuring that the last two requirements are met.

Theorem 2. Let θ̂ be the maximizer of the Gaussian synthetic likelihood. If
Assumptions 1 to 7 hold, then θ̂ converges in probability to θ0, as m and n → ∞.

Proof. See Appendix A.4.

We now consider the EES-based synthetic likelihood, and we focus on the
un-normalized density estimator, which is cheaper to compute in practice. To
prove identifiability we require the two following conditions to hold, in addition
to Assumptions 1, 2 and 3.

Assumption 8. For every n, the moment generating function of Sn exists for
λ ∈ I, where I is a non-vanishing subset of Rd containing the origin.

Assumption 9. Let γ̂n
θI

be the chosen tuning parameter, corresponding to sim-
ulation effort m and sample size n. As m and n → ∞, there exists a constant
c > 0 such that

Prob(γ̂n
θI

< c) → 0,

for any initialization θI .

Theorem 3. If Assumptions 1, 2, 3, 8 and 9 hold, as m and n → ∞ the
scaled synthetic log-likelihood, n−δ log p̂S(s

0|θ), is asymptotically proportional
to a function, fθ0(θ), which is maximal at θ0.

Proof. See Appendix A.5.

Notice that the asymptotic function, fθ0(θ), mentioned in Theorems 1 and 3,
is the same under either density estimator. As in the Gaussian case, weak con-
sistency is guaranteed under identifiability and uniform convergence to fθ0(θ).
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Given Assumption 4, and the fact that the equicontinuity of fθ0(θ) has already
been proven in the proof of Theorem 2, uniform convergence is guaranteed as
long as the derivatives of n−δ log p̂S(s

0|θ) are continuous and dominated by an
Op(1) sequence. In the Gaussian case this was assured under assumptions on

the derivatives of μ̂n
θ and nδΣ̂n

θ , and on the eigenvalues of the latter. Given the
complexity of the EES density, under this density estimator we prefer to impose
conditions directly on n−δ log p̂S(s

0|θ), rather than on K(λ), K ′(λ) and K ′′(λ).

Assumption 10. The derivatives of the synthetic log-likelihood based on the
EES density are continuous and dominated by an Op(1) random sequence, vn,m,
that is ∣∣∣∣∂n−δ log p̂S(s

0|θ)
∂θk

∣∣∣∣ ≤ vn,m,

for k = 1, . . . , q and for any θ ∈ Θ.

Theorem 4. Let θ̂ be the maximizer of the EES-based synthetic likelihood. If
Assumptions 1, 2, 3, 4, 7, 8, 9 and 10 hold, then θ̂ converges weakly to θ0, as
m and n → ∞.

Proof. Theorem 3 assures pointwise convergence and identifiability under As-
sumptions 1, 2, 3, 8 and 9. Pointwise converge, together with Assumptions 4,
7 and 10 guarantee uniform convergence in probability (Newey, 1991). Uni-
form convergence and identifiability are sufficient conditions for weak consis-
tency (Van der Vaart, 2000).

In the examples, we maximize the synthetic likelihood using a special case of
the Iterated Filtering (IF) procedure, firstly proposed by Ionides et al. (2006).
The convergence properties of this algorithm have been studied in detail by
Ionides et al. (2011) in the context of state space models, while Doucet et al.
(2013) explicitly pointed out that IF can be used as a general likelihood opti-
mizer. While Doucet et al. (2013) considered cases where the likelihood can be
evaluated exactly, we have verified empirically that the algorithm works well
also when the likelihood is estimated with Monte Carlo error. We preferred
using IF over stochastic gradient methods based of finite differences (see e.g.
Spall (2005)), because at each iteration IF updates the most recent parameter
estimate using a convex combination of perturbed parameter vectors. In our
experience this convex update makes unlikely that the optimizer will suddenly
diverge when the update is performed. Appendix C.2 details the basic steps of
this procedure.

5. Simple recruitment, boom and bust model

Figure 1a shows two trajectories simulated from model (1), using parameters
r = 0.4, κ = 50, α = 0.09 and β = 0.05. To compare ABC with the Gaussian and
EES-based version of SL, we simulate 100 pseudo-observed datasets of length
T = 300 using the above parameters. Given that we are not interested in esti-
mating N0, we discards the first 50 times steps to lose any transient behaviour
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Fig 2. MLE estimates obtained using EES SL versus MAP estimates produced by ABC, under
model (1). The dashed lines and the black crosses indicate, respectively, the mean estimates
under each method and the true parameter values.

from the system. We use the remaining 250 steps of each trajectory to com-
pute the following summary statistics: mean and smallest population, number
of times the population consists of one or less individuals, number of population
peaks and square-root of the minimal time gap between two consecutive peaks
(a peak is occurring at time t if Nt+1−Nt ≤ −30). Under ABC, we obtain MAP
estimates of the model parameters using the approach of Rubio et al. (2013).
This consists of sampling the approximate posterior, and then maximizing a
kernel density estimate of it. We perform the sampling step using the MCMC
approach of Marjoram et al. (2003), and we maximize the approximate posterior
using the mean shift algorithm (Fukunaga and Hostetler, 1975). The ABC tol-
erance was chosen using the approach of Wegmann et al. (2009), which involves
simulating a large number of parameter vectors from the prior, then simulating
a statistics vector from the model using each of them and selecting ε so that
only a small percentage of these are accepted. We use 106 simulations for tuning
and 10−3 as target acceptance rate. The scaling matrix for ABC is a diagonal
matrix, Q, where Qii is the reciprocal of the sample standard deviation of the
i-th summary statistic, calculated using all the 106 simulated statistics vectors.
We use the uniform priors r ∈ (0, 1), κ ∈ (10, 80), α ∈ (0, 1) and β ∈ (0, 1),
so that MLE and MAP estimates are equivalent. For SL we use m = 5 × 103

and estimate γ = 4 × 10−4 using Algorithm 2, with l = 104. While Appendix
C.4 gives further details about the simulation setting, it is important to point
out here that we use the same number of simulations from the model under all
methods.

Figure 2 compares the estimates obtained using ABC and EES-based SL,
while Table 1 reports the true parameters, together with the means and RMSEs
for all three methods. ABC struggles to identify the arrival rate, β, and it often
grossly overestimates r and underestimates κ, so that its RMSE performances is
substantially worse overall than that of either SL method. Comparing the syn-
thetic likelihood methods to each other, EES-SL has lower RMSE than Gaussian
SL for all parameters. The mean for β is also substantially closer to the true
parameter for EES-SL, as expected given the shape of the distribution of the
most relevant statistic, shown in Figure 1c. This very simple example clearly
illustrates that EES-SL offers non-negligible benefits when important statistics
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Param. Truth ABC Gaus. SL EES SL
r 0.4 0.36(0.15) 0.45(0.11) 0.44(0.097)
κ 50 45.7(8.5) 51.7(4.8) 51.4(4.5)
α 0.09 0.063(0.05) 0.062(0.057) 0.061(0.054)
β 0.05 0.424(0.467) 0.105(0.073) 0.075(0.044)

Table 1

True parameters, means and RMSEs (in parentheses) of the estimates using ABC and the
two version of SL, for model (1). For each parameter, the lowest RMSE is underlined.

Fig 3. Shifted exponential model. a: Curves from 10-fold cross-validation, the black line is
their average. b: True Exp(β) density (black), EES (dashed) and normal (dotted) approxima-
tion.

are highly non-Gaussian.

6. Multivariate shifted exponential distribution

Here we consider a toy example, whose purpose is illustrating how the perfor-
mance of the Gaussian and EES versions of SL compares with that of tolerance-
based ABC algorithms, as the dimensionality of the model increases. In partic-
ular, let S be a d-dimensional random vector, where each marginal follows a
shifted exponential distribution

Sk ∼ θk + Exp(β), for k = 1, . . . , d. (12)

Here we choose β = 0.5 and θ1 = · · · = θd = 0. The plot in Figure 3a contains the
results of a 10-fold cross-validation run, obtained using d = 10, l = 103 and m =
104. The cross-validation curve is minimized by γ = 5 × 10−3, and the plot in
Figure 3b shows the true and approximate marginal densities of one component
Sk. The EES approximation to the marginal, obtained by marginalizing the
d-dimensional fit, is clearly more accurate than a normal density.

To demonstrate the usefulness of EES in the context of SL, we use it to
estimate the shifts θ1, . . . , θd, all of which are equal to 0. In particular, we
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simulate a single vector of observed statistics, s0, from (12), and we maximize
the resulting synthetic likelihood, using either a Gaussian density or EES. Given
that SL and ABC algorithms are often motivated as approximations to full
likelihood inference, all the MSEs reported in the remainder of this section
quantify deviations from the full MLE, which is s0, not from the true parameters.
Hence, the bias of Gaussian SL estimates is 1/β. By averaging the squared
errors across the 10 dimensions, we obtain MSEs equal to 3.8 and 0.56, using the
normal and the EES approximation respectively. In an analogous 20-dimensional
run, using m = 5 × 104, the MSE was reduced from 4.1 to 1.26. P-values from
t-test for differences in log-absolute errors were around 10−6 in both runs.

It is possible to derive analytically how a tolerance-based ABC approximation
would perform under this model. The details are reported in Appendix C.3.
Assume that the likelihood p(s0|θ) is approximated by

pε(s
0|θ) = p(||s0 − s||∞ < ε|θ) =

d∏
k=1

pε(s
0
k|θk),

where

pε(s
0
k|θk) = p(|sk − s0k| < ε|θk) =

∫ ∞

0

I(|u− s0k| < ε)p(u|θk)du,

for k = 1, . . . , d. Here ε > 0 is the ABC tolerance and I() is an indicator
function. Given that we are interested in deviations from the full MLE, we can
impose s0 = 0 without loss of generality. If we use independent uniform priors
on [ψ, 0] for each parameter, where ψ < −ε, the posterior mode is at θk = −ε,
for k = 1, . . . , d. Hence, the MSE corresponding to the MAP estimate is equal
to ε2. This implies that, to achieve MSEs equal to those of EES, ε would need
to be set to

√
0.56 and

√
1.26, respectively in the 10 and 20-dimensional setting.

The corresponding acceptance probabilities, obtained by simulating statistic
vectors using parameters θ fixed to the MAP, are of order 10−3 and 10−4. In
40 dimensions, obtaining an MSE equal to 2 would lead to an acceptance ratio
at the MAP of order 10−5. Notice that these are upper bounds, because the
acceptance probability is maximal at the MAP.

This analysis suggests that, in order to match the MSE achieved by SL, the
computational budget of an ABC algorithm would need to be increased rapidly
as the number of dimensions grows. Further, the relation between ε and the
MSE is generally not known in practice. A popular approach, which we adopted
in Section 5, is to simulate many parameter vectors from the prior, use each
of them to simulate a statistics vector from the model and select ε so that a
small percentage of the simulated parameters and statistics are accepted. To
quantify how the computational cost of this tuning phase depends on the prior,
we reverse this process and assume that the values of ε are as given above. In
10 dimensions, ψ would need be in [−2.1,−ε], in order to achieve an acceptance
probability of order 10−4, while in 20 dimension, ψ ∈ [−1.9,−ε] leads an accep-
tance probability of order 10−5. Hence, to obtain only just tolerable acceptance
rates during the tuning phase, very accurate prior information must be available,
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especially in high dimensions. In an applied setting, prior information is often
rather vague, hence ε needs to be tuned using more sophisticated approaches,
such as the sequential algorithm of Toni et al. (2009). While such methods can
alleviate the effort needed to select ε, performing extensive ABC tuning runs is
still onerous when working with computationally intensive models, such as the
one described in the next section.

7. Formind forest model

7.1. The model

To test our proposal in a realistic setting, we consider Formind, an individual-
based model describing the main natural processes driving forests dynamics.
Here we describe its basic features, while we refer to Dislich et al. (2009) and to
Fischer et al. (2016) for detailed descriptions of the model and of the scientific
questions it can be used to address.

The model describes the growth and population dynamics of tree individuals
in a simulation area that is divided in 20 × 20m patches, with individual trees
being assigned explicitly to one patch. Tree species with similar characteristics
are grouped into Plant Functional Types (PFTs). A constant input of seeds
deposits on average sj seeds of the j-th PFT per hectare per year. The main
factor determining both seed establishment and growth is the light climate in
the patch. For example, pioneer types will establish only in patches relatively
free of overshadowing trees, while late successional trees are able to grow below
a dense canopy. Trees are subject to a baseline mortality rates mj , which is
specific to each PFT.

In the context of Formind, the need for approximate simulation-based meth-
ods comes from the complexity of the model. Indeed, Formind was developed
with a focus on ecological plausibility, rather than statistical tractability, and
most of its submodels describe highly non-linear biological processes, contain-
ing one or more sources of randomness. Most importantly, the raw output of
Formind is the collection of all the characteristics of individual trees in the sim-
ulations area, which obviously do not correspond to individuals present in the
actual survey data. Hence, it is necessary to work with summary statistics.

Formind is computationally intensive even when few PFTs are included and,
given initial conditions and parameters, the simulated forest needs to be run for
several hundred years, before the distribution of the summary statistics reaches
equilibrium. This means that, from a practical point of view, it is critical to
avoid lengthy tuning runs, such as those needed to select the tolerance ε in
ABC methods.

7.2. Simulation results

We consider two PFTs, pioneer and late successional, and we reduce the model
output to 6 summary statistics. In particular, to verify whether then new density
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Param. Truth Gaus. SL EES SL P-value
μpio 0.05 0.047 (0.014) 0.054 (0.007) 0.002
μsuc 0.005 0.0093 (0.0065) 0.0061 (0.0016) 0.003
spio 80 108.4 (41.1) 91.6 (26.2) 0.07
ssuc 20 31.6 (15.7) 23.2 (4.7) 0.003

Table 2

Formind model: true parameters, means and RMSEs (in parentheses) of the estimates using
the normal and the EES estimators. P-values for differences in log-absolute errors have been

calculated using t-tests.

estimator can deal with large departures from normality, we used the following
transformed statistics

Sjk = α

Cjk−ψjk
σjk

jk , for j ∈ {1, 2}, k ∈ {1, 2, 3},

where Cjk is the number of trees of the j-th PFT falling in the k-th diame-
ter class, while αjk, ψjk, and σjk are constants, whose values are reported in
Appendix C.5. The diameter categories used for each PFT correspond to trees
with small, medium or large diameters.

We simulated 24 datasets from the model and estimated the baseline mortal-
ity rates and seed input intensities of the two PFTs by maximizing the synthetic
likelihood, using both the normal and the EES approximations. In both cases
we used m = 104 simulated summary statistics and, under EES, γ was fixed
to 5.5× 10−3, chosen using Algorithm 2 with l = 103. Table 2 reports the true
parameters, together with the means and RMSEs of the estimates, from the
normal or the EES approximations. See Appendix C.5 for more details about
the optimization setting.

Using the EES, rather than the normal approximation, leads to lower MSEs
for all model parameters. The plots in Figure 4 compare the marginal distri-
butions of the summary statistics, simulated from the model using the true
parameter values, with those obtained by simulating random vectors from EES,
fitted to the simulated statistics using the same values of γ and m used during
the optimization. To simulate random vectors from EES we used importance
sampling with the same Gaussian importance density used in Algorithm 2, and
we then obtained an un-weighted sample by re-sampling the resulting 2 × 105

importance samples. EES gives a good fit to the marginal distributions of the
summary statistics, all of which are far from normal.

8. Conclusions

In this work we have relaxed the normality assumption, which characterized the
original formulation of SL, by proposing a novel, more flexible, density estimator.
As the examples show, EES scales well with the number of summary statistics
used and it is able to model densities for which a normal approximation is clearly
inadequate. This in turn can lead to better accuracy in parameter estimation.
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Fig 4. Marginal distributions of summary statistics corresponding to small, medium and large
pioneers (a, b, c) and successionals (d, e, f), in the Formind model.

Importantly, using EES rather than a Gaussian density, does not add much
to the tuning requirements of SL. In fact, the only parameter of EES, γ, can be
selected using standard statistical tools, such as cross-validation. In the context
of SL, and of approximate methods in general, having little tuning requirements
is an important feature, since it allows practitioners to focus on identifying
informative summary statistics, rather than on other aspects of the inferential
procedure.

We have shown that, if fairly general conditions on the distribution of the
summary statistics and on the underlying model hold, maximizing the synthetic
likelihood function leads to consistent parameter estimators, under either EES
or a Gaussian density estimator. Given the generality of the conditions assumed
here, we have treated EES as a non-parametric density estimator, as suggested
by Feuerverger (1989). However, the use of empirical saddlepoint approximations
has previously been considered for particular classes of statistics, such as M-
estimators (Monti and Ronchetti, 1993; Ronchetti and Welsh, 1994) and L-
statistics (Easton and Ronchetti, 1986). Hence, it would be interesting to verify
whether making additional assumptions on the summary statistics would allow
us to assess the asymptotic efficiency of the parameter estimates produced by the
EES-based version of SL or, as suggested by a reviewer, to prove the consistency
of β̂ by exploiting pre-existing results concerning the relative error properties
of empirical saddlepoint approximations.

From a practical point of view, the computational efficiency of SL is of critical
importance. When the ESS density is normalised by importance sampling, the
saddlepoint equation has to be solved for each importance sample, S∗

j . Given
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that samples that are close to each other should lead to similar solutions to (6),
it might be possible to devise an efficient scheme that reduces the number of
Newton steps needed to solve (6) by using neighbouring solutions for initial-
ization. Another possibility would be adapting the methods of Gutmann and
Corander (2016), Wilkinson (2014) and Meeds and Welling (2014), who pro-
posed using Gaussian Processes to increase the computational efficiency of SL
and ABC methods. The first two proposals, being based on pointwise likelihood
estimates, could be used in conjunction with EES. Meeds and Welling (2014)
model only the first two moments of the simulated statistics, hence it is not
clear whether their approach could be modified to take higher moments into
account, as the new density estimator does.

Appendix A: Main theoretical results

A.1. Proof of Proposition 1

Define

wi =
eλ

T si∑m
i=1 e

λT si
, s̄ = K̂ ′(λ) =

∑m
i=1 wisi∑m
i=1 wi

, i = 1, . . . ,m, (13)

and notice that K̂ ′′(λ) is positive semi-definite

zT K̂ ′′(λ)z = zT
∑m

i=1 wi(si − s̄)(si − s̄)Tz

=
∑m

i=1 wiz
T (si − s̄)(si − s̄)Tz

=
∑m

i=1 wi

{
zT (si − s̄)

}2 ≥ 0,

for all z ∈ R
d such that ||z|| > 0. In addition, define qi = si − s̄ and assume

that
r = rank [q1, . . . , qm] = d. (14)

Then K̂ ′′(λ) is positive definite and K̂(λ) is strictly convex. In fact, suppose
that there exists a non-zero vector z such that zT K̂ ′′(λ)z = 0, which implies
zTqi = 0 for i = 1, . . . ,m. Given that z can be expressed as a linear combination
of q1, . . . , qm, this would imply that

zTz = (b1q1 + · · ·+ bmqm)Tz = 0,

which contradicts the fact that z is a non-zero vector. Now, define

J ⊂
{
1, . . . ,m

}
such that λTsi = α > 0 for all i ∈ J,

λTsi < α for all i /∈ J,

examination of (13) shows that for all i, j such that j ∈ J , i /∈ J we have

lim
c→∞

wi =
limc→∞ ec(λ

T si−λT sj)

limc→∞
∑m

k=1 e
c(λT sk−λT sj)

=
0

Card(J)
= 0,
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while for all i, j such that i, j ∈ J we have

lim
c→∞

wi =
limc→∞ ec(λ

T si−λT sj)

limc→∞
∑m

k=1 e
c(λT sk−λT sj)

=
1

Card(J)
.

Hence

lim
c→∞

s̄ = lim
c→∞

K̂ ′(cλ) = lim
c→∞

m∑
i=1

wisi =
1

Card(J)

m∑
i∈J

si,

and

lim
c→∞

λTqi = lim
c→∞

λT (si − s̄) = λT

{
si −

1

Card(J)

∑
i∈J

si

}
= α− α = 0,

for all i ∈ J . Finally, we choose z = λ and obtain

lim
c→∞

λT K̂ ′′(cλ)λ =

m∑
i=1

lim
c→∞

wi lim
c→∞

(
λTqi

)2
=

1

Card(J)

∑
i∈J

lim
c→∞

(
λTqi

)2
= 0,

which implies that K̂(λ) is not strongly convex.

A.2. Mean squared errors of the CGF estimators

Firstly notice that, irrespective of the distribution of S, M̂(λ) is unbiased. If S

is normally distributed, eλ
TS follows a log-normal distribution and

M(λ) = eμ+ 1
2λ

TΣλ, var
{
M̂(λ)

}
=

1

m

(
eλ

TΣλ − 1
)
e2μ+λTΣλ,

with the saddlepoint equation (3) being solved by

λ̂ = Σ−1(s− μ). (15)

In order to approximate the MSE of (4) as a function of λ, we firstly approx-
imate its expected value by Taylor expansion around M(λ)

E
{
K̂(λ)

}
= E

[
logM(λ) +

1

M(λ)

{
M̂(λ)−M(λ)

}
−

1

2M(λ)2
{
M̂(λ)−M(λ)

}2
+ · · ·

]

= logM(λ)−
1

2M(λ)2
var

{
M̂(λ)

}
+O(m−2).

Similarly we have that

E
{
K̂(λ)2

}
= E

[{
logM(λ)

}2
+

2 log{M(λ)}
M(λ)

{
M̂(λ)−M(λ)

}
+

{
1

M(λ)2
−

logM(λ)

M(λ)2

}{
M̂(λ)−M(λ)

}2
+ · · ·

]

=
{
logM(λ)

}2
+

{
1

M(λ)2
−

logM(λ)

M(λ)2

}
var

{
M̂(λ)

}
+O(m−2),



1566 F. Fasiolo et al.

hence

var{K̂(λ)} = E
{
K̂(λ)2

}
− E

{
K̂(λ)

}2

=
1

M(λ)2
var

{
M̂(λ)

}
−

1

4M(λ)4

[
var

{
M̂(λ)

}]2
+O(m−2).

Finally

MSE{K̂(λ)} = Bias{K̂(λ)}2 + var{K̂(λ)}

=
1

M(λ)2
var

{
M̂(λ)

}
+O(m−2)

=
1

m

(
eλ

TΣλ − 1
)
+O(m−2)

=
1

m

{
e(s−μ)TΣ−1(s−μ) − 1

}
+O(m−2),

(16)

where the last equality holds due to (15). The O(m−2) term in (16) derives from

E

[{
M̂(λ)−M(λ)

}3]
= E

[{
1
m

∑m
i=1 e

λTSi − E(eλ
TS)

}3]

=
1

m3

∑m
i=1 E

[{
eλ

TSi − E(eλ
TS)

}3
]

=
1

m2
μ3

(
eλ

TS
)
,

where μ3(X) is the third central moment of a random variable X and the second
equality is justified by independence.

Estimator (10) is unbiased and consistent, if S is normally distributed, hence

MSE{Ĝm(λ)} = var{Ĝm(λ)} = λT var(μ̂)λ+
1

4
var

(
λT Σ̂λ

)
,

due to the independence between μ̂ and Σ̂ for normally distributed random
variables (Basu’s theorem). In addition, as m goes to infinity we have, from
Rencher and Christensen (2012), that

(m− 1)Σ̂ =

m∑
i=1

(Si − μ̂)(Si − μ̂)T → W , where W ∼ Wishart(Σ,m− 1),

and from Rao (2009)

λTWλ ∼ τ2Q, where τ2 = λTΣλ and Q ∼ χ2
m−1,

hence, by using (15), we obtain

mMSE{Ĝm(λ)} → λ̂TΣλ̂+
m

2(m− 1)
(λ̂TΣλ̂)2

→ λ̂TΣλ̂
(
1 +

1

2
λ̂TΣλ̂

)
= (s− μ)TΣ−1(s− μ)

{
1 +

1

2
(s− μ)TΣ−1(s− μ)

}
.
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A.3. Proof of Theorem 1

The Gaussian synthetic log-likelihood is proportional to

n−δ log p̂G(s
0|θ) ∝ −(s0 − μ̂n

θ)
T
(
nδΣ̂n

θ

)−1
(s0 − μ̂n

θ)− n−δ log det(Σ̂n
θ). (17)

Assumption 1 implies that

n−δ log det(Σ̂n
θn

−δnδ) = n−δ
{
log det(Σ̂n

θn
δ)− dδ logn

}
= Op(n

−δ) +O(n−δ logn),

so, as n and m → ∞, the r.h.s. of (17) converges in probability to

fθ0(θ) = −(μθ0 − μθ)
T Σ−1

θ (μθ0 − μθ),

for any θ. Here μθ0 is the asymptotic mean vector at true parameters θ0. Then

fθ0(θ) = −(μθ0 − μθ)
T UθΨ

−1
θ UT

θ (μθ0 − μθ) = −zT
θ Ψ

−1
θ zθ,

where UθΨθU
T
θ is the eigen-decomposition of Σθ, and we defined zθ =

UT
θ (μθ0 − μθ). Now, if θ 	= θ0, then Assumption 3 assures that ||zθ||2 =

||μθ0 − μθ||2 > 0 which, together with Assumption 2, guarantees that

fθ0(θ) = −
d∑

i=1

1

(Ψθ)ii
(zθ)

2
i ≤ − 1

∗ψ
||zθ||22 < 0.

Given that fθ0(θ0) = 0, this function is maximized at θ0, which implies identi-
fiability under a Gaussian density estimator.

A.4. Proof of Theorem 2

Given Assumption 5 and the fact that all the functions involved in
n−δ log p̂G(s

0|θ) are continuously differentiable, this function is continuously
differentiable itself, due to the chain rule. We then have to show that its deriva-
tive is dominated by an Op(1) random sequence. Consider the partial derivative
of the log-determinant w.r.t. the k-th parameter∣∣∣∣∂ log det(nδΣ̂n

θ)

∂θk

∣∣∣∣ =
∣∣∣∣Tr

[(
nδΣ̂n

θ

)−1 ∂nδΣ̂n
θ

∂θk

]∣∣∣∣
≤ Tr

[∣∣∣Ûn
θ

∣∣∣∣∣∣(Ψ̂n
θ

)−1
∣∣∣∣∣∣(Ûn

θ )
T
∣∣∣
∣∣∣∣∂nδΣ̂n

θ

∂θk

∣∣∣∣
]
,

where Ûn
θ Ψ̂

n
θ(Û

n
θ )

T is the eigen-decomposition of nδΣ̂n
θ . Then∣∣∣∣∂ log det(nδΣ̂n

θ)

∂θk

∣∣∣∣ ≤ 1

∗ψ̂n
θ

Tr

[∣∣∣Ûn
θ

∣∣∣∣∣∣(Ûn
θ )

T
∣∣∣
∣∣∣∣∂nδΣ̂n

θ

∂θk

∣∣∣∣
]
≤ d

∗ψ̂n
θ

d∑
i=1

d∑
j=1

∣∣∣∣∂nδΣ̂n
θ

∂θk

∣∣∣∣
ij

.

(18)
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Now, consider the derivative of the inverse (scaled) covariance matrix

∣∣∣∣
∣∣∣∣∂

(
nδΣ̂n

θ

)−1

∂θk

∣∣∣∣
∣∣∣∣
2

=

∣∣∣∣
∣∣∣∣(nδΣ̂n

θ

)−1 ∂nδΣ̂n
θ

∂θk

(
nδΣ̂n

θ

)−1
∣∣∣∣
∣∣∣∣
2

≤
∣∣∣∣
∣∣∣∣∂nδΣ̂n

θ

∂θk

∣∣∣∣
∣∣∣∣
2

∣∣∣∣
∣∣∣∣(nδΣ̂n

θ

)−1
∣∣∣∣
∣∣∣∣
2

2

,

but ∣∣∣∣∣∣(nδΣ̂n
θ

)−1
∣∣∣∣∣∣
2
=

∣∣∣∣∣∣Ûn
θ

∣∣∣∣∣∣
2

∣∣∣∣∣∣(Ψ̂n
θ

)−1
∣∣∣∣∣∣
2

∣∣∣∣∣∣(Ûn
θ )

T
∣∣∣∣∣∣
2
≤ 1

∗ψ̂n
θ

,

hence ∣∣∣∣
∣∣∣∣∂

(
nδΣ̂n

θ

)−1

∂θk

∣∣∣∣
∣∣∣∣
2

≤
(
∗ψ̂

n
θ

)−2
∣∣∣∣
∣∣∣∣∂nδΣ̂n

θ

∂θk

∣∣∣∣
∣∣∣∣
2

. (19)

Under Assumptions 5 and 6, the r.h.s. of both (18) and (19) are dominated. So
if we consider∣∣∣∣∂n−δ log p̂G(s

0|θ)
∂θk

∣∣∣∣ ≤
∣∣∣∣
∣∣∣∣∂μ̂n

θ

∂θk

∣∣∣∣
∣∣∣∣
2

∣∣∣∣nδΣ̂n
θ

∣∣∣∣
2
||s0 − μ̂n

θ ||2

+ 1
2

∣∣∣∣
∣∣∣∣∂

(
nδΣ̂n

θ

)−1

∂θk

∣∣∣∣
∣∣∣∣
2

||s0 − μ̂n
θ ||22 + 1

2

∣∣∣∣∂ log det(nδΣ̂n
θ)

∂θk

∣∣∣∣,
(20)

it is clear that the r.h.s. of (20) is dominated as well, provided that ||s0 − μ̂n
θ ||2

is. Now

||s0 − μ̂n
θ ||22 = ||zn

θ0
+ μn

θ0
− μ̂n

θ0
+ μ̂n

θ0
− μ̂n

θ ||22
≤ ||zn

θ0
||22 + ||μn

θ0
− μ̂n

θ0
||22 + ||μ̂n

θ0
− μ̂n

θ ||22,

where zn
θ0

= s0 − μn
θ0
. But ||μ̂n

θ0
− μ̂n

θ ||22 is dominated, because the derivatives
of μ̂n

θ are dominated by Assumption 5 and the parameter space is compact by
Assumption 4. In addition, for any ε > 0, by Markov’s inequality

Prob
(
||zn

θ0
||22 > ε

)
≤

E
(
||zn

θ0
||22

)
ε

= n−δ
Tr

(
nδΣn

θ0

)
ε

≤
n−δ d ∗ψn

θ0

ε
, (21)

where ∗ψn
θ0

is the largest eigenvalue of nδΣn
θ0
. The r.h.s. of (21) is O(n−δ) by

Assumptions 1 and 6, hence ||zn
θ0
||22 is op(1). An identical argument shows that

||μn
θ0

− μ̂n
θ0
||22 is op(1). This proves that the derivatives of n−δ log p̂G(s

0|θ) are
dominated by an Op(1) sequence.

As explained in Section 4, this implies the uniform convergence of
n−δ log p̂G(s

0|θ) to fθ0(θ), provided that fθ0(θ) is equicontinuous. It is easy
to show to that, if the derivatives of fθ0(θ) are bounded, then equicontinuity
follows. But, under Assumptions 2 and 7, it is possible to bound the deriva-
tives of fθ0(θ), as we have just done for n−δ log p̂G(s

0|θ). This assures uniform
convergence which, together with identifiability, guarantees weak consistency
(Van der Vaart, 2000).
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A.5. Proof of Theorem 3

Taylor expanding the un-normalized EES-based synthetic log-likelihood leads
to

log p̂S(s
0|θ) = log p̂G(s

0|θ) +O
{
e−γ̂n

θ (s0−μ̂n
θ )

T
(
Σ̂n

θ

)−1
(s0−μ̂n

θ )
}
, (22)

and, by multiplying both sides by n−δ, we obtain

n−δ log p̂S(s
0|θ) = n−δ log p̂G(s

0|θ) +O
{
n−δe−γ̂n

θ nδ (s0−μ̂n
θ )

T
(
nδΣ̂n

θ

)−1
(s0−μ̂n

θ )
}
,

and, as m and n → ∞, Assumptions 1, 2 and 9 imply

n−δ log p̂S(s
0|θ) → n−δ log p̂G(s

0|θ), (23)

in probability, for any θ. Identifiability then follows from Theorem 1.

Appendix B: Further theoretical results

B.1. Asymptotics of the multivariate empirical saddlepoint
approximation

Here we follow Feuerverger (1989) but develop the results in a multivariate
setting, and with some changes in notation. For λ ∈ I, M̂m(λ) converges to
M(λ) almost surely. This convergence is uniform and extends to K̂m(λ):

sup
λ∈I

|M̂m(λ)−M(λ)| → 0, (24)

sup
λ∈I

|K̂m(λ)−K(λ)| → 0. (25)

The proof is as follows. Due to the Strong Law of Large Numbers M̂m(λ) con-
verges to M(λ) almost surely, for all λ in any countable collection {λi}. In
addition M̂m(λ) and M(λ) are both convex functions and, for such functions,
convergence on dense subsets implies uniform convergence on compact subsets
(Roberts and Varberg, 1973). This proves (24), while (25) follows by continuity
of the logarithm.

For λ in the interior of I, these results extend to derivatives of both M̂m(λ)
and K̂m(λ):

sup
λ∈ int(I)

|DiM̂m(λ)−DiM(λ)| → 0, (26)

sup
λ∈ int(I)

|DiK̂m(λ)−DiK(λ)| → 0, (27)

where i =
{
i1, . . . , id

}
and:

DiM(λ) =
∂kM(λ)

∂λi1
1 · · · ∂λid

d

, with

K∑
z=1

iz = k ∈ N.
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The proof is as follows.DiM(λ) is finite only for λ ∈ int(I). If all the elements of
i are even, then DiM̂m(λ) and DiM(λ) are convex and (26) follows as before.
Otherwise, indicate with λo the elements of λ for which the corresponding
element of i is odd. If there is an even number of components of λo which are
negative, DiM(λ) is still convex, otherwise −DiM(λ) is. Applying the uniform
convergence argument for convex functions to the two sub-cases proves (26). In

addition, DiK(λ) has the form P (λ)/M(λ)2
k

with P (λ) being a polynomial
function of DlK(λ), where l belongs to the set of all d-dimensional vector such
that:

lj ∈ N,

d∑
j=1

lj ≤ k for j = 1, . . . , d.

Given that an analogous argument holds for DiK̂m(λ), (27) is proved by conti-
nuity.

After noticing that M̂m(λ) and its derivatives are unbiased estimators of
M(λ) and its corresponding derivatives, it is straightforward to show that:

mCov
{
DiM̂m(λ1), D

jM̂m(λ2)
}
= Di+jM(λ1 + λ2)−DiM(λ1)D

jM(λ2),

for λ1, λ2 such that λ1 + λ2 ∈ I. This entails that, if we define I/2 to be
the subset of I such that λ ∈ I/2 if 2λ ∈ I, than M̂m(λ) is a

√
m-consistent

estimator ofM(λ), for λ ∈ I/2. An analogous, but asymptotic, result for K̂m(λ)
is the following:

mCov
{
DiK̂m(λ1), D

jK̂m(λ2)
}
→ Di+j

{
M(λ1 + λ2)

M(λ1)M(λ2)
− 1

}
,

where λ1 and λ2 are further restricted to the interior of I/2 if any of the elements
of i or j is greater than zero. Finally, after noticing that on I/2:

λ̂ = K̂ ′−1
(x) = λ+O(m− 1

2 ),

we have that:

p̂m(s)
p̂(s) = det{K′′(λ)}

det{K̂′′
m(λ̂)}exp

[{
K̂m(λ̂)− λ̂T K̂ ′

m(λ̂)
}
−

{
K(λ)− λTK ′(λ)

}]

= det{K′′(λ)}
det{K′′(λ)}+O(m− 1

2 )
exp

{
O(m−1/2)

}
= 1 +O(m− 1

2 ),

by Taylor expansions, which are justified by the differentiability of all the func-
tions involved. See Feuerverger (1989) for more details.

B.2. Optimality of the cross-validated extended empirical
saddlepoint

Let p(s|θ) be the true density of the statistics and p̂S(s|θ, γ) be the EES density.
Assume that we have a training set of size m, a test set of size nT and that we
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have used l simulations to normalize the density estimator. In this section we
prove that, as m, nT and l → ∞, Algorithm 2 consistently selects the value of γ
which minimizes the Kullback-Leibler divergence between p̂S(s|θ, γ) and p(s|θ).
When two folds are used, cross-validation (Algorithm 2) selects γ as follows

γ̂ = argmin
γ

{
− 1

nT

nT∑
i=1

log p̂S(si|θ, γ)
}

with si ∼ p(s|θ),

but the Weak Law of Large Numbers implies that

plim
m,l,nT→∞

− 1
nT

∑nT

i=1 log p̂S(si|θ, γ) = −
∫
log pS(s|θ, γ)p(s|θ)ds

∝
∫
log p(s|θ)

pS(s|θ,γ)p(s|θ)ds
= KL

{
pS(s|θ, γ), p(s|θ)

}
.

Hence pS(s|θ, γ̂) is the member of the pS(s|θ, γ) family with minimal Kullback-
Leibler distance from p(s|θ). This result can easily be extended to k-fold cross-
validation (k > 2).

Appendix C: Details on practical implementation and examples

C.1. Saddlepoint version of Algorithm 1

In this section we illustrate how a pointwise synthetic likelihood estimate can
be obtained using the new density estimator, rather than a Gaussian density.

C.2. The iterated filtering optimizer

Here we describe the basic iteration performed by the IF procedure. Suppose
that θ̂k is the estimate of the unknown parameters at the k-th step of the
optimization routine. This estimate is updated as follows:

1. Simulate N parameter vectors θ1, . . . ,θN from a user-defined density
p(θk+1|θ̂k) such that

E(θk+1|θ̂k) = θ̂k, var(θk+1|θ̂k) = σ2
kΣ and E(||θk+1−θ̂k||3/2) = o(σ2

k),
(28)

where σ2
k is a cooling schedule and Σ is a covariance matrix.

2. For each θi, obtain an estimate p̂SL(s
0|θi) of the synthetic likelihood,

using either the multivariate normal density or the normalized EES.
3. Update the estimate

θ̂k+1 =

∑N
i=1 θip̂SL(s

0|θi)∑N
i=1 p̂SL(s0|θi)

.
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Algorithm 3 Estimating pSL(s
0|θ) using EES

1: Simulate datasets Yi, . . . ,Ym from the model p(Y |θ).
2: Transform each dataset Yi to a vector of summary statistics Si = S(Yi).

3: Calculate sample mean μ̂θ and covariance Σ̂θ of the simulated statistics.
4: Estimate the synthetic likelihood

p̂SL(s
0|θ) = p̂m(s0, γ) =

1

(2π)
d
2 det{K̂′′

m(λ̂m, γ, s0)} 1
2

eK̂m(λ̂m,γ,s0)−λ̂T
ms0 ,

where λ̂m is the solution of the empirical saddlepoint equation

K̂′
m(λ̂m, γ, s0) = s0,

while K̂m(λ, γ, s) is given by equation (8) in the main text.
5: Optionally, normalize p̂SL(s

0|θ) by importance sampling

p̄SL(s
0|θ) = p̂m(s0, γ)

ẑm(γ)
,

where

ẑm(γ) =
1

l

l∑
i=1

p̂m(Si, γ)

q(Si)
, Si ∼ q(s), for i = 1, . . . , l.

A reasonably efficient importance density q(s) is a Gaussian density with mean vector μ̂θ

and covariance Σ̂θ .
6: Output: the unnormalized, p̂SL(s

0|θ), or the normalized, p̄SL(s
0|θ), synthetic likelihood.

Hence θ̂k+1 is a convex combination of θ1, . . . ,θN . For all the examples we used
the following cooling schedule

σ2
k = σ2k

0 , σ2
0 = 0.95.

In the shifted exponential example we performed 4 separate runs of the opti-
mizer, using either the normal or the EES approximation, in both the 10 and
20-dimensional setting.

C.3. Shifted exponential details

In one dimension, the ABC likelihood is

pε(s
0|θ) =

∫ ∞

0

I(|s− s0| < ε)p(s|θ)ds,

Without loss of generality, choose s0 = 0. If −ε ≤ θ ≤ ε we have

pε(s
0|θ) =

∫ ε

θ

p(s|θ)ds =
∫ ε

θ

βe−β(s−θ)ds =

∫ ε−θ

0

βe−βxdx = 1− e−β(ε−θ)

= F (ε− θ),

where we used the change of variable x = s − θ. Similarly, if θ < −ε, the
likelihood is

pε(s
0|θ) =

∫ ε

−ε

p(s|θ)ds = F (ε− θ)− F (−ε− θ) = e−β(−ε−θ) − e−β(ε−θ).
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Finally, pε(s
0|θ) = 0 for θ > ε. Under a uniform prior on [ψ, 0], where ψ < −ε,

the MAP is
θ̂ = argmax

θ
pε(s

0|θ) = −ε,

with pε(s
0|θ̂) = F (2ε) = 1− e−2βε. In d dimensions, the likelihood is

pε(s
0|θ) =

d∏
k=1

pε(s
0
k|θk),

due to the independence between the summary statistics. Hence, the likelihood
at the MLE is F (2ε)d, which is also the maximal probability that a simulated
statistics vector gets accepted.

In ABC the tolerance is often chosen so that a fraction α ∈ (0, 1) of the
statistics simulated from the prior falls within the tolerance. In one dimension
and for fixed ψ, the overall probability of acceptance during this process is

p(|S| < ε|ψ) =
∫ 0

ψ
p(−ε < S < ε|θ) 1

−ψdθ

= − 1
ψ

{∫ −ε

ψ

[
e−β(−ε−θ) − e−β(ε−θ)

]
dθ +

∫ 0

−ε
(1− e−β(ε−θ))dθ

}

= − 1
ψ

{
1
β

[
1 + eβψ

(
e−βε − eβε

)
− e−βε

]
+ ε

}
.

Now, to select ψ so that we obtain an acceptance probability equal to φ, we
need to solve

p(|S| < ε|ψ) = φ,

wrt ψ, numerically (e.g. using bisection). Due to the independence between the
priors and between the statistics, in d dimensions the above probability becomes
p(|S| < ε|ψ)d.

C.4. Unstable population model details

Under the Gaussian and EES version of SL, we maximize the synthetic likelihood
using 100 iterations of Iterated Filtering, with N = 24 synthetic likelihood
evaluations at each step. The optimizer is initialized at r = 0.3, κ = 30, α = 0.15
and β = 0.03. Given that m = 5× 103, estimating the model parameters costs
12×106 simulations from the model. In ABC we use 106 simulation to calibrate
the tolerance ε, followed by 12 × 106 MCMC samples. Of these, we store only
a thinned sub-sample of 22 × 103 parameter vector. Before obtaining MAP
estimates, we discard the first 4 × 103 of these as burn-in. Then we maximize
the posterior using the mean shift algorithm, where the approximate posterior is
estimated using a Gaussian kernel density estimator. Following the rule of thumb
of Silverman (1986) the covariance matrix, H, of the kernels is determined as
follows

H
1
2 =

( 4

d+ 2

) 1
d+4

n− 1
d+4 Σ̂1/2,
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where n = 18 × 103, while H
1
2 and Σ1/2 are matrix square roots of H and

of Σ̂, the estimated covariance of the posterior samples. Given that the kernel
density estimate of the posterior might have multiple local modes, we obtain 500
different MAP estimates by initializing the mean shift algorithm at a random
posterior sample. We used the estimate corresponding to the highest (estimate)
posterior density as our final MAP estimate.

C.5. Formind settings

The summary statistic were obtained using the following constants

α1,1 = α1,3 = α2,1 = α2,3 = 1.5, α1,2 = 2, α2,2 = 2

while ψjk and σjk were estimates of mean and standard deviations of Cjk,
obtained by simulating tree counts at the true parameters. The 24 datasets
were simulated from Formind using the same parameter values as in Table 1
in the supplementary material of Hartig et al. (2014). The chosen tree classes
correspond to diameters at breast height d < 0.2m, 0.2m ≤ d < 0.6m, d ≥ 0.6m
for pioneer and d < 0.5m, 0.5m ≤ d < 1.4m, d ≥ 1.4m for late successional trees.
To generate the datasets the model was run for 105 years, and the final statistics
vector was selected. The m = 104 summary statistics simulated to estimate
pSL(s

0|θ) have been generated by simulating the model for 5.1 × 104 years,
where the first 103 years of simulation were discarded to avoid the transient,
and by storing a vector of statistics every 5 years.

Starting from initial values μpio = 0.03, μsuc = 0.003, spio = 120 and ssuc =
40, we ran the optimizations using N = 24 and 100 iterations. The estimates
reported in Table 1 in the main text were obtained by using the averages of
the last 10 iterations of each optimization run as point estimates. The whole
experiment took around 10 days on a quad-core Intel i7 3.6 GHz processor.

C.6. A further example: correlated multivariate shifted exponential
distribution

In the shifted exponential example included in the main text, the elements of
the random vector S are independent. To show that EES can cope with cor-
related random variables we have introduced correlations, without altering the
marginal densities, by using a copula model. In particular, we used a Gaussian
d-dimensional copula, which has density

c(u1, . . . , ud|R) = det(Σ)−
1
2 exp

{
1

2
qT (Id −R−1)q

}
,

where R is a d × d correlation matrix, Id is the identity matrix, q is a d-
dimensional vector with qi = Φ−1(ui), where Φ is the cumulative distribution
function of a standard normal. The random vector {u1, . . . , ud} has marginals
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Fig 5. Empirical Kullback-Leibler divergence between the three density estimators and the
true density, as the number of dimensions increases.

that are uniformly distributed on [0, 1]. For an introduction to copulas see Cheru-
bini et al. (2004).

To simulate unstructured, dense correlation matrices R, we have used the
method proposed by Joe (2006). To set up the copula model and to simulate
random variable, we have used the tools described by Yan et al. (2007).

We compare EES with a Gaussian and a kernel density estimator. In particu-
lar, we used m = 103 training samples and 5×103 test samples. The normalizing
constant of the saddlepoint was estimated using l = 103 simulations and γ was
estimated by cross-validation. For the kernel estimator we used a multivariate
Gaussian kernel with covariance αΣ̂, where Σ̂ is the empirical covariance matrix
of the random vectors in training set and α is a scaling parameter, whose value
was selected by cross-validation. Figure 5 shows how the estimated Kullback-
Leibler divergence, between the true density and each density estimate, varies
with the number of dimensions. The true density is very skewed in each di-
mension, hence the Gaussian estimator is highly biased. The kernel estimator
does better than the Gaussian, even as the dimensionality increases. This is
attributable to the fact that having a single bandwidth α is very helpful in
this example, because all the marginal densities are identical. The new density
estimator performs uniformly better than the alternatives.

As in the uncorrelated scenario (see the main text) we now estimate the
shifts θ1, . . . , θd, using the Gaussian and the new density estimator. We have
considered a 10 and a 20-dimensional scenario. In both cases γ has been selected
by cross-validation. We have used β = 0.2 and θ1 = · · · = θd = 0. Given that
the shape of the densities does not change with any of the θs we set l = 0,
and we have not computed the normalizing constant. We have used m = 104

and m = 5 × 104 simulated vectors, respectively. By using EES, the MSE was
reduced from 21.9 to 4.8 in the 10-dimensional setting, and from 22.7 to 3.2 in
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the 20-dimensional setting. P-values from t-test for differences in log-absolute
errors were lower than 10−9 in both runs.
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